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SPECTRAL PROPERTIES OF ERGODIC DYNAMICAL SYSTEMSCONJUGATE TO THEIR COMPOSITION SQUARESBYGEOFFREY R. GOODSON (Towson, MD)Abstrat. Let S and T be automorphisms of a standard Borel probability spae.Some ergodi and spetral onsequenes of the equation ST = T 2S are given for T ergodiand also when T n = I for some n > 2. These ideas are used to onstrut examples ofergodi automorphisms S with osillating maximal spetral multipliity funtion. Otherexamples illustrating the theory are given, inluding Gaussian automorphisms havingsimple spetra and onjugate to their squares.
0. Introdution. Let T be an invertible measure-preserving transforma-tion (automorphism) de�ned on a standard Borel probability spae (X,F , µ).We investigate spetral and ergodi onsequenes of the equation ST = T 2Sfor automorphisms S and T . No examples of weakly mixing automorphismsonjugate to their squares and having simple spetrum have been publishedthat we are aware of, and we give some Gaussian automorphisms having thisproperty. Very few examples of transformations onjugate to their squares areknown, and few general results are available indiating when this an happen.(After this paper was submitted, a preprint was reeived from O. N. Ageev(2005), who uses a ategory argument to show the existene of rank one trans-formations whih are weakly mixing and onjugate to their squares. Thisanswered a question mentioned in Goodson (2002, 1999) whih had beenopen for some time. Many of the results of this paper are appliable to suhexamples.)Maps having �nite non-zero entropy annot be onjugate to their squaresbeause of the identity h(T 2) = 2h(T ). Consequently, we are only interestedin maps having zero or in�nite entropy.We reall the basi properties of transformations onjugate to theirsquares in Setion 1. In Setion 2 we show that if ST = T 2S where T ismixing with no Lebesgue omponent, then S is weakly mixing. On the otherhand, if T is ergodi and has an eigenvalue whih is a root of unity, S annotbe ergodi.2000 Mathematis Subjet Classi�ation: Primary 37A05; Seondary 28D05.Key words and phrases: ergodi automorphism, spetral measure, simple spetrum.[99℄



100 G. R. GOODSON
In Setion 3, using the spetral theorem for unitary operators we see thatif Tn = I (I = the identity map), for some n ∈ Z, n > 2, then Sq has maximalspetral multipliity equal to q on some subspae (for some 1 < q < n), andwe apply these ideas to give examples of automorphisms having an osillatingmultipliity funtion. These ideas are used to onstrut weakly mixing rankone transformations S for whih S2 has non-simple spetrum, answering aquestion of Thouvenot.In Setion 4, properties of the maximal spetral type of an automorphismwhih is onjugate to its square are onsidered. Setion 5 gives examples ofGaussian automorphisms having simple spetrum and whih are onjugateto their squares. Properties of the onjugating map are also studied.Muh of our exposition generalizes to the ase where there are automor-phisms S and T satisfying ST = T pS for some p > 1.I wish to thank the partiipants and organizers of the 2002 Toru« Confer-ene on Ergodi Theory in honor of Jan Kwiatkowski, for helpful ommentsand suggestions onerning this paper. I would also like to thank the refereefor helpful omments that resulted in improvements and in the avoidane ofmistakes.
1. Preliminaries. By a dynamial system we mean a 4-tuple X =

(X,F , µ, T ) onsisting of an automorphism T : (X,F , µ) → (X,F , µ) de-�ned on a non-atomi standard Borel probability spae. Both the identityautomorphism and the identity operator will be denoted by I. The group
Aut(X) of all automorphisms of (X,F , µ) beomes a ompletely metrizabletopologial group when endowed with the weak onvergene of transforma-tions (Tn → T if for all A ∈ F , µ(T−1

n (A)△T−1(A))+µ(Tn(A)△T (A)) → 0as n→ ∞). Denote by C(T ) the entralizer of T , i.e., the set of those mem-bers of Aut(X) whih ommute with T (more generally it is usual to de�ne
C(T ) to be those measure-preserving transformations whih ommute with
T , but it will be onvenient to assume that C(T ) is a group).The spetral properties of T are those of the indued unitary operatorde�ned by

T̂ : L2(X,µ) → L2(X,µ), T̂ f(x) = f(Tx), f ∈ L2(X,µ).Note that if ST = T 2S, then T̂ Ŝ = ŜT̂ 2.Generally a unitary operator U : H → H on a separable Hilbert spae
H is said to have simple spetrum if there exists h ∈ H suh that Z(h) = H,where Z(h) is the losed linear span of the vetors Unh, n ∈ Z.In this ase there exists a �nite Borel measure σh de�ned on the unitirle S1 in the omplex plane for whih
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〈Unh, h〉 =
\
S1

zn dσh, n ∈ Z,

and suh that U is unitarily equivalent to V : L2(S1, σh) → L2(S1, σh)de�ned by V f(z) = zf(z).Let us mention some basi fats about automorphisms S and T satisfying
ST = T 2S (see Goodson (2002)):(i) STn = T 2nS for n ∈ Z and SnT = T 2n

Sn for all n ∈ Z
+.(ii) If T is aperiodi, then S is aperiodi (i.e., µ({x ∈ X : Snx=x})=0for all n ∈ Z).(iii) If S is ergodi, then either T is aperiodi, or Tn = I for some n ∈ Z.(iv) If S is prime, then T is weakly mixing or T = I.(v) If T is ergodi with disrete spetrum, then S is ergodi (and henemixing) if and only if T has no eigenvalues having �nite order.(vi) The entropy of T satis�es h(T ) = 0 or h(T ) = ∞.(vii) The Bernoulli shift of in�nite entropy and the time one map in thehoroyle �ow are onjugate to their squares.(viii) If T has the weak losure property (see King (1986)), then themap Φ : C(T ) → C(T ), Φ(S) = S2 is a group automorphism.Furthermore, Sφ = φ2S for all φ ∈ C(T ), and any two onjugationsbetween T and T 2 are isomorphi.(ix) If S is rigid (there is a sequene ni → ∞ with Sni → I as i→ ∞),then T is rigid, or Tm = I for some m ∈ Z

