COLLOQUIUM MATHEMATICUM

STANDARD DILATIONS OF q-COMMUTING TUPLES

BY
SANTANU DEY (Greifswald)

Abstract

We study dilations of q-commuting tuples. Bhat, Bhattacharyya and Dey gave the correspondence between the two standard dilations of commuting tuples and here these results are extended to q-commuting tuples. We are able to do this when the q-coefficients $q_{i j}$ are of modulus one. We introduce a "maximal q-commuting subspace" of an n-tuple of operators and a "standard q-commuting dilation". Our main result is that the maximal q-commuting subspace of the standard noncommuting dilation of a q-commuting tuple is the standard q-commuting dilation. We also introduce the q-commuting Fock space as the maximal q-commuting subspace of the full Fock space and give a formula for a projection operator onto this space. This formula helps us in working with the completely positive maps arising in our study. We prove the first version of the Main Theorem (Theorem 21) of the paper for normal tuples by applying some tricky norm estimates and then use it to prove the general version of this theorem. We also study the distribution of a standard tuple associated with the q-commuting Fock space and related operator spaces.

1. Introduction. A generalization of a contraction operator in multivariate operator theory is a contractive n-tuple which is defined as follows:

Definition 1. An n-tuple $\underline{T}=\left(T_{1}, \ldots, T_{n}\right)$ of bounded operators on a Hilbert space \mathcal{H} such that $T_{1} T_{1}^{*}+\cdots+T_{n} T_{n}^{*} \leq I$ is a contractive n-tuple, or a row contraction.

Along the lines of [BBD], we will study the dilation of a class of operator tuples defined as follows:

Definition 2. An n-tuple $\underline{T}=\left(T_{1}, \ldots, T_{n}\right)$ is said to be q-commuting if $T_{j} T_{i}=q_{i j} T_{i} T_{j}$ for all $1 \leq i, j \leq n$, where $q_{i j}$ are nonzero complex numbers. (To avoid trivialities we assume that $q_{i j}=q_{j i}^{-1}$.)

For a q-commuting n-tuple \underline{T} on a finite-dimensional Hilbert space \mathcal{H}, say of dimension m, because of the relation

$$
\operatorname{Spec}\left(T_{i} T_{j}\right) \cup\{0\}=\operatorname{Spec}\left(T_{j} T_{i}\right) \cup\{0\}=\operatorname{Spec}\left(q_{i j} T_{i} T_{j}\right) \cup\{0\}
$$

we see that $q_{i j}$ is either 0 or an m th root of unity. This makes the finitedimensional case less interesting but for infinite-dimensional Hilbert spaces we do not have such restrictions on the values of $q_{i j}$.

Such operator tuples often appear in quantum theory ([Con], [Ma] [Pr]). In Section 2 we introduce a "maximal q-commuting piece" and using this we define a " q-commuting Fock space" when the q-coefficients $q_{i j}$ are of modulus one. (This condition for q-coefficients is in force for almost all results here.) We give another description for this through a particular representation of the permutation group. This q-commuting Fock space is different from the twisted Fock space of M. Bożejko and R. Speicher ([BS1]) or that of P. E. T. Jorgensen ([JSW]). We give a formula for a projection of the full Fock space onto this space. On this Fock space we consider a special tuple of q-commuting operators and show that it is unitarily equivalent to the tuple of shift operators of $[\mathrm{BB}]$.

In Section 3 we show that the range of the isometry A defined in (3.1) is contained in the q-commuting Fock space tensored with a Hilbert space when \underline{T} is a pure tuple (this operator was used by Popescu and Arveson in [Po3], [Po4], [Ar2] and for q-commuting case by Bhat and Bhattacharyya in $[\mathrm{BB}])$. Using this we give a condition equivalent to the assertion of the Main Theorem for q-commuting pure tuples. The proof of the particular case of Theorem 19 where \underline{T} is also q-spherical unitary (introduced in Section 3) is more difficult than the version for commuting tuples and we had to choose the terms carefully and proceed so that the $q_{i j}$ of the q-commuting tuples get absorbed or cancel out when we simplify the terms. Also unlike $[\mathrm{BBD}]$ we had to use an inequality relating to completely positive maps before getting the result through norm estimates. We have not been able to generalize Section 4 of $[\mathrm{BBD}]$. In the last section we calculate the distribution of $S_{i}+S_{i}^{*}$ with respect to the vacuum expectation for the standard tuple \underline{S} associated with $\Gamma_{q}\left(\mathbb{C}^{n}\right)$ and study some properties of related operator spaces.

For operator tuples $\left(T_{1}, \ldots, T_{n}\right)$, we need to consider products of the form $\underline{T}^{\alpha}:=T_{\alpha_{1}} \cdots T_{\alpha_{m}}$, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \Lambda^{m}, \Lambda:=\{1, \ldots, n\}$. Let $\widetilde{\Lambda}$ denote $\bigcup_{m=0}^{\infty} \Lambda^{m}$, where Λ^{0} is $\{0\}$ by convention, and let \underline{T}^{0} be the identity operator of the Hilbert space where the T_{i} 's are acting. Let \mathcal{S}_{m} denote the group of permutations of $\{1, \ldots, m\}$. For a q-commuting tuple $\underline{T}=$ $\left(T_{1}, \ldots, T_{n}\right)$, consider the product $T_{x_{1}} \cdots T_{x_{m}}$ where $1 \leq x_{i} \leq n$. If we replace a consecutive pair, say $T_{x_{i}} T_{x_{i+1}}$, in the above product by $q_{x_{i+1} x_{i}} T_{x_{i+1}} T_{x_{i}}$ and do a finite number of such operations with different choices of consecutive pairs in the resulting products, we will get a permutation $\sigma \in \mathcal{S}_{m}$ such $T_{x_{1}} \cdots T_{x_{m}}=k T_{x_{\sigma^{-1}(1)}} \cdots T_{x_{\sigma^{-1}(m)}}$ for some $k \in \mathbb{C}$. To define a q-commuting tuple in Definition 2 we needed the known fact that this k depends only on σ and x_{i}, and not on the choice of the operations that give rise to the same final product $T_{x_{\sigma^{-1}(1)}} \cdots T_{x_{\sigma^{-1}(m)}}$. This also follows from Proposition 3.

Hereafter, whenever we deal with q-commuting tuples we assume that $\left|q_{i j}\right|=1$ for $1 \leq i, j \leq n$. However for Propositions 6, 8 and Corollary 7
we do not need this assumption. Let $\underline{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a q-commuting tuple and consider the product $T_{x_{1}} \cdots T_{x_{m}}$ where $1 \leq x_{i} \leq n$. Let $\sigma \in \mathcal{S}_{m}$. As the transpositions $(k, k+1), 1 \leq k \leq m-1$, generate \mathcal{S}_{m}, let $\sigma^{-1}=$ $\tau_{1} \cdots \tau_{s}$ where $\tau_{i}=\left(k_{i}, k_{i}+1\right)$ for each $1 \leq i \leq s$. Let $\tilde{\sigma}_{i}=\tau_{i+1} \cdots \tau_{s}$ for $1 \leq i \leq s-1$ and $\widetilde{\sigma}_{s}$ be the identity permutation. Define $y_{i}=x_{\widetilde{\sigma}_{i}\left(k_{i}\right)}$ and $z_{i}=x_{\widetilde{\sigma}_{i}\left(k_{i}+1\right)}$. If we replace $T_{y_{s}} T_{z_{s}}$ by $q_{z_{s} y_{s}} T_{z_{s}} T_{y_{s}}$ corresponding to τ_{s}, $T_{y_{s-1}} T_{z_{s-1}}$ by $q_{z_{s-1} y_{s-1}} T_{z_{s-1}} T_{y_{s-1}}$ corresponding to τ_{s-1}, and so on, we get $T_{x_{1}} \cdots T_{x_{m}}=q_{1}^{\sigma}(x) \cdots q_{s}^{\sigma}(x) T_{x_{\sigma^{-1}(1)}} \cdots T_{x_{\sigma^{-1}(m)}}$ where $q_{i}^{\sigma}(x)=q_{z_{i} y_{i}}$. Let $q^{\sigma}(x)=q_{1}^{\sigma}(x) \cdots q_{s}^{\sigma}(x)$.

Proposition 3. Let $\underline{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a q-commuting tuple and consider the product $T_{x_{1}} \cdots T_{x_{m}}$ where $1 \leq x_{i} \leq n$. Let $\sigma \in \mathcal{S}_{m}$ and $q^{\sigma}(x)$ be as defined above. Then

$$
q^{\sigma}(x)=\prod q_{x_{\sigma^{-1}(k)} x_{\sigma^{-1}(i)}}
$$

where the product is over $\left\{(i, k): 1 \leq i<k \leq m, \sigma^{-1}(i)>\sigma^{-1}(k)\right\}$. In particular $q^{\sigma}(x)$ does not depend on the decomposition of σ as a product of transpositions.

Proof. We have

$$
q^{\sigma}(x)=q_{1}^{\sigma}(x) \cdots q_{s}^{\sigma}(x)
$$

where $q_{i}^{\sigma}(x)=q_{z_{i} y_{i}}$. For $1 \leq i<k \leq m$ let $k^{\prime}=\sigma^{-1}(k)$ and $i^{\prime}=\sigma^{-1}(i)$. Define $\sigma=\tau_{1} \cdots \tau_{s}$ and $\widetilde{\sigma}_{i}$ as above. If $i^{\prime}>k^{\prime}$ then there are an odd number of transpositions τ_{r} for $1 \leq r \leq m$ that interchange the positions of i^{\prime} and k^{\prime} in the image of $\widetilde{\sigma}_{r}$ when we consider the composition $\tau_{r} \widetilde{\sigma}_{r}$, while if $i^{\prime}<k^{\prime}$ then there are an even number of such transpositions. For the first transposition in τ_{r} that interchanges i^{\prime} and k^{\prime}, the corresponding factor in $q^{\sigma}(x)$, say $q_{r}^{\sigma}(x)$, is $q_{x_{k^{\prime}} x_{i^{\prime}}}$, for the second such transposition the factor is $q_{x_{i^{\prime}} x_{k^{\prime}}}$, for the third it is $q_{x_{k^{\prime}} x_{i^{\prime}}}$, and so on. But $\left(q_{i_{i^{\prime}} x_{k^{\prime}}}\right)^{-1}=q_{x_{k^{\prime}} x_{i^{\prime}}}$ and so

$$
q^{\sigma}(x)=\prod q_{x_{\sigma^{-1}(k)^{x} \sigma^{-1}(i)}}
$$

where the product is over $\left\{(i, k): 1 \leq i<k \leq m, \sigma^{-1}(i)>\sigma^{-1}(k)\right\}$.
Similar arguments show that if $\sigma \in \mathcal{S}_{m}$ is such that $\left(x_{1}, \ldots, x_{n}\right)=$ $\left(x_{\sigma^{-1}(1)}, \ldots, x_{\sigma^{-1}(n)}\right)$, then $q^{\sigma}(x)=1$.

Definition 4. Let \mathcal{H}, \mathcal{L} be two Hilbert spaces such that \mathcal{H} is a closed subspace of \mathcal{L} and let $\underline{T}, \underline{R}$ be n-tuples of bounded operators on \mathcal{H}, \mathcal{L} respectively. Then \underline{R} is called a dilation of \underline{T} if

$$
R_{i}^{*} u=T_{i}^{*} u
$$

for all $u \in \mathcal{H}, 1 \leq i \leq n$. In such a case \underline{T} is called a piece of \underline{R}. If \underline{T} is a q-commuting tuple (i.e., $T_{j} T_{i}=q_{i j} T_{i} T_{j}$ for all i, j), then it is called a q-commuting piece of \underline{R}. A dilation \underline{R} of \underline{T} is said to be a minimal dilation if $\overline{\operatorname{span}}\left\{\underline{R}^{\alpha} h: \alpha \in \Lambda, h \in \mathcal{H}\right\}=\mathcal{L}$. And if \underline{R} is a tuple of n isometries
with orthogonal ranges and is a minimal dilation of \underline{T}, then it is called the minimal isometric dilation or the standard noncommuting dilation of T.

A presentation of the standard noncommuting dilation taken from [Po1] is used here to prove the main theorem. All Hilbert spaces we consider are complex and separable. For a subspace \mathcal{H} of a Hilbert space, $P_{\mathcal{H}}$ will denote the orthogonal projection onto \mathcal{H}. The standard noncommuting dilation of an n-tuple of bounded operators is unique up to unitary equivalence (cf. [Po1-4]). An extensive study of the standard noncommuting dilation was carried out by Popescu. He generalized many one-variable results to the multivariable case. It is easy to see that if \underline{R} is a dilation of \underline{T} then

$$
\begin{equation*}
\underline{T}^{\alpha}\left(\underline{T}^{\beta}\right)^{*}=\left.P_{\mathcal{H}} \underline{R}^{\alpha}\left(\underline{R}^{\beta}\right)^{*}\right|_{\mathcal{H}} \tag{1.1}
\end{equation*}
$$

and for any polynomials p, q in n noncommuting variables,

$$
p(\underline{T})(q(\underline{T}))^{*}=\left.P_{\mathcal{H}} p(\underline{R})(q(\underline{R}))^{*}\right|_{\mathcal{H}}
$$

For an n-tuple \underline{R} of bounded operators on a Hilbert space \mathcal{M}, consider

$$
\mathcal{C}^{q}(\underline{R})=\left\{\mathcal{N}: R_{i}^{*} \text { leaves } \mathcal{N} \text { invariant, } R_{i}^{*} R_{j}^{*} h=\bar{q}_{i j} R_{j}^{*} R_{i}^{*} h, \forall h \in \mathcal{N}, \forall i, j\right\} .
$$

It is a complete lattice, in the sense that arbitrary intersections and closed spans of arbitrary unions of such spaces are again in this collection. So it has a maximal element and we denote it by $\mathcal{M}^{q}(\underline{R})$ (or by \mathcal{M}^{q} when the tuple under consideration is clear).

Definition 5. Let \underline{R} be an n-tuple of operators on a Hilbert space \mathcal{M}. The q-commuting piece $\underline{R}^{q}=\left(R_{1}^{q}, \ldots, R_{n}^{q}\right)$ obtained by compressing \underline{R} to the maximal element $\mathcal{M}^{q}(\underline{R})$ of $\mathcal{C}^{q}(\underline{R})$ is called the maximal q-commuting piece of \underline{R}. The maximal q-commuting piece is said to be trivial if $\mathcal{M}^{q}(\underline{R})$ is the zero space.

