COLLOQUIUM MATHEMATICUM

A SPHERICAL TRANSFORM ON SCHWARTZ FUNCTIONS ON THE HEISENBERG GROUP ASSOCIATED TO THE ACTION OF $U(p, q)$

BY
T. GODOY and L. SAAL (Córdoba)

Abstract

Let $\mathcal{S}\left(H_{n}\right)$ be the space of Schwartz functions on the Heisenberg group H_{n}. We define a spherical transform on $\mathcal{S}\left(H_{n}\right)$ associated to the action (by automorphisms) of $U(p, q)$ on $H_{n}, p+q=n$. We determine its kernel and image and obtain an inversion formula analogous to the Godement-Plancherel formula.

1. Introduction. Let $n \geq 2$ and let p, q be natural numbers such that $p+q=n$. Let H_{n} be the Heisenberg group defined by $H_{n}=\mathbb{C}^{n} \times \mathbb{R}$ with group law

$$
(z, t)\left(z^{\prime}, t^{\prime}\right)=\left(z+z^{\prime}, t+t^{\prime}-\frac{1}{2} \operatorname{Im} B\left(z, z^{\prime}\right)\right)
$$

where

$$
B(z, w)=\sum_{j=1}^{p} z_{j} \bar{w}_{j}-\sum_{j=p+1}^{n} z_{j} \bar{w}_{j} .
$$

For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, we write $x=\left(x^{\prime}, x^{\prime \prime}\right)$ with $x^{\prime} \in \mathbb{R}^{p}, x^{\prime \prime} \in \mathbb{R}^{q}$. So, $\mathbb{R}^{2 n}$ can be identified with \mathbb{C}^{n} via the map

$$
\varphi\left(x^{\prime}, x^{\prime \prime}, y^{\prime}, y^{\prime \prime}\right)=\left(x^{\prime}+i y^{\prime}, x^{\prime \prime}-i y^{\prime \prime}\right), \quad x^{\prime}, y^{\prime} \in \mathbb{R}^{p}, x^{\prime \prime}, y^{\prime \prime} \in \mathbb{R}^{q}
$$

In this setting, the form $-\operatorname{Im} B(z, w)$ agrees with the standard symplectic form on $\mathbb{R}^{2(p+q)}$, and the vector fields

$$
X_{j}=-\frac{1}{2} y_{j} \frac{\partial}{\partial t}+\frac{\partial}{\partial x_{j}}, \quad Y_{j}=\frac{1}{2} x_{j} \frac{\partial}{\partial t}+\frac{\partial}{\partial y_{j}}, \quad j=1, \ldots, n, \quad T=\frac{\partial}{\partial t}
$$

form a standard basis for the Lie algebra h_{n} of H_{n}. Thus H_{n} can be viewed as $\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}$ via the map $(x, y, t) \mapsto(\varphi(x, y), t)$. From now on, we will use freely this identification.

Let $\mathcal{S}\left(H_{n}\right)$ be the Schwartz space on H_{n} and let $\mathcal{S}^{\prime}\left(H_{n}\right)$ be the space of corresponding tempered distributions. Consider the action of $U(p, q)$ on H_{n} given by $g \cdot(z, t)=(g z, t)$ (note that since we have assumed that $p, q \geq 1$, $U(p, q)$ is noncompact). So $U(p, q)$ acts on $L^{2}\left(H_{n}\right), \mathcal{S}\left(H_{n}\right)$ and $\mathcal{S}^{\prime}\left(H_{n}\right)$ in

2000 Mathematics Subject Classification: Primary 43A80; Secondary 22E25.
Key words and phrases: Heisenberg group, spherical transform, Schwartz space.
the canonical way. The subalgebra $\mathcal{U}_{U(p, q)}\left(h_{n}\right)$ of left invariant differential operators which commute with this action is generated by L and T where

$$
L=\sum_{j=1}^{p}\left(X_{j}^{2}+Y_{j}^{2}\right)-\sum_{j=p+1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right)
$$

and T is as above (cf. [5]). We observe that it is commutative, since T belongs to the center of h_{n}.

Moreover, for $\lambda \in \mathbb{R}-\{0\}$ and $k \in \mathbb{Z}$, there exists a tempered $U(p, q)$ invariant distribution (on H_{n}) $S_{\lambda, k}$ satisfying

$$
\begin{equation*}
L S_{\lambda, k}=-|\lambda|(2 k+p-q) S_{\lambda, k}, \quad i T S_{\lambda, k}=\lambda S_{\lambda, k} \tag{1.1}
\end{equation*}
$$

and such that, for all $f \in \mathcal{S}\left(H_{n}\right)$,

$$
\begin{equation*}
f=\sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty} f * S_{\lambda, k}|\lambda|^{n} d \lambda \tag{1.2}
\end{equation*}
$$

Let us recall some facts concerning the compact case $p=n, q=0$, i.e., when $U(p, q)=U(n)$. In this case it is well known (see [6]) that $\mathcal{U}_{U(n)}\left(h_{n}\right)$ is a commutative algebra if and only if the convolution algebra $L_{U(n)}^{1}\left(H_{n}\right)$ of $U(n)$-invariant integrable functions is commutative, that is, $\left(H_{n}, U(n)\right)$ is a Gelfand pair. Its spectrum, denoted by $\Delta\left(U(n), H_{n}\right)$, can be identified, via integration, with the set of bounded spherical functions of the pair $\left(U(n), H_{n}\right)$. These spherical functions can be classified (see [2]) as:
a) The spherical functions of type I, i.e., those that restricted to the center of H_{n} are nontrivial characters. These are given by

$$
\Phi_{\lambda, k}^{n-1}(z, t):=e^{-i \lambda t} \mathcal{L}_{k}^{n-1}\left(|\lambda||z|^{2} / 2\right) e^{-|\lambda||z|^{2} / 4}, \quad \lambda \neq 0, k \geq 0,
$$

where \mathcal{L}_{k}^{n-1} is the Laguerre polynomial of order $n-1$ and degree k normalized by $\mathcal{L}_{k}^{n-1}(0)=1$.
b) The spherical functions η_{w} of type II, i.e., those that are constant on the center. They are given, for $w \in \mathbb{C}^{n}-\{0\}$, by

$$
\eta_{w}(z, t)=\frac{2^{n-1}(n-1)!}{(|z||w|)^{n-1}} J_{n-1}(|z||w|)
$$

where J_{n-1} is the Bessel function of order $n-1$ of the first kind, and by

$$
\eta_{0}(z, t)=1 .
$$

We set

$$
\begin{aligned}
& \Delta_{1}\left(U(n), H_{n}\right)=\left\{\Psi \in \Delta\left(U(n), H_{n}\right): \Psi \text { is of type I }\right\}, \\
& \Delta_{2}\left(U(n), H_{n}\right)=\left\{\Psi \in \Delta\left(U(n), H_{n}\right): \Psi \text { is of type II }\right\} .
\end{aligned}
$$

For $f \in L_{U(n)}^{1}\left(H_{n}\right)$, its spherical transform $\widehat{f}: \Delta\left(U(n), H_{n}\right) \rightarrow \mathbb{C}$ is defined by

$$
\widehat{f}(\Psi)=\int_{H_{n}} f(z, t) \overline{\Psi(z, t)} d z d t
$$

where $d z d t$ is the Haar measure (i.e., the Lebesgue measure) on H_{n}.
In this case $(p=n, q=0)$ the image of the radial Schwartz functions on H_{n} under the map $f \mapsto \widehat{f}$ is explicitly described in [3]. The notion of rapidly decreasing functions on $\Delta\left(U(n), H_{n}\right)$ is introduced and it is proved that the image of $\mathcal{S}\left(H_{n}\right)$ under the spherical transform is the space $\widehat{\mathcal{S}}\left(U(n), H_{n}\right)$ of rapidly decreasing functions F on $\Delta\left(U(n), H_{n}\right)$ such that certain "derivatives" of F are also rapidly decreasing (see Definitions 6.1 and 6.3 in [3]).

Also, in [4], a map $\mathcal{E}: \Delta\left(U(n), H_{n}\right) \rightarrow[0, \infty) \times \mathbb{R}$ is defined by $\mathcal{E}(\Psi)=$ $(-\widehat{L}(\Psi), i \widehat{T}(\Psi))$, where $\widehat{L}(\Psi)$ and $\widehat{T}(\Psi)$ denote the eigenvalues of L and T respectively, associated to Ψ. The image of \mathcal{E} is the so-called Heisenberg fan $\mathcal{A}\left(U(n), H_{n}\right)$ and it is the set

$$
\{(|\lambda|(2 k+n), \lambda): \lambda \neq 0, k \in \mathbb{N} \cup\{0\}\} \cup\{[0, \infty) \times\{0\}\}
$$

It is proved that \mathcal{E} is a homeomorphism from $\Delta\left(U(n), H_{n}\right)$ (equipped with the Gelfand topology) onto the Heisenberg fan (provided with the topology induced from \mathbb{R}^{2}).

From the above considerations it is natural to consider, for arbitrary $p, q \in \mathbb{N}$ with $p+q=n$ and for $f \in \mathcal{S}\left(H_{n}\right)$, the "spherical transform" $\mathcal{F}(f):(\mathbb{R}-\{0\}) \times \mathbb{Z} \rightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
\mathcal{F}(f)(\lambda, k)=\left\langle S_{\lambda, k}, f\right\rangle \tag{1.3}
\end{equation*}
$$

Our aim is to characterize $\mathcal{F}\left(\mathcal{S}\left(H_{n}\right)\right)$ and $\operatorname{Ker}(\mathcal{F})$. In order to state our results, let us introduce some additional notations.

For $m:(\mathbb{R}-\{0\}) \times \mathbb{Z} \rightarrow \mathbb{C}$ and $(\lambda, k) \in(\mathbb{R}-\{0\}) \times \mathbb{Z}$ define

$$
\begin{aligned}
m^{*}(\lambda, k) & = \begin{cases}m(\lambda, k) & \text { if } k \geq 0 \\
(-1)^{n-2} m(\lambda, k) & \text { if } k<0\end{cases} \\
m^{* *}(\lambda, k) & = \begin{cases}m(\lambda, k) & \text { if } k<0 \\
(-1)^{n-2} m(\lambda, k) & \text { if } k \geq 0\end{cases}
\end{aligned}
$$

We also set

$$
\begin{align*}
& E(m)(\lambda, k)=\sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} m(\lambda, k-l) \\
& \widetilde{E}(m)(\lambda, k)=\sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} m(\lambda, k+l) \tag{1.4}
\end{align*}
$$

Our main result is the following

Theorem 1.1. Assume that $p, q \geq 1$ with $p+q=n$. Then $\mathcal{F}\left(\mathcal{S}\left(H_{n}\right)\right)$ is the space of functions $m:(\mathbb{R}-\{0\}) \times \mathbb{Z} \rightarrow \mathbb{C}$ such that
(i) we have the estimate

$$
\begin{equation*}
|m(\lambda, k)| \leq c_{N}\left(|k|^{n-1}+\frac{1}{|\lambda|^{n-1}}\right) \frac{1}{|\lambda|^{N}(|k|+1)^{N}}, \quad N \in \mathbb{N} \cup\{0\} \tag{1.5}
\end{equation*}
$$

(ii) the functions defined on $(\mathbb{R}-\{0\}) \times(\mathbb{N} \cup\{0\})$ by

$$
(\lambda, k) \mapsto E\left(m^{*}\right)(\lambda, k+q), \quad(\lambda, k) \mapsto \widetilde{E}\left(m^{* *}\right)(\lambda,-k-p)
$$

extend to two functions belonging to $\widehat{\mathcal{S}}\left(U(1), H_{1}\right)$.
We also obtain an inversion formula for \mathcal{F} analogous to the GodementPlancherel formula and we determine the kernel of \mathcal{F}.