+.Reall that rank one maps and also Gaussian�Kroneker maps have theweak losure property (see King (1986) and Thouvenot (1987)).
2. Mixing and ergodi properties of S and T when ST = T 2S.We now look at how the equation ST = T 2S fores ertain mixing propertieson S and T when additional assumptions are made.Theorem 1. Suppose that ST = T 2S where T is ergodi. If T has aneigenvalue whih is a root of unity , then S is not ergodi.Proof. There exists λ ∈ S1 and n > 1 with f(Tx) = λf(x), λk 6= 1 for

1 ≤ k < n and λn = 1. This implies that fn(Tx) = fn(x), and T ergodiimplies fn = onstant a.e. Neessarily, n is odd sine otherwise T would have
−1 as an eigenvalue, ontraditing the ergodiity of T 2. Thus λ 6= ±1, andin addition, we may assume that fn = 1. In partiular, f2(Tx) = λ2f2(x)and also

f ◦ S(Tx) = f(STx) = f(T 2Sx) = f ◦ T 2(Sx) = λ2f ◦ S(x),
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i.e., both f2 and f ◦ S are eigenfuntions for T orresponding to the sameeigenvalue λ2. Sine T is ergodi, there exists c ∈ S1 for whih

f ◦ S(x) = cf2(x) a.e.,where cn = 1.Let g(x) =
∑n−1

k=1 c
k−1fk(x). Then

g(Sx) =

n−1∑

k=1

ck−1fk(Sx) =

n−1∑

k=1

ck−1[cf2(x)]k =

n−1∑

k=1

c2k−1f2k(x) = g(x),sine n is odd and cn = 1, fn = 1. We see that g(x) is non-onstant sinethe funtions fk, k = 1, . . . , n− 1, are orthogonal (beause they orrespondto distint eigenvalues λk, 0 < k < n). It follows that S is not ergodi.Reall that an ergodi transformation T is totally ergodi if it has noeigenvalues that are roots of unity. We immediately obtain:Corollary 1. If ST = T 2S where T and S are ergodi, then T istotally ergodi.Suppose that ST = T 2S where T has a Lebesgue omponent in its spe-trum. If T has a Lebesgue omponent of multipliity n, then it an be seenthat T 2 must have a Lebesgue omponent of multipliity 2n, whih is impos-sible unless n = ∞. In partiular, a transformation with a �nite Lebesgueomponent annot be onjugate to its square. The next result shows that if
ST = T 2S where T is mixing, and S is not weakly mixing, then T has aountable Lebesgue omponent. We onjeture that if T is mixing and S isergodi, then S is weakly mixing. This would have impliations onern-ing Bernoulli shifts having in�nite entropy as these are onjugate to theirsquares. Reall from Goodson and Ryzhikov (1997) that a �nite rank mix-ing transformation (or in fat any loally rank one mixing transformation)is never onjugate to its square.Theorem 2. If ST = T 2S where T is mixing , then:(i) If T has no Lebesgue omponent in its spetrum, then S is weaklymixing.(ii) If S is ergodi, but not weakly mixing , then T has a ountable Lebes-gue omponent in its spetrum.(iii) S annot be ergodi with purely disrete spetrum (and in fat annotbe rigid).Proof. (i) Suppose that S is ergodi but not weakly mixing, and let Λ bethe eigenvalue group of S with {fλ : λ ∈ Λ} the set of eigenfuntions of S inthe orthogonal omplement of the onstant funtions. Let λ, µ ∈ Λ. Then

〈T̂ fλ, fµ〉 = 〈T̂ λŜfλ, µŜfµ〉 = λµ〈Ŝ−1T̂ Ŝfλ, fµ〉 = λµ〈T̂ 2fλ, fµ〉.
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In the same way we see that
〈T̂ fλ, fµ〉 = (λµ)n〈T̂ 2n

fλ, fµ〉 for all n.However, T is mixing, so as n→ ∞,
〈T̂ 2n

fλ, fµ〉 → 〈fλ, 1〉〈1, fµ〉 = 0 for all λ and µsine fλ ⊥ C. Sine (λµ)n is a bounded sequene, we dedue that 〈T̂ fλ, fµ〉
= 0. The same argument shows that 〈T̂nfλ, fµ〉 = 0 for all n ∈ Z, n 6= 0,and all λ, µ ∈ Λ.If Z(fλ) is the yli subspae generated by fλ (with respet to T ), thenthe restrition of T̂ to Z(fλ) has simple Lebesgue spetrum for eah λ, andpart (i) follows.(ii) If S is ergodi but not weakly mixing, then Z(fλ) ⊥ Z(fµ) for all
λ 6= µ, and we onlude that T̂ has a Lebesgue omponent in its spetrum,whih must be ountable.(iii) Reall that if S is ergodi with purely disrete spetrum, then Sis rigid, so there is a sequene ni → ∞ as i → ∞ with Sni → I. Sine
SniT = T 2niSni for i = 1, 2, . . . , we dedue that T 2ni−1 → I as i → ∞, so
T is also rigid, and annot be mixing.3. Spetral properties of S when T is of �nite order. Supposeinstead we have the situation Sφ = φ2S for some automorphism φ satisfying
φn = I (some n > 2 neessarily odd). An automorphism extension is a map
S : X ×G→ X ×G of the form

S(x, g) = (S0x, ψ(x) + v(g)),where v : G→ G is a group automorphism, S0 : X → X is an automorphismand ψ : X → G is measurable. S is itself an automorphism on the spae
(X × G,F ⊗ FG, µ × λ), where FG are the Borel sets of G, and λ is Haarmeasure on the ompat group G. We shall see that automorphism extensionan have the property that Sφ = φ2S for some automorphism φ whihsatis�es φn = I for some n > 2 odd.Let ω ∈ S1 be a primitive nth root of unity and write