The following result gives a description of maximal q-commuting pieces.
Proposition 6. Let $\underline{R}=\left(R_{1}, \ldots, R_{n}\right)$ be an n-tuple of bounded operators on a Hilbert space $\mathcal{M}, \mathcal{K}_{i j}=\overline{\operatorname{span}}\left\{\underline{R}^{\alpha}\left(q_{i j} R_{i} R_{j}-R_{j} R_{i}\right) h: h \in \mathcal{M}\right.$, $\alpha \in \widetilde{\Lambda}\}$ for all $1 \leq i, j \leq n$, and $\mathcal{K}=\overline{\operatorname{span}}\left\{\bigcup_{i, j=1}^{n} \mathcal{K}_{i j}\right\}$. Then $\mathcal{M}^{q}(\underline{R})=\mathcal{K}^{\perp}$ and $\mathcal{M}^{q}(\underline{R})=\left\{h \in \mathcal{M}:\left(\bar{q}_{i j} R_{j}^{*} R_{i}^{*}-R_{i}^{*} R_{j}^{*}\right)\left(\underline{R}^{\alpha}\right)^{*} h=0, \forall 1 \leq i, j \leq n, \alpha \in \widetilde{\Lambda}\right\}$.

The above proposition can be easily proved using arguments similar to the proof of Proposition 4 of [BBD].

Corollary 7. Suppose $\underline{R}, \underline{T}$ are n-tuples of operators on two Hilbert spaces \mathcal{L}, \mathcal{M}. Then the maximal q-commuting piece of $\left(R_{1} \oplus T_{1}, \ldots, R_{n} \oplus T_{n}\right)$ acting on $\mathcal{L} \oplus \mathcal{M}$ is $\left(R_{1}^{q} \oplus T_{1}^{q}, \ldots, R_{n}^{q} \oplus T_{n}^{q}\right)$ acting on $\mathcal{L}^{q} \oplus \mathcal{M}^{q}$, and the maximal q-commuting piece of $\left(R_{1} \otimes I, \ldots, R_{n} \otimes I\right)$ acting on $\mathcal{L} \otimes \mathcal{M}$ is $\left(R_{1}^{q} \otimes I, \ldots, R_{n}^{q} \otimes I\right)$ acting on $\mathcal{L}^{q} \otimes \mathcal{M}$.

Proof. Clear from Proposition 6.

Proposition 8. Let $\underline{T}, \underline{R}$ be n-tuples of bounded operators on \mathcal{H}, \mathcal{L} with $\mathcal{H} \subseteq \mathcal{L}$ such that \underline{R} is a dilation of \underline{T}. Then $\mathcal{H}^{q}(\underline{T})=\mathcal{L}^{q}(\underline{R}) \cap \mathcal{H}$ and \underline{R}^{q} is a dilation of \underline{T}^{q}.

Proof. This can be proved using arguments similar to the proof of Proposition 7 of $[\mathrm{BBD}]$.
2. A q-commuting Fock space. In this section we introduce a q commuting Fock space and give two descriptions of it. For any Hilbert space \mathcal{K}, we have the full Fock space over \mathcal{K},

$$
\Gamma(\mathcal{K})=\mathbb{C} \oplus \mathcal{K} \oplus \mathcal{K}^{\otimes^{2}} \oplus \cdots \oplus \mathcal{K}^{\otimes^{m}} \oplus \cdots
$$

We denote the vacuum vector $1 \oplus 0 \oplus \cdots$ by ω. For fixed $n \geq 2$, let \mathbb{C}^{n} be the n-dimensional complex Euclidian space with the usual inner product, and let $\Gamma\left(\mathbb{C}^{n}\right)$ be the full Fock space over \mathbb{C}^{n}. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard orthonormal basis of \mathbb{C}^{n}. For $\alpha \in \widetilde{\Lambda}, e^{\alpha}:=e_{\alpha_{1}} \otimes \cdots \otimes e_{\alpha_{m}} \in \Gamma\left(\mathbb{C}^{n}\right)$ and $e^{0}:=\omega$. Then define the (left) creation operators V_{i} on $\Gamma\left(\mathbb{C}^{n}\right)$ by

$$
V_{i} x=e_{i} \otimes x \quad \text { for } 1 \leq i \leq n \text { and } x \in \Gamma\left(\mathbb{C}^{n}\right)
$$

(here $e_{i} \otimes \omega$ is interpreted as e_{i}). It is obvious that the tuple $\underline{V}=\left(V_{1}, \ldots, V_{n}\right)$ consists of isometries with orthogonal ranges and $\sum V_{i} V_{i}^{*}=I-I_{0}$, where I_{0} is the projection onto the vacuum space. Define the q-commuting Fock space $\Gamma_{q}\left(\mathbb{C}^{n}\right)$ as the subspace $\left(\Gamma\left(\mathbb{C}^{n}\right)\right)^{q}(\underline{V})$ of the full Fock space. Let $\underline{S}=$ $\left(S_{1}, \ldots, S_{n}\right)$ be the tuple of operators on $\Gamma_{q}\left(\mathbb{C}^{n}\right)$ where S_{i} is the compression of V_{i} to $\Gamma_{q}\left(\mathbb{C}^{n}\right)$:

$$
S_{i}=\left.P_{\Gamma_{q}\left(\mathbb{C}^{n}\right)} V_{i}\right|_{\Gamma_{q}\left(\mathbb{C}^{n}\right)}
$$

Clearly each V_{i}^{*} leaves $\Gamma_{q}\left(\mathbb{C}^{n}\right)$ invariant. Observe that the vacuum vector is in $\Gamma_{q}\left(\mathbb{C}^{n}\right)$. It is easy to see that $\sum S_{i} S_{i}^{*}=I^{q}-I_{0}^{q}$ (where I^{q}, I_{0}^{q} are the identity and the projection onto the vacuum space respectively in $\left.\Gamma_{q}\left(\mathbb{C}^{n}\right)\right)$. So \underline{V} and \underline{S} are contractive tuples, $S_{j} S_{i}=q_{i j} S_{i} S_{j}$ for all $1 \leq i, j \leq n$, and $S_{i}^{*} x=V_{i}^{*} x$ for $x \in \Gamma_{q}\left(\mathbb{C}^{n}\right)$.

Define $U_{\sigma}^{m, q}$ on $\left(\mathbb{C}^{n}\right)^{\otimes^{m}}$ by

$$
\begin{equation*}
U_{\sigma}^{m, q}\left(e_{x_{1}} \otimes \cdots \otimes e_{x_{m}}\right)=q^{\sigma}(x) e_{x_{\sigma^{-1}(1)}} \otimes \cdots \otimes e_{x_{\sigma^{-1}(m)}} \tag{2.1}
\end{equation*}
$$

on the standard basis vectors and extend it linearly to $\left(\mathbb{C}^{n}\right)^{\otimes^{m}}$. As $\left|q_{i j}\right|=1$ for $1 \leq i, j \leq n, U_{\sigma}^{m}$ is unitary and it extends uniquely to a unitary operator on $\left(\mathbb{C}^{n}\right)^{\otimes^{m}}$. Let

$$
\left(\mathbb{C}^{n}\right)^{\mathscr{\Phi}^{m}}=\left\{u \in\left(\mathbb{C}^{n}\right)^{\otimes^{m}}: U_{\sigma}^{m, q} u=u \forall \sigma \in \mathcal{S}_{m}\right\}
$$

and $\left(\mathbb{C}^{n}\right)^{\mathscr{G}^{0}}=\mathbb{C}$. The dimension of $\left(\mathbb{C}^{n}\right)^{\mathscr{G}^{n}}$ is the number of ways in which m identical objects can be distributed in n buckets. From standard combi-
natorics it follows that

$$
\operatorname{dim}\left(\mathbb{C}^{n}\right)^{\mathscr{Q}^{n}}=\binom{n+m-1}{m}
$$

Lemma 9. The map from \mathcal{S}_{m} to $B\left(\left(\mathbb{C}^{n}\right)^{\otimes^{m}}\right)$ defined by $\sigma \mapsto U_{\sigma}^{m, q}$ is a unitary representation of the permutation group \mathcal{S}_{m}.

Proof. Let $\otimes_{i=1}^{m} e_{x_{i}}, \otimes_{i=1}^{m} e_{y_{i}} \in\left(\mathbb{C}^{n}\right)^{\otimes^{m}}, 1 \leq x_{i}, y_{i} \leq n$. Suppose there exist $\sigma \in \mathcal{S}_{m}$ such that $\otimes_{i=1}^{m} e_{y_{i}}=\otimes_{i=1}^{m} e_{x_{\sigma^{-1}(i)}}$. Then $\left\langle U_{\sigma}^{m, q}\left(\otimes_{i=1}^{m} e_{x_{i}}\right), \otimes_{i=1}^{m} e_{y_{i}}\right\rangle$ $=q^{\sigma}(x)$ and $\left\langle\otimes_{i=1}^{m} e_{x_{i}}, U_{\sigma^{-1}}^{m, q}\left(\otimes_{i=1}^{m} e_{y_{i}}\right)\right\rangle=\overline{q^{\left(\sigma^{-1}\right)}(y)}$. Also

$$
q^{\left(\sigma^{-1}\right)}(y)=\prod q_{y_{\sigma(k)} y_{\sigma(i)}}=\prod q_{x_{k} x_{i}}
$$

where the products are over $\{(i, k): 1 \leq i<k \leq m, \sigma(i)>\sigma(k)\}$. If we substitute $k=\sigma^{-1}\left(i^{\prime}\right)$ and $i=\sigma^{-1}\left(k^{\prime}\right)$ in the last term we get

$$
q^{\sigma^{-1}}(y)=\prod q_{x_{\sigma^{-1}\left(i^{\prime}\right)} x_{\sigma^{-1}\left(k^{\prime}\right)}}=\left(\prod q_{x_{\sigma^{-1}\left(k^{\prime}\right)} x_{\sigma^{-1}\left(i^{\prime}\right)}}\right)^{-1}=\left(q^{\sigma}(x)\right)^{-1}
$$

where the products are over $\left\{\left(i^{\prime}, k^{\prime}\right): 1 \leq i^{\prime}<k^{\prime} \leq m, \sigma^{-1}\left(i^{\prime}\right)>\sigma^{-1}\left(k^{\prime}\right)\right\}$. So

$$
q^{\sigma}(x)=\left(q^{\sigma^{-1}}(y)\right)^{-1}=\overline{q^{\sigma^{-1}}(y)}
$$

The last equality holds as $\left|q_{i j}\right|=1$. This implies

$$
\left\langle U_{\sigma}^{m, q}\left(\otimes_{i=1}^{m} e_{x_{i}}\right), \otimes_{i=1}^{m} e_{y_{i}}\right\rangle=\left\langle\otimes_{i=1}^{m} e_{x_{i}}, U_{\sigma^{-1}}^{m, q}\left(\otimes_{i=1}^{m} e_{y_{i}}\right)\right\rangle
$$

If there does not exist any $\sigma \in \mathcal{S}_{m}$ such that $\otimes_{i=1}^{m} e_{y_{i}}=\otimes_{i=1}^{m} e_{x_{\sigma^{-1}(i)}}$ then

$$
\left\langle U_{\sigma^{\prime}}^{m, q}\left(\otimes_{i=1}^{m} e_{x_{i}}\right), \otimes_{i=1}^{m} e_{y_{i}}\right\rangle=0=\left\langle\otimes_{i=1}^{m} e_{x_{i}}, U_{\left(\sigma^{\prime}\right)^{-1}}^{m, q}\left(\otimes_{i=1}^{m} e_{y_{i}}\right)\right\rangle
$$

for all $\sigma^{\prime} \in \mathcal{S}_{m}$. So for all $\sigma \in \mathcal{S}_{m},\left(U_{\sigma}^{m, q}\right)^{*}=U_{\sigma^{-1}}^{m, q}$ on the basis elements of $\left(\mathbb{C}^{n}\right)^{\otimes^{m}}$, and hence on the whole of $\left(\mathbb{C}^{n}\right)^{\otimes^{m}}$.

Next let $\sigma=\sigma_{1} \sigma_{2}$ for some $\sigma_{1}, \sigma_{2} \in \mathcal{S}_{m}$. We show that $U_{\sigma}^{m, q}=U_{\sigma_{1}}^{m, q} U_{\sigma_{2}}^{m, q}$. Let $e_{x}=e_{x_{1}} \otimes \cdots \otimes e_{x_{m}}$ where $x_{j} \in\{1, \ldots, n\}$ for $1 \leq j \leq m$. Let $\sigma_{1}^{-1}=$ $\tau_{1} \cdots \tau_{r}$ and $\sigma_{2}^{-1}=\tau_{r+1} \cdots \tau_{s}$ where the τ_{i} are transpositions of the form $\left(k_{i}, k_{i}+1\right)$. Then

$$
\begin{aligned}
U_{\sigma_{1}}^{m, q} U_{\sigma_{2}}^{m, q}\left(e_{x_{1}} \otimes \cdots \otimes e_{x_{m}}\right) & =U_{\sigma_{1}}^{m, q}\left(q^{\sigma_{2}}(x) e_{x_{\sigma_{2}^{-1}(1)}} \otimes \cdots \otimes e_{x_{\sigma_{2}^{-1}(m)}}\right) \\
& =q^{\sigma_{1}}(z) q^{\sigma_{2}}(x) e_{x_{\sigma_{2}^{-1} \sigma_{1}^{-1}(1)}} \otimes \cdots \otimes e_{x_{\sigma_{2}^{-1} \sigma_{1}^{-1}(m)}}
\end{aligned}
$$

where $e_{z}=e_{z_{1}} \otimes \cdots \otimes e_{z_{m}}$, i.e. $z_{i}=x_{\sigma_{2}^{-1}(i)}$. But as $\sigma=\tau_{1} \ldots \tau_{r} \tau_{r+1} \ldots \tau_{s}$ it is easy to see that $q^{\sigma}(x)=q^{\sigma_{1}}(z) q^{\sigma_{2}}(x)$. So

$$
\begin{aligned}
U_{\sigma_{1}}^{m, q} U_{\sigma_{2}}^{m, q}\left(e_{x_{1}} \otimes \cdots \otimes e_{x_{m}}\right) & =q^{\sigma}(x) e_{x_{\sigma^{-1}(1)}} \otimes \cdots \otimes e_{x_{\sigma^{-1}(m)}} \\
& =U_{\sigma}^{m, q}\left(e_{x_{1}} \otimes \cdots \otimes e_{x_{m}}\right)
\end{aligned}
$$

and hence $U_{\sigma_{1} \sigma_{2}}^{m, q}=U_{\sigma_{1}}^{m, q} U_{\sigma_{2}}^{m, q}$.

In the next lemma and theorem we derive a formula for the projection operator onto the q-commuting Fock space.