Acknowledgments. We express our thanks to Fulvio Ricci, who inspired this work, to Daniel Penazzi for useful talks about combinatorial identities, and to the referee for his/her useful suggestions and comments.
2. Notations and preliminaries. Let us introduce some notation and recall some known facts. Let H denote the Heaviside function (i.e., $H(\tau)=$ $\left.\chi_{(0, \infty)}(\tau)\right)$ and let \mathcal{H} be the space of functions $\varphi: \mathbb{R} \rightarrow \mathbb{C}$ such that

$$
\varphi(\tau)=\varphi_{1}(\tau)+\tau^{n-1} \varphi_{2}(\tau) H(\tau), \quad \varphi_{1}, \varphi_{2} \in \mathcal{S}(\mathbb{R})
$$

It is proved in [9] that \mathcal{H}, provided with a suitable topology, is a Fréchet space. Moreover, \mathcal{H} is the space of functions $\varphi \in C^{\infty}(\mathbb{R}-\{0\})$ that are rapidly decreasing at $\pm \infty$ in the usual sense, have the limits $\lim _{\tau \rightarrow 0^{+}} \partial^{j} \varphi / \partial \tau^{j}$ and $\lim _{\tau \rightarrow 0^{-}} \partial^{j} \varphi / \partial \tau^{j}$ for all $j \in \mathbb{N}$, and admit $n-2$ continuous derivatives at the origin. For $p+q=n, p, q \geq 1$, in [9] there is also given a linear, continuous and surjective map $N: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{H}$ whose adjoint $N^{\prime}: \mathcal{H}^{\prime} \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)^{O(p, q)}$ is a linear homeomorphism onto the space of $O(p, q)$-invariant tempered distributions on \mathbb{R}^{n}. As pointed out in [5], this construction also works to describe the space $\mathcal{S}^{\prime}\left(\mathbb{C}^{n}\right)^{U(p, q)}$, i.e., there exists a linear, continuous and surjective map, still denoted by $N: \mathcal{S}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{H}$, whose adjoint $N^{\prime}: \mathcal{H}^{\prime} \rightarrow$ $\mathcal{S}^{\prime}\left(\mathbb{C}^{n}\right)^{U(p, q)}$ is a homeomorphism. For $f \in \mathcal{S}\left(H_{n}\right)$, we will write $N f(\tau, t)$ for $N(f(\cdot, t))(\tau)$. We have (cf. (2.11) in [5])

$$
N f(\tau, t)=\int_{\varrho>|\tau|} M f(\cdot, t)(\varrho, \tau)(\varrho+\tau)^{p-1}(\varrho-\tau)^{q-1} d \varrho,
$$

where for $\varrho \geq|\sigma|$,
$M f(\cdot, t)(\varrho, \sigma):=\int_{S^{2 p-1} \times S^{2 q-1}} f\left(\left(\frac{\varrho+\sigma}{2}\right)^{1 / 2} w_{u},\left(\frac{\varrho-\sigma}{2}\right)^{1 / 2} w_{v}, t\right) d w_{u} d w_{v}$.

Let $\mathcal{H}^{\#}$ be the space of functions φ on \mathbb{R}^{2} of the form

$$
\varphi(\tau, t)=\varphi_{1}(\tau, t)+\tau^{n-1} H(\tau) \varphi_{2}(\tau, t), \quad \varphi_{1}, \varphi_{2} \in \mathcal{S}\left(\mathbb{R}^{2}\right)
$$

Remark 2.1. A straightforward adaptation of the proofs of Lemmas 4.2 and 4.3 in [9] shows that $N: \mathcal{S}\left(H_{n}\right) \rightarrow \mathcal{H}^{\#}$ is surjective.

In order to give an explicit expression of the distributions $S_{\lambda, k}$ we recall the definition of the Laguerre polynomials. For nonnegative integers m and α let $L_{m}^{\alpha}(\tau)$ (see, e.g., [8, pp. 99-101]) be given by

$$
\begin{equation*}
L_{m}^{0}(\tau)=\sum_{j=0}^{m}\binom{m}{j}(-1)^{j} \frac{\tau^{j}}{j!}, \quad L_{m-1}^{\alpha+1}(\tau)=-\frac{d}{d \tau} L_{m}^{\alpha}(\tau) \tag{2.1}
\end{equation*}
$$

For $\lambda \in \mathbb{R}, k, s \in \mathbb{N} \cup\{0\}$ and $(\tau, t) \in[0, \infty) \times \mathbb{R}$ we set

$$
\begin{align*}
\psi_{\lambda, k}^{s}(\tau, t) & :=e^{-i \lambda t} \mathcal{L}_{k}^{s}(|\lambda| \tau / 2) e^{-|\lambda| \tau / 4} \tag{2.2}\\
\varphi_{\lambda, k}^{s}(\tau, t) & :=e^{-i \lambda t} L_{k}^{s}(|\lambda| \tau / 2) e^{-|\lambda| \tau / 4} \tag{2.3}
\end{align*}
$$

where \mathcal{L}_{k}^{s} denotes the Laguerre polynomial of degree k and order s normalized by $\mathcal{L}_{k}^{s}(0)=1$, i.e., given by $\mathcal{L}_{k}^{s}(\tau)=L_{k}^{s}(\tau) /\binom{k+s}{k}$.

It is well known that the family $e^{-\tau / 2} L_{m}^{0}(\tau), m \geq 0$, is an orthonormal basis of $L^{2}(0, \infty)$. Thus (cf. [5, Theorem 4.1 and Remarks 4.2, 4.3])

$$
\begin{equation*}
S_{\lambda, k}=F_{\lambda, k} \otimes e^{-i \lambda t} \tag{2.4}
\end{equation*}
$$

with $F_{\lambda, k} \in \mathcal{S}^{\prime}\left(\mathbb{C}^{n}\right)$ defined by

$$
\begin{equation*}
\left.\left\langle F_{\lambda, k}, g\right\rangle=\left.\left\langle\left(L_{k-q+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N g\left(2|\lambda|^{-1} \tau\right)\right\rangle \tag{2.5}
\end{equation*}
$$

for $k \geq 0, \lambda \neq 0$ and by

$$
\begin{equation*}
\left.\left\langle F_{\lambda, k}, g\right\rangle=\left.\left\langle\left(L_{-k-p+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N g\left(-2|\lambda|^{-1} \tau\right)\right\rangle \tag{2.6}
\end{equation*}
$$

for $k<0, \lambda \neq 0$.
For $\varphi \in \mathcal{H}$ and $j \in \mathbb{N} \cup\{0\}$ a computation gives

$$
\begin{align*}
& \left\langle\left(L_{j}^{0} H\right)^{(n-1)}, \varphi\right\rangle \tag{2.7}\\
& \quad=\int_{0}^{\infty}\left(L_{j}^{0}\right)^{(n-1)} \varphi(\tau) d \tau+\sum_{0 \leq s \leq n-2}\left(L_{j}^{0}\right)^{(n-2-s)}(0)\left\langle\delta^{(s)}, \varphi\right\rangle
\end{align*}
$$

Lemma 2.2. For $r \in \mathbb{Z}$ such that $0 \leq r \leq n-2$ and for $\varphi \in \mathcal{H}$, $\left\langle\left(L_{r}^{0} H\right)^{(n-1)}, \tau \mapsto e^{-\tau / 2} \varphi(\tau)\right\rangle=(-1)^{n-2}\left\langle\left(L_{n-2-r}^{0} H\right)^{(n-1)}, \tau \mapsto e^{-\tau / 2} \varphi(-\tau)\right\rangle$.

Proof. A computation using (2.7) gives

$$
\left\langle\left(L_{r}^{0} H\right)^{(n-1)}, \tau \mapsto e^{-\tau / 2} \varphi(\tau)\right\rangle
$$

$$
=\sum_{0 \leq l \leq n-2} \sum_{\max (n-2-r, l) \leq j \leq n-2} \frac{1}{2^{j-l}}\binom{j}{l}(-1)^{n-j}\binom{r}{n-2-j}\left\langle\delta^{(l)}, \varphi\right\rangle
$$

and also

$$
\begin{aligned}
& \left\langle\left(L_{n-2-r}^{0} H\right)^{(n-1)}, \tau \mapsto e^{-\tau / 2} \varphi(-\tau)\right\rangle \\
& \quad=\sum_{0 \leq l \leq n-2} \sum_{\max (r, l) \leq j \leq n-2} \frac{1}{2^{j-l}}\binom{j}{l}(-1)^{n-j+l}\binom{n-2-r}{n-2-j}\left\langle\delta^{(l)}, \varphi\right\rangle .
\end{aligned}
$$

To show the lemma it is enough to see that for $0 \leq r \leq n-2$ and $0 \leq l$ $\leq n-2$,

$$
\begin{aligned}
& \sum_{\max (n-2-r, l) \leq j \leq n-2} \frac{1}{2^{j}}\binom{j}{l}(-1)^{n-j}\binom{r}{n-2-j} \\
&=(-1)^{n-2} \sum_{\max (r, l) \leq j \leq n-2} \frac{1}{2^{j}}\binom{j}{l}(-1)^{n-j+l}\binom{n-2-r}{n-2-j}
\end{aligned}
$$

i.e., to show that for $0 \leq r \leq n-2$, the following polynomial identity holds:

$$
\begin{align*}
& \sum_{0 \leq l \leq n-2} t^{l} \sum_{\max (n-2-r, l) \leq j \leq n-2} \frac{1}{2^{j}}\binom{j}{l}(-1)^{n-j}\binom{r}{n-2-j} \tag{2.8}\\
& =(-1)^{n-2} \sum_{0 \leq l \leq n-2} t^{l} \sum_{\max (r, l) \leq j \leq n-2} \frac{1}{2^{j}}\binom{j}{l}(-1)^{n-j+l}\binom{n-2-r}{n-2-j} .
\end{align*}
$$

If we change the summation order, (2.8) becomes

$$
\begin{align*}
& (-1)^{n} \sum_{n-2-r \leq j \leq n-2}(-1)^{j}\binom{r}{n-2-j} \frac{1}{2^{j}} \sum_{0 \leq l \leq j}\binom{j}{l} t^{l} \tag{2.9}\\
& =\sum_{r \leq j \leq n-2} \frac{1}{2^{j}}\binom{n-2-r}{n-2-j}(-1)^{j} \sum_{0 \leq l \leq j}\binom{j}{l}(-1)^{l} t^{l}
\end{align*}
$$

which, by the binomial formula, is equivalent to

$$
\begin{align*}
(-1)^{n} \sum_{n-2-r \leq j \leq n-2}\binom{r}{n-2-j} & \left(-\frac{t+1}{2}\right)^{j} \tag{2.10}\\
& =\sum_{r \leq j \leq n-2}\binom{n-2-r}{n-2-j}\left(\frac{t-1}{2}\right)^{j}
\end{align*}
$$

i.e., to

$$
\begin{align*}
& \left(-\frac{1+t}{2}\right)^{n-2} \sum_{n-2-r \leq j \leq n-2}\binom{r}{n-2-j}\left(-\frac{2}{1+t}\right)^{n-2-j} \tag{2.11}\\
& \quad=(-1)^{n}\left(\frac{t-1}{2}\right)^{n-2} \sum_{r \leq j \leq n-2}\binom{n-2-r}{n-2-j}\left(\frac{2}{t-1}\right)^{n-2-j}
\end{align*}
$$

After changing j to $n-2-j$ and recalling that $0 \leq r \leq n-2$, by the binomial formula (2.11) reduces to

$$
\left(-\frac{1+t}{2}\right)^{n-2}\left(1-\frac{2}{1+t}\right)^{r}=(-1)^{n}\left(\frac{t-1}{2}\right)^{n-2}\left(1+\frac{2}{t-1}\right)^{n-2-r},
$$

which clearly holds.
Corollary 2.3. Let $g \in \mathcal{S}\left(\mathbb{C}^{n}\right)$. For $0 \leq k \leq q-1, \lambda \neq 0$ we have

$$
\begin{align*}
& \left\langle F_{\lambda, k}, g\right\rangle \tag{2.12}\\
& \left.\quad=\left.(-1)^{n-2}\left\langle\left(L_{-k-p+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N g\left(-2|\lambda|^{-1} \tau\right)\right\rangle,
\end{align*}
$$

and

$$
\begin{align*}
& \left\langle F_{\lambda, k}, g\right\rangle \tag{2.13}\\
& \left.\quad=\left.(-1)^{n-2}\left\langle\left(L_{k-q+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N g\left(2|\lambda|^{-1} \tau\right)\right\rangle
\end{align*}
$$

for $-p+1 \leq k<0$.
For a given set X and for $f: X \times \mathbb{R} \rightarrow \mathbb{C}, \lambda \in \mathbb{R}$ we set $f(z, \widehat{\lambda}):=$ $(t \mapsto f(z, t))^{\wedge}(\lambda)$ where ()$^{\wedge}$ denotes the one-dimensional Fourier transform (provided that it exists).