Hk = {f ∈ L2(X,µ) : f ◦ φ(x) = ωkf(x)}, 0 ≤ k ≤ n− 1.The subspaes Hk, being the eigenspaes of the unitary operator φ̂, are φ̂invariant, pairwise orthogonal and
L2(X,µ) =

n−1⊕

k=0

Hk.Lemma 1. ŜmHk = Hk·2m (modn) for k = 0, 1, . . . , n − 1 and m ≥ 1. Inpartiular , H0 is Ŝ-invariant.
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Proof. Let f ∈ Hk. Then Ŝmf = f ◦ Sm, and

f ◦ Sm(φx) = f(φ2m

Smx) = ωk·2
m

f ◦ Sm(x),so that f ◦ Sm ∈ Hk·2m (modn).As a onsequene, we dedue some results about the spetrum of thepowers of S. Spei�ally we show that for some q > 1, the maximal spetralmultipliity of Sq on a subspae is divisible by q. Note that S an be ergodiin this theorem.Theorem 3. Suppose that Sφ = φ2S where φn = I (n ≥ 3 odd , φk 6= I,
0 ≤ k < n). Then there exists 1 < q ≤ n − 1 for whih Ŝq restrited to theortho-omplement of the subspae

{f ∈ L2(X,µ) : f ◦ φ = f},has a omponent of multipliity divisible by q in its spetrum. Spei�ally ,
q = min{m ∈ Z

+ : 2m = 1 (modn)}.Proof. Let f ∈ H1. Then by the lemma we have
Ŝf ∈ H2, Ŝ2f ∈ H22 , . . . , Ŝmf ∈ H2m (modn) and Ŝqf ∈ H1.Let g ∈ L2(X,µ), and denote by Z(g) the yli subspae of L2(X,µ) gen-erated by the unitary operator Ŝq, i.e., the losed linear span of all vetorsof the form Ŝnqg, n ∈ Z. Then for f ∈ H1,

Z(f) ⊆ H1, Z(Ŝf) ⊆ H2, . . . , Z(Ŝmf) ⊆ H2m (modn),and this implies that Z(Ŝrf) ⊥ Z(Ŝpf) for r 6= p, 1 ≤ r, p ≤ q − 1.Furthermore,
〈Ŝnq(Ŝrf), Ŝrf〉 = 〈Ŝnqf, f〉 for all n ∈ Z,so that σ

Ŝrf
∼ σf for 0 ≤ r ≤ q − 1 (spetral measures with respet to Ŝq),and hene Ŝq has maximal spetral multipliity divisible by q on the subspae

H1 ⊕H2 ⊕ · · · ⊕H2q−1 ,where 2q = 1 (modn).A slightly more general version of the above an be given, whih is onlyof interest when T is not ergodi.Theorem 4. Suppose that ST = T 2S and ω is a primitive nth root ofunity for whih the set Λ = {ωk : 0 ≤ k < n} onsists of eigenvalues of T ,but no member of −Λ is an eigenvalue of T . If S has simple spetrum, then
Sq has a omponent of multipliity q in its spetrum, for some 1 < q ≤ n−1.The theorem is shown by the method of proof of the last theorem, to-gether with the following lemma:
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Lemma 2. Under the onditions of the last theorem, the subspaes
Hk = {f ∈ L2(X,µ) : T̂ f(x) = ωkf(x)}, 0 ≤ k ≤ n− 1,are Sq-invariant for some 1 < q < n.Proof. We �rst show that ŜHk = H2k for eah k (redued modulo n ifneessary). Proeeding as before, we see that if f ∈ Hk then Ŝf ∈ H2k, sothat ŜHk ⊆ H2k, hene it su�es to show the reverse ontainment. Write
H ′
k = {f ∈ L2(X,µ) : T̂ 2f(x) = ω2kf(x)}, 0 ≤ k ≤ n− 1.Then learly Hk ⊆ H ′

k. On the other hand, if f ∈ H ′
k, set g = f − ω−kT̂ f ;then T̂ g = −ωkg.But −ωk is not an eigenvalue of T̂ so g = 0 and T̂ f = ωkf , or f ∈ Hkand we dedue that Hk = H ′

k. Suppose now that f ∈ H2k. Then
T̂ 2Ŝ−1f = Ŝ−1T̂ f = ω2kŜ−1f,so that Ŝ−1f ∈ H ′

k = Hk, or Ŝ−1H2k ⊆ Hk. We have shown that
ŜHk ⊆ H2k ⊆ ŜHk, i.e., H2k = ŜHk.Now ontinue in this way to see that there is some q with ŜqHk = Hk.In this diretion we also have:Theorem 5. If ST = T 2S where T is totally ergodi, but not weaklymixing , then S has a ountable Lebesgue omponent in its spetrum.Proof. Sine T is totally ergodi and not weakly mixing, there exists

f ∈ L2(X,µ), f(Tx) = λf(x), where λn 6= 1 for all n ∈ Z. We see that for
n ≥ 1,

f ◦ Sn(Tx) = f(SnTx) = f(T 2n

Snx) = λ2n

f ◦ Sn(x) for n ≥ 1,so f ◦ Sn is also an eigenfuntion of T , but orresponding to a di�erenteigenvalue. Therefore 〈Ŝnf, f〉 = 0 for all n 6= 0. Sine this an be donefor eah of a ountable olletion of orthogonal eigenfuntions of T (usingthe fat that the eigenvalue group is R(z) = z2 invariant), S must have aountable Lebesgue omponent in its spetrum.Corollary 2. Suppose that ST = T 2S, where S and T are ergodi. If
msm(S) <∞, then T is weakly mixing.Proof. The ergodiity of S and T implies that T has no eigenvalues of�nite order. Sine S annot have a ountable Lebesgue omponent, T annothave eigenvalues of in�nite order, so T must be weakly mixing.The following is also a straightforward onsequene of Theorem 3 and(iii) of Setion 1.
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Corollary 3. If ST =T 2S where Sn has simple spetrum for all n∈Z

+,then T = I or T is aperiodi.
Examples. 1. If T is a Bernoulli shift having in�nite entropy, then T isonjugate to its square. If S is a onjugating map, then sine T is mixing,Theorem 2 implies that S annot be rigid, and we onjeture that S has tobe weakly mixing in this ase.2. It is possible for S to be mixing with T non-ergodi and satisfying