Lemma 10. Define P_{m} on $\left(\mathbb{C}^{n}\right)^{\otimes^{m}}$ by

$$
\begin{equation*}
P_{m}=\frac{1}{m!} \sum_{\sigma \in \mathcal{S}_{m}} U_{\sigma}^{m, q} \tag{2.2}
\end{equation*}
$$

Then P_{m} is the projection of $\left(\mathbb{C}^{n}\right)^{\otimes^{m}}$ onto $\left(\mathbb{C}^{n}\right)^{\mathbb{Q}^{m}}$.
Proof. First we see that

$$
P_{m}^{*}=\frac{1}{m!} \sum_{\sigma \in \mathcal{S}_{m}}\left(U_{\sigma}^{m, q}\right)^{*}=\frac{1}{m!} \sum_{\sigma \in \mathcal{S}_{m}} U_{\sigma^{-1}}^{m, q}=P_{m}
$$

For $\sigma^{\prime} \in \mathcal{S}_{m}$ we have

$$
\begin{equation*}
P_{m} U_{\sigma^{\prime}}^{m, q}=\frac{1}{m!} \sum_{\sigma \in \mathcal{S}_{m}} U_{\sigma \sigma^{\prime}}^{m, q}=\frac{1}{m!} \sum_{\sigma \in \mathcal{S}_{m}} U_{\sigma}^{m, q}=P_{m} \tag{2.3}
\end{equation*}
$$

Similarly $U_{\sigma^{\prime}}^{m, q} P_{m}=P_{m}$. So $P_{m}^{2}=P_{m}$ and hence P_{m} is a projection.
THEOREM 11. $\bigoplus_{m=0}^{\infty}\left(\mathbb{C}^{n}\right)^{\mathbb{Q}^{m}}=\Gamma_{q}\left(\mathbb{C}^{n}\right)$.
Proof. Let $Q=\bigoplus_{m=0}^{\infty} P_{m}$ be a projection of $\Gamma\left(\mathbb{C}^{n}\right)$ onto $\bigoplus_{m=0}^{\infty}\left(\mathbb{C}^{n}\right)^{\mathscr{G}^{n}}$ where P_{m} is defined in Lemma 10 . Next we show that $\bigoplus_{m=0}^{\infty}\left(\mathbb{C}^{n}\right)^{\mathbb{Q}^{m}}$ is invariant under V_{i}^{*}. Let $\otimes_{j=1}^{m} e_{x_{j}} \in\left(\mathbb{C}^{n}\right)^{\otimes^{m}}, 1 \leq x_{j} \leq n$. Then $V_{i}^{*}\left\{P_{m}\left(\otimes_{j=1}^{m} e_{x_{j}}\right)\right\}$ is zero if no x_{j} is equal to i. Otherwise $V_{i}^{*}\left\{P_{m}\left(\otimes_{j=1}^{m} e_{x_{j}}\right)\right\}$ is a nonzero element of $\bigoplus_{m=0}^{\infty}\left(\mathbb{C}^{n}\right)^{\left(\mathscr{D}^{(m-1)}\right.}$ because of the following: Suppose $x_{j}=i$ if and only if $j \in\left\{r_{1}, \ldots, r_{p}\right\}$, and let \mathcal{A}_{k} be the set of all $\sigma \in S_{m}$ such that σ^{-1} sends 1 to $r_{k}, 1 \leq k \leq p$. Then \mathcal{A}_{k} consists of all compositions $\tau \varrho$ where $\tau=\left(1, r_{k}\right)$ and ϱ keeps r_{k} fixed and permutes the other $m-1$ symbols. Let $x=\left(x_{1}, \ldots, x_{m}\right)$ and $y=\left(x_{\tau^{-1}(1)}, \ldots, x_{\tau^{-1}(m)}\right)$. As the V_{i} are isometries with orthogonal ranges,

$$
\begin{aligned}
V_{i}^{*}\left\{P_{m}\left(\otimes_{j=1}^{m} e_{x_{j}}\right)\right\}= & V_{i}^{*}\left\{\frac{1}{m!} \sum_{\sigma \in \mathcal{S}_{m}} U_{\sigma}^{m, q}\left(\otimes_{j=1}^{m} e_{x_{j}}\right)\right\} \\
= & \frac{1}{m!} \sum_{k=1}^{p} V_{i}^{*}\left\{\sum_{\tau \varrho \mathcal{A}_{k}} U_{\tau}^{m, q} U_{\varrho}^{m, q}\left(\otimes_{j=1}^{m} e_{x_{j}}\right)\right\} \\
= & \frac{1}{m!} \sum_{k=1}^{p} q_{x_{1} i} q^{\varrho}(y) V_{i}^{*}\left\{\sum_{\tau \varrho \in \mathcal{A}_{k}} e_{x_{\varrho^{-1}\left(r_{k}\right)}} \otimes e_{\varrho_{\varrho^{-1}(2)}} \otimes \cdots\right. \\
& \left.\otimes e_{\varrho_{\varrho^{-1}\left(r_{k-1}\right)}} \otimes e_{x_{\varrho^{-1}(1)}} \otimes e_{x_{\varrho^{-1}\left(r_{k+1}\right)}} \otimes \cdots \otimes e_{x_{\varrho^{-1}(m)}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{m!} \sum_{k=1}^{p} q_{x_{1} i} q^{\varrho}(y) V_{i}^{*}\left\{\sum_{\tau \varrho \in \mathcal{A}_{k}} e_{i} \otimes e_{x_{\varrho^{-1}(2)}} \otimes \cdots\right. \\
& \left.\otimes e_{x_{\varrho^{-1}\left(r_{k-1}\right)}} \otimes e_{x_{\varrho^{-1}(1)}} \otimes e_{\varrho_{\varrho^{-1}\left(r_{k+1}\right)}} \otimes \cdots \otimes e_{x_{\varrho^{-1}(m)}}\right\} \\
= & \sum_{k=1}^{p} \frac{q_{x_{1} i}}{m!}\left\{q^{\varrho}(y) \sum_{\varrho \in \mathcal{S}_{m-1}} e_{x_{\varrho^{-1}(2)}} \otimes \cdots \otimes e_{x_{\varrho^{-1}\left(r_{k-1}\right)}}\right. \\
& \left.\otimes e_{\varrho_{\varrho^{-1}(1)}} \otimes e_{x_{\varrho^{-1}\left(r_{k+1}\right)}} \otimes \cdots \otimes e_{\varrho_{\varrho^{-1}(m)}}\right\} \\
= & \sum_{k=1}^{p} a_{k}(x) P_{m-1}\left(e_{x_{1}} \otimes \cdots \otimes \hat{e}_{x_{i_{k}}} \otimes \cdots \otimes e_{x_{m}}\right)
\end{aligned}
$$

where $a_{k}(x)$ are constants and the hat denotes omission of the corresponding term. This shows that $\bigoplus_{m=0}^{\infty}\left(\mathbb{C}^{n}\right)^{\mathbb{C}^{m}}$ is invariant under V_{i}^{*}.

Taking $R_{i}=Q V_{i} Q$ we show that \underline{R} is q-commuting. Define $U_{(1,2)}^{q}=$ $\bigoplus_{m=0}^{\infty} U_{(1,2)}^{m, q}$ where $U_{(1,2)}^{0, q}=I$ and $U_{(1,2)}^{1, q}=I$. Let $\otimes_{i=1}^{k} e_{\alpha_{i}} \in\left(\mathbb{C}^{n}\right)^{\otimes^{k}}, 1 \leq$ $\alpha_{i} \leq n$. Using Lemma 10 we get

$$
\begin{aligned}
R_{i} R_{j} \underline{R}^{\alpha} \omega & =Q V_{i} V_{j} \underline{V}^{\alpha} \omega=Q U_{(1,2)}^{q} V_{i} V_{j}\left(\otimes_{i=1}^{k} e_{\alpha_{i}}\right) \\
& =Q U_{(1,2)}^{q}\left\{e_{i} \otimes e_{j} \otimes\left(\otimes_{i=1}^{k} e_{\alpha_{i}}\right)\right\}=Q q_{j i} e_{j} \otimes e_{i} \otimes\left(\otimes_{i=1}^{k} e_{\alpha_{i}}\right) \\
& =q_{j i} Q V_{j} V_{i} \underline{V}^{\alpha} \omega=q_{j i} R_{j} R_{i} \underline{R}^{\alpha} \omega
\end{aligned}
$$

and clearly $\bigoplus_{m=0}^{\infty}\left(\mathbb{C}^{n}\right) \mathbb{Q}^{n}=\overline{\operatorname{span}}\left\{\underline{R}^{\alpha} \omega: \alpha \in \widetilde{\Lambda}\right\}$. So $\left(R_{1}, \ldots, R_{n}\right)$ is a q-commuting piece of \underline{V}.

To show maximality we make use of Proposition 6 . Suppose $x \in \Gamma\left(\mathbb{C}^{n}\right)$ and $\left\langle x, \underline{V}^{\alpha}\left(q_{i j} V_{i} V_{j}-V_{j} V_{i}\right) y\right\rangle=0$ for all $\alpha \in \widetilde{\Lambda}, 1 \leq i, j \leq n$ and $y \in \Gamma\left(\mathbb{C}^{n}\right)$. We wish to show that $x \in \Gamma_{q}\left(\mathbb{C}^{n}\right)$. Suppose x_{m} is the m-particle component of x, i.e., $x=\oplus_{m \geq 0} x_{m}$ with $x_{m} \in\left(\mathbb{C}^{n}\right)^{\otimes^{m}}$. For $m \geq 2$ and any $\sigma \in \mathcal{S}_{m}$ we need to show that the unitary $U_{\sigma}^{m, q}:\left(\mathbb{C}^{n}\right)^{\otimes^{m}} \rightarrow\left(\mathbb{C}^{n}\right)^{\otimes^{m}}$ defined by (2.1) leaves x_{m} fixed. Since \mathcal{S}_{m} is generated by $\{(1,2),(2,3), \ldots,(m-1, m)\}$ it is enough to verify $U_{\sigma}^{m, q}\left(x_{m}\right)=x_{m}$ for σ of the form $(i, i+1)$. So fix m and i with $m \geq 2$ and $1 \leq i \leq m-1$. We have

$$
\begin{equation*}
\left\langle\oplus_{p} x_{p}, \underline{V}^{\alpha}\left(q_{k l} V_{k} V_{l}-V_{l} V_{k}\right) \underline{V}^{\beta} \omega\right\rangle=0 \tag{2.4}
\end{equation*}
$$

for every $\beta \in \widetilde{\Lambda}, 1 \leq k, l \leq n$. This implies that

$$
\left\langle x_{m}, e^{\alpha} \otimes\left(q_{k l} e_{k} \otimes e_{l}-e_{l} \otimes e_{k}\right) \otimes e^{\beta}\right\rangle=0
$$

for any $\alpha \in \Lambda^{i-1}, \beta \in \Lambda^{m-i-1}$. So if

$$
x_{m}=\sum a(s, t, \alpha, \beta) e^{\alpha} \otimes e_{s} \otimes e_{t} \otimes e^{\beta}
$$

where the sum is over $\alpha \in \Lambda^{i-1}, \beta \in \Lambda^{m-i-1}$ and $1 \leq s, t \leq n$, and $a(s, t, \alpha, \beta)$ are constants, then for fixed α and β it follows from (2.4) that
$\bar{q}_{k l} a(k, l, \alpha, \beta)=a(l, k, \alpha, \beta)$ or $q_{l k} a(k, l, \alpha, \beta)=a(l, k, \alpha, \beta)$. Hence for $\sigma=$ $(i, i+1)$,

$$
\begin{aligned}
& U_{\sigma}^{m, q}\left(a(k, l, \alpha, \beta) e^{\alpha} \otimes e_{k} \otimes e_{l} \otimes e^{\beta}+a(l, k, \alpha, \beta) e^{\alpha} \otimes e_{l} \otimes e_{k} \otimes e^{\beta}\right) \\
& \quad=q_{l k} a(k, l, \alpha, \beta) e^{\alpha} \otimes e_{l} \otimes e_{k} \otimes e^{\beta}+q_{k l} a(l, k, \alpha, \beta) e^{\alpha} \otimes e_{k} \otimes e_{l} \otimes e^{\beta} \\
& \quad=a(l, k, \alpha, \beta) e^{\alpha} \otimes e_{l} \otimes e_{k} \otimes e^{\beta}+a(k, l, \alpha, \beta) e^{\alpha} \otimes e_{k} \otimes e_{l} \otimes e^{\beta}
\end{aligned}
$$

This clearly implies $U_{\sigma}^{m, q}\left(x_{m}\right)=x_{m}$.
Corollary 12. For $u \in\left(\mathbb{C}^{n}\right)^{\otimes^{k}}, v \in\left(\mathbb{C}^{n}\right)^{\otimes^{l}}, w \in\left(\mathbb{C}^{n}\right)^{\otimes^{m}}$,

$$
P_{k+l+m}\left\{P_{k+l}(u \otimes v) \otimes w\right\}=P_{k+l+m}\left\{u \otimes P_{l+m}(v \otimes w)\right\} .
$$

Proof. If we identify \mathcal{S}_{k+l} and \mathcal{S}_{l+m} with the subgroups of \mathcal{S}_{k+l+m} such that $\sigma \in \mathcal{S}_{k+l}$ fixes the last m elements of $\{1, \ldots, k+l+m\}$ and $\sigma \in \mathcal{S}_{l+m}$ fixes the first k elements of $\{1, \ldots, k+l+m\}$, the assertion follows easily using (2.3).

When $q_{i j}=1$ for all i, j, we denote $\left(\mathbb{C}^{n}\right)^{\mathscr{G}^{n}}$ by $\left(\mathbb{C}^{n}\right)^{\mathbb{S}^{n}}$ and the q commuting Fock space $\Gamma_{q}\left(\mathbb{C}^{n}\right)$ by $\Gamma_{s}\left(\mathbb{C}^{n}\right)$, and call it the symmetric Fock space (or the boson Fock space) (cf. $[\mathrm{BBD}])$. The map $U^{m, q}: \mathcal{S}_{m} \rightarrow B\left(\mathbb{C}^{n}\right)^{\otimes^{m}}$ given by

$$
U^{m, q}(\sigma)=U_{\sigma}^{m, q}
$$

gives a representation of \mathcal{S}_{m} on $B\left(\mathbb{C}^{n}\right)^{\otimes^{m}}$. Denote $U_{\sigma}^{m, q}$ by $U_{\sigma}^{m, s}$ if $q_{i j}=1$ for all i, j. It is easy to see that for all $q=\left(q_{i j}\right)_{n \times n}$ with $\left|q_{i j}\right|=1$, the representations are unitarily equivalent. So there exists a unitary $W^{m, q}$: $\left(\mathbb{C}^{n}\right)^{\otimes^{m}} \rightarrow\left(\mathbb{C}^{n}\right)^{\otimes^{m}}$ such that

$$
\begin{equation*}
W^{m, q} U_{\sigma}^{m, s}=U_{\sigma}^{m, q} W^{m, q} \tag{2.5}
\end{equation*}
$$

This $W^{m, q}$ is not unique as for $k \in \mathbb{C}$ with $|k|=1$, the operator $k W^{m, q}$ is also a unitary satisfying (2.5). We will give one such $W^{m, q}$ explicitly.