Proposition 2.4. $\operatorname{Ker}(\mathcal{F})=\operatorname{Ker}(N)$.
Proof. If $f \in \mathcal{S}\left(H_{n}\right)$ and $N f=0$, then, by (2.5) and (2.6), $\mathcal{F}(f)(\lambda, k)=$ $\left\langle S_{\lambda, k}, f\right\rangle=\left\langle F_{\lambda, k} \otimes e^{-i \lambda t}, f\right\rangle=0$ and so $\mathcal{F}(f)=0$.

If $\mathcal{F}(f)=0$, from the definition of $S_{\lambda, k}$, for $k \geq 0$ and $\lambda \neq 0$ we have

$$
\left.\left.\left\langle\left(L_{k-q+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N f\left(2|\lambda|^{-1} \tau, \widehat{\lambda}\right)\right\rangle=0
$$

and, by Lemma 2.2 , for $-p+1 \leq k<0$,

$$
\begin{aligned}
& \left.\left.\left\langle\left(L_{k-q+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N f\left(2|\lambda|^{-1} \tau, \widehat{\lambda}\right)\right\rangle \\
& \left.=\left.(-1)^{n-2}\left\langle\left(L_{-k-p+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N f\left(-2|\lambda|^{-1} \tau, \widehat{\lambda}\right)\right\rangle=0 .
\end{aligned}
$$

Thus, for $j \geq 0$,

$$
2|\lambda|^{-1} \int_{0}^{\infty} e^{-\tau / 2} L_{j}^{0}(\tau) e^{\tau / 2} \frac{d^{n-1}}{d \tau^{n-1}}\left(e^{-\tau / 2} N f\left(2|\lambda|^{-1} \tau, \widehat{\lambda}\right)\right) d \tau=0 .
$$

Thus

$$
\frac{d^{n-1}}{d \tau^{n-1}}\left(e^{-\tau / 2} N f\left(2|\lambda|^{-1} \tau, \widehat{\lambda}\right)\right)=0 \quad \text { for } \tau \geq 0, \lambda \neq 0
$$

So for such τ and $\lambda, e^{-\tau / 2} N f\left(2|\lambda|^{-1} \tau, \widehat{\lambda}\right)=P_{\lambda}(\tau)$ where $P_{\lambda}(\tau)$ is a polynomial of degree at most $n-2$ with coefficients which (in principle) depend on λ. Thus $N f\left(2|\lambda|^{-1} \tau, \widehat{\lambda}\right)=e^{\tau / 2} P_{\lambda}(\tau)$. For each $\lambda \neq 0$, $\lim _{\tau \rightarrow \infty} N f\left(2|\lambda|^{-1} \tau, \widehat{\lambda}\right)=0$ and so $P_{\lambda} \equiv 0$. This implies $N f(\tau, \widehat{\lambda})=0$ for $\tau \geq 0$ and $\lambda \in \mathbb{R}$.

A similar argument starting with the fact that, for $k<0$,

$$
\left.\left.\left\langle\left(L_{-k-p+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N f\left(-2|\lambda|^{-1} \tau, \widehat{\lambda}\right)\right\rangle=0
$$

shows that $\operatorname{Nf}(\tau, \widehat{\lambda})=0$ for $\tau<0, \lambda \in \mathbb{R}$.
3. Necessary conditions. In this section we find necessary conditions for a function m defined on $(\mathbb{R}-\{0\}) \times \mathbb{Z}$ to belong to the image of \mathcal{F}. To do this, we recall the definition of the space $\widehat{\mathcal{S}}\left(U(n), H_{n}\right)$. We say that $F: \Delta\left(U(n), H_{n}\right) \rightarrow \mathbb{C}$ is rapidly decreasing (cf. [3, Definition 6.1]) if
(i) F is continuous,
(ii) for $w \in \mathbb{C}^{n}, w \mapsto F\left(\eta_{w}\right)$ belongs to $\mathcal{S}_{U(n)}\left(\mathbb{C}^{n}\right)$ where η_{w} is the spherical function of type II described in the introduction,
(iii) the $\operatorname{map} \lambda \mapsto F(\lambda, k)$ is smooth on $\mathbb{R}-\{0\}$,
(iv) for each $j, N \geq 0$ there exists a constant $c_{j, N}$ such that

$$
\left|\frac{\partial^{j}}{\partial \lambda^{j}} F(\lambda, k)\right| \leq \frac{c_{j, N}}{|\lambda|^{j+N}(2 k+n)^{N}} .
$$

Also we set (see [3, Definition 6.2])

$$
M^{-} F(\lambda, k)= \begin{cases}\frac{\partial F}{\partial \lambda}(\lambda, k)-\frac{k}{\lambda}[F(\lambda, k)-F(\lambda, k-1)] & \text { for } \lambda>0 \\ \frac{\partial F}{\partial \lambda}(\lambda, k)-\frac{k+n}{\lambda}[F(\lambda, k+1)-F(\lambda, k)] & \text { for } \lambda<0\end{cases}
$$

and

$$
M^{+} F(\lambda, k)= \begin{cases}\frac{\partial F}{\partial \lambda}(\lambda, k)-\frac{k+n}{\lambda}[F(\lambda, k+1)-F(\lambda, k)] & \text { for } \lambda>0 \\ \frac{\partial F}{\partial \lambda}(\lambda, k)-\frac{k}{\lambda}[F(\lambda, k)-F(\lambda, k-1)] & \text { for } \lambda<0\end{cases}
$$

The space $\widehat{\mathcal{S}}\left(U(n), H_{n}\right)$ is defined as the set of all functions $F: \Delta\left(U(n), H_{n}\right)$ $\rightarrow \mathbb{C}$ for which $\left(M^{+}\right)^{l}\left(M^{-}\right)^{m} F$ is rapidly decreasing for all $l, m \geq 0$.

Our results in this section are as follows:
Theorem 3.1. For $f \in \mathcal{S}\left(H_{n}\right)$ and $k \in \mathbb{Z}, \partial^{j}(\mathcal{F} f(\lambda, k)) / \partial \lambda^{j}$ exists for all $j \in \mathbb{N}$ and $\lambda \neq 0$. Moreover, for each $j, N \in \mathbb{N} \cup\{0\}$ there exists a positive constant c independent of λ and k such that

$$
\begin{equation*}
\left|\frac{\partial^{j}(\mathcal{F} f(\lambda, k))}{\partial \lambda^{j}}\right| \leq c\left(|k|^{n-1}+\frac{1}{|\lambda|^{n-1}}\right) \frac{1}{|\lambda|^{N+j}(|k|+1)^{N}} \tag{3.1}
\end{equation*}
$$

Theorem 3.2. Let $f \in \mathcal{S}\left(H_{n}\right)$ and let $m=\mathcal{F} f$. Then the function defined on $(\mathbb{R}-\{0\}) \times(\mathbb{N} \cup\{0\})$ by $(\lambda, k) \mapsto E\left(m^{*}\right)(\lambda, k+q)\left(\right.$ with E, m^{*} as in the introduction) can be extended to a function belonging to $\widehat{\mathcal{S}}\left(U(1), H_{1}\right)$.

Moreover, for $k \geq 0$ and $\lambda \neq 0$,

$$
\begin{equation*}
E\left(m^{*}\right)(\lambda, k+q)=(-1)^{n-1} \int_{0}^{\infty} L_{k}^{0}(|\lambda| \tau / 2) e^{-|\lambda| \tau / 4} N f(\tau, \widehat{\lambda}) d \tau \tag{3.2}
\end{equation*}
$$

Theorem 3.3. Let $f \in \mathcal{S}\left(H_{n}\right)$ and let m as in Theorem 3.2. Then the function defined on $(\mathbb{R}-\{0\}) \times(\mathbb{N} \cup\{0\})$ by $(\lambda, k) \mapsto \widetilde{E}\left(m^{* *}\right)(\lambda,-k-p)$ $\left(\widetilde{E}\right.$ and $m^{* *}$ as in the introduction) extends to a function in $\widehat{\mathcal{S}}\left(U(1), H_{1}\right)$. Furthermore

$$
\begin{equation*}
\widetilde{E}\left(m^{* *}\right)(\lambda,-k-p)=(-1)^{n-1} \int_{0}^{\infty} L_{k}^{0}(|\lambda| \tau / 2) e^{-|\lambda| \tau / 4} N f(-\tau, \widehat{\lambda}) d \tau \tag{3.3}
\end{equation*}
$$

For $j, s \in \mathbb{N} \cup\{0\}$, let $\varphi_{\lambda, j}^{s}(\tau, t)$ be defined by (2.3). From (2.7) and the definition of $S_{\lambda, k}$ we have

$$
\begin{equation*}
\mathcal{F} f(\lambda, k)=I(\lambda, k)+I I(\lambda, k) \tag{3.4}
\end{equation*}
$$

where

$$
I(\lambda, k)= \begin{cases}(-1)^{n-1} \int_{\mathbb{R}} \int_{\tau>0} e^{-i \lambda t} \varphi_{\lambda, k-q}(\tau, t) e^{-|\lambda| / 4 \tau} N f(\tau, t) d \tau d t \tag{3.5}\\ (-1)^{n-1} \int_{\mathbb{R}} \int_{\tau>0} \varphi_{\lambda,-k-p}(\tau, t) N f(-\tau, t) d \tau d t \\ \text { for } k \geq q \\ 0 \quad \text { for }-p+1 \leq k \leq q-1, & \text { for } k \leq-p\end{cases}
$$

$$
\begin{equation*}
I I(\lambda, k)=\sum_{r=0}^{n-2} c_{r, k}|\lambda|^{-(l+1)}\left\langle\delta^{(r)}, N f(\cdot, \widehat{\lambda})\right\rangle \quad \text { for } k \in \mathbb{Z} \tag{3.6}
\end{equation*}
$$

with

$$
c_{r, k}= \begin{cases}4^{r} \sum_{j=r}^{n-2} \frac{1}{2^{j}}\binom{j}{r}\left(L_{k-q+n-1}^{0}\right)^{(n-j-2)}(0) & \text { for } k \geq 0 \\ (-1)^{r} 4^{r} \sum_{j=r}^{n-2} \frac{1}{2^{j}}\binom{j}{r}\left(L_{-k-p+n-1}^{0}\right)^{(n-j-2)}(0) & \text { for } k<0\end{cases}
$$

Proof of Theorem 3.1. Since $N f \in \mathcal{H}^{\#}$ we have $\frac{\partial}{\partial \tau}(\tau N f(\tau, t)) \in \mathcal{H}^{\#}$, so by Remark 2.1, there is $g \in \mathcal{S}\left(H_{n}\right)$ such that $N g(\tau, t)=\frac{\partial}{\partial \tau}(\tau N f(\tau, t))$.