ST = T 2S. For example, there is an ergodi disrete spetrum map T0 and amixing map S0 with S0T0 = T 2
0 S0, so simply set T = T0×T0 and S = S0×S0.3. Suppose that ST = T 2S and T is ergodi with disrete spetrum.Suppose also that every eigenvalue λ of T satis�es λn 6= 1 for all n ∈ Z,

n 6= 0. Set
Hn = {f ∈ L2(X,µ) : f(Tx) = λnf(x)}, n ∈ Z

+,i.e., Hn is just the one-dimensional eigenspae orresponding to the eigen-value λn. Then as before, if f ∈ H1, Ŝmf ∈ H2m , so that 〈Ŝmf, f〉 = 0for all m 6= 0. These onsiderations show that S has a ountable Lebesguespetrum, and hene is mixing (see Goodson (2002)).4. We give some examples for whih Sφ = φ2S with φn = I for some
n > 2 odd. Let G be a ompat Abelian group and σ : G → G a groupautomorphism. Suppose that T is an ergodi automorphism of the Lebesguespae (X,F , µ) and ψ : X → G is a oyle. Then we an de�ne an auto-morphism extension Tψ,σ : X ×G→ X ×G by

Tψ,σ(x, g) = (Tx, ψ(x) + σ(g)), x ∈ X, g ∈ G.Set S = Tψ,σ. Then S preserves produt measure µ × λ, where λ is Haarmeasure on G. If φ(x, g) = (x, g+h) for some h ∈ G, then we an hek that
Sφ(x, g) = S(x, g + h) = (Tx, ψ(x) + σ(g + h))and

φ2S(x, g) = φ2(Tx, ψ(x) + σ(g)) = (Tx, ψ(x) + σ(g) + 2h),so if σ(h) = 2h we have Sφ = φ2S. A speial ase of this is the following:Proposition 1. Suppose that σ : G → G, σ(g) = 2g is a group auto-morphism. If S(x, g) = (Tx, ψ(x) + σ(g)) and φ(x, g) = (x, g + h), h 6= 0,then Sφ = φ2S.We an arrange φ to have any order simply by hoosing G and h appro-priately. For example, if we take G = Z5 and set φ(x, j) = (x, j+1), then theproposition is appliable. Now S an be hosen to be of rank one by hoosing
T , ψ and σ suitably. From Theorem 3, we dedue that S4 has a omponentin its spetrum of multipliity four on the orthogonal omplement of thesubspae {f ∈ L2(X,µ) : f(x, j + 1) = f(x, j)} (also, Ŝ2 has a omponent
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of multipliity two). So the maximal spetral multipliity of S4 is equal to 4(and we must also have rank 4 for S4). Inidentally we see that S annot beonjugate to S2 as this would imply S onjugate to S4.Similar onstrutions may be made for other n odd. Take n = 7. Thensine 23 = 1 (mod7), we obtain an S with simple spetrum, for whih S3has a omponent of multipliity three.5. Friedman, Gabriel and King (1988), and also Filipowiz, Kwiatkowskiand Lema«zyk (1988), onstrut ergodi automorphisms having osillatingrank funtion. The example of Friedman et al. is an automorphism extension
S : X × Z4 → X × Z4 of the form

S(x, j) = (Tx, ψ(x) + σ(j)),where σ : Z4 → Z4, σ(j) = −j. The map S is shown to have the followingproperties:
• S is weakly mixing.
• S has rank one.
• rank(Sn) =

{
1, n odd,
2, n even, n 6= 4k.Note that Sφ = φ3S where φ : X × Z4 → X × Z4, φ(x, j) = (x, j + 1).Sine msm(Ŝn) ≤ rank(Sn) we immediately see that msm(Ŝn) = 1 (nodd), and ≤ 2 (n even, n 6= 4k). However, modifying the argument of The-orem 3 for this situation, if we set

Hk = {f ∈ L2(X,µ) : f ◦ φ(x) = ωkf(x)}(where ω is a primitive 4th root of unity), we see that ⊕3
k=0Hk = L2(X,µ)and H0 and H2 are eah invariant under Ŝ, and ŜH1 = H3, ŜH3 = H1 (usingthe method of Lemma 1). We dedue that Ŝ2 has a omponent of multipliitytwo in its spetrum. Furthermore, if n is odd, msm(Ŝ2n) ≥ msm(Ŝ2) = 2.We dedue that

msm(Sn) =

{
1, n odd,
2, n even, n 6= 4k.The examples of Filipowiz, Kwiatkowski and Lema«zyk (1988) areMorse automorphisms with osillating rank funtion and all having simplespetrum. The authors remark that the maximal spetral multipliity analso osillate.6. Let α ∈ [0, 1) be irrational, and de�ne S, T on [0, 1) × [0, 1) by

S(x, y) = (x + α, x + 2y) (mod1), and T (x, y) = (x, y + β) (mod1), where
β ∈ [0, 1). It is interesting to note that ST = T 2S and that T has �nite orderif β is rational, otherwise T has in�nite order and also S is ergodi with adisrete omponent and a ountable Lebesgue omponent. However, S is notan automorphism, so our theory is not appliable. In a similar manner, if we
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de�ne S, T : S1 → S1 by S(z) = z2, T (z) = az, then S and T are mixingand ergodi respetively (with respet to Lebesgue measure on the irle). Inaddition ST = T 2S, and S is not an automorphism. Sine S is onto, T 2 is afator of T , but they annot be isomorphi sine they do not have the sameeigenvalue group. A similar situation holds for any ergodi disrete spetrumtransformation T , and it may be of interest to ask more generally: when is
T 2 a fator of T?7. In Goodson (2002) it was shown that if T is a Zn-extension (n even)of some transformation T0 where T has the weak losure property, then Tannot be onjugate to its square. The ase where n is odd is not lear.Suppose that ST = T 2S where T is a Z3-extension of some automorphism
T0 : X → X. If T has the weak losure property and is ergodi, then Sσ =
σ2S (see Goodson (2002)) where σ is the �ip map σ(x, g) = (x, g + 1).Sine σ3 = I, we dedue that S2 has a omponent of even multipliity in itsspetrum (in fat on the ortho-omplement of the subspae {f ∈ L2(X,µ) :
f ◦ σ = f}).We ask whether it is generally true that if ST = T 2S where T ergodi,then Sn has non-simple spetrum (for some n), possibly non-ergodi.4. Properties of the spetral measure of T . We study the spetralmeasure of T when T is onjugate to its square. In partiular we look atits maximal spetral type σ. We shall see that the maximal spetral type isquasi-invariant with respet to the transformation R : S1 → S1, R(z) = z2.We also show that if T has simple spetrum, then R is one-to-one and onto(a.e. σ) on the (non-losed) support of σ. To say that σ is R-quasi-invariantmeans that for any Borel set A in S1, σ(A) = 0 if and only if σ(R−1(A)) = 0.Proposition 2. Suppose that ST = T 2S. Then σ, the maximal spetraltype of T̂ , is R-quasi-invariant , where R : S1 → S1, R(z) = z2.Proof. Suppose σ = σh for some h ∈ L2(X,µ). Then\
zn dσh = 〈T̂nh, h〉 = 〈Ŝ−1T̂nh, Ŝ−1h〉 = 〈T̂ 2nŜ−1h, Ŝ−1h〉 =