For $m \in \mathbb{N}, y_{i} \in \Lambda$ define $W^{m, q}$ over $\left(\mathbb{C}^{n}\right)^{\otimes^{m}}$ as

$$
W^{m, q}\left(e_{y_{1}} \otimes \cdots \otimes e_{y_{m}}\right)=q^{\tau^{-1}}(x) e_{y_{1}} \otimes \cdots \otimes e_{y_{m}}
$$

where $x=\left(x_{1}, \ldots, x_{m}\right)$ is the tuple $\left(y_{1}, \ldots, y_{m}\right)$ rearranged in nondecreasing order and $\tau \in \mathcal{S}_{m}$ is such that $y_{i}=x_{\tau(i)}$. From Proposition 3 it is clear that $q^{\tau^{-1}}(x)$ does not depend upon the choice of τ and

$$
\begin{aligned}
W^{m, q} U_{\sigma}^{m, s}\left(e_{y_{1}} \otimes \cdots \otimes e_{y_{m}}\right) & =W^{m, q}\left(e_{y_{\sigma^{-1}(1)}} \otimes \cdots \otimes e_{y_{\sigma^{-1}(m)}}\right) \\
& =q^{\left(\sigma^{-1} \tau\right)^{-1}}(x) e_{y_{\sigma^{-1}(1)}} \otimes \cdots \otimes e_{y_{\sigma^{-1}(m)}} \\
& =q^{\tau^{-1} \sigma}(x) e_{y_{\sigma^{-1}(1)}} \otimes \cdots \otimes e_{y_{\sigma^{-1}(m)}}
\end{aligned}
$$

$$
\begin{aligned}
& =q^{\sigma}\left(x_{\tau(1)}, \ldots, x_{\tau(m)}\right) q^{\tau^{-1}}(x) e_{y_{\sigma^{-1}(1)}} \otimes \cdots \otimes e_{y_{\sigma^{-1}(m)}} \\
& =U_{\sigma}^{m, q} q^{\tau^{-1}}(x) e_{y_{1}} \otimes \cdots \otimes e_{y_{m}} \\
& =U_{\sigma}^{m, q} W^{m, q}\left(e_{y_{1}} \otimes \cdots \otimes e_{y_{m}}\right) .
\end{aligned}
$$

So, $W^{m, q} U_{\sigma}^{m, s}=U_{\sigma}^{m, q} W^{m, q}$. Denoting the unitary operator $\bigoplus_{m=0}^{\infty} W^{m, q}$ on $\Gamma\left(\mathbb{C}^{n}\right)$ by W^{q} where $W^{0, q}=I$, we get

$$
W^{q} P_{\Gamma_{S}\left(\mathbb{C}^{n}\right)}=P_{\Gamma_{q}\left(\mathbb{C}^{n}\right)} W^{q}
$$

and for q and q^{\prime} we get the intertwining unitary $W^{q^{\prime}}\left(W^{q}\right)^{*}$ such that

$$
W^{q^{\prime}}\left(W^{q}\right)^{*} P_{\Gamma_{q}\left(\mathbb{C}^{n}\right)}=P_{\Gamma_{q^{\prime}}\left(\mathbb{C}^{n}\right)} W^{q^{\prime}}\left(W^{q}\right)^{*} .
$$

Under the Schur product, $\mathcal{Q}=\left\{q=\left(q_{i j}\right)_{n \times n}:\left|q_{i j}\right|=1\right\}$ forms a group.
Proposition 13. The map from \mathcal{Q} to $B\left(\left(\mathbb{C}^{n}\right)^{\otimes^{m}}\right)$ given by $q \mapsto W^{m, q}$ is a unitary representation of \mathcal{Q}.

Proof. From the definition of $W^{m, q}$ we get

$$
W^{m, q \cdot q^{\prime}}=W^{m, q} W^{m, q^{\prime}} \quad \text { and } \quad\left(W^{m, q}\right)^{-1}=W^{m, q^{-1}}
$$

for $q, q^{\prime} \in \mathcal{Q}$ and $q^{-1}=\left(q_{i j}^{-1}\right)_{n \times n}$. When q is the identity element of \mathcal{Q}, all entries $q_{i j}$ are 1 and hence $W^{m, q}$ is the identity matrix. Hence the assertion holds.

Define

$$
\left(\mathbb{C}^{n}\right)^{@^{m}}=\left\{u \in\left(\mathbb{C}^{n}\right)^{\otimes^{m}}: U_{\sigma}^{m, s}(u)=\operatorname{sign}(\sigma) u \forall \sigma \in \mathcal{S}_{m}\right\} .
$$

Then define the antisymmetric Fock space or the fermion Fock space $\Gamma_{a}\left(\mathbb{C}^{n}\right)$ as

$$
\Gamma_{a}\left(\mathbb{C}^{n}\right)=\bigoplus_{m=0}^{\infty}\left(\mathbb{C}^{n}\right)^{@^{m}}
$$

We observed before that the symmetric Fock space is the q-commuting Fock space where $q_{i j}=1$. But the antisymmetric Fock space is not equal to any $\Gamma_{q}\left(\mathbb{C}^{n}\right)$. However, consider the case when $q=\left(q_{i j}\right)_{n \times n}$ is such that $q_{i j}=-1$ for $1 \leq i \neq j \leq n$. Then the antisymmetric Fock space $\Gamma_{a}\left(\mathbb{C}^{n}\right)$ is a proper subset of $\Gamma_{q}\left(\mathbb{C}^{n}\right)$ because clearly $\left(\mathbb{C}^{n}\right)^{\circledR}$ is the set of all $u \in\left(\mathbb{C}^{n}\right)^{\mathbb{G}^{n}}$ which are orthogonal to those $P_{m} e^{\beta}$ for which there exist $s, t \in\{1, \ldots, m\}, s \neq t$, such that $\beta_{s}=\beta_{t}\left(P_{m}\right.$ is given by (2.2)).

Next we give another realization of the standard tuple \underline{S}. Let \mathcal{P} be the vector space of all polynomials in q-commuting variables z_{1}, \ldots, z_{n}, that is, $z_{j} z_{i}=q_{i j} z_{i} z_{j}$. Any multi-index \underline{k} is an ordered n-tuple of non-negative integers $\left(k_{1}, \ldots, k_{n}\right)$. We write $|\underline{k}|=k_{1}+\cdots+k_{n}$. The multi-index with 0 in all positions except the i th which is 1 , is denoted by \underline{e}_{i}. For any nonzero multiindex \underline{k} the monomial $z_{1}^{k_{1}} \cdots z_{n}^{k_{n}}$ will be denoted by $\underline{z}^{\underline{k}}$; for $\underline{k}=(0, \ldots, 0)$,
let $\underline{z}^{\underline{k}}$ be the complex number 1 . Let us equip \mathcal{P} with the following inner product. Declare $\underline{z}^{\underline{k}}$ and \underline{z} - orthogonal if $\underline{k} \neq \underline{l}$ as ordered multi-indices. Let

$$
\left\|\underline{z}^{\underline{k}}\right\|^{2}=\frac{k_{1}!\cdots k_{n}!}{|k|!}
$$

Note that this inner product also appears in [BB, Definition (1.1)] in the general case. Now define \mathcal{H}^{\prime} to be the closure of \mathcal{P} with respect to this inner product. Define $\underline{S}^{\prime}=\left(S_{1}^{\prime}, \ldots, S_{n}^{\prime}\right)$ where for $f \in \mathcal{P}$,

$$
S_{i}^{\prime} f\left(z_{1}, \ldots, z_{n}\right):=z_{i} f\left(z_{1}, \ldots, z_{n}\right)
$$

and S_{i} is linearly extended to \mathcal{H}^{\prime}. In the case of our standard q-commuting n-tuple \underline{S} of operators on $\Gamma_{q}\left(\mathbb{C}^{n}\right)$, when $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ let $\underline{S}^{\underline{k}}=S_{1}^{k_{1}} \ldots S_{n}^{k_{n}}$ and when $\underline{k}=(0, \ldots, 0)$ let $\underline{S}^{k}=1$.

Using (2.2) and the fact that the V_{i} 's are isometries with orthogonal ranges, for $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ with $|\underline{k}|=m$ we get

$$
\left\|\underline{S}^{\underline{k}} \omega\right\|=\left\langle P_{m} \underline{V}^{\underline{k}} \omega, \underline{V}^{\underline{k}} \omega\right\rangle=\left\langle\frac{1}{|\underline{k}|!} \sum_{\sigma \in \mathcal{S}_{m}} U_{\sigma}^{m, q} \underline{V}^{\underline{k}} \omega, \underline{V}^{\underline{k}} \omega\right\rangle=\frac{k_{1}!\cdots k_{n}!}{|\underline{k}|!}
$$

If we denote $\underline{V}^{\underline{k}} \omega$ by $e_{x_{1}} \otimes \cdots \otimes e_{x_{m}}, 1 \leq x_{i} \leq n$, then to get the last term of the above equation we used the fact that there are $k_{1}!\cdots k_{n}$! permutations $\sigma \in \mathcal{S}_{m}$ such that

$$
e_{x_{1}} \otimes \cdots \otimes e_{x_{m}}=e_{x_{\sigma^{-1}(1)}} \otimes \cdots \otimes e_{x_{\sigma^{-1}(m)}}
$$

Next we show that the above tuples \underline{S}^{\prime} and \underline{S} are unitarily equivalent.
Proposition 14. Let $\underline{S}^{\prime}=\left(S_{1}^{\prime}, \ldots, S_{n}^{\prime}\right)$ be the operator tuple on \mathcal{H}^{\prime} as introduced above and let $\underline{S}=\left(S_{1}, \ldots, S_{n}\right)$ be the standard q-commuting tuple of operators on $\Gamma_{q}\left(\mathbb{C}^{n}\right)$. Then there exists a unitary $U: \mathcal{H}^{\prime} \rightarrow \mathcal{H}$ such that $U S_{i}^{\prime}=S_{i} U$ for $1 \leq i \leq n$.

Proof. Define $U: \mathcal{P} \rightarrow \Gamma_{q}\left(\mathbb{C}^{n}\right)$ as

$$
U\left(\sum_{|\underline{k}| \leq s} b_{\underline{k}} \underline{z}^{\underline{k}}\right)=\sum_{|\underline{k}| \leq s} b_{\underline{k}} \underline{S}^{-} \omega
$$

for any constants $b_{\underline{k}}$. As $\|\underline{z} \underline{\underline{k}}\|=\left\|\underline{S}^{\underline{k}} \omega\right\|$ we have

$$
\left\|\sum_{|\underline{k}| \leq s} b_{\underline{k}} \underline{z}^{\underline{k}}\right\|^{2}=\sum_{|\underline{k}| \leq s}\left|b_{\underline{k}}\right|^{2}\left\|\underline{z}^{\underline{k}}\right\|^{2}=\sum_{|\underline{k}| \leq s}\left|b_{\underline{k}}\right|^{2}\left\|\underline{S}^{\underline{k}} \omega\right\|^{2}=\left\|\sum_{|\underline{k}| \leq s} b_{\underline{k}} \underline{S}^{\underline{k}} \omega\right\|^{2} .
$$

So we can extend U linearly to \mathcal{H}^{\prime} and it is a unitary. Moreover,

$$
\begin{aligned}
U S_{i}^{\prime}\left(\sum_{|\underline{k}| \leq s} b_{\underline{k}} \underline{z}^{\underline{k}}\right) & =U\left(z_{i} \sum_{|\underline{k}| \leq s} b_{\underline{k}} \underline{z}^{\underline{k}}\right)=q_{1 i}^{k_{1}} \cdots q_{i-1, i}^{k_{i-1}} U\left(\sum_{|\underline{k}| \leq s} b_{\underline{k}} \underline{z}^{\underline{k}}+\underline{e}_{i}\right) \\
& =q_{1 i}^{k_{1}} \cdots q_{i-1, i}^{k_{i-1}} \sum_{|\underline{k}| \leq s} b^{\underline{k}^{\prime}} \underline{S}^{\underline{k}+\underline{e}_{i}} \omega=S_{i}\left(\sum_{|\underline{k}| \leq s} b \underline{S}^{\underline{k}} \omega\right) \\
& =S_{i} U\left(\sum_{|\underline{k}| \leq s} b_{\underline{k}} \underline{z}^{\underline{k}}\right),
\end{aligned}
$$

i.e., $U S_{i}^{\prime}=S_{i} U$ for $1 \leq i \leq n$.

For any complex number z, define the z-commutator of two operators A, B as

$$
[A, B]_{z}=A B-z B A
$$

As \underline{S}^{\prime} and \underline{S} are unitarily equivalent and the same properties have been proved for \underline{S}^{\prime} in $[\mathrm{BB}]$, we have

Lemma 15.
(1) Each monomial $\underline{S}^{\underline{k}} \omega$ is an eigenvector for $\sum S_{i}^{*} S_{i}-I$, so the latter operator is diagonal on the standard basis. In fact,

$$
\sum_{i=1}^{n} S_{i}^{*} S_{i}\left(\underline{S}^{\underline{k}} \omega\right)=\left(\sum_{i=1}^{n} \frac{\left\|\underline{S}^{\underline{k}}+\underline{e}_{i} \omega\right\|^{2}}{\left\|\underline{S}^{-k} \omega\right\|^{2}}\right) \underline{S}^{\underline{k}} \omega .
$$

Also $\sum S_{i}^{*} S_{i}-I$ is compact.
(2) The commutator $\left[S_{i}^{*}, S_{i}\right]$ is as follows:

$$
\left[S_{i}^{*}, S_{i}\right] \underline{S}^{\underline{k}} \omega=\left(\frac{\left\|\underline{S}^{\underline{k}}+\underline{e}_{i} \omega\right\|^{2}}{\left\|\underline{S}^{\underline{k}} \omega\right\|^{2}}-\frac{\left\|\underline{S}^{-k} \omega\right\|^{2}}{\left\|\underline{S}^{\underline{k}-\underline{e}_{i}} \omega\right\|^{2}}\right) \underline{S}^{\underline{k}} \omega \quad \text { when } k_{i} \neq 0 .
$$

If $k_{i}=0$, then

$$
\left[S_{i}^{*}, S_{i}\right] \underline{S}^{\underline{k}} \omega=S_{i}^{*} S_{i} \underline{S}^{\underline{k}} \omega=\frac{\left\|\underline{S}^{\underline{k}}+\underline{e}_{i} \omega\right\|^{2}}{\left\|\underline{S}^{\underline{k}} \omega\right\|^{2}} \underline{S}^{\underline{k}} \omega
$$

(3) $\left[S_{i}^{*}, S_{j}\right]_{q_{i j}}$ is compact for all $1 \leq i, j \leq n$.

3. Dilation of q-commuting tuples and the main theorem

Definition 16. Let $\underline{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a contractive tuple on a Hilbert space \mathcal{H}. The operator $\Delta_{\underline{T}}=\left[I-\left(T_{1} T_{1}^{*}+\cdots+T_{n} T_{n}^{*}\right)\right]^{1 / 2}$ is called the defect operator of \underline{T} and the subspace $\overline{\Delta_{\underline{T}}(\mathcal{H})}$ is called the defect space of \underline{T}. The tuple \underline{T} is said to be pure if $\sum_{\alpha \in \Lambda^{m}} \underline{T}^{\alpha}\left(\underline{T}^{\alpha}\right)^{*}$ converges to zero in the strong operator topology as m tends to infinity.