We claim that for $\lambda \neq 0$ and $k \in \mathbb{Z}, \partial \mathcal{F} f(\lambda, k) / \partial \lambda$ exists and

$$
\begin{equation*}
\frac{\partial \mathcal{F} f(\lambda, k)}{\partial \lambda}=-i \mathcal{F}(t f)(\lambda, k)-\frac{1}{\lambda} \mathcal{F} g(\lambda, k) \tag{3.7}
\end{equation*}
$$

Indeed, consider the case $k \geq q$. Let $I(\lambda, k)$ and $I I(\lambda, k)$ be given by (3.5) and (3.6) respectively. Since for $j \geq 0$ we have

$$
\frac{\partial}{\partial \lambda} \varphi_{\lambda, j}(\tau, t)=-i t \varphi_{\lambda, j}(\tau, t)+\frac{\tau}{\lambda} \frac{\partial}{\partial \tau} \varphi_{\lambda, j}(\tau, t)
$$

after integration by parts we obtain

$$
\begin{align*}
\frac{\partial I}{\partial \lambda}(\lambda, k)= & \frac{\partial}{\partial \lambda}\left(\int_{\mathbb{R}} \int_{\tau>0}(-1)^{n-1} \varphi_{\lambda, k-q}(\tau, t) N f(\tau, t) d \tau d t\right) \tag{3.8}\\
= & \int_{\mathbb{R}} \int_{\tau>0}(-1)^{n-1} \varphi_{\lambda, k-q}(\tau, t)(-i t N f(\tau, t)) d \tau d t \\
& -\frac{1}{\lambda} \int_{\mathbb{R}} \int_{\tau>0}(-1)^{n-1} \varphi_{\lambda, k-q}(\tau, t) \frac{\partial}{\partial \tau}(\tau N f(\tau, t)) d \tau d t
\end{align*}
$$

Also,

$$
\begin{align*}
\frac{\partial I I}{\partial \lambda}(\lambda, k)= & \frac{\partial}{\partial \lambda}\left(\sum_{l=0}^{n-2} c_{l, k}|\lambda|^{-(l+1)}\left\langle\delta^{(l)}, N f(\cdot, \widehat{\lambda})\right\rangle\right) \tag{3.9}\\
= & -\sum_{l=0}^{n-2}(l+1) c_{l, k}|\lambda|^{-(l+2)} \operatorname{sg}(\lambda)\left\langle\delta^{(l)}, N f(\cdot, \widehat{\lambda})\right\rangle \\
& +\sum_{l=0}^{n-2} c_{l, k}|\lambda|^{-(l+1)}\left\langle\delta^{(l)},-i(t N f(\cdot, t))^{\wedge}(\lambda)\right\rangle
\end{align*}
$$

where $(\cdot)^{\wedge}$ denotes the Fourier transform in the variable t. Thus the derivative $\partial \mathcal{F} f(\lambda, k) / \partial \lambda$ exists. On the other hand,

$$
\begin{align*}
-i \mathcal{F}(t f(z, t))(\lambda, k)= & \int_{\mathbb{R}} \int_{\tau>0}(-1)^{n-1} \varphi_{\lambda, k-q}(\tau, t)(-i t N f(\tau, t)) d \tau d t \tag{3.10}\\
& +\sum_{l=0}^{n-2} c_{l, k}|\lambda|^{-(l+1)}\left\langle\delta^{(l)},-i(t N f(\cdot, t))^{\wedge}(\lambda)\right\rangle
\end{align*}
$$

Since $\left.\left\langle\delta^{(l)}, \frac{\partial}{\partial \tau}(\tau N f(\tau, t))\right\rangle=(l+1)\left\langle\delta^{(l)}, N f(\cdot, t)\right\rangle\right)$ we have

$$
\begin{align*}
-\frac{1}{\lambda} \mathcal{F} g(\lambda, k)= & -\sum_{l=0}^{n-2}(l+1) c_{l, k}|\lambda|^{-(l+2)} \operatorname{sg}(\lambda)\left\langle\delta^{(l)}, N f(\cdot, \widehat{\lambda})\right\rangle \tag{3.11}\\
& -\frac{1}{\lambda} \int_{\mathbb{R}} \int_{\tau>0}(-1)^{n-1} \varphi_{\lambda, k-q}(\tau, t) \frac{\partial}{\partial \tau}(\tau N f(\tau, t)) d \tau d t
\end{align*}
$$

and now (3.8)-(3.11) give (3.7) for $k \geq q$. The case $k<q$ follows from a similar argument and using the corresponding expressions for $I(\lambda, k)$ and $I I(\lambda, k)$.

Now, induction on j implies that $\partial^{j} \mathcal{F} f(\lambda, k) / \partial \lambda^{j}$ exists for $\lambda \neq 0, k \in \mathbb{Z}$ and all j.

In the rest of the proof, $c_{1}, c_{2}, \ldots, c^{\prime}, c^{\prime \prime}$, will denote positive constants independent of λ and k. To prove (3.1) we first consider the case $k \geq q$.

From (3.4), we have

$$
|\mathcal{F} f(\lambda, k)| \leq L_{k-q}^{n-1}(0)\|N f\|_{L^{1}((0, \infty) \times \mathbb{R})}+c_{1} \sum_{l=0}^{n-2}\left|c_{l, k}\right||\lambda|^{-(l+1)} .
$$

Since $L_{k-q}^{n-1}(0)=\binom{k-q+n-1}{n-1} \leq c_{2} k^{n-1}$ and $\left|c_{l, k}\right| \leq c_{3} k^{n-l-2}$ we have

$$
\begin{align*}
|\mathcal{F} f(\lambda, k)| & \leq c_{4}\left(k^{n-1}+\sum_{l=0}^{n-2} k^{n-1-(l+1)}|\lambda|^{-(l+1)}\right) \tag{3.12}\\
& \leq c_{4}\left(k+\frac{1}{|\lambda|}\right)^{n-1} \leq c_{5}\left(k^{n-1}+\frac{1}{|\lambda|^{n-1}}\right) .
\end{align*}
$$

Applying (3.12) to $L^{N} f$ instead of f and recalling (1.1) we get

$$
|2 k+p-q|^{N}|\lambda|^{N}|\mathcal{F} f(\lambda, k)|=\left|\mathcal{F}\left(L^{N} f\right)(\lambda, k)\right| \leq c^{\prime}\left(|k|^{n-1}+\frac{1}{|\lambda|^{n-1}}\right)
$$

and since $2 k+p-q \neq 0$ because $k \geq q$, this gives

$$
\begin{equation*}
|\mathcal{F} f(\lambda, k)| \leq c^{\prime \prime}\left(|k|^{n-1}+\frac{1}{|\lambda|^{n-1}}\right) \frac{1}{|2 k+p-q|^{N}|\lambda|^{N}} . \tag{3.13}
\end{equation*}
$$

A similar argument applies to the case $k<q$, giving (3.13) except when $q-p \in 2 \mathbb{Z}$ and $k=(q-p) / 2$. In this case we take $(i T)^{N} f$ instead of $L^{N} f$ above to get

$$
\begin{equation*}
|\mathcal{F} f(\lambda, k)| \leq c\left(|k|^{n-1}+\frac{1}{|\lambda|^{n-1}}\right) \frac{1}{|\lambda|^{N}} \tag{3.14}
\end{equation*}
$$

for $k=(q-p) / 2$. From (3.13) and (3.14) we obtain (3.1) for $j=0$ and all k and N.

Observe that for $r \in \mathbb{N} \cup\{0\}$, (3.1) used with $j=0$ and $N+r$ instead of N gives immediately that

$$
\begin{equation*}
|\lambda|^{r}|\mathcal{F} f(\lambda, k)| \leq c\left(|k|^{n-1}+\frac{1}{|\lambda|^{n-1}}\right) \frac{1}{|\lambda|^{N}(|k|+1)^{N}} . \tag{3.15}
\end{equation*}
$$

An easy induction using (3.7) shows that for $j \geq 1$,

$$
\begin{equation*}
\lambda^{j} \frac{\partial^{j} \mathcal{F} f}{\partial \lambda^{j}}(\lambda, k)=\sum_{0 \leq r \leq j} \lambda^{r} \mathcal{F} f_{r}(\lambda, k) \tag{3.16}
\end{equation*}
$$

for some f_{1}, \ldots, f_{j} belonging to $\mathcal{S}\left(H_{n}\right)$ and independent of λ and k. Now, (3.15) and (3.16) give (3.1) for all j.

Lemma 3.4. Let $f \in \mathcal{S}\left(H_{n}\right)$. If either $k \geq q$ or $k \leq-p$, then

$$
\sum_{r=0}^{n-2}|\lambda|^{-(r+1)} \sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} c_{r, k-l}\left\langle\delta^{(r)}, N f(\cdot, \widehat{\lambda})\right\rangle=0 .
$$

Proof. Assume $k \geq q$. For $r=0,1, \ldots, n-2$ we have

$$
\begin{aligned}
& \sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} c_{r, k-l} \\
& \quad=\sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} \sum_{j=r}^{n-2} \frac{1}{2^{j}}\binom{j}{r}(-1)^{n-j}\binom{k-l-q+n-1}{n-j-2} \\
& \quad=\sum_{j=r}^{n-2} \frac{1}{2^{j}}\binom{j}{r}(-1)^{n-j} \sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l}\binom{k-l-q+n-1}{n-j-2}
\end{aligned}
$$

Let

$$
\beta:=\sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l}\binom{k-l-q+n-1}{n-j-2}
$$

We claim that if $0 \leq r \leq j \leq n-2$ then $\beta=0$. To see this we note that β is the coefficient of y^{s} in the polynomial $\sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l}(1+y)^{m-l}$ (where $m=k-q+n-1$ and $s=n-j-2$), i.e. β is the coefficient of y^{s} in $(1+y)^{m-(n-1)} \sum_{l=0}^{n}(-1)^{l}\binom{n-1}{l}(1+y)^{n-1-l}=(1+y)^{m-(n-1)} y^{n-1}$. So $\beta=0$ since $s=n-j-2<n-1$. The proof for the case $k \leq-p$ is similar, replacing $k-q$ by $-k-p$.

We recall that (cf. [8, p. 101])

$$
\begin{equation*}
L_{j}^{n}(x)=L_{j}^{n+1}(x)-L_{j-1}^{n+1}(x) \tag{3.17}
\end{equation*}
$$

Lemma 3.5. For $j \geq 0$,

$$
\begin{equation*}
\sum_{l=0}^{\min (j, n-1)}(-1)^{l}\binom{n-1}{l} L_{j-l}^{n-1}(x)=L_{j}^{0}(x) \tag{3.18}
\end{equation*}
$$

Proof. We first give the proof for the case $j \geq n-1$. We proceed by induction on n. For $n=1$ the lemma is clear. Suppose that it holds for n and $j \geq n-1$. Then for $j \geq n$,

$$
\begin{aligned}
\sum_{l=0}^{n}(-1)^{l}\binom{n}{l} L_{j-l}^{n}(x) & =L_{j}^{n}(x)+(-1)^{n} L_{j-n}^{n}(x) \\
& +\sum_{l=1}^{n-1}(-1)^{l}\binom{n-1}{l} L_{j-l}^{n}(x)+\sum_{l=1}^{n-1}(-1)^{l}\binom{n-1}{l-1} L_{j-l}^{n}(x)
\end{aligned}
$$

An index change in the last sum gives

$$
\begin{aligned}
\sum_{l=0}^{n}(-1)^{l}\binom{n}{l} & L_{j-l}^{n}(x)=L_{j}^{n}(x)+(-1)^{n} L_{j-n}^{n}(x) \\
& +\sum_{l=1}^{n-1}(-1)^{l}\binom{n-1}{l} L_{j-l}^{n}(x)+\sum_{l=0}^{n-2}(-1)^{l-1}\binom{n-1}{l} L_{j-l-1}^{n}(x)
\end{aligned}
$$

$$
\begin{aligned}
= & L_{j}^{n}(x)+(-1)^{n} L_{j-n}^{n}(x)-L_{j-1}^{n}(x)+(-1)^{n-1} L_{j-(n-1)}^{n}(x) \\
& +\sum_{l=1}^{n-2}(-1)^{l}\binom{n-1}{l}\left(L_{j-l}^{n}-L_{j-l-1}^{n}\right)(x) \\
= & \sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l}\left(L_{j-l}^{n}(x)-L_{j-l-1}^{n}(x)\right) \\
= & \sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} L_{j-l}^{n-1}(x)=L_{j}^{0}(x)
\end{aligned}
$$

The last equality follows from (3.17) and the inductive hypothesis.
For the case $j<n-1$ we write

$$
\sum_{l=0}^{j}(-1)^{l}\binom{n-1}{l} L_{j-l}^{n-1}(x)=\sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} c_{l} L_{j-l}^{n-1}(x)
$$

where $c_{l}=1$ for $0 \leq l \leq j$ and $c_{l}=0$ for $j \leq l \leq n-1$, and now we proceed as above.