\
z2n dσ

Ŝ−1h
.We dedue that Tf(z) dσh =

T
f(z2) dσ

Ŝ−1h
for all f ontinuous, or that

σh(A) = σ
Ŝ−1h

(R−1A) for all Borel subsets A of S1.Suppose that σ(R−1A)=0. Then σh(R−1A)=0, and so σ
Ŝ−1h

(R−1A)=0beause σ
Ŝ−1h

≪ σh as σ is the maximal spetral type. It follows that
σh(A) = 0, or that σ ≪ σR−1.On the other hand, we an see from the above that σ

Ŝh
(A) = σh(R

−1A)for all Borel sets A, so that if σh(A) = 0, then σ
Ŝh

(A) = 0 sine σh is themaximal spetral type, so that σh(R−1A) = 0 and thus σR−1 ≪ σ and σ is
R-quasi-invariant.
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Remark. Let h ∈ L2(X,µ). Then
Ŝ−1Z(h) = span{Ŝ−1T̂nh : n ∈ Z} = span{T̂ 2n(Ŝ−1h) : n ∈ Z}

⊆ span{T̂n(Ŝ−1h) : n ∈ Z} = Z(Ŝ−1h).The unitary operator T̂ an be represented in the usual way: there are fun-tions hi ∈ L2(X,µ) and orresponding spetral measures σhi
, i ∈ Z

+, sothat L2(X,µ) an be written as the diret sum of yli subspaes:
L2(X,µ) = Z(h1) ⊕ · · · ⊕ Z(hn) ⊕ · · · , σh1

≫ · · · ≫ σhn
≫ · · · ,where 〈T̂nhi, hi〉 =

T
S1 z

n dσhi
(z). This representation is essentially unique inthe sense that any other suh representation leads to equivalent measures inthe spetral sequene. In the ase that Ŝ−1Z(hi) = Z(Ŝ−1hi) for i = 1, 2, . . .we an onlude that eah of the measures in the spetral sequene is R-quasi-invariant. However, this is not generally true as the latter subspaemay be muh larger. We an say the following:Proposition 3. If (R, σ) is one-to-one, then Ŝ−1Z(h) = Z(Ŝ−1h) foreah h ∈ L2(X,µ), and eah measure σhi

in the spetral sequene is R-quasi-invariant.Proof. We know that Ŝ−1Z(h) ⊆ Z(Ŝ−1h), so think of Ŝ−1 as a map
Ŝ−1 : Z(h) → Z(Ŝ−1h). Now identify Z(h) with L2(S1, σh), and identify
Z(Ŝ−1h) with L2(S1, σ

Ŝ−1h
). Then this identi�ation gives a map R̃ orre-sponding to Ŝ−1:

R̃ : L2(S1, σh) → L2(S1, σ
Ŝ−1h

), R̃f(z) = f(z2).Beause Ŝ−1 is well de�ned and an isometry, the same is true of R̃. Thetheorem will follow if we show that R̃ is onto. We know that R(z) = z2is one-to-one with respet to both σh and σ
Ŝ−1h

sine both σh ≪ σ and
σ
Ŝ−1h

≪ σ where σ is the maximal spetral type. It follows that R̃ is onto,and the �rst part of the proposition follows.Furthermore, in this ase
L2(X,µ) = Ŝ−1L2(X,µ) = Ŝ−1Z(h1) ⊕ · · · ⊕ Ŝ−1Z(hn) ⊕ · · ·

= Z(Ŝ−1h1) ⊕ · · · ⊕ Z(Ŝ−1hn) ⊕ · · · .The uniqueness of the spetral sequene now implies that the measures σhiand σ
Ŝ−1hi

are equivalent. The result follows sine σh(A) = σ
Ŝ−1h

(R−1A)for all h and Borel subsets A of S1.We now obtain more detailed information about the ase when T hassimple spetrum. We show that R has to be one-to-one and onto the supportof σ, and we give onditions for R to be measure preserving. In the lemma,
σh is the maximal spetral type of U orresponding to some h ∈ L2(X,µ).
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Lemma 3. Let U : H → H be a unitary operator on a separable Hilbertspae H whih has simple spetrum and suppose there exists an operator

P : H → H satisfying U2P = PU . Then P is unitarily equivalent to anoperator P̃ : L2(S1, σh) → L2(S1, σh) de�ned by
(1) P̃ f(z) = f(z2)k(z), f ∈ L2(S1, σh),for some k ∈ L2(S1, σh) and h ∈ H where Z(h) = H.Proof. We an represent U as V f(z) = zf(z), f ∈ L2(S1, σh), where σhsatis�es 〈Unh, h〉 =

T
S1 z

n dσh, n ∈ Z; here h is a yli vetor for U . Wehave (V 2f)(z) = z2f(z).If W is the operator giving rise to this unitary equivalene, W : Z(h) →
L2(S1, σh), W (Unh) = pn (where pn(z) = zn, n ∈ Z), we may suppose that

V 2P̃ f(z) = P̃ V f(z), f ∈ L2(S1, σh),where P̃ = WPW−1. Let k = P̃ (p0). Then
P̃ p1(z) = P̃ V p0(z) = V 2P̃ p0(z) = z2k(z),and in general

P̃ pk(z) = z2kk(z), k ∈ Z.Thus
P̃

( n∑

k=−n

akz
k
)