When $\sum T_{i} T_{i}^{*}=I$, we have $\sum_{\alpha \in \Lambda^{m}} \underline{T}^{\alpha}\left(\underline{T}^{\alpha}\right)^{*}=I$ for all m and hence \underline{T} is not pure. Let \underline{T} be a pure tuple on \mathcal{H}. Set $\widetilde{\mathcal{H}}=\Gamma\left(\mathbb{C}^{n}\right) \otimes \overline{\Delta_{\underline{T}}(\mathcal{H})}$, and
define an operator $A: \mathcal{H} \rightarrow \widetilde{\mathcal{H}}$ by

$$
\begin{equation*}
A h=\sum_{\alpha} e^{\alpha} \otimes \Delta_{\underline{T}}\left(\underline{T}^{\alpha}\right)^{*} h \tag{3.1}
\end{equation*}
$$

where the sum is taken over all $\alpha \in \widetilde{\Lambda}$ (this operator was used by Popescu and Arveson in [Po3, Po4, Ar2] and in the q-commuting case by Bhat and Bhattacharyya in $[\mathrm{BB}])$. Then A is an isometry and $\underline{T}^{\alpha}=A^{*}\left(\underline{V}^{\alpha} \otimes I\right) A$ for all $\alpha \in \widetilde{\Lambda}$ (see $[\mathrm{Po} 4])$. Also the tuple $\widetilde{\underline{V}}=\left(V_{1} \otimes I, \ldots, V_{n} \otimes I\right)$ of operators on $\widetilde{\mathcal{H}}$ is a realization of the minimal noncommuting dilation of \underline{T}.

Lemma 17. Suppose $\underline{T}=\left(T_{1}, \ldots, T_{n}\right)$ is a pure q-commuting tuple on a Hilbert space \mathcal{H}. Then there exists a Hilbert space \mathcal{K} such that $\left(S_{1} \otimes I_{\mathcal{K}}\right.$, $\left.\ldots, S_{n} \otimes I_{\mathcal{K}}\right)$ is a dilation of \underline{T} and $\operatorname{dim}(\mathcal{K})=\operatorname{rank}\left(\Delta_{\underline{T}}\right)$.

Proof. Let A be the operator introduced in (3.1). Let \mathcal{B}^{m} denote the set of all $\alpha \in \Lambda^{m}$ such that $\alpha_{1} \leq \cdots \leq \alpha_{m}$. Then for $f \in \mathcal{H}$,

$$
A(h)=\sum_{m=0}^{\infty} \sum_{\sigma, \alpha} e_{\alpha_{\sigma^{-1}(1)}} \otimes \cdots \otimes e_{\alpha_{\sigma^{-1}(m)}} \otimes \Delta_{\underline{T}}\left(T_{\alpha_{\sigma^{-1}(1)}} \cdots T_{\alpha_{\sigma^{-1}(m)}}\right)^{*} h
$$

where the second summation is over $\sigma \in \mathcal{S}_{m}$ and $\alpha \in \mathcal{B}^{m}$. Further

$$
\begin{aligned}
A(h) & =\sum_{m=0}^{\infty} \sum_{\sigma, \alpha} e_{\alpha_{\sigma^{-1}(1)}} \otimes \cdots \otimes e_{\alpha_{\sigma^{-1}(m)}} \otimes \overline{\left(q^{\sigma}(\alpha)\right)^{-1}} \Delta_{\underline{T}}\left(T_{\alpha_{1}} \cdots T_{\alpha_{m}}\right)^{*} h \\
& =\sum_{m=0}^{\infty} \sum_{\sigma, \alpha} q^{\sigma}(\alpha) e_{\alpha_{\sigma^{-1}(1)}} \otimes \cdots \otimes e_{\alpha_{\sigma^{-1}(m)}} \otimes \Delta_{\underline{T}}\left(T_{\alpha_{1}} \cdots T_{\alpha_{m}}\right)^{*} h \\
& =\sum_{m=0}^{\infty} \sum_{\alpha \in \mathcal{B}^{m}}(m!) P_{m} e_{\alpha_{1}} \otimes \cdots \otimes e_{\alpha_{m}} \otimes \Delta_{\underline{T}}\left(T_{\alpha_{1}} \cdots T_{\alpha_{m}}\right)^{*} h
\end{aligned}
$$

So the range of A is contained in $\widetilde{\mathcal{H}}_{q}=\Gamma_{q}\left(\mathbb{C}^{n}\right) \otimes \overline{\Delta_{T}(\mathcal{H})}$. This with the above stated properties of A implies that $\underline{S} \otimes I_{\mathcal{K}}$ is a dilation of \underline{T} for some space \mathcal{K} with $\operatorname{dim}(\mathcal{K})=\operatorname{rank}\left(\Delta_{\underline{T}}\right)$.

In other words, now \mathcal{H} can be considered as a subspace of $\widetilde{\mathcal{H}}_{q}$. Moreover, $\underline{\widetilde{S}}=\left(S_{1} \otimes I, \ldots, S_{n} \otimes I\right)$, as a tuple of operators in $\widetilde{\mathcal{H}}_{q}$, is the standard q-commuting dilation of $\left(T_{1}, \ldots, T_{n}\right)$. More abstractly we can get a Hilbert space \mathcal{K} such that \mathcal{H} can be isometrically embedded in $\Gamma_{q}\left(\mathbb{C}^{n}\right) \otimes \mathcal{K}$ and $\left(S_{1} \otimes I_{\mathcal{K}}, \ldots, S_{n} \otimes I_{\mathcal{K}}\right)$ is a dilation of \underline{T} and $\overline{\operatorname{span}}\left\{\left(\underline{S}^{\alpha} \otimes I_{\mathcal{K}}\right) h: h \in \mathcal{H}\right.$, $\alpha \in \widetilde{\Lambda}\}=\Gamma_{q}\left(\mathbb{C}^{n}\right) \otimes \mathcal{K}$. There is a unique such dilation up to unitary equivalence and $\operatorname{dim}(\mathcal{K})=\operatorname{rank}\left(\Delta_{\underline{T}}\right)$.

Let $C^{*}(\underline{V})$ and $C^{*}(\underline{S})$ be the unital C^{*}-algebras generated by tuples \underline{V} and \underline{S} (defined in the introduction) on the Fock spaces $\Gamma\left(\mathbb{C}^{n}\right)$ and $\Gamma_{q}\left(\mathbb{C}^{n}\right)$ respectively. For any $\alpha, \beta \in \widetilde{\Lambda}, \underline{V}^{\alpha}\left(I-\sum V_{i} V_{i}^{*}\right)\left(\underline{V}^{\beta}\right)^{*}$ is the rank one operator
$x \mapsto\left\langle e^{\beta}, x\right\rangle e^{\alpha}$, and so $C^{*}(\underline{V})$ contains all compact operators. Similarly we see that $C^{*}(\underline{S})$ also contains all compact operators on $\Gamma_{q}\left(\mathbb{C}^{n}\right)$. As $V_{i}^{*} V_{j}=\delta_{i j} I$, it is easy to see that $C^{*}(\underline{V})=\overline{\operatorname{span}}\left\{\underline{V}^{\alpha}\left(\underline{V}^{\beta}\right)^{*}: \alpha, \beta \in \widetilde{\Lambda}\right\}$. As the $q_{i j^{-}}$ commutators $\left[S_{i}^{*}, S_{j}\right]_{q_{i j}}$ are compact for all i, j, we can also get $C^{*}(\underline{S})=$ $\overline{\operatorname{span}}\left\{\underline{S}^{\alpha}\left(\underline{S}^{\beta}\right)^{*}: \alpha, \beta \in \widetilde{\Lambda}\right\}$.

Consider a contractive tuple \underline{T} on a Hilbert space \mathcal{H}. For $0<r<1$ the tuple $r \underline{T}=\left(r T_{1}, \ldots, r T_{n}\right)$ is clearly pure. So by (3.1) we have an isometry $A_{r}: \mathcal{H} \rightarrow \Gamma\left(\mathbb{C}^{n}\right) \otimes \Delta_{r}(\mathcal{H})$ defined by

$$
A_{r} h=\sum_{\alpha} e^{\alpha} \otimes \Delta_{r}\left((r \underline{T})^{\alpha}\right)^{*} h, \quad h \in \mathcal{H}
$$

where $\Delta_{r}=\left(I-r^{2} \sum T_{i} T_{i}^{*}\right)^{1 / 2}$. So for every $0<r<1$ we have a completely positive map $\psi_{r}: C^{*}(\underline{V}) \rightarrow \mathcal{B}(\mathcal{H})$ defined by $\psi_{r}(X)=A_{r}^{*}(X \otimes I) A_{r}, X \in$ $C^{*}(\underline{V})$. By taking the limit as $r \nearrow 1$ (see [Po1-4] for details), we get a unital completely positive map ψ from $C^{*}(\underline{V})$ to $\mathcal{B}(\mathcal{H})$ (Popescu's Poisson transform) satisfying

$$
\psi\left(\underline{V}^{\alpha}\left(\underline{V}^{\beta}\right)^{*}\right)=\underline{T}^{\alpha}\left(\underline{T}^{\beta}\right)^{*} \quad \text { for } \alpha, \beta \in \widetilde{\Lambda}
$$

As $C^{*}(\underline{V})=\overline{\operatorname{span}}\left\{\underline{V}^{\alpha}\left(\underline{V}^{\beta}\right)^{*}: \alpha, \beta \in \widetilde{\Lambda}\right\}, \psi$ is the unique such completely positive map. Let the minimal Stinespring dilation of ψ be a unital ${ }_{*}$ homomorphism $\pi: C^{*}(\underline{V}) \rightarrow \mathcal{B}(\widetilde{\mathcal{H}})$ where $\widetilde{\mathcal{H}}$ is a Hilbert space containing \mathcal{H}, and

$$
\psi(X)=\left.P_{\mathcal{H}} \pi(X)\right|_{\mathcal{H}} \quad \forall X \in C^{*}(\underline{V})
$$

and $\overline{\operatorname{span}}\left\{\pi(X) h: X \in C^{*}(\underline{V}), h \in \mathcal{H}\right\}=\widetilde{\mathcal{H}}$. Let $\widetilde{\underline{V}}=\left(\widetilde{V}_{1}, \ldots, \widetilde{V}_{n}\right)$ where $\widetilde{V}_{i}=\pi\left(V_{i}\right)$ and so \underline{V} is the unique standard noncommuting dilation of \underline{T} and clearly $\left(V_{i}\right)^{*}$ leaves \mathcal{H} invariant. If \underline{T} is q-commuting, by considering $C^{*}(\underline{S})$ instead of $C^{*}(\underline{V})$, and restricting the range of A_{r} to $\Gamma_{q}\left(\mathbb{C}^{n}\right) \otimes \Delta_{T}(\mathcal{H})$, and taking limits as $r \nearrow 1$ as before we get the unique unital completely positive $\operatorname{map} \phi: C^{*}(\underline{S}) \rightarrow \mathcal{B}(\mathcal{H})$ (see also [BB]) satisfying

$$
\begin{equation*}
\phi\left(\underline{S}^{\alpha}\left(\underline{S}^{\beta}\right)^{*}\right)=\underline{T}^{\alpha}\left(\underline{T}^{\beta}\right)^{*}, \quad \alpha, \beta \in \widetilde{\Lambda} \tag{3.2}
\end{equation*}
$$

Definition 18. Let \underline{T} be a q-commuting tuple. Then we have a unique unital completely positive map $\phi: C^{*}(\underline{S}) \rightarrow \mathcal{B}(\mathcal{H})$ satisfying (3.2). Consider the minimal Stinespring dilation of ϕ, so there is a Hilbert space \mathcal{H}_{1} containing \mathcal{H} and a unital $*$-homomorphism $\pi_{1}: C^{*}(\underline{S}) \rightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)$ such that

$$
\phi(X)=\left.P_{\mathcal{H}} \pi_{1}(X)\right|_{\mathcal{H}} \quad \forall X \in C^{*}(\underline{S})
$$

and $\overline{\operatorname{span}}\left\{\pi_{1}(X) h: X \in C^{*}(\underline{S}), h \in \mathcal{H}\right\}=\mathcal{H}_{1}$. Let $\widetilde{S}_{i}=\pi_{1}\left(S_{i}\right)$ and $\underline{\widetilde{S}}=$ $\left(\widetilde{S}_{1}, \ldots, \widetilde{S}_{n}\right)$. Then $\underline{\widetilde{S}}$ is called the standard q-commuting dilation of \underline{T}.

The standard q-commuting dilation is also unique up to unitary equivalence as the minimal Stinespring dilation is unique up to unitary equivalence.

Theorem 19. Let \underline{T} be a pure tuple on a Hilbert space \mathcal{H}.
(1) Then the maximal q-commuting piece $\widetilde{\underline{V}}^{q}$ of the standard noncommuting dilation $\underline{\tilde{V}}$ of \underline{T} is a realization of the standard q-commuting dilation of \underline{T}^{q} if and only if $\overline{\Delta_{\underline{T}}(\mathcal{H})}=\overline{\Delta_{\underline{T}}\left(\mathcal{H}^{q}(\underline{T})\right)}$. Moreover, if $\overline{\Delta_{\underline{T}}(\mathcal{H})}=\overline{\Delta_{\underline{T}}\left(\mathcal{H}^{q}(\underline{T})\right)}$ then $\operatorname{rank}\left(\Delta_{\underline{T}}\right)=\operatorname{rank}\left(\Delta_{\underline{T}^{q}}\right)=\operatorname{rank}\left(\Delta_{\underline{\tilde{V}}}\right)=$ $\operatorname{rank}\left(\Delta_{\tilde{V}^{q}}\right)$.
(2) Let $\tilde{\underline{V}}$ be the standard noncommuting dilation of \underline{T}. If $\operatorname{rank}\left(\Delta_{T}\right)$ and $\operatorname{rank}\left(\Delta_{\underline{T}^{q}}\right)$ are finite and equal then $\widetilde{\underline{V}}^{q}$ is a realization of the standard q-commuting dilation of \underline{T}^{q}.

Proof. The proof is similar to the proofs of Theorem 10 and Remark 11 of $[\mathrm{BBD}]$.