Proof of Theorem 3.2. Let $m=\mathcal{F} f$. For $k \geq n-1$,

$$
\begin{align*}
& E\left(m^{*}\right)(\lambda, k+q)=\sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} m(\lambda, k+q-l) \tag{3.19}\\
& =\sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l}(-1)^{n-1} \int_{0}^{\infty} L_{k-l}^{n-1}(|\lambda| \tau / 2) e^{-|\lambda| \tau / 4} N f(\tau, \widehat{\lambda}) d \tau \\
& \quad+\sum_{l=0}^{n-1}(-1)^{l}\binom{n-1}{l} \sum_{r=0}^{n-2} c_{r, k+q-l}|\lambda|^{-(r+1)}\left\langle\delta^{(r)}, N f(\cdot, \widehat{\lambda})\right\rangle=I+I I
\end{align*}
$$

Now, by Lemma 3.4, $I I=0$ and Lemma 3.5 gives

$$
I=(-1)^{n-1} \int_{0}^{\infty} L_{k}^{0}(|\lambda| \tau / 2) e^{-|\lambda| \tau / 4} N f(\tau, \widehat{\lambda}) d \tau
$$

Thus, for $k \geq n-1$,

$$
\begin{equation*}
E\left(m^{*}\right)(\lambda, k+q)=(-1)^{n-1} \int_{0}^{\infty} L_{k}^{0}(|\lambda| \tau / 2) e^{-|\lambda| \tau / 4} N f(\tau, \widehat{\lambda}) d \tau \tag{3.20}
\end{equation*}
$$

On the other hand, if $0 \leq k<n-1$,

$$
\begin{aligned}
E\left(m^{*}\right)(\lambda, k+q)= & \sum_{0 \leq l \leq \min (k+q, n-1)}(-1)^{l}\binom{n-1}{l} m(\lambda, k+q-l) \\
& +\sum_{k+q<l \leq n-1}(-1)^{l}\binom{n-1}{l}(-1)^{n-2} m(\lambda, k+q-l)
\end{aligned}
$$

(with the convention that a sum on an empty set is zero). Since, for $0 \leq l$ $\leq \min (k+q, n-1)$,

$$
\left.m(\lambda, k+q-l)=\left.\left\langle\left(L_{k-l+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N g\left(2|\lambda|^{-1} \tau\right)\right\rangle
$$

and since for $k+q<l \leq n-1$ Corollary 2.3 gives

$$
\begin{aligned}
(-1)^{n-2} m(\lambda, k & +q-l) \\
& \left.=\left.\left\langle\left(L_{k-l+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N g\left(2|\lambda|^{-1} \tau\right)\right\rangle
\end{aligned}
$$

we obtain $E\left(m^{*}\right)(\lambda, k+q)=I+I I$ also for $0 \leq k<n-1$ (with I and $I I$ as in (3.19)). Proceeding as in the case $k \geq n-1$ we conclude that (3.20) holds for all k.

Let \mathcal{F}_{1} be the $U(1)$-spherical transform on $\mathcal{S}\left(H_{1}\right)$ defined in [3] and let f_{1} be the radial function in $\mathcal{S}\left(H_{1}\right)$ given by $f_{1}(z, t)=N f\left(|z|^{2}, t\right)$. Then, by definition,

$$
\mathcal{F}_{1}\left(f_{1}\right)(\lambda, k)=\int_{\mathbb{C}} L_{k}^{0}\left(|\lambda||z|^{2} / 2\right) e^{-|\lambda||z|^{2} / 4} N f\left(|z|^{2}, \widehat{\lambda}\right) d z
$$

We use polar coordinates $z=r e^{i \theta}$ and then we perform the change of variable $s=r^{2}$ to get

$$
\mathcal{F}_{1}\left(f_{1}\right)(\lambda, k)=\pi \int_{0}^{\infty} L_{k}^{0}(|\lambda| s / 2) e^{-|\lambda| s / 4} N f(s, \widehat{\lambda}) d s
$$

i.e. $(-1)^{n-1} E(\mathcal{F} f)(\lambda, k+q)=\mathcal{F}_{1}\left(f_{1}\right)(\lambda, k)$ for $k \geq 0$.

Proof of Theorem 3.3. As before, it is enough to find $g_{1} \in \mathcal{S}\left(H_{1}\right)$ such that for $k \geq 0, \mathcal{F}_{1} g_{1}(\lambda, k)=(-1)^{n-1} \widetilde{E}\left(m^{* *}\right)(\lambda,-k-p)$. Set $g_{1}(z, t)=$ $N f\left(-|z|^{2}, t\right)$. Following the lines of the proof of Theorem 3.2 we obtain

$$
\begin{aligned}
\mathcal{F}_{1}\left(g_{1}\right)(\lambda, k) & =\pi \int_{0}^{\infty} L_{k}^{0}(|\lambda| s / 2) e^{-|\lambda| s / 4} N f(-s, \widehat{\lambda}) d s \\
& =(-1)^{n-1} \widetilde{E}\left(m^{* *}\right)(\lambda,-k-p)
\end{aligned}
$$

for $k \geq 0$.

4. The image of the spherical transform

Lemma 4.1. For $k \geq 0$,

$$
\begin{equation*}
\frac{d^{n-1}}{d \tau^{n-1}}\left(\frac{1}{(n-1)!} \tau^{n-1} \mathcal{L}_{k}^{n-1}(\tau) e^{-\tau}\right)=L_{k+n-1}^{0}(\tau) e^{-\tau} \tag{4.1}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
& \frac{1}{(n-1)!} \frac{d^{n-1}}{d \tau^{n-1}}\left(\tau^{n-1} \mathcal{L}_{k}^{n-1}(\tau) e^{-\tau}\right) \\
& \quad=\frac{1}{(n-1)!} \frac{(n-1)!k!}{(k+n-1)!} \frac{d^{n-1}}{d \tau^{n-1}}\left(\tau^{n-1} L_{k}^{n-1}(\tau) e^{-\tau}\right) \\
& \quad=\frac{1}{(k+n-1)!}\left(\frac{d}{d \tau}\right)^{n-1+k}\left(\tau^{n-1+k} e^{-\tau}\right)=L_{k+n-1}^{0}(\tau) e^{-\tau}
\end{aligned}
$$

where we have used (twice) the fact that

$$
L_{j}^{\alpha}(\tau) \tau^{\alpha} e^{-\tau}=\frac{1}{j!} \frac{d^{j}}{d \tau^{j}}\left(\tau^{\alpha+j} e^{-\tau}\right) \quad \text { for } j \geq 0 \text { (Rodrigues formula). }
$$

Let D be the linear operator defined on the space of polynomial functions by $D L_{k}^{0}=L_{k}^{0}-L_{k-1}^{0}$ for $k \geq 1$ and $D 1=1$.

Lemma 4.2. For all $m \geq 0$,

$$
\begin{equation*}
\left(\frac{d}{d \tau}\right)^{m}\left(e^{-\tau} D^{m}(P(\tau))\right)=(-1)^{m} e^{-\tau} P(\tau) \tag{4.2}
\end{equation*}
$$

Proof. We proceed by induction on m. For $m=0$ there is nothing to prove. Assume that (4.2) holds. Then, for $k \geq 0$,

$$
\begin{aligned}
\left(\frac{d}{d \tau}\right)^{m+1}\left(e^{-\tau} D^{m+1}\right. & \left.\left(L_{k}^{0}(\tau)\right)\right)=\frac{d}{d \tau}\left(\frac{d}{d \tau}\right)^{m}\left(e^{-\tau} D^{m}\left(D L_{k}^{0}(\tau)\right)\right) \\
& =(-1)^{m} \frac{d}{d \tau}\left(e^{-\tau} D L_{k}^{0}(\tau)\right)=(-1)^{m+1} e^{-\tau} L_{k}^{0}(\tau)
\end{aligned}
$$

In fact, the last equality follows from a direct computation for $k=0,1$, and for $k \geq 2$ observe that, taking into account (2.1) and (3.17),

$$
\begin{aligned}
& (-1)^{m} \frac{d}{d \tau}\left(e^{-\tau} D L_{k}^{0}(\tau)\right)=(-1)^{m} \frac{d}{d \tau}\left(e^{-\tau}\left(L_{k}^{0}(\tau)-L_{k-1}^{0}(\tau)\right)\right) \\
& =(-1)^{m}\left(-e^{-\tau} L_{k}^{0}(\tau)+e^{-\tau} L_{k-1}^{0}(\tau)-e^{-\tau} L_{k-1}^{1}(\tau)+e^{-\tau} L_{k-2}^{1}(\tau)\right) \\
& =(-1)^{m}\left(-e^{-\tau} L_{k}^{0}(\tau)+e^{-\tau} L_{k-1}^{0}(\tau)-e^{-\tau} L_{k-1}^{0}(\tau)\right)=(-1)^{m+1} e^{-\tau} L_{k}^{0}(\tau)
\end{aligned}
$$

Lemma 4.3. (a) For $k \geq 0$ and $m \geq 0$,

$$
\begin{equation*}
D^{m}\left(L_{k}^{0}\right)=\sum_{l=0}^{\min (m, k)}(-1)^{l}\binom{m}{l} L_{k-l}^{0} \tag{4.3}
\end{equation*}
$$

(b) If $k>m$ then $D^{m}\left(L_{k}^{0}\right)(0)=0$.

Proof. The proof proceeds along similar lines to the proof of Lemma 3.5.

Lemma 4.4. For $r \geq n-1$,

$$
\begin{equation*}
D^{n-1}\left(L_{r}^{0}\right)(\tau)=(-1)^{n-1} \frac{1}{(n-1)!} \tau^{n-1} \mathcal{L}_{r-(n-1)}^{n-1}(\tau) \tag{4.4}
\end{equation*}
$$

Proof. From Lemma 4.2 we have

$$
\left(\frac{d}{d \tau}\right)^{n-1}\left(e^{-\tau} D^{n-1}\left(L_{r}^{0}(\tau)\right)\right)=(-1)^{n-1} e^{-\tau} L_{r}^{0}(\tau)
$$

thus $e^{-\tau} D^{n-1}\left(L_{r}^{0}(\tau)\right)$ is an $(n-1)$-primitive of $(-1)^{n-1} e^{-\tau} L_{r}^{0}(\tau)$ and then, by Lemma 4.1,

$$
e^{-\tau} D^{n-1}\left(L_{r}^{0}(\tau)\right)=(-1)^{n-1} \frac{1}{(n-1)!} \tau^{n-1} \mathcal{L}_{r-n-1}^{n-1}(\tau) e^{-\tau}+Q(\tau)
$$

for some polynomial Q of degree at most $n-2$. But this is impossible if Q does not vanish identically.

TheOrem 4.5. Let $a:(\mathbb{R}-\{0\}) \times(\mathbb{N} \cup\{0\}) \rightarrow \mathbb{C}$ be such that for each $N \in \mathbb{N} \cup\{0\}$ there exists a positive constant c independent of λ and k such that

$$
\begin{equation*}
|a(\lambda, k)| \leq c_{N}\left(|k|^{n-1}+\frac{1}{|\lambda|^{n-1}}\right) \frac{1}{|\lambda|^{N}(|k|+1)^{N}} \tag{4.5}
\end{equation*}
$$

Then for each $s \in \mathbb{N} \cup\{0\}$ the function $\Psi:[0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\Psi(\tau, t):=\sum_{k \geq 0} \int_{-\infty}^{\infty} a(\lambda, k) \mathcal{L}_{k}^{s}(|\lambda| \tau / 2) e^{-|\lambda| \tau / 4} e^{-i \lambda t}|\lambda|^{n} d \lambda \tag{4.6}
\end{equation*}
$$

is well defined and belongs to $C^{\infty}([0, \infty) \times \mathbb{R})$. Moreover, the series in (4.6) converges absolutely and uniformly on $[0, \infty) \times \mathbb{R}$.