= k(z)
( n∑

k=−n

akz
2k

)

and onsequently
P̃ f(z) = k(z)f(z2) for each f ∈ L2(S1, σh).Theorem 6. Let U be a unitary operator de�ned on a separable Hilbertspae H, having simple spetrum. Then U is unitarily equivalent to U2 if andonly if the maximal spetral type σ of U is R-quasi-invariant (R(z) = z2)and where R is one-to-one and onto a.e. σ.Proof. If U is unitarily equivalent to its square via a unitary operator P(PU = U2P ), we an represent U as V : L2(S1, σ) → L2(S1, σ), V f(z) =

zf(z), and P as P̃ f(z) = k(z)f(z2) for some k ∈ L2(S1, σ). This map isone-to-one and onto, so the same is true of R(z) = z2, a.e. σ.Conversely, suppose that the maximal spetral type σ of U is R-quasi-invariant, and R is one-to-one and onto a.e. σ. Represent U as V f(z) =

zf(z) as above, and set R̃f(z) = k(z)f(z2), where k(z) =
√
dσ ◦R/dσis the positive square root of the Radon�Nikodym derivative (well de�nedbeause σ is R-quasi-invariant). The hypotheses imply that R̃ : L2(S1, σ) →

L2(S1, σ) is well de�ned, an isometry and onto a.e. σ. In addition we anhek that R̃V f(z) = V 2R̃f(z).
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Corollary 4. Suppose that ST = T 2S, where T has simple spetrum.Then the map R(z) = z2 de�ned on the non-losed support of σ (where σis of the maximal spetral type of T ) is one-to-one and onto and k(z) 6= 0a.e. σ. In addition, (R, σ) is a measure preserving dynamial system if andonly if |k(z)| = 1 a.e. σ. (Here k is the map de�ned in Lemma 3.)Proof. We have seen that we an represent S̃ by S̃−1f(z) = k(z)f(z2).The �rst part then follows from the previous theorem. To see that |k(z)| = 1,use the fat that S̃ is unitary, giving 〈S̃−1f, S̃−11〉 = 〈f, 1〉 (where k(z) =

S̃−11) for all f ∈ L2(S1, σ). It follows that\
S1

f(z2)|k(z)|2 dσ(z) =
\
S1

f(z) dσ(z)for all f ∈ L2(S1, σ). So |k(z)| = 1 if and only if R is measure preserving.Corollary 5. If T is ergodi with disrete spetrum and eigenvaluegroup Λ = e(T ), then T is onjugate to T 2 if and only if the map R : Λ→ Λ
R(λ) = λ2, is a group automorphism.Proof. The support of the spetral measure σ is e(T ), and R has to beone-to-one and onto on this set, and the result follows.Reall that a non-singular transformation (R, σ) is ergodi if R−1A = Aimplies that σ(A) = 0 or σ(Ac) = 0. R is ergodi if and only if for allmeasurable funtions f , f(Rz) = f(z) a.e. σ implies f = onstant a.e. σ.In the ase that (R, σ) is R(z) = z2 and σ is the maximal spetral typeof some ergodi transformation T , 1 is always an eigenvalue of T , so 1 is anatom of σ and also an invariant set for R. When we talk about the ergodiityof R, we mean on the support of σ, exluding the invariant set {1}.We state a lemma, whih is of independent interest:Lemma 4. Suppose that ST = T 2S and let σ be the maximal spetraltype of T̂ .(i) If S is not weakly mixing , there exists f ⊥ C for whih σf is an

R(z) = z2 invariant measure.(ii) If (R, σ) is ergodi, and S is not weakly mixing , then σ is of the typeof an R-invariant measure.(iii) If there are no R-invariant measures ν ≪ σ, then S is weakly mixing.Proof. (i) Suppose there exists f ⊥ C with Ŝf = λf and λ ∈ S1. Then
〈T̂nf, f〉 = 〈T̂nλŜf, λŜf〉 = 〈ŜT̂ 2nf, Ŝf〉 = 〈T̂ 2nf, f〉,so that T

S1 z
n dσf (z) =

T
S1 z

2n dσf (z) for all n ∈ Z. It follows that σf is
R(z) = z2 invariant.(ii) If (R, σ) is ergodi with σf ≪ σ, then σf is ergodi, and we deduethat σf ∼ σ, so that σ is the type of an R-invariant measure.
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(iii) If there are no R-invariant measures ν ≪ σ, then Ŝ an have noeigenfuntions, so S is both ergodi and weakly mixing.In the next theorem we assume the existene of a onjugating map Swhih is ergodi with disrete spetrum. It is an open question whether ornot suh S an exist for some aperiodi T . It is hoped that this theorem willthrow light on the existene or otherwise of suh transformations.Theorem 7. Suppose that ST = T 2S and let σ be of the maximal spe-tral type of T̂ , and set R(z) = z2. If S is ergodi with disrete spetrumthen:(i) σ an be hosen to be a �nite R-invariant measure, whih is not thetype of Lebesgue measure. In addition, T is rigid , and if T is ergodi,then T is weakly mixing (but not mixing).(ii) If T has simple spetrum, then

L2(X,µ) =
⊕

n

Z(fn),where the set {fn : n ∈ Z} is a subfamily of the eigenfuntions of S.Eah Z(fn) is both T̂ - and Ŝ-invariant , and the orresponding spe-tral measures σfn
onstitute an ergodi deomposition for the measure

σ with respet to R.Proof. (i) There is a omplete orthonormal basis for L2(X,µ), {fn :

n ∈ Z}, onsisting of eigenvetors of S, i.e., Ŝfn(x) = λnfn(x) for eah
n ∈ Z and some λn ∈ S1. As in the proof of the above lemma, we see that

〈T̂mfn, fn〉 = 〈T̂ 2mfn, fn〉for all m,n ∈ Z. We dedue that\
S1

zm dσfn
(z) =

\
S1

z2m dσfn
(z)

for all m,n ∈ Z (spetral measures with respet to T̂ ). This tells us that eahof the measures σfn
is R(z) = z2 invariant, and sine the fn's onstitute aomplete orthonormal basis, it an be shown that σ must be the type ofan R-invariant measure. The fat that S is rigid implies that T is rigid,and rigidity is inompatible with the existene of an absolutely ontinuousomponent.If T is ergodi, then sine S is also ergodi with msm(S) <∞, Corollary 2applies to show that T must be weakly mixing. (In the ase that S is totallyergodi, Corollary 3 implies that Tm 6= I for all m 6= 1.)(ii) {fn : n ∈ Z