If the ranks of both Δ_{T} and $\Delta_{T^{q}}$ are infinite then we cannot ensure that $\overline{\Delta_{\underline{T}}(\mathcal{H})}=\overline{\Delta_{\underline{T}}\left(\mathcal{H}^{q}(\underline{T})\right)}$ and hence cannot ensure the converse of the second part of the last theorem, as seen by the following example. For any $n \geq 2$ consider the Hilbert space $\mathcal{H}_{0}=\Gamma_{q}\left(\mathbb{C}^{n}\right) \otimes \mathcal{M}$ where \mathcal{M} is of infinite dimension, and let $\underline{R}=\left(S_{1} \otimes I, \ldots, S_{n} \otimes I\right)$ be a q-commuting pure n-tuple. In fact, one can take \underline{R} to be any q-commuting pure n-tuple on some Hilbert space \mathcal{H}_{0} with $\overline{\Delta_{\underline{R}}\left(\mathcal{H}_{0}\right)}$ of infinite dimension. Suppose $P_{k}=\left(p_{i j}^{k}\right)_{n \times n}$ for $1 \leq k \leq n$ are $n \times n$ matrices with complex entries such that

$$
\left.\begin{array}{l}
p_{i j}^{k}=\left\{\begin{array}{ll}
t_{k} & \text { if } i=k, j=k+1, \\
0 & \text { otherwise }
\end{array} \quad \text { for } 1 \leq k<n\right.
\end{array}\right\} \begin{array}{ll}
t_{i j}^{n} & \text { if } i=n, j=1 \\
p_{i} & \text { otherwise }
\end{array},
$$

where t_{k} 's are complex numbers satisfying $0<\left|t_{k}\right|<1$. Let $\mathcal{H}=\mathcal{H}_{0} \oplus \mathbb{C}^{n}$. Set $\underline{T}=\left(T_{1}, \ldots, T_{n}\right)$ where T_{k} for $1 \leq k \leq n$ are operators on \mathcal{H} defined by

$$
T_{k}=\left[\begin{array}{ll}
R_{k} & \\
& P_{k}
\end{array}\right]
$$

So \underline{T} is a pure tuple, the maximal q-commuting piece of \underline{T} is \underline{R}, and $\mathcal{H}^{q}(\underline{T})=$ \mathcal{H}_{0} (by Corollary 7). Here $\operatorname{rank}\left(\Delta_{\underline{T}^{q}}\right)=\operatorname{rank}\left(\Delta_{\underline{T}}\right)=\infty$ but $\overline{\Delta_{\underline{T}}(\mathcal{H})}=$ $\overline{\Delta_{\underline{R}}\left(\mathcal{H}_{0}\right)} \oplus \mathbb{C}^{n}$. But the converse of Theorem $17(2)$ holds when the rank of $\Delta_{\underline{T}}$ is finite.

Consider the case when \underline{T} is a q-commuting tuple on a Hilbert space \mathcal{H} satisfying $\sum T_{i} T_{i}^{*}=I$. As $C^{*}(\underline{S})$ contains the ideal of all compact operators, by standard C^{*}-algebra theory we have a direct sum decomposition of π_{1} as follows. Set $\mathcal{H}_{1}=\mathcal{H}_{1 C} \oplus \mathcal{H}_{1 N}$ where $\mathcal{H}_{1 C}=\overline{\operatorname{span}}\left\{\pi_{1}(X) h: h \in \mathcal{H}, X \in\right.$ $C^{*}(\underline{S})$ and X is compact $\}$ and $\mathcal{H}_{1 N}$ is the orthogonal complement of it.

Clearly $\mathcal{H}_{1 C}$ is a reducing subspace for π_{1}. Therefore $\pi_{1}=\pi_{1 C} \oplus \pi_{1 N}$ where $\pi_{1 C}(X)=P_{\mathcal{H}_{1 C}} \pi_{1}(X) P_{\mathcal{H}_{1 C}}$ and $\pi_{1 N}(X)=P_{\mathcal{H}_{1 N}} \pi_{1}(X) P_{\mathcal{H}_{1 N}}$. Also $\pi_{1 C}(X)$ is just the identity representation with some multiplicity. In fact $\mathcal{H}_{1 C}$ can be written as $\mathcal{H}_{1 C}=\Gamma_{q}\left(\mathbb{C}^{n}\right) \otimes \Delta_{\underline{T}}(\mathcal{H})$ (see Theorem 4.5 of $[\mathrm{BB}]$) and $\pi_{1 N}(X)=0$ for compact X. But $\Delta_{T}(\mathcal{H})=0$ and the commutators $\left[S_{i}^{*}, S_{i}\right]$ are compact. So $\underline{W}=\left(W_{1}, \ldots, W_{n}\right)^{-}, W_{i}=\pi_{1 N}\left(S_{i}\right)$, is a tuple of normal operators. It follows that the standard q-commuting dilation of \underline{T} is a tuple of normal operators.

Definition 20. A q-commuting n-tuple $\underline{T}=\left(T_{1}, \ldots, T_{n}\right)$ of operators on a Hilbert space \mathcal{H} is called a q-spherical unitary if each T_{i} is normal and $T_{1} T_{1}^{*}+\cdots+T_{n} T_{n}^{*}=I$.

If \mathcal{H} is a finite-dimensional Hilbert space and \underline{T} is a q-commuting tuple on \mathcal{H} satisfying $\sum T_{i} T_{i}^{*}=I$, then \underline{T} is a q-spherical unitary because in this case each T_{i} is subnormal and all finite-dimensional subnormal operators are normal (see [Ha]).

Theorem 21 (Main Theorem). Let \underline{T} be a q-commuting contractive tuple on a Hilbert space \mathcal{H}. Then the maximal q-commuting piece of the standard noncommuting dilation of \underline{T} is a realization of the standard q commuting dilation of \underline{T}.

Proof. Let $\underline{\widetilde{S}}$ denote the standard q-commuting dilation of \underline{T} on a Hilbert space \mathcal{H}_{1} and we follow the notations as at the beginning of this section. As \underline{S} is also a contractive tuple, we have a unique unital completely positive map $\eta: C^{*}(\underline{V}) \rightarrow C^{*}(\underline{S})$ satisfying

$$
\eta\left(\underline{V}^{\alpha}\left(\underline{V}^{\beta}\right)^{*}\right)=\underline{S}^{\alpha}\left(\underline{S}^{\beta}\right)^{*}, \quad \alpha, \beta \in \widetilde{\Lambda}
$$

It is easy to see that $\psi=\phi \circ \eta$. Let the unital $*$-homomorphism π_{2} : $C^{*}(\underline{V}) \rightarrow \mathcal{B}\left(\mathcal{H}_{2}\right)$, for some Hilbert space \mathcal{H}_{2} containing \mathcal{H}_{1}, be the minimal Stinespring dilation of the map $\pi_{1} \circ \eta: C^{*}(\underline{V}) \rightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)$ such that $\pi_{1} \circ \eta(X)=\left.P_{\mathcal{H}_{1}} \pi_{2}(X)\right|_{\mathcal{H}_{1}}$ for $X \in C^{*}(\underline{V})$, and

$$
\overline{\operatorname{span}}\left\{\pi_{2}(X) h: X \in C^{*}(\underline{V}), h \in \mathcal{H}_{1}\right\}=\mathcal{H}_{2}
$$

We get the following commutative diagram:

where the vertical arrows are compression maps, the horizontal arrows are unital completely positive maps and the diagonal arrows are unital $*$-homomorphisms. Let $\widehat{\underline{V}}=\left(\widehat{V}_{1}, \ldots, \widehat{V}_{n}\right)$ where $\widehat{V}_{i}=\pi_{2}\left(V_{i}\right)$. We now show that $\widehat{\underline{V}}$ is the standard noncommuting dilation of \underline{T}. We will have this result if we can show that π_{2} is a minimal dilation of $\psi=\phi \circ \eta$, as the minimal Stinespring dilation is unique up to unitary equivalence. For this we first show that $\underline{\widetilde{S}}=\left(\pi_{1}\left(S_{1}\right), \ldots, \pi_{1}\left(S_{n}\right)\right)$ is the maximal q-commuting piece of \widehat{V}.

First we consider a particular case when \underline{T} is a q-spherical unitary on a Hilbert space \mathcal{H}. In this case we prove that the standard q-commuting dilation and the maximal q-commuting piece of the standard noncommuting dilation of \underline{T} is \underline{T} itself. We have $\phi\left(\underline{S}^{\alpha}\left(I-\sum S_{i} S_{i}^{*}\right)\left(\underline{S}^{\beta}\right)^{*}\right)=\underline{T}^{\alpha}(I-$ $\left.\sum T_{i} T_{i}^{*}\right)\left(\underline{T}^{\beta}\right)^{*}=0$ for any $\alpha, \beta \in \widetilde{\Lambda}$. This forces $\phi(X)=0$ for any compact operator X in $C^{*}(\underline{S})$. Now as the $q_{i j}$-commutators $\left[S_{i}^{*}, S_{j}\right]_{q_{i j}}$ are all compact we see that ϕ is a unital $*$-homomorphism. So the minimal Stinespring dilation of ϕ is ϕ itself and the standard q-commuting dilation of \underline{T} is \underline{T} itself. Next we show that the maximal q-commuting piece of the standard noncommuting dilation of \underline{T} is \underline{T}. The presentation of the standard noncommuting dilation which we use is taken from [Po1]. The dilation space $\widetilde{\mathcal{H}}$ can be decomposed as $\widetilde{\mathcal{H}}=\mathcal{H} \oplus\left(\Gamma\left(\mathbb{C}^{n}\right) \otimes \mathcal{D}\right)$ where \mathcal{D} is the closure of the range of the operator

$$
D: \underbrace{\mathcal{H} \oplus \cdots \oplus \mathcal{H}}_{n \text { copies }} \rightarrow \underbrace{\mathcal{H} \oplus \cdots \oplus \mathcal{H}}_{n \text { copies }}
$$

where D is the positive square root of

$$
D^{2}=\left[\delta_{i j} I-T_{i}^{*} T_{j}\right]_{n \times n}
$$

For convenience, at some places we identify $\underbrace{\mathcal{H} \oplus \cdots \oplus \mathcal{H}}_{n \text { copies }}$ with $\mathbb{C}^{n} \otimes \mathcal{H}$ so that $\left(h_{1}, \ldots, h_{n}\right)=\sum_{i=1}^{n} e_{i} \otimes h_{i}$. Then

$$
\begin{equation*}
D\left(h_{1}, \ldots, h_{n}\right)=D\left(\sum_{i=1}^{n} e_{i} \otimes h_{i}\right)=\sum_{i=1}^{n} e_{i} \otimes\left(h_{i}-\sum_{j=1}^{n} T_{i}^{*} T_{j} h_{j}\right) \tag{3.3}
\end{equation*}
$$

and the standard noncommuting dilation \widetilde{V}_{i} is

$$
\begin{equation*}
\widetilde{V}_{i}\left(h \oplus \sum_{\alpha \in \widetilde{\Lambda}} e^{\alpha} \otimes d_{\alpha}\right)=T_{i} h \oplus D\left(e_{i} \otimes h\right) \oplus e_{i} \otimes\left(\sum_{\alpha \in \widetilde{\Lambda}} e^{\alpha} \otimes d_{\alpha}\right) \tag{3.4}
\end{equation*}
$$

for $h \in \mathcal{H}, d_{\alpha} \in \mathcal{D}$ for $\alpha \in \widetilde{\Lambda}$, and $1 \leq i \leq n\left(\mathbb{C}^{n} \omega \otimes \mathcal{D}\right.$ has been identified with \mathcal{D}). We have

$$
T_{i} T_{i}^{*}=T_{i}^{*} T_{i} \quad \text { and } \quad T_{j} T_{i}=q_{i j} T_{i} T_{j} \quad \forall 1 \leq i, j \leq n
$$

Also by the Fuglede-Putnam theorem ([Ha], $[\mathrm{Pu}]$)

$$
T_{j}^{*} T_{i}=\bar{q}_{i j} T_{i} T_{j}^{*}=q_{j i} T_{i} T_{j}^{*} \quad \text { and } \quad T_{j}^{*} T_{i}^{*}=q_{i j} T_{i}^{*} T_{j}^{*} \quad \forall 1 \leq i, j \leq n
$$

As $\sum T_{i} T_{i}^{*}=I$, by direct computation D^{2} is seen to be a projection. So, $D=D^{2}$. Note that $q_{i j} \bar{q}_{i j}=1$, i.e., $\bar{q}_{i j}=q_{j i}$. Then we get

$$
\begin{align*}
D\left(h_{1}, \ldots, h_{n}\right) & =\sum_{i, j=1}^{n} e_{i} \otimes T_{j}\left(T_{j}^{*} h_{i}-\bar{q}_{j i} T_{i}^{*} h_{j}\right) \tag{3.5}\\
& =\sum_{i, j=1}^{n} e_{i} \otimes T_{j}\left(h_{i j}\right)
\end{align*}
$$

where $h_{i j}=T_{j}^{*} h_{i}-\bar{q}_{j i} T_{i}^{*} h_{j}=T_{j}^{*} h_{i}-q_{i j} T_{i}^{*} h_{j}$ for $1 \leq i, j \leq n$. Note that $h_{i i}=0$ and $h_{j i}=-\bar{q}_{i j} h_{i j}$.

As clearly $\mathcal{H} \subseteq \widetilde{\mathcal{H}}^{q}(\underline{V})$, let $y \in \mathcal{H}^{\perp} \cap \widetilde{\mathcal{H}}^{q}(\underline{V})$. We wish to show that $y=0$. Decompose y as $y=0 \oplus \sum_{\alpha \in \widetilde{\Lambda}} e^{\alpha} \otimes y_{\alpha}$ with $y_{\alpha} \in \mathcal{D}$. We assume $y \neq 0$ and arrive at a contradiction. If for some $\alpha, y_{\alpha} \neq 0$, then $\left\langle\omega \otimes y_{\alpha}\right.$, $\left.\left(\tilde{V}^{\alpha}\right)^{*} y\right\rangle=\left\langle e^{\alpha} \otimes y_{\alpha}, y\right\rangle=\left\langle y_{\alpha}, y_{\alpha}\right\rangle \neq 0$. Since $\left(\tilde{V}^{\alpha}\right)^{*} y \in \widetilde{\mathcal{H}}^{q}(\underline{\tilde{V}})$, we can assume $\left\|y_{0}\right\|=1$. Setting $\widetilde{y}_{m}=\sum_{\alpha \in \Lambda^{m}} e^{\alpha} \otimes y_{\alpha}$, we get $y=0 \oplus\left(\oplus_{m \geq 0} \widetilde{y}_{m}\right)$. Since D is a projection, its range is closed, and as $y_{0} \in \mathcal{D}$, there exist some $\left(h_{1}, \ldots, h_{n}\right)$ such that $y_{0}=D\left(h_{1}, \ldots, h_{n}\right)$. Let $\widetilde{x}_{0}=\widetilde{y}_{0}=y_{0}$ and $\widetilde{x}_{1}=\sum_{i, j=1}^{n} e_{i} \otimes D\left(e_{j} \otimes h_{i j}\right)$. Further denoting $\prod_{1 \leq r<s \leq m} q_{i_{r} i_{s}}$ by p_{m}, for $m \geq 1$ let

$$
\begin{aligned}
\widetilde{x}_{m}= & \sum_{i_{1}, \ldots, i_{m-1}, i, j=1}^{n} e_{i_{1}} \otimes \cdots \otimes e_{i_{m-1}} \otimes e_{i} \\
& \otimes D\left(e_{j} \otimes p_{m-1}\left(\prod_{k=1}^{m-1} q_{i_{k} i} q_{i_{k} j}\right) T_{i_{1}}^{*} \cdots T_{i_{m-1}}^{*} h_{i j}\right) .
\end{aligned}
$$