Proof. For $\lambda \neq 0$ and $k, s \in \mathbb{N} \cup\{0\}$ let $\psi_{\lambda, k}^{s}$ be defined by (2.2). Since $\left|\psi_{\lambda, k}^{s}\right| \leq 1$ (cf. [3]), in order to prove the absolute and uniform convergence of the series in (4.6) it is enough to show that

$$
\begin{equation*}
\sum_{k \geq q} \int_{-\infty}^{\infty}|a(\lambda, k)||\lambda|^{n} d \lambda<\infty \tag{4.7}
\end{equation*}
$$

From (4.5) used with $N=0$ and since $k^{n-1}+1 /|\lambda|^{n-1} \leq 2 /|\lambda|^{n-1}$ if $|\lambda(k+1)| \leq 1$, we get

$$
\sum_{k \geq 0} \int_{|\lambda(k+1)| \leq 1}|a(\lambda, k)||\lambda|^{n} d \lambda \leq c \sum_{k \geq 0} \int_{|\lambda(k+1)| \leq 1} \frac{|\lambda|}{2} d \lambda \leq c^{\prime \prime} \sum_{k \geq 0} \frac{1}{(k+1)^{2}}<\infty
$$

Also, from (4.5) used with $N=n+2$ and since $k^{n-1}+1 /|\lambda|^{n-1} \leq 2(k+1)^{n-1}$ if $|\lambda(k+1)|>1$, we get

$$
\begin{aligned}
\sum_{k \geq 0} \int_{|\lambda(k+1)|>1}|a(\lambda, k)||\lambda|^{n} d \lambda & \leq c \sum_{k \geq 0} \int_{|\lambda(k+1)|>1} \frac{(k+1)^{n-1}|\lambda|^{n}}{(k+1)^{n+2}|\lambda|^{n+2}} d \lambda \\
& =c \sum_{k>0} \frac{1}{(k+1)^{2}}<\infty
\end{aligned}
$$

Thus we have (4.7) and so the series in (4.6) converges absolutely and uniformly.

To prove the remaining assertion of the lemma we observe that for $k \geq 1$,

$$
\frac{d}{d \tau} \mathcal{L}_{k}^{s}(|\lambda| \tau / 2)=-\frac{|\lambda|}{2} \frac{k}{s+1} \mathcal{L}_{k-1}^{s+1}(|\lambda| \tau / 2)
$$

and so, for $k \geq 1$,

$$
\begin{aligned}
& \frac{\partial}{\partial \tau}\left(a(\lambda, k) \mathcal{L}_{k}^{s}(|\lambda| \tau / 2) e^{-|\lambda| \tau / 4}\right) \\
& \quad=\left(-\frac{1}{2(s+1)} a_{1}(\lambda, k) \mathcal{L}_{k-1}^{s+1}(|\lambda| \tau / 2)-\frac{1}{4} a_{2}(\lambda, k) \mathcal{L}_{k}^{s}(|\lambda| \tau / 2)\right) e^{-|\lambda| \tau / 4}
\end{aligned}
$$

where $a_{1}(\lambda, k):=|\lambda| k a(\lambda, k)$ and $a_{2}(\lambda, k):=|\lambda| a(\lambda, k)$. A similar identity holds for $k=0$ with the term involving \mathcal{L}_{k-1}^{s+1} deleted. Since a_{1} and a_{2} satisfy the same estimates assumed for a, it follows that the series defining Ψ can be differentiated term by term and that $\partial \Psi / \partial \tau$ is a series of the form (4.6) with $a(\lambda, k)$ replaced by a new $\widetilde{a}(\lambda, k)$ satisfying the estimates (4.5). Similarly, we can show that the same conclusion holds for $\partial \Psi / \partial t$. Now the lemma follows by induction.

REmARK 4.6. Let $a=a(\lambda, k)$ satisfy the conditions of Theorem 4.5. Then for $\tau \geq 0$ and $\lambda \neq 0$, the series

$$
\Psi(\tau, \lambda)=\frac{|\lambda|}{2} \sum_{k \geq 0} a(\lambda, k) L_{k}^{0}(|\lambda| \tau / 2) e^{-|\lambda| \tau / 4}
$$

converges absolutely (so it can be rearranged) and $\Psi(\tau, \cdot) \in L^{1}(\mathbb{R})$. Indeed, this follows from the assumption on $a(\lambda, k)$ and the fact that $\left|\varphi_{\lambda, k}^{0}\right| \leq 1$. Moreover, for each $l \geq 0$,

$$
\frac{\partial^{l} \Psi\left(2|\lambda|^{-1} \tau, \lambda\right)}{\partial \tau^{l}}=\frac{|\lambda|}{2} \sum_{k \geq 0} a(\lambda, k) \frac{\partial^{l}}{\partial \tau^{l}}\left(L_{k}^{0}(\tau) e^{-\tau / 2}\right)
$$

Theorem 4.7. Let $f \in \mathcal{S}\left(H_{n}\right)$. Then, for $(\tau, t) \in[0, \infty) \times \mathbb{R}$,

$$
\begin{align*}
& N f(\tau, t) \tag{4.8}\\
& \quad=(-1)^{n-1} \int_{\mathbb{R}} \frac{|\lambda|}{2} \sum_{k \geq 0} E\left(m^{*}\right)(\lambda, k+q) L_{k}^{0}(|\lambda| \tau / 2) e^{-|\lambda| \tau / 4} e^{-i \lambda t} d \lambda
\end{align*}
$$

and for $(\tau, t) \in(-\infty, 0] \times \mathbb{R}$,

$$
\begin{align*}
& N f(\tau, t) \tag{4.9}\\
& \quad=(-1)^{n-1} \int_{\mathbb{R}} \frac{|\lambda|}{2} \sum_{k \geq 0} \widetilde{E}\left(m^{* *}\right)(\lambda,-k-p) L_{k}^{0}(-|\lambda| \tau / 2) e^{|\lambda| \tau / 4} e^{-i \lambda t} d \lambda .
\end{align*}
$$

Proof. Let $f \in \mathcal{S}\left(H_{n}\right)$ and $m=\mathcal{F} f$. Since $\left\{L_{k}^{0}(\tau) e^{-\tau / 2}\right\}_{k \geq 0}$ is an orthonormal basis of $L^{2}(0, \infty)$, Theorems 3.2 and 3.3 imply that for all $\lambda \neq 0$,

$$
\begin{equation*}
N f(\tau, \widehat{\lambda})=(-1)^{n-1} \frac{|\lambda|}{2} \sum_{k \geq 0} E\left(m^{*}\right)(\lambda, k+q) L_{k}^{0}(|\lambda| \tau / 2) e^{-|\lambda| \tau / 4} \tag{4.10}
\end{equation*}
$$

for a.e. $\tau>0$, and

$$
\begin{equation*}
N f(\tau, \widehat{\lambda})=(-1)^{n-1} \frac{|\lambda|}{2} \sum_{k \geq 0} \widetilde{E}\left(m^{* *}\right)(\lambda,-k-p) L_{k}^{0}(-|\lambda| \tau / 2) e^{|\lambda| \tau / 4} \tag{4.11}
\end{equation*}
$$

for a.e. $\tau<0$. We multiply these equalities by $e^{-i \lambda t}$ and then integrate with respect to λ. Since, by Lemma 4.5, the above series can be integrated term by term, (4.8) and (4.9) follow (because they hold for a.e. $\tau>0$ and a.e. $\tau<0$ respectively and have both sides continuous in τ).

REmark 4.8. Theorem 4.7 also follows from formula (1.1) in [3] since the restrictions to $(\mathbb{R}-\{0\}) \times(\mathbb{N} \cup\{0\})$ can be extended to $\widehat{\mathcal{S}}\left(U(1), H_{1}\right)$.

In order to obtain, for a given $m(\lambda, k)$ satisfying the hypothesis of Theorem 1.1, a function $f \in \mathcal{S}\left(H_{n}\right)$ such that $\mathcal{F} f=m$, Theorem 4.7 suggests considering the functions $\varphi_{1}:[0, \infty) \times \mathbb{R} \rightarrow \mathbb{C}$ and $\varphi_{2}:(-\infty, 0] \times \mathbb{R} \rightarrow \mathbb{C}$ defined by the right sides of (4.8) and (4.9) respectively. After checking that they agree for $\tau=0$, we will prove that the function $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{C}$ given by φ_{1} and φ_{2} belongs to $\mathcal{H}^{\#}$, and then we will choose f such that $\mathcal{N} f=\varphi$. We fix such φ_{1} and φ_{2} from now on.
$\mathcal{S}([0, \infty) \times \mathbb{R})$ will denote the space of functions $h:[0, \infty) \times \mathbb{R} \rightarrow \mathbb{C}$ which are C^{∞} and rapidly decreasing at infinity (with the derivatives at $\tau=0$ understood as lateral derivatives).

Lemma 4.9. Assume that m satisfies the conditions of Theorem 1.1. Then $\varphi_{1} \in \mathcal{S}([0, \infty) \times \mathbb{R})$ and $\varphi_{2} \in \mathcal{S}((-\infty, 0] \times \mathbb{R})$.

Proof. From our assumptions on m, Theorem 6.1 in [3] gives functions $f_{1}=f_{1}(z, t)$ and $f_{2}=f_{2}(z, t)$ which are radial in z, belong to $\mathcal{S}\left(H_{1}\right)$ and

$$
f_{1}(z, t)=(-1)^{n-1} \int_{\mathbb{R}} \frac{|\lambda|}{2} \sum_{k \geq 0} E\left(m^{*}\right)(\lambda, k+q) L_{k}^{0}\left(|\lambda||z|^{2} / 2\right) e^{-|\lambda||z|^{2} / 4} e^{-i \lambda t} d \lambda
$$

and

$$
\begin{aligned}
& f_{2}(z, t) \\
& =(-1)^{n-1} \int_{\mathbb{R}} \frac{|\lambda|}{2} \sum_{k \geq 0} E\left(m^{* *}\right)(\lambda,-k-p) L_{k}^{0}\left(|\lambda||z|^{2} / 2\right) e^{-|\lambda||z|^{2} / 4} e^{-i \lambda t} d \lambda
\end{aligned}
$$

So $\varphi_{1}(\tau, t)=f_{1}\left(\tau^{1 / 2}, t\right)$ for $(\tau, t) \in[0, \infty) \times \mathbb{R}$ and $\varphi_{2}(\tau, t)=f_{2}\left(|\tau|^{1 / 2}, t\right)$ for $(\tau, t) \in(-\infty, 0] \times \mathbb{R}$, and the lemma follows by proceeding as in the proof of Theorem 6.1 in [3, pp. 410-412].

From the definition of φ_{1} we have

$$
\begin{aligned}
& \varphi_{1}(\tau, t) \\
& =(-1)^{n-1} \sum_{k \geq 0} \sum_{0 \leq l \leq n-1} \int_{\mathbb{R}}(-1)^{l}\binom{n-1}{l} \frac{|\lambda|}{2} m^{*}(\lambda, k+q-l) \varphi_{\lambda, k}^{0}(\tau, t) d \lambda
\end{aligned}
$$

Note that this series can be rearranged by Theorem 4.5. We first change the summation order, then we change the index in the sum on k setting $j=k-q-l$, and finally we change l to $n-1-l$ to obtain

$$
\begin{aligned}
& \varphi_{1}(\tau, t) \\
&=\sum_{0 \leq l \leq n-1} \sum_{j \geq-p+1+l} \int_{\mathbb{R}}(-1)^{l}\binom{n-1}{n-1-l} \frac{|\lambda|}{2} m^{*}(\lambda, j) \varphi_{\lambda, j-q+n-1-l}^{0}(\tau, t) d \lambda
\end{aligned}
$$

Now we change the summation order again to get

$$
\begin{aligned}
& \varphi_{1}(\tau, t) \\
& =\sum_{j \geq-p+1} \int_{\mathbb{R}} \frac{|\lambda|}{2} m^{*}(\lambda, j) \sum_{0 \leq l \leq \min (j+p-1, n-1)}(-1)^{l}\binom{n-1}{l} \varphi_{\lambda, j-q+n-1-l}^{0}(\tau, t) d \lambda
\end{aligned}
$$

and so by Lemma 4.3,

$$
\begin{align*}
& \varphi_{1}(\tau, t)=\sum_{j \geq q} \int_{\mathbb{R}} \frac{|\lambda|}{2} m^{*}(\lambda, j)\left(D^{n-1} L_{j-q+n-1}^{0}\right)(|\lambda| \tau / 2) e^{-|\lambda| \tau / 4} e^{-i \lambda t} d \lambda \tag{4.12}\\
& +\sum_{-p+1 \leq j \leq q-1} \int_{\mathbb{R}} \frac{|\lambda|}{2} m^{*}(\lambda, j)\left(D^{n-1} L_{j-q+n-1}^{0}\right)(|\lambda| \tau / 2) e^{-|\lambda| \tau / 4} e^{-i \lambda t} d \lambda
\end{align*}
$$