+} is the set of eigenfuntions of S with orrespondingeigenvalues {λn : n ∈ Z
+}. As in the proof of (i) above we see that\

zk dσn,m(z) = λnλm
\
z2k dσn,m(z),
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where σn,m = σfn,fm
, so that σn = σn,n is an R(z) = z2 invariant measure.We also have

〈T̂ kfn, fm〉 = 〈WT̂ kfn,Wfm〉 = 〈V kWfn,Wfm〉 = 〈V krn(z), rm(z)〉

=
\
zkrn(z)rm(z) dσ(z),whereW : L2(X,µ) → L2(S1, σ) is the isometry whih sends T̂nh to zn, and

rn(z) = Wfn.This implies that
dσn,m(z) = rn(z)rm(z)dσ(z),and in partiular dσn(z) = |rn(z)|

2dσ(z), so that rn(z) and σn have the samesupport (say An). Set
Hn = {f ∈ L2(X,µ) : Ŝf = λnf}and H̃n = WHn. Sine S is ergodi, Hn and H̃n are one-dimensional sub-spaes with rn(z) ∈ H̃n, for eah n ∈ Z

+. Consequently, rn(z) is the essen-tially unique funtion with the property that
rn(z

2)k(z) = λnrn(z) for z ∈ An.Clearly eah An is an R-invariant set. Suppose that σ(An ∩Am) > 0. Then
χAn∩Am

(z2)rn(z
2)k(z) = λnχAn∩Am

(z)rn(z),ontraditing the fat that H̃n is one-dimensional (unless An = Am).This same argument shows that An an have no non-trivial invariantsubsets, so that (R,An, σn) is ergodi and measure preserving.We have shown that An = Am or An ∩Am = ∅ a.e. σ. In the latter asewe must have σn,m = 0, so that
〈T̂ kfn, fm〉 = 0 for all k when n 6= m.We dedue that in this ase Z(fn) ⊥ Z(fm) (with respet to T̂ ) and σn ⊥ σm.Note also that sine eah fn is an eigenfuntion of S, eah Z(fn) is Ŝ−1-invariant, and we see that the restritions of T̂ and Ŝ to Z(fn) are unitaryoperators with the property that T̂ Ŝ = ŜT̂ 2. We remark that it an be shownthat Z(fn) ⊥ Z(f2
n) for eah n ∈ Z.In the preprint Ageev (2005), it is mentioned that typially the rank onetransformations onjugate to their squares have the property that (R, σ) isan ergodi measure preserving transformation. It follows that the hypothesisof (ii) below is non-vauous. Bernoulli shifts having in�nite entropy satisfythe onditions of (i).Theorem 8. Suppose that ST = T 2S and let σ be of the maximal spe-tral type of T̂ , and set R(z) = z2.
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(i) If T is mixing and σ is measure preserving for R, then T̂ has a ount-able Lebesgue omponent. In fat σ is the type of Lebesgue measure.(ii) If T has simple spetrum and (R, σ) is ergodi, then S has at mosttwo ergodi omponents. If S is not ergodi then there is an Ŝ-invariant funtion f0 ⊥ C suh that σf0 is R-invariant , ergodi andof the maximal spetral type of T̂ .(iii) If T has the weak losure property and simple spetrum, and thereexists a non-trivial φ ∈ C(T ) with φn = I for some n ∈ Z

+, then
(R, σ) is not ergodi.Proof. (i) There exists f ⊥ C suh that σf = σ, so that σf is R-invariant.Thus \

zn dσf =
\
z2n dσf for all n ∈ Z,or 〈T̂nf, f〉 = 〈T̂ 2nf, f〉 for all n ∈ Z. We therefore have

〈T̂ f, f〉 = 〈T̂ 2f, f〉 = · · · = 〈T̂ 2n

f, f〉 → 〈f, 1〉〈1, f〉 as n→ ∞,sine T is mixing. We dedue that 〈T̂ f, f〉 = 0, and similarly, 〈T̂nf, f〉 = 0for all n 6= 0. It follows that σ = σf = λ, Lebesgue measure, so that T̂ musthave a Lebesgue omponent in its spetrum. This omponent is ountable,for if we suppose T̂ has a Lebesgue omponent of multipliity m ∈ Z
+,then T̂ 2 has a Lebesgue omponent of multipliity 2m, ontraditing theonjugay between T and T 2.(ii) Denote by H0 the subspae

H0 = {f ∈ L2(X,µ) : Ŝf = f},and let W : L2(X,µ) → L2(S1, σ) be the isometry whih sends T̂nh to zn(where Z(h) = L2(X,µ)). As usual, represent Ŝ as an operator on L2(S1, σ),by S̃−1g(z) = g(z2)k(z). Then we an set
H̃0 = WH0 = {f ∈ L2(S1, σ) : S̃f(z) = f(z) a.e. σ}.Now 1 ∈ H0, so W1 = r(z) ∈ H̃0, and r(z2)k(z) = r(z) a.e. σ.But T̂1 = 1, so VW1 = WT̂1 = W1 and V r(z) = r(z), or zr(z) = r(z)a.e. σ. This implies that r(z) is supported on the set {1} and k(1) = 1, so

r(z) = cχ{1} for some onstant c, i.e., χ{1} ∈ H̃0.Let us suppose that (R, σ) is ergodi and let f ∈ H̃0 and B = supp(f) =
{z ∈ supp(σ) : f(z) 6= 0, z 6= 1}. Then B is an R-invariant set, and R ergodiimplies that σ(B) = 0 or σ(Bc) = 0 (we know that k(z) 6= 0 a.e. σ). Supposethat σ(Bc) = 0, i.e., f 6= 0 a.e. σ (otherwise every f ∈ H̃0 is zero a.e. σ exeptpossibly at z = 1, so H̃0 is one-dimensional, whih implies S is ergodi), andlet g ∈ H̃0. Then g/f(z2) = g/f(z) a.e. σ, so that g/f = onstant a.e. σ,
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i.e., χB · H̃0 is a one-dimensional subspae of L2(S1, σ). It follows that H0 isat most a two-dimensional subspae.Suppose that S is not ergodi and f0 ∈ H0, with f0 ⊥ C. Then σf0 is
R(z) = z2 invariant beause 〈T̂nf0, f0〉 = 〈T̂ 2nf0, f0〉 for all n ∈ Z.In addition, σf0 ≪ σ, and σ ergodi (with respet to R) implies σf0 isergodi, so σf0 ∼ σ and hene Z(f0) = C