So $\widetilde{x}_{m} \in\left(\mathbb{C}^{n}\right)^{\otimes m} \otimes \mathcal{D}$ for all $m \in \mathbb{N}$. As \underline{T} is a q-commuting n-tuple and D is a projection, we have

$$
\begin{aligned}
& \sum_{1 \leq i<j \leq n}\left(q_{i j} \widetilde{V}_{i} \widetilde{V}_{j}-\widetilde{V}_{j} \widetilde{V}_{i}\right) q_{j i} h_{i j} \\
& =\sum_{1 \leq i<j \leq n}\left(q_{i j} T_{i} T_{j}-T_{j} T_{i}\right) q_{j i} h_{i j}+\sum_{1 \leq i<j \leq n} D\left(e_{i} \otimes T_{j} h_{i j}-q_{j i} e_{j} \otimes T_{i} h_{i j}\right) \\
& \quad+\sum_{1 \leq i<j \leq n}\left(e_{i} \otimes D\left(e_{j} \otimes h_{i j}\right)-q_{j i} e_{j} \otimes D\left(e_{i} \otimes h_{i j}\right)\right) \\
& \quad=0+D\left(\sum_{i, j=1}^{n} e_{i} \otimes T_{j} h_{i j}\right)+\sum_{i, j=1}^{n} e_{i} \otimes D\left(e_{j} \otimes h_{i j}\right) \\
& \quad=D^{2}\left(h_{1}, \ldots, h_{n}\right)+\sum_{i, j=1}^{n} e_{i} \otimes D\left(e_{j} \otimes h_{i j}\right)=\widetilde{x}_{0}+\widetilde{x}_{1}
\end{aligned}
$$

So by Proposition $6,\left\langle y, \widetilde{x}_{0}+\widetilde{x}_{1}\right\rangle=0$. Next let $m \geq 2$. Then

$$
\begin{aligned}
& \sum_{i_{1}, \ldots, i_{m-1}=1}^{n} \tilde{V}_{i_{1}} \ldots \widetilde{V}_{i_{m-1}}\left\{\sum_{i, j=1}^{n}\left(q_{i j} \widetilde{V}_{i} \widetilde{V}_{j}-\widetilde{V}_{j} \widetilde{V}_{i}\right) p_{m-1}\left(\prod_{k=1}^{m-2} q_{i_{k} j}\right)\right. \\
&\left.\cdot\left(T_{i}^{*} T_{i_{1}}^{*} \ldots T_{i_{m-2}}^{*} h_{i_{m-1} j}\right)\right\} \\
&= \sum_{i_{1}, \ldots, i_{m-1}=1}^{n} e_{i_{1}} \otimes \cdots \otimes e_{i_{m-1}} \otimes\left[\sum _ { i , j = 1 } ^ { n } D \left(p _ { m - 1 } (\prod _ { k = 1 } ^ { m - 2 } q _ { i _ { k } j }) \left(q_{i j} e_{i} \otimes T_{j} T_{i}^{*}\right.\right.\right. \\
&\left.\left.\quad \cdot T_{i_{1}}^{*} \ldots T_{i_{m-2}}^{*} h_{i_{m-1} j}-e_{j} \otimes T_{i} T_{i}^{*} T_{i_{1}}^{*} \ldots T_{i_{m-2}}^{*} h_{i_{m-1} j}\right)\right) \\
& \quad+\sum_{i, j=1}^{n} p_{m-1}\left(\prod_{k=1}^{m-2} q_{i_{k} j}\right)\left\{q_{i j} e_{i} \otimes D\left(e_{j} \otimes T_{i}^{*} T_{i_{1}}^{*} \cdots T_{i_{m-2}}^{*} h_{i_{m-1} j}\right)\right. \\
&\left.\left.\quad-\quad e_{j} \otimes D\left(e_{i} \otimes T_{i}^{*} T_{i_{1}}^{*} \cdots T_{i_{m-2}}^{*} h_{i_{m-1} j}\right)\right\}\right] \\
&= \sum_{i_{1}, \ldots, i_{m-1}=1}^{n} e_{i_{1}} \otimes \cdots \otimes e_{i_{m-1}} \\
& \quad \otimes\left\{\sum_{j=1}^{n} p_{m-1}\left(\prod_{k=1}^{m-2} q_{i_{k} j}\right) D\left(e_{j} \otimes T_{i_{1}}^{*} \cdots T_{i_{m-2}}^{*} h_{i_{m-1} j}\right)\right\} \\
& \quad+\sum_{i_{1}, \ldots, i_{m-1}=1}^{n} e_{i_{1}} \otimes \cdots \otimes e_{i_{m-1}} \\
& \quad \otimes\left\{\sum_{i, j=1}^{n} e_{i} \otimes D\left(e_{j} \otimes q_{i j} p_{m-1}\left(\prod_{k=1}^{m-2} q_{i_{k} j}\right)\left(T_{i}^{*} T_{i_{1}}^{*} \ldots T_{i_{m-2}}^{*} h_{i_{m-1} j}\right)\right)\right. \\
&\left.\quad-\sum_{i, j=1}^{n} e_{i} \otimes D\left(e_{j} \otimes p_{m-1}\left(\prod_{k=1}^{m-2} q_{i_{k} i}\right)\left(T_{j}^{*} T_{i_{1}}^{*} \ldots T_{i_{m-2}}^{*} h_{i_{m-1} i}\right)\right)\right\}
\end{aligned}
$$

(in the term above, i and j have been interchanged in the last summation)

$$
\begin{aligned}
= & -\sum_{i_{1}, \ldots, i_{m-2}, i=1}^{n} e_{i_{1}} \otimes \cdots \otimes e_{i_{m-2}} \otimes e_{i} \\
& \otimes\left\{\sum_{j=1}^{n} p_{m-2} q_{i_{r} i_{s}}\left(\prod_{k=1}^{m-2} q_{i_{k} i} q_{i_{k} j}\right) D\left(e_{j} \otimes T_{i_{1}}^{*} \cdots T_{i_{m-2}}^{*} h_{i j}\right)\right\} \\
& +\sum_{i_{1}, \ldots, i_{m-1}=1}^{n} e_{i_{1}} \otimes \cdots \otimes e_{i_{m-1}} \otimes \sum_{i, j=1}^{n} e_{i}
\end{aligned}
$$

$\otimes D\left(e_{j}\left\{\otimes p_{m-1} q_{i j}\left(\prod_{k=1}^{m-2} q_{i_{k} j}\right)\left(T_{i}^{*} T_{i_{1}}^{*} \cdots T_{i_{m-2}}^{*} T_{j}^{*} h_{i_{m-1}}\right.\right.\right.$
$\left.-q_{i_{m-1} j} T_{i}^{*} T_{i_{1}}^{*} \cdots T_{i_{m-2}}^{*} T_{i_{m-1}}^{*} h_{j}\right)$
$\left.\left.-p_{m-1}\left(\prod_{k=1}^{m-2} q_{i_{k} i}\right)\left(T_{j}^{*} T_{i_{1}}^{*} \cdots T_{i_{m-2}}^{*} T_{i}^{*} h_{i_{m-1}}-q_{i_{m-1} i} T_{j}^{*} T_{i_{1}}^{*} \cdots T_{i_{m-2}}^{*} T_{i_{m-1}}^{*} h_{i}\right)\right)\right\}$
(in the term above, i_{m-1} has been replaced by i in the first summation)

$$
\begin{aligned}
= & -\sum_{i_{1}, \ldots, i_{m-2}, i, j=1}^{n} e_{i_{1}} \otimes \cdots \otimes e_{i_{m-2}} \otimes e_{i} \\
& \otimes p_{m-2}\left(\prod_{k=1}^{m-2} q_{i_{k} i} q_{i_{k} j}\right) D\left(e_{j} \otimes T_{i_{1}}^{*} \cdots T_{i_{m-2}}^{*} h_{i j}\right) \\
& +\sum_{i_{1}, \ldots, i_{m-1}, i, j=1}^{n} e_{i_{1}} \otimes \cdots \otimes e_{i_{m-1}} \otimes e_{i} \\
& \otimes p_{m-1}\left(\prod_{k=1}^{m-1} q_{i_{k} i} q_{i_{k} j}\right) D\left(e_{j} \otimes T_{i_{1}}^{*} \cdots T_{i_{m-1}}^{*} h_{i j}\right) \\
= & -\widetilde{x}_{m-1}+\widetilde{x}_{m} .
\end{aligned}
$$

Hence by Proposition $6,\left\langle y, \widetilde{x}_{m-1}-\widetilde{x}_{m}\right\rangle=0$. Further for all $m \in \mathbb{N},\left\|\widetilde{x}_{m}\right\|^{2}$ equals

$$
\begin{aligned}
& \left\langle\sum_{i_{1}, \ldots, i_{m-1}, i, j=1}^{n} e_{i_{1}} \otimes \cdots \otimes e_{i_{m-1}} \otimes e_{i}\right. \\
& \otimes D\left(e_{j} \otimes p_{m-1}\left(\prod_{k=1}^{m-1} q_{i_{k} i} q_{i_{k} j}\right) T_{i_{1}}^{*} \cdots T_{i_{m-1}}^{*} h_{i j}\right) \\
& \quad \sum_{i_{1}^{\prime}, \ldots, i_{m-1}^{\prime}, i^{\prime}, j^{\prime}=1}^{n} e_{i_{1}^{\prime}} \otimes \cdots \otimes e_{i_{m-1}^{\prime}} \otimes e_{i^{\prime}} \\
& \left.\otimes D\left(e_{j^{\prime}} \otimes p_{m-1}\left(\prod_{k^{\prime}=1}^{m-1} q_{i_{k^{\prime}} i^{\prime}} q_{i_{k^{\prime}}^{\prime} j^{\prime}}\right) T_{i_{1}^{\prime}}^{*} \cdots T_{i_{m-1}^{\prime}}^{*} h_{i^{\prime} j^{\prime}}\right)\right\rangle \\
& =\sum_{i_{1}, \ldots, i_{m-1}, i=1}^{n}\left\langle\sum_{j=1}^{n} D\left(e_{j} \otimes p_{m-1}\left(\prod_{k=1}^{m-1} q_{i_{k} i} q_{i_{k} j}\right) T_{i_{1}}^{*} \cdots T_{i_{m-1}}^{*} h_{i j}\right),\right. \\
& \left.\sum_{j^{\prime}=1}^{n} D\left(e_{j^{\prime}} \otimes p_{m-1}\left(\prod_{k^{\prime}=1}^{m-1} q_{i_{k^{\prime}}} q_{i_{k^{\prime}} j^{\prime}}\right) T_{i_{1}}^{*} \cdots T_{i_{m-1}}^{*} h_{i j^{\prime}}\right)\right\rangle \\
& =\sum_{i_{1}, \ldots, i_{m-1}, i=1}^{n}\left\langle D\left(\sum_{j=1}^{n} e_{j} \otimes p_{m-1}\left(\prod_{k=1}^{m-1} q_{i_{k} i} q_{i_{k} j}\right) T_{i_{1}}^{*} \cdots T_{i_{m-1}}^{*} h_{i j}\right),\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\sum_{j^{\prime}=1}^{n} e_{j^{\prime}} \otimes p_{m-1}\left(\prod_{k^{\prime}=1}^{m-1} q_{i_{k^{\prime}}} q_{i_{k^{\prime} j^{\prime}}}\right) T_{i_{1}}^{*} \cdots T_{i_{m-1}}^{*} h_{i j^{\prime}}\right\rangle \\
= & \sum_{i_{1}, \ldots, i_{m-1}, i=1}^{n}\left\langlep _ { m - 1 } \left\{\sum _ { j , l = 1 } ^ { n } (\prod _ { k = 1 } ^ { m - 1 } q _ { i _ { k } i } q _ { i _ { k } j }) \left(e _ { j } \otimes T _ { l } \left(T_{l}^{*} T_{i_{1}}^{*} \cdots T_{i_{m-1}}^{*} h_{i j}\right.\right.\right.\right. \\
& \left.\left.\left.\left.-q_{j l} T_{j}^{*} T_{i_{1}}^{*} \ldots T_{i_{m-1}}^{*} h_{i l}\right)\right)\right\}, \sum_{j^{\prime}=1}^{n} p_{m-1}\left(\prod_{k^{\prime}=1}^{m-1} q_{i_{k^{\prime}}} q_{i_{k^{\prime}} j^{\prime}}\right) e_{j^{\prime}} \otimes T_{i_{1}}^{*} \cdots T_{i_{m-1}}^{*} h_{i j^{\prime}}\right\rangle \\
= & \sum_{i_{1}, \ldots, i_{m-1}, i, j=1}^{n}\left\langlep _ { m - 1 } (\prod _ { k = 1 } ^ { m - 1 } q _ { i _ { k } i } q _ { i _ { k } j }) \sum _ { l = 1 } ^ { n } T _ { l } \left(T_{l}^{*} T_{i_{1}}^{*} \cdots T_{i_{m-1}}^{*} h_{i j}\right.\right. \\
& \left.\left.-q_{j l} T_{j}^{*} T_{i_{1}}^{*} \cdots T_{i_{m-1}}^{*} h_{i l}\right), p_{m-1}\left(\prod_{k^{\prime}=1}^{m-1} q_{i_{k^{\prime}} i} q_{i_{k^{\prime}} j}\right) T_{i_{1}}^{*} \cdots T_{i_{m-1}}^{*} h_{i j}\right\rangle \\
= & \sum_{i=1}^{n}\left\langle h_{i j}, h_{i j}\right\rangle-\sum_{i_{1}, \ldots, i_{m-1}, i, j, l=1}^{n}\left\langle T_{i_{m-1}} \ldots T_{i_{1}} T_{j}^{*} T_{l} T_{i_{1}}^{*} \cdots T_{i_{m-1}}^{*} h_{i l}, h_{i j}\right\rangle .
\end{aligned}
$$

Define $\tau: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ by $\tau(X)=\sum_{i=1}^{n} T_{i} X T_{i}^{*}$ for $X \in \mathcal{B}(\mathcal{H})$, and $\widetilde{\tau}^{m}: M_{n}(\mathcal{B}(\mathcal{H})) \rightarrow M_{n}(\mathcal{B}(\mathcal{H}))$ by $\tau^{m}(X)=\left(\tau^{m}\left(X_{i j}\right)\right)_{n \times n}$ for $X=$ $\left(X_{i j}\right)_{n \times n} \in M_{n}(\mathcal{B}(\mathcal{H}))$. As τ is a contractive completely positive map, so is $\widetilde{\tau}^{m}$.