Then, by Lemma 4.4,

$$
\begin{aligned}
\varphi_{1}(\tau, t) & =\sum_{j \geq q \mathbb{R}} \int_{\mathbb{R}} \frac{|\lambda|}{2} m(\lambda, j)(-1)^{n-1} \frac{1}{(n-1)!}(|\lambda| \tau / 2)^{n-1} \psi_{\lambda, j-q}^{n-1}(\tau, t) d \lambda \\
& +\sum_{-p+1 \leq j \leq q-1 \mathbb{R}} \int_{\mathbb{R}} \frac{|\lambda|}{2} m^{*}(\lambda, j)\left(D^{n-1} L_{j-q+n-1}^{0}\right)(|\lambda| \tau / 2) e^{-|\lambda| \tau / 4} e^{-i \lambda t} d \lambda
\end{aligned}
$$

Thus, $\varphi_{1}(\tau, t)=\xi_{1}(\tau, t)+\eta_{1}(\tau, t)$ where

$$
\begin{aligned}
& \xi_{1}(\tau, t)=\sum_{j \geq q \mathbb{R}} \int \frac{|\lambda|}{2} m(\lambda, j)(-1)^{n-1} \frac{1}{(n-1)!}(|\lambda| \tau / 2)^{n-1} \psi_{\lambda, j-q}^{n-1}(\tau, t) d \lambda, \\
& \eta_{1}(\tau, t) \\
& \quad=\sum_{-p+1 \leq j \leq q-1} \int_{\mathbb{R}} \frac{|\lambda|}{2} m^{*}(\lambda, j) \sum_{0 \leq l \leq j+p-1}(-1)^{l}\binom{n-1}{l} \psi_{\lambda, j-q+n-1-l}^{0}(\tau, t) d \lambda .
\end{aligned}
$$

Similarly, $\varphi_{2}(\tau, t)=\xi_{2}(\tau, t)+\eta_{2}(\tau, t)$ where

$$
\begin{aligned}
& \xi_{2}(\tau, t)=\sum_{j \leq-p} \int_{\mathbb{R}} \frac{|\lambda|}{2} m(\lambda, j)(-1)^{n-1} \frac{1}{(n-1)!}(|\lambda| \tau / 2)^{n-1} \psi_{\lambda,-j-p}^{n-1}(-\tau, t) d \lambda, \\
& \eta_{2}(\tau, t) \\
& =\sum_{-p<j \leq q-1} \int_{\mathbb{R}} \frac{|\lambda|}{2} m^{* *}(\lambda, j) \sum_{0 \leq l \leq q-1-j}(-1)^{l}\binom{n-1}{l} \psi_{\lambda,-j-p+n-1-l}^{0}(-\tau, t) d \lambda .
\end{aligned}
$$

Observe that by Theorem $4.5, \xi_{1}(\tau, t)=\tau^{n-1} \widetilde{\xi}_{1}(\tau, t)$ with $\widetilde{\xi}_{1} \in C^{\infty}([0, \infty) \times \mathbb{R})$, and so $\frac{\partial^{l} \xi_{1}}{\partial \tau^{l}}(0, t)=0$ for $0 \leq l \leq n-2$ and all $t \in \mathbb{R}$. Analogously, $\frac{\partial^{l} \xi_{2}}{\partial \tau^{l}}(0, t)=0$ for $0 \leq l \leq n-2, t \in \mathbb{R}$.

Our next step is to prove that

$$
\begin{equation*}
\frac{\partial^{s} \varphi_{1}}{\partial \tau^{s}}(0, t)=\frac{\partial^{s} \varphi_{2}}{\partial \tau^{s}}(0, t), \quad 0 \leq s \leq n-2, t \in \mathbb{R} \tag{4.13}
\end{equation*}
$$

i.e., for each t,

$$
\begin{equation*}
\frac{\partial^{s} \eta_{1}}{\partial \tau^{s}}(0, t)=\frac{\partial^{s} \eta_{2}}{\partial \tau^{s}}(0, t), \quad 0 \leq s \leq n-2 \tag{4.14}
\end{equation*}
$$

Observe that from Theorem 4.5 we have, for $t \in \mathbb{R}$ and $0 \leq l \leq n-2$,
$\frac{\partial^{l} \eta_{1}}{\partial \tau^{l}}(0, t)=\int_{\mathbb{R}} \frac{|\lambda|}{2}\left(\sum_{j=-p+1}^{-1}(-1)^{n-2} m(\lambda, j) G_{j, l}(\lambda)+\sum_{j=0}^{q-1} m(\lambda, j) G_{j, l}(\lambda)\right) e^{-i \lambda t} d \lambda$ and
$\frac{\partial^{l} \eta_{2}}{\partial \tau^{l}}(0, t)=\int_{\mathbb{R}} \frac{|\lambda|}{2}\left(\sum_{j=-p+1}^{-1} m(\lambda, j) H_{j, l}(\lambda)+\sum_{j=0}^{q-1}(-1)^{n-2} m(\lambda, j) H_{j, l}(\lambda)\right) e^{-i \lambda t} d \lambda$
with $G_{j, l}, H_{j, l}$ independent of m and the integrals being absolutely convergent. But (4.14) holds if and only if

$$
\begin{array}{rl}
\sum_{j=-p+1}^{-1}(-1)^{n-2} & m(\lambda, j) G_{j, l}(\lambda)+\sum_{j=0}^{q-1} m(\lambda, j) G_{j, l}(\lambda) \tag{4.15}\\
= & \sum_{j=-p+1}^{-1} m(\lambda, j) H_{j, l}(\lambda)+\sum_{j=0}^{q-1}(-1)^{n-2} m(\lambda, j) H_{j, l}(\lambda)
\end{array}
$$

for all $\lambda \neq 0$.

From Theorem 4.7, this clearly holds if $m=\mathcal{F} f$ for some $f \in \mathcal{S}\left(H_{n}\right)$, because the first $n-2$ derivatives of $N f(\cdot, t)$ are continuous at the origin.

Moreover, for each λ and j such that $\lambda \neq 0$ and $-p+1 \leq j \leq q-1$, Proposition 4.10 below gives an $f \in \mathcal{S}\left(H_{n}\right)$ (depending of λ and j) such that for $-p+1 \leq k \leq q-1, \mathcal{F} f(\lambda, k)=1$ if $k=j$, and $\mathcal{F} f(\lambda, k)=0$ if $k \neq j$. So for such λ and $j, G_{j, l}(\lambda)=(-1)^{n-2} H_{j, l}(\lambda), 0 \leq l \leq n-2$.

Proposition 4.10. Given $\lambda \neq 0$ and $n-1$ complex numbers $\left\{a_{j}\right\}_{j=p+1}^{q-1}$, there exists $f \in \mathcal{S}\left(H_{n}\right)$ such that

$$
\begin{equation*}
\mathcal{F} f(\lambda, j)=a_{j}, \quad-p+1 \leq j \leq q-1 \tag{4.16}
\end{equation*}
$$

Proof. We take f such that $N f(\tau, \widehat{\lambda}):=\omega(|\lambda| \tau / 2) e^{|\lambda| \tau / 4} \widehat{\psi}(\lambda)$ where $\omega, \psi \in \mathcal{S}(\mathbb{R}), \omega \in C_{\mathrm{c}}(\mathbb{R})$ and $\widehat{\psi}(\lambda)=1$. We recall that from the definition of $\mathcal{F} f$,

$$
\begin{aligned}
&\left.\mathcal{F} f(\lambda, k)=\left.\left\langle\left(L_{k-q+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N f\left(2|\lambda|^{-1} \tau, \widehat{\lambda}\right)\right\rangle \\
& 0 \leq k \leq q-1
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{F} f(\lambda, k)=\left.\left\langle\left(L_{-k-p+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N f(& \left.\left(-2|\lambda|^{-1} \tau, \widehat{\lambda}\right)\right\rangle \\
& -p+1 \leq k<0
\end{aligned}
$$

and from Corollary 2.3,

$$
\left.\mathcal{F} f(\lambda, k)=\left.(-1)^{n-2}\left\langle\left(L_{k-q+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N f\left(2|\lambda|^{-1} \tau, \widehat{\lambda}\right)\right\rangle
$$

for $-p+1 \leq k<0$. So, from our choice of f and since $\widehat{\psi}(\lambda)=1$, (4.16) reads $a_{k}=2\left|\lambda_{0}\right|^{-1}\left\langle\left(L_{k-q+n-1}^{0} H\right)^{(n-1)}, \omega\right\rangle$ for $0 \leq k \leq q-1$, and $a_{k}=$ $(-1)^{n-2} 2\left|\lambda_{0}\right|^{-1}\left\langle\left(L_{k-q+n-1}^{0} H\right)^{(n-1)}, \omega\right\rangle$ for $-p+1 \leq k<0$. But for $-p+1 \leq$ $k \leq q-1$ we have $0 \leq k-q+n-1 \leq n-2$. So, by (2.7),

$$
\left(L_{k-q+n-1}^{0} H\right)^{(n-1)}=\sum_{s=0}^{n-2}\left(L_{k-q+n-1}^{0}\right)^{(n-2-s)}(0) \delta^{(s)}
$$

To obtain (4.16) it is enough to find $\beta_{0}, \ldots, \beta_{n-2}$ solving

$$
\begin{array}{ll}
\sum_{s=0}^{n-2}\left(L_{k-q+n-1}^{0}\right)^{(n-2-s)}(0)(-1)^{(s)} \beta_{s}=|\lambda| a_{k} / 2, & 0 \leq k \leq q-1 \\
\sum_{s=0}^{n-2}\left(L_{k-q+n-1}^{0}\right)^{(n-2-s)}(0)(-1)^{(s)} \beta_{s}=(-1)^{n-2}|\lambda| a_{k} / 2, & -p+1 \leq k<0
\end{array}
$$

and then to find $\omega \in C_{\mathrm{C}}^{\infty}(\mathbb{R})$ such that $\omega^{(s)}(0)=\beta_{s}$ for $s=0,1, \ldots, n-2$. This is a linear system in $\left\{\omega^{(s)}(0)\right\}_{s=0}^{n-2}$. Since $\left(L_{k}^{0}\right)^{(s)}(0)=(-1)^{s}\binom{k}{s}$, the associated $(n-1) \times(n-1)$ matrix A is lower triangular with ± 1 on the diagonal. So A is nonsingular and the existence of $\beta_{0}, \ldots, \beta_{n-2}$ follows. Now, we take
$\omega=P(\tau) \widetilde{\omega}(\tau)$, where P is a polynomial of degree $n-1$ with $P^{(s)}(0)=\beta_{s}$ for $s=0, \ldots, n-2$ and where $\widetilde{\omega} \in C_{\mathrm{c}}^{\infty}(\mathbb{R}), \operatorname{supp}(\widetilde{\omega}) \subset(-2,2)$ and $\widetilde{\omega}(\tau)=1$ for $\tau \in(-1,1)$.

A classical result due to Borel states that given a sequence $\left\{a_{j}\right\}_{j=1}^{\infty}$ of complex numbers, there exists a $C^{\infty}(\mathbb{R})$ function ψ such that $\psi^{(j)}(0)=a_{j}$ for all j. Moreover ψ can be taken in $C_{\mathrm{c}}^{\infty}(\mathbb{R})$. A similar result holds in two variables. Since we have not been able to find it in the literature we give a proof for completeness.

Lemma 4.11. Let $\left\{a_{j}(t)\right\}_{j=1}^{\infty}$ be a sequence of functions in $\mathcal{S}(\mathbb{R})$. Then there exists a $\psi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ such that $\frac{\partial^{j} \psi}{\partial \tau^{j}}(0, t)=a_{j}(t)$.