⊥.(iii) As usual, represent T̂ by V f(z)=zf(z), Ŝ using S̃−1f(z)=k(z)f(z2),and φ̂ as φ̃f(z) = h(z)f(z).Sine T has the weak losure property, Sφ = φ2S, so S̃−1φ̃ = φ̃2S̃−1.This gives h2(z) = h(z2) for all z. Set
g(z) = h(z) + h2(z) + · · · + hn−1(z).Then

g(z2) =
n−1∑

i=1

hi(z2) = g(z),

sine we must have hn(z) = 1 and neessarily n is odd. We see that g isnon-onstant, for if not, ∑n−1
i=1 φ̂

i = cI for some onstant c, and this impliesthat φ̂ is the identity operator, a ontradition.5. Gaussian�Kroneker automorphisms onjugate to their om-position squares. We give some examples of weakly mixing transforma-tions having simple spetrum whih are onjugate to their squares. The on-strution involves Gaussian automorphisms. These are used beause spetralisomorphism gives rise to isomorphism.Let K ⊆ S1 be a Kroneker set, i.e., for every ontinuous omplex-valuedfuntion f(z) of absolute value 1 de�ned on K and for all ε > 0 there exists
n ∈ Z suh that

sup
z∈K

|f(z) − zn| < ε.Let σ0 be a ontinuous symmetri measure (σ0(A) = σ0(A) for all Borelsets A ⊂ S1) whose support is K ∪ K. We all σ0 a Gaussian�Kronekermeasure. Given a symmetri measure σ, there is a orresponding Gaussianautomorphism Tσ. We all σ the spetral measure of Tσ (whih is distintfrom the maximal spetral type, whih is the measure
eσ − δ1 = σ +

σ(2)

2!
+
σ(3)

3!
+ · · · ,where σ(n) is the n-fold onvolution produt of σ with itself and δ1 is anormalized measure supported at the point z = 1).
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Let us reall some of the properties of Gaussian automorphisms andGaussian�Kroneker measures (see Cornfeld, Fomin and Sinai (1980) andLema«zyk, Parreau, Thouvenot (2000) for the properties of Gaussian au-tomorphisms, and Rudin (1962) for the properties of Kroneker sets):(i) If σ is a Gaussian�Kroneker measure, then Tσ has a simple andontinuous spetrum. In fat this is true for any σ whih has norational relations (exept for the symmetry relation), in partiularfor measures supported on symmetrized Kroneker sets.(ii) All Gaussian automorphisms with the same ontinuous spetralmeasure are isomorphi.(iii) Any onjugation between Gaussian automorphisms having simplespetrum is Gaussian.(iv) Every Gaussian�Kroneker map has the weak losure property.(v) If σ is Gaussian�Kroneker, then σ ⊥ σ ∗ δz for all z ∈ S1 \ {1}.Consequently, the map R(z) = zn is one-to-one a.e. σ on K ∪ K,for all n ∈ Z

+.(vi) If σ has an absolutely ontinuous omponent, then Tσ has a ount-able Lebesgue omponent in its spetrum.(vii) Gaussian automorphisms having ountable Lebesgue spetrum areisomorphi.Denote by R̂σ0 the image of σ0 under R, and de�ne a new measure by
σ =

∞∑

k=−∞

1

2|k|
R̂kσ0,where R(z) = z2. Then σ is learly an R-quasi-invariant measure and itan be seen that R is one-to-one and onto, σ a.e., and that this is also truefor the measure eσ on S1 \ {1}. In fat, sine σ0 has no rational relations(exept for the symmetry relation) on K ∪ K, the same is true for σ, and

K ∩ RnK = ∅ for all n ∈ Z \ {0}. Then (i) above ensures that there isa Gaussian automorphism Tσ having simple spetrum, and whose spetralmeasure is σ with maximal spetral type eσ − δ1. Furthermore, both Tσand T 2
σ are Gaussian automorphisms, whose spetral isomorphism followsfrom Theorem 6. It then follows from (ii) that Tσ is onjugate to T 2

σ .We summarize the above with a theorem.Theorem 9. The Gaussian automorphism Tσ onstruted above has asimple and ontinuous spetrum. In addition Tσ is onjugate to its square,and any onjugating map S is Gaussian (possibly non-ergodi) with a ount-able Lebesgue omponent in its spetrum.Proof. It su�es to prove that the onjugating map has a ountableLebesgue omponent. Denote byH ⊂ L2
R
(X,µ) the Gaussian subspae for Tσ
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where L2
R
(X,µ) are the real funtions in L2(X,µ). For f ∈ H, denote by σfthe usual spetral measure of f with respet to the maximal spetral type eσ.Then in this ase we see that σf ≪ σ.For A a Borel subset of S1, we set

HA = {f ∈ H : supp(σf ) ⊆ A}.Now for the Kroneker setK de�ned above, σ(K) > 0, and we let f ∈ HK∪K .As before, T
S1 z

n dσf (z) =
T
S1 z

2n dσ
Ŝ−1f

, and this implies that σ
Ŝf

(B) =

σf (R
−1B) for any Borel set B ⊆ S1.It follows that supp(σ

Ŝf
) ⊆ R(K ∪ K). In addition we have σ

Ŝf
=

σfR
−1 ≪ σR−1, and sine the latter measure is equivalent to σ, we have

σ
Ŝf

≪ σ, whih implies Ŝf ∈ H (using the fat that σ ⊥ σ(n) for all n > 1).We have shown that Ŝf ∈ HR(K∪K), and more generally, Ŝnf ∈ HRn(K∪K)for n ∈ Z. Clearly the subspaes HRn(K∪K), n ∈ Z, are pairwise orthogonal(sine the sets Rn(K ∪K), n ∈ Z, are pairwise disjoint), so that
〈Ŝnf, f〉 = 0 for all n ∈ Z, n 6= 0,i.e., S must have a Lebesgue omponent, whih must be ountably Lebesgueas S is Gaussian (using property (vi)).Example. Set T = Tσ × Tσ (where Tσ is as above). Then S̃T = T 2S̃where S̃ = S × S. Generally, the Cartesian square Tσ × Tσ of a Gaussianautomorphism Tσ has in�nite multipliity.
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