Hence we have $\widetilde{\tau}^{m}(D) \leq I$ and

$$
\begin{aligned}
\left\|\widetilde{x}_{m}\right\|^{2} & =\sum_{r=1}^{n}\left\langle\widetilde{\tau}^{m-1}(D)\left(h_{r 1}, \ldots, h_{r n}\right),\left(h_{r 1}, \ldots, h_{r n}\right)\right\rangle \\
& \leq \sum_{r=1}^{n}\left\langle\left(h_{r 1}, \ldots, h_{r n}\right),\left(h_{r 1}, \ldots, h_{r n}\right)\right\rangle \\
& =\sum_{r, i=1}^{n}\left\langle h_{r i}, h_{r i}\right\rangle=\sum_{i, r=1}^{n}\left\langle T_{i}^{*} h_{r}-\bar{q}_{i r} T_{r}^{*} h_{i}, T_{i}^{*} h_{r}-\bar{q}_{i r} T_{r}^{*} h_{i}\right\rangle \\
& =\sum_{i, r=1}^{n}\left\{\left\langle T_{i}^{*} T_{i} h_{r}-T_{r}^{*} T_{i} h_{i}, h_{r}\right\rangle-\left\langle T_{i}^{*} T_{r} h_{r}-T_{r}^{*} T_{r} h_{i}, h_{i}\right\rangle\right\} \\
& =\sum_{r=1}^{n}\left\langle h_{r}-\sum_{i=1}^{n} T_{r}^{*} T_{i} h_{i}, h_{r}\right\rangle-\sum_{i=1}^{n}\left\langle\sum_{r=1}^{n} T_{i}^{*} T_{r} h_{r}-h_{i}, h_{i}\right\rangle \\
& =2 \sum_{r=1}^{n}\left\langle h_{r}-\sum_{i=1}^{n} T_{r}^{*} T_{i} h_{i}, h_{r}\right\rangle=2\left\langle D\left(h_{1}, \ldots, h_{n}\right),\left(h_{1}, \ldots, h_{n}\right)\right\rangle \\
& =2\left\|\widetilde{x}_{0}\right\|^{2}=2 .
\end{aligned}
$$

As $\left\langle y, \widetilde{x}_{0}+\widetilde{x}_{1}\right\rangle=0$ and $\left\langle y, \widetilde{x}_{m-1}-\widetilde{x}_{m}\right\rangle=0$ for $m+1 \in \mathbb{N}$, we get $\left\langle y, \widetilde{x}_{0}+\widetilde{x}_{m}\right\rangle$ $=0$ for $m \in \mathbb{N}$. So $1=\left\langle\widetilde{y}_{0}, \widetilde{y}_{0}\right\rangle=\left\langle\widetilde{y}_{0}, \widetilde{x}_{0}\right\rangle=-\left\langle\widetilde{y}_{m}, \widetilde{x}_{m}\right\rangle$. By the CauchySchwarz inequality, $1 \leq\left\|\widetilde{y}_{m}\right\|\left\|\widetilde{x}_{m}\right\|$, which implies $1 / \sqrt{2} \leq\left\|\widetilde{y}_{m}\right\|$ for $m \in \mathbb{N}$. This is a contradiction as $y=0 \oplus\left(\oplus_{m \geq 0} \widetilde{y}_{m}\right)$ is in the Hilbert space $\widetilde{\mathcal{H}}$. This proves the particular case.

Using arguments similar to those for Theorem 13 of $[\mathrm{BBD}]$, the proof of the general case (that is, when T_{i} is not necessarily normal) and the proof of " $\underline{\underline{V}}$ is the standard noncommuting dilation of \underline{T} " both follow.
4. Distribution of $S_{i}+S_{i}^{*}$ and related operator spaces. Let \mathcal{R} be the von Neumann algebra generated by $G_{i}=S_{i}+S_{i}^{*}$ for all $1 \leq i \leq n$ where

$$
S_{i}=\left.P_{\Gamma_{q}\left(\mathbb{C}^{n}\right)} V_{i}\right|_{\Gamma_{q}\left(\mathbb{C}^{n}\right)}
$$

as in Section 2. We are interested in calculating the moments of $S_{i}+S_{i}^{*}$ with respect to the vacuum state and inferring about the distribution. The vacuum expectation is given by $\epsilon(T)=\langle\omega, T \omega\rangle$ where $T \in \mathcal{R}$. So,

$$
\epsilon\left(\left(S_{i}+S_{i}^{*}\right)^{n}\right)=\left\langle\omega,\left(S_{i}+S_{i}^{*}\right)^{n} \omega\right\rangle= \begin{cases}0 & \text { if } n \text { is odd } \\ C_{n / 2}=\frac{1}{n / 2+1}\binom{n}{n / 2} & \text { otherwise }\end{cases}
$$

where C_{n} is the Catalan number (cf. [Com]). The above follows on observing that for A_{k} 's equal to S_{i} or S_{i}^{*} the scalar product $\left\langle\omega, A_{n} A_{n-1} \cdots A_{1} \omega\right\rangle$ is 1 if n is even and if for each k the number of S_{i} 's in $A_{k} A_{k-1} \cdots A_{1}$ is greater than or equal to the number of S_{i}^{*} 's. In the remaining cases $\left\langle\omega, A_{n} A_{n-1} \cdots A_{1} \omega\right\rangle=0$. So the expectation turns out to be the number of Catalan paths. This shows that $S_{i}+S_{i}^{*}$ has semicircular distribution (cf. [Vo]). Further this vacuum expectation is not tracial on \mathcal{R} for $n \geq 2$ as

$$
\begin{aligned}
\epsilon\left(G_{2} G_{2} G_{1} G_{1}\right) & =\left\langle\omega,\left(S_{2}+S_{2}^{*}\right)\left(S_{2}+S_{2}^{*}\right)\left(S_{1}+S_{1}^{*}\right)\left(S_{1}+S_{1}^{*}\right) \omega\right\rangle \\
& =\left\langle\omega,\left(S_{2}^{*} S_{2}^{*} S_{1} S_{1}+S_{2}^{*} S_{2} S_{1}^{*} S_{1}\right) \omega\right\rangle=1 \\
\epsilon\left(G_{2} G_{1} G_{1} G_{2}\right) & =\left\langle\omega,\left(S_{2}+S_{2}^{*}\right)\left(S_{1}+S_{1}^{*}\right)\left(S_{1}+S_{1}^{*}\right)\left(S_{2}+S_{2}^{*}\right) \omega\right\rangle \\
& =\left\langle\omega,\left(S_{2}^{*} S_{1}^{*} S_{1} S_{2}+S_{2}^{*} S_{1} S_{1}^{*} S_{2}\right) \omega\right\rangle=1 / 2
\end{aligned}
$$

We now investigate the operator space generated by the G_{i} 's, using notions of the theory of operator spaces introduced by Effros and Ruan [ER]. Here we follow the ideas of [BS2] and [HP]. For some Hilbert space $\widetilde{\mathcal{H}}$ and $a_{i} \in B(\widetilde{\mathcal{H}}), 1 \leq i \leq n$, define

$$
\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{\max }=\max \left(\left\|\sum_{i=1}^{n} a_{i} a_{i}^{*}\right\|^{1 / 2},\left\|\sum_{i=1}^{n} a_{i}^{*} a_{i}\right\|^{1 / 2}\right)
$$

Denote the operator space

$$
\left\{\left(\begin{array}{cccc}
r_{1} & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
r_{n} & 0 & \cdots & 0
\end{array}\right) \oplus\left(\begin{array}{ccc}
r_{1} & \cdots & r_{n} \\
0 & \cdots & 0 \\
\vdots & & \vdots \\
0 & \cdots & 0
\end{array}\right): r_{1}, \ldots, r_{n} \in \mathbb{C}\right\} \subset M_{n} \oplus M_{n}
$$

by E_{n}. Let $\left\{e_{i j}: 1 \leq i, j \leq n\right\}$ denote the standard basis of M_{n} and $\delta_{i}=e_{i 1} \oplus e_{1 i}$. Then

$$
\left\|\sum_{i=1}^{n} a_{i} \otimes \delta_{i}\right\|_{B(\tilde{\mathcal{H}}) \otimes M_{n}}=\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{\max } .
$$

Theorem 22. The operator space generated by $G_{i}, 1 \leq i \leq n$, is completely isomorphic to E_{n}.

Proof. It is enough to show that for $a_{i} \in B(\widetilde{\mathcal{H}}), 1 \leq i \leq n$, we have

$$
\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{\max } \leq\left\|\sum_{i=1}^{n} a_{i} \otimes G_{i}\right\|_{\tilde{\mathcal{H}} \otimes \Gamma_{q}\left(\mathbb{C}^{n}\right)} \leq 2\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{\max }
$$

Note that

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} a_{i} \otimes S_{i}^{*}\right\|_{\tilde{\mathcal{H}} \otimes \Gamma_{q}\left(\mathbb{C}^{n}\right)} & =\left\|\sum_{i=1}^{n}\left(a_{i} \otimes 1\right)\left(1 \otimes S_{i}^{*}\right)\right\|_{\tilde{\mathcal{H}} \otimes \Gamma_{q}\left(\mathbb{C}^{n}\right)} \\
& \leq\left\|\sum_{i=1}^{n} a_{i} a_{i}^{*}\right\|_{\tilde{\mathcal{H}}}^{1 / 2}\left\|\sum_{i=1}^{n} S_{i} S_{i}^{*}\right\|_{\Gamma_{q}\left(\mathbb{C}^{n}\right)}^{1 / 2} \leq\left\|\sum_{i=1}^{n} a_{i} a_{i}^{*}\right\|_{\tilde{\mathcal{H}}}^{1 / 2} .
\end{aligned}
$$

Similarly

$$
\left\|\sum_{i=1}^{n} a_{i} \otimes S_{i}\right\|_{\tilde{\mathcal{H}} \otimes \Gamma_{q}\left(\mathbb{C}^{n}\right)}=\left\|\sum_{i=1}^{n}\left(1 \otimes S_{i}\right)\left(a_{i} \otimes 1\right)\right\|_{\tilde{\mathcal{H}} \otimes \Gamma_{q}\left(\mathbb{C}^{n}\right)} \leq\left\|\sum_{i=1}^{n} a_{i}^{*} a_{i}\right\|_{\tilde{\mathcal{H}}}^{1 / 2} .
$$

So

$$
\left\|\sum_{i=1}^{n} a_{i} \otimes G_{i}\right\|_{\tilde{\mathcal{H}} \otimes \Gamma_{q}\left(\mathbb{C}^{n}\right)} \leq 2\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{\max }
$$

Let \mathcal{S} denote the set of all states on $B(\widetilde{\mathcal{H}})$. Since $\epsilon\left(G_{i} G_{j}\right)=\left\langle\omega, S_{i}^{*} S_{j} \omega\right\rangle=\delta_{i j}$ we get

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} a_{i} \otimes G_{i}\right\|_{\tilde{\mathcal{H}} \otimes \Gamma_{q}\left(\mathbb{C}^{n}\right)}^{2} & \geq \sup _{\tau \in \mathcal{S}}(\tau \otimes \epsilon)\left[\left(\sum_{i=1}^{n} a_{i} \otimes G_{i}\right)^{*} \sum_{j=1}^{n} a_{j} \otimes G_{j}\right] \\
& =\sup _{\tau \in \mathcal{S}} \tau\left(\sum_{i=1}^{n} a_{i}^{*} a_{i}\right)=\left\|\sum_{i=1}^{n} a_{i}^{*} a_{i}\right\|
\end{aligned}
$$

Similar arguments give

$$
\left\|\sum_{i=1}^{n} a_{i} \otimes G_{i}\right\|_{\tilde{\mathcal{H}} \otimes \Gamma_{q}\left(\mathbb{C}^{n}\right)}^{2} \geq\left\|\sum_{i=1}^{n} a_{i} a_{i}^{*}\right\|
$$

Acknowledgements. The author is thankful to B. V. Rajarama Bhat and Tirthankar Bhattacharyya for many helpful discussions.

REFERENCES

[Ag] J. Agler, The Arveson extension theorem and coanalytic models, Integral Equations Operator Theory 5 (1982), 608-631.
[AP1] A. Arias and G. Popescu, Noncommutative interpolation and Poisson transforms, Israel J. Math. 115 (2000), 205-234.
[Ar1] W. Arveson, An Invitation to C^{*}-Algebras, Grad. Texts in Math. 39, Springer, New York, 1976.
[Ar2] -, Subalgebras of C^{*}-algebras III, Multivariable operator theory, Acta Math. 181 (1998), 159-228.
[At] A. Athavale, On the intertwining of joint isometries, J. Operator Theory 23 (1990), 339-350.
[BB] B. V. R. Bhat and T. Bhattacharyya, A model theory for q-commuting contractive tuples, ibid. 47 (2002), 97-116.
[BBD] B. V. R. Bhat, T. Bhattacharyya and S. Dey, Standard noncommuting and commuting dilations of commuting tuples, Trans. Amer. Math. Soc. 356 (2004), 1551-1568.
[Bh] T. Bhattacharyya, Dilation of contractive tuples: a survey, in: Survey of Analysis and Operator Theory, Proc. Centre Math. Appl. Austral. Nat. Univ. 40, Camberra, 2002, 89-126.
[BS1] M. Bożejko and R. Speicher, An example of a generalized Brownian motion, Comm. Math. Phys. 137 (1991), 519-531.
[BS2] —, 一, Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces, Math. Ann. 300 (1994), 97-120.
[Bu] J. W. Bunce, Models for n-tuples of noncommuting operators, J. Funct. Anal. 57 (1984), 21-30.
[Com] L. Comtet, Advanced Combinatorics, Reidel, 1974.
[Con] A. Connes, Noncommutative Geometry, Academic Press, 1994.
[Da] C. Davis, Some dilation and representation theorems, in: Proceedings of the Second International Symposium in West Africa on Functional Analysis and its Applications (Kumasi, 1979), 159-182.
[ER] E. G. Effros and Z. J. Ruan, Operator Spaces, London Math. Soc. Monogr. 23, Cambridge Univ. Press, 2000.
[Fr] A. E. Frazho, Models for noncommuting operators, J. Funct. Anal. 48 (1982), 1-11.
[HP] U. Haagerup and G. Pisier, Bounded linear operators between C^{*}-algebras, Duke Math. J. 71 (1993), 889-925.
[Ha] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Grad. Texts in Math. 19, Springer, New York, 1982.
[Ho] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, translated from the Russian by the author, North-Holland Ser. Statist. Probab. 1, North-Holland, Amsterdam, 1982.
[JSW] P. E. T. Jorgensen, L. M. Schmitt and R. F. Werner, q-canonical commutation relations and stability of the Cuntz algebra, Pacific J. Math. 165 (1994), 131-151.
[Ma] S. Majid, Foundations of Quantum Group Theory, Cambridge Univ. Press, 1995.
[Po1] G. Popescu, Isometric dilations for infinite sequences of noncommuting operators, Trans. Amer. Math. Soc. 316 (1989), 523-536.
[Po2] -, Characteristic functions for infinite sequences of noncommuting operators, J. Operator Theory 22 (1989), 51-71.
[Po3] -, Poisson transforms on some C^{*}-algebras generated by isometries, J. Funct. Anal. 161 (1999), 27-61.
[Po4] -, Curvature invariant for Hilbert modules over free semigroup algebras, Adv. Math. 158 (2001), 264-309.
[Pr] E. Prugovecki, Quantum Mechanics in Hilbert Space, 2nd ed., Academic Press, 1981.
[Pu] C. R. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics, Springer, 1967.
[Vo] D. Voiculescu, Circular and semicircular systems and free product factors, in: Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989), Progr. Math. 92, Birkhäuser Boston, Boston, MA, 1990, 45-60.

Institut für Mathematik und Informatik
Ernst-Moritz-Arndt-Universität
Friedrich-Ludwig-Jahn-Str. 15a
17487 Greifswald, Germany
E-mail: dey@uni-greifswald.de