Proof. Let $\widetilde{\omega}$ be as in the proof of Proposition 4.10. For a given sequence $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ of positive numbers we set
$g_{n}(\tau, t):=\frac{a_{n}(t)}{n!} \tau^{n} \widetilde{\omega}(\tau), \quad f_{n}(\tau, t):=\frac{1}{\lambda_{n}^{2 n}} g_{n}\left(\lambda_{n} \tau, t\right)=\frac{1}{\lambda_{n}^{n}} \frac{a_{n}(t)}{n!} \tau^{n} \widetilde{\omega}\left(\lambda_{n} \tau\right)$.
Let

$$
f(\tau, t):=\sum_{n=1} f_{n}(\tau, t) .
$$

Clearly, the lemma will follow if we can prove (for a suitable sequence $\left\{\lambda_{n}\right\}$) that

$$
\begin{equation*}
\left\|t^{s} \frac{\partial^{l}}{\partial t^{l}} \frac{\partial^{k}}{\partial \tau^{k}} f_{n}\right\|_{\infty} \leq \frac{1}{2^{n}} \quad \text { for all } 0 \leq k, l, s \leq n-1, \tag{4.17}
\end{equation*}
$$

We take $\lambda_{n} \geq 1$ for all n. Taking into account that $k \leq n-1$ and $a_{j}(t) \in$ $\mathcal{S}(\mathbb{R})$, we can apply the Leibniz rule to get a positive constant c_{n} such that

$$
\left|t^{s} \frac{\partial^{l}}{\partial t^{l}} \frac{\partial^{k}}{\partial \tau^{k}} f_{n}\right| \leq t^{s} \frac{c_{n}}{\lambda_{n} n!}\left|\frac{\partial^{l} a_{n}}{\partial t^{l}}\right| \leq \frac{c_{n}}{\lambda_{n} n!} \sum_{s, l=0}^{n-1}\left\|t^{s} \frac{\partial^{l} a_{n}}{\partial^{l} t}\right\|_{\infty}
$$

Now (4.17) follows by choosing λ_{n} such that, in addition,

$$
\frac{1}{\lambda_{n}} \leq \frac{c_{n}}{2^{n} n!} \sum_{s, l=0}^{n-1}\left\|t^{s} \frac{\partial^{l} a_{n}}{\partial^{l} t}\right\|_{\infty}
$$

Definition 4.12. Let $m=m(\lambda, k)$ be a function satisfying the conditions of the statement of Theorem 1.1. We define $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
\varphi(\tau, t)= \begin{cases}\varphi_{1}(\tau, t) & \text { for } \tau>0, t \in \mathbb{R} \tag{4.18}\\ \varphi(\tau, t)=\varphi_{2}(\tau, t) & \text { for } \tau \leq 0, t \in \mathbb{R}\end{cases}
$$

Proof of Theorem 1.1. Let m and φ be as in Definition 4.12. By Theorems 3.2 and 3.3, it remains to see that φ belongs to $\mathcal{H}^{\#}$ and that if we take $f \in \mathcal{S}\left(H_{n}\right)$ such that $N f=\varphi$ then $\mathcal{F} f=m$. To see that $\varphi \in \mathcal{H}^{\#}$ we must
find ψ_{1} and ψ_{2} in $\mathcal{S}\left(\mathbb{R}^{2}\right)$ such that

$$
\varphi(\tau, t)=\psi_{2}(\tau, t)+\tau^{n-1} \psi_{1}(\tau, t) H(\tau)
$$

(where H is the Heaviside function), i.e.,

$$
\psi_{2}(\tau, t)= \begin{cases}\varphi_{2}(\tau, t) & \text { for } \tau \leq 0 \tag{4.19}\\ \varphi_{1}(\tau, t)-\tau^{n-1} \psi_{1}(\tau, t) & \text { for } \tau>0\end{cases}
$$

For a given $\psi_{1} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$, we define ψ_{2} by (4.19). In view of Lemma 4.9 and (4.13), $\psi_{2} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ if and only if for a suitable $\psi_{1} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
\frac{\partial^{j} \varphi_{2}}{\partial \tau^{j}}(0, t)=\frac{\partial^{j} \varphi_{1}}{\partial \tau^{j}}(0, t)-\binom{j}{n-1}(n-1)!\frac{\partial^{j-(n-1)} \psi_{1}}{\partial \tau^{j-(n-1)}}(0, t) \tag{4.20}
\end{equation*}
$$

for all $j \geq n-1$. But Lemma 4.11 gives a function $\psi_{1} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ such that

$$
\frac{\partial^{k} \psi_{1}}{\partial \tau^{k}}(0, t)=\frac{1}{\binom{k+n-1}{n-1}(n-1)!} \frac{\partial^{k+n-1}\left(\varphi_{2}-\varphi_{1}\right)}{\partial \tau^{k+n-1}}(0, t)
$$

for $k \in \mathbb{N} \cup\{0\}$, i.e., (4.20) holds. Thus $\varphi \in \mathcal{H}^{\#}$.
Let $f \in \mathcal{S}\left(H_{n}\right)$ be such that $N f=\varphi$. To see that $\mathcal{F} f=m$ we proceed as follows. For $k \geq 0$ and $\lambda \neq 0$ we have

$$
\begin{align*}
\mathcal{F} & \left.f(\lambda, k)=\left.\left\langle\left(L_{k-q+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N f\left(2|\lambda|^{-1} \tau, \widehat{\lambda}\right)\right\rangle \tag{4.21}\\
& =(-1)^{n-1} \int_{0}^{\infty} L_{k-q+n-1}^{0}(\tau) \frac{\partial^{n-1}}{\partial \tau^{n-1}}\left(2|\lambda|^{-1} e^{-\tau / 2} \varphi_{1}\left(2|\lambda|^{-1} \tau, \widehat{\lambda}\right)\right) d \tau
\end{align*}
$$

From the definition of φ_{1} and Remark 4.6,

$$
2|\lambda|^{-1} e^{-\tau / 2} \varphi_{1}\left(2|\lambda|^{-1} \tau, \widehat{\lambda}\right)=\sum_{j \geq 0} E\left(m^{*}\right)(\lambda, j+q) L_{j}^{0}(\tau) e^{-\tau}
$$

Now, from similar computations to those that give (4.12) (allowed again by Remark 4.6) we get

$$
\begin{aligned}
2|\lambda|^{-1} e^{-\tau / 2} \varphi_{1}\left(2|\lambda|^{-1} \tau, \widehat{\lambda}\right) & =\frac{(-1)^{n-1}}{(n-1)!} \frac{|\lambda|}{2} \sum_{j \geq q} m(\lambda, j) D^{n-1}\left(L_{j-q+n-1}^{0}\right)(\tau) e^{-\tau} \\
& +\frac{|\lambda|}{2} \sum_{-p+1 \leq j \leq q-1} m^{*}(\lambda, j) D^{n-1}\left(L_{j-q+n-1}^{0}\right)(\tau) e^{-\tau}
\end{aligned}
$$

Then, by Lemma 4.2,

$$
\begin{aligned}
& 2|\lambda|^{-1}(-1)^{n-1}\left(\frac{d}{d \tau}\right)^{n-1} e^{-\tau / 2} N f\left(2|\lambda|^{-1} \tau, \widehat{\lambda}\right) \\
& \quad=\sum_{j \geq q} m(\lambda, j) L_{j-q+n-1}^{0} e^{-\tau}+\sum_{-p+1 \leq j \leq q-1} m^{*}(\lambda, j) L_{j-q+n-1}^{0}(\tau) e^{-\tau}
\end{aligned}
$$

Our assumptions on m imply that $\sum_{j \geq q} m(\lambda, j) L_{j-q+n-1}^{0} e^{-\tau / 2}$ belongs to $L^{2}((0, \infty), d \tau)$. Also $\int_{0}^{\infty} L_{k-q+n-1}^{0}(\tau) L_{j-q+n-1}^{0} e^{-\tau}=\delta_{j k}$; then from (4.21) it follows that $\operatorname{Ff}(\lambda, k)=m(\lambda, k)$ for $k \geq q$ and $F f(\lambda, k)=m^{*}(\lambda, k)$ for $0 \leq k \leq q-1$. Since $m(\lambda, k)=m^{*}(\lambda, k)$ for $k \geq 0$ we have proved that $F f(\lambda, k)=m(\lambda, k)$ for $k \geq 0$.

A completely similar argument starting with the facts that

$$
\begin{aligned}
\mathcal{F} f(\lambda, k) & \left.=\left.\left\langle\left(L_{-k-p+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto 2\right| \lambda\right|^{-1} e^{-\tau / 2} N f\left(-2|\lambda|^{-1} \tau, \widehat{\lambda}\right)\right\rangle \\
& =(-1)^{n-1} \int_{0}^{\infty} L_{-k-p+n-1}^{0}(\tau) \frac{\partial^{n-1}}{\partial \tau^{n-1}}\left(2|\lambda|^{-1} e^{-\tau / 2} \varphi_{2}\left(-2|\lambda|^{-1} \tau, \widehat{\lambda}\right)\right) d \tau
\end{aligned}
$$

and that for $\tau<0$,

$$
2|\lambda|^{-1} e^{\tau / 2} \varphi_{2}\left(2|\lambda|^{-1} \tau, \widehat{\lambda}\right)=\sum_{j \geq 0} E\left(m^{* *}\right)(\lambda, j+q) L_{j}^{0}(-\tau) e^{\tau}
$$

can be used in the case $k<0$ to complete the proof of the theorem.
Remark 4.13. Recall that for $h \in \mathcal{S}\left(H_{1}\right)$ and $H(\lambda, k)=\mathcal{F}_{1} h(\lambda, k)$ we have $M^{+} H=\mathcal{F}_{1}\left(\left(|z|^{2} / 4+i t\right) h\right)$ and $M^{-} H=\mathcal{F}_{1}\left(\left(|z|^{2} / 4-i t\right) h\right.$) (cf. [3, p. 407]).

For $f \in \mathcal{S}\left(H_{n}\right)$ let $f_{1} \in \mathcal{S}\left(H_{1}\right)$ be the function given by

$$
f_{1}(z, t)=N f\left(|z|^{2}, t\right) .
$$

We have seen that

$$
\mathcal{F}_{1}\left(f_{1}\right)(\lambda, k)=E(\mathcal{F} f)(\lambda, k+q) .
$$

Consider the map $\Xi: \mathcal{S}\left(H_{n}\right) \rightarrow \mathcal{S}\left(H_{1}\right)$ defined by $\Xi(f)=f_{1}$, let $B(z, w)$ be the quadratic form given in the introduction and set $B(z)=B(z, z)$. It is immediate to see that $N(B(z) f)=\tau N f$ and this says that $\Xi((B(z) / 4 \pm i t) f)$ $=\left(|z|^{2} / 4 \pm i t\right) f_{1}$. Then we can conclude that

$$
M^{ \pm}\left(\mathcal{F}_{1} f_{1}\right)=E(\mathcal{F}(B(z) / 4 \pm i t) f) .
$$

A similar expression can be obtained for $M^{ \pm}\left(\mathcal{F}_{1} g_{1}\right)(\lambda, k)$ (where $g_{1}(z, t)=$ $\left.N f\left(-|z|^{2}, t\right)\right)$ that involves $E(\mathcal{F}(B(z) / 4 \pm i t) f)(\lambda,-k-p)$ for $k \geq n-1$ and $\widetilde{E}(\mathcal{F}(B(z) / 4 \pm i t) f)(\lambda, k)$ for $0 \leq k \leq n-2$.

REFERENCES

[1] C. Benson, J. Jenkins and G. Ratcliff, On Gelfand pairs associated with solvable Lie groups, Trans. Amer. Math. Soc. 321 (1990), 85-116.
[2] —, —, —, Bounded K-spherical functions on Heisenberg groups, J. Funct. Anal. 105 (1992), 409-443.
[3] -, -, —, The spherical transform of a Schwartz function on a Heisenberg group, ibid. 154 (1998), 379-423.
[4] C. Benson, J. Jenkins, G. Ratcliff and T. Worku, Spectra for Gelfand pairs associated with the Heisenberg group, Colloq. Math. 71 (1996), 305-328.
[5] T. Godoy and L. Saal, L^{2} spectral decomposition on the Heisenberg group associated to the action of $U(p, q)$, Pacific J. Math. 193 (2000), 327-353.
[6] S. Helgason, Groups and Geometric Analysis, Academic Press, 1984.
[7] E. Stein and G. Weiss, Introduction to Fourier Analysis in Euclidean Spaces, Princeton Univ. Press, Princeton, 1971.
[8] G. Szegő, Orthogonal Polynomials, Colloq. Publ. 23, Amer. Math. Soc., 1939.
[9] A. Tengstrand, Distributions invariant under an orthogonal group of arbitrary signature, Math. Scand. 8 (1960), 201-218.

FaMAF (Universidad Nacional de Córdoba) and CIEM-CONICET
Ciudad Universitaria
5000 Córdoba, Argentina
E-mail: godoy@mate.uncor.edu saal@mate.uncor.edu

Received 24 May 2004;
revised 15 September 2005

