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STANDARD DILATIONS OF q-COMMUTING TUPLES

BY

SANTANU DEY (Greifswald)

Abstract. We study dilations of q-commuting tuples. Bhat, Bhattacharyya and Dey
gave the correspondence between the two standard dilations of commuting tuples and
here these results are extended to q-commuting tuples. We are able to do this when the
q-coefficients qij are of modulus one. We introduce a “maximal q-commuting subspace” of
an n-tuple of operators and a “standard q-commuting dilation”. Our main result is that the
maximal q-commuting subspace of the standard noncommuting dilation of a q-commuting
tuple is the standard q-commuting dilation. We also introduce the q-commuting Fock
space as the maximal q-commuting subspace of the full Fock space and give a formula for a
projection operator onto this space. This formula helps us in working with the completely
positive maps arising in our study. We prove the first version of the Main Theorem (Theo-
rem 21) of the paper for normal tuples by applying some tricky norm estimates and then
use it to prove the general version of this theorem. We also study the distribution of a
standard tuple associated with the q-commuting Fock space and related operator spaces.

1. Introduction. A generalization of a contraction operator in multi-
variate operator theory is a contractive n-tuple which is defined as follows:

Definition 1. An n-tuple T = (T1, . . . , Tn) of bounded operators on a
Hilbert space H such that T1T

∗
1 + · · · + TnT

∗
n ≤ I is a contractive n-tuple,

or a row contraction.

Along the lines of [BBD], we will study the dilation of a class of operator
tuples defined as follows:

Definition 2. An n-tuple T = (T1, . . . , Tn) is said to be q-commuting if
TjTi = qijTiTj for all 1 ≤ i, j ≤ n, where qij are nonzero complex numbers.
(To avoid trivialities we assume that qij = q−1

ji .)

For a q-commuting n-tuple T on a finite-dimensional Hilbert space H,
say of dimension m, because of the relation

Spec(TiTj) ∪ {0} = Spec(TjTi) ∪ {0} = Spec(qijTiTj) ∪ {0},
we see that qij is either 0 or an mth root of unity. This makes the finite-
dimensional case less interesting but for infinite-dimensional Hilbert spaces
we do not have such restrictions on the values of qij .
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Such operator tuples often appear in quantum theory ([Con], [Ma] [Pr]).
In Section 2 we introduce a “maximal q-commuting piece” and using this we
define a “q-commuting Fock space” when the q-coefficients qij are of modulus
one. (This condition for q-coefficients is in force for almost all results here.)
We give another description for this through a particular representation of
the permutation group. This q-commuting Fock space is different from the
twisted Fock space of M. Bożejko and R. Speicher ([BS1]) or that of P. E.
T. Jorgensen ([JSW]). We give a formula for a projection of the full Fock
space onto this space. On this Fock space we consider a special tuple of
q-commuting operators and show that it is unitarily equivalent to the tuple
of shift operators of [BB].

In Section 3 we show that the range of the isometry A defined in (3.1)
is contained in the q-commuting Fock space tensored with a Hilbert space
when T is a pure tuple (this operator was used by Popescu and Arveson in
[Po3], [Po4], [Ar2] and for q-commuting case by Bhat and Bhattacharyya
in [BB]). Using this we give a condition equivalent to the assertion of the
Main Theorem for q-commuting pure tuples. The proof of the particular case
of Theorem 19 where T is also q-spherical unitary (introduced in Section 3)
is more difficult than the version for commuting tuples and we had to choose
the terms carefully and proceed so that the qij of the q-commuting tuples get
absorbed or cancel out when we simplify the terms. Also unlike [BBD] we
had to use an inequality relating to completely positive maps before getting
the result through norm estimates. We have not been able to generalize
Section 4 of [BBD]. In the last section we calculate the distribution of Si+S

∗
i

with respect to the vacuum expectation for the standard tuple S associated
with Γq(C

n) and study some properties of related operator spaces.

For operator tuples (T1, . . . , Tn), we need to consider products of the
form Tα := Tα1 · · ·Tαm , where α = (α1, . . . , αm) ∈ Λm, Λ := {1, . . . , n}. Let

Λ̃ denote
⋃∞

m=0 Λ
m, where Λ0 is {0} by convention, and let T 0 be the identity

operator of the Hilbert space where the Ti’s are acting. Let Sm denote
the group of permutations of {1, . . . ,m}. For a q-commuting tuple T =
(T1, . . . , Tn), consider the product Tx1 · · ·Txm where 1 ≤ xi ≤ n. If we replace
a consecutive pair, say Txi

Txi+1 , in the above product by qxi+1xi
Txi+1Txi

and
do a finite number of such operations with different choices of consecutive
pairs in the resulting products, we will get a permutation σ ∈ Sm such
Tx1 · · ·Txm = kTx

σ−1(1)
· · ·Tx

σ−1(m)
for some k ∈ C. To define a q-commuting

tuple in Definition 2 we needed the known fact that this k depends only on
σ and xi, and not on the choice of the operations that give rise to the same
final product Tx

σ−1(1)
· · ·Tx

σ−1(m)
. This also follows from Proposition 3.

Hereafter, whenever we deal with q-commuting tuples we assume that
|qij | = 1 for 1 ≤ i, j ≤ n. However for Propositions 6, 8 and Corollary 7
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we do not need this assumption. Let T = (T1, . . . , Tn) be a q-commuting
tuple and consider the product Tx1 · · ·Txm where 1 ≤ xi ≤ n. Let σ ∈ Sm.
As the transpositions (k, k + 1), 1 ≤ k ≤ m − 1, generate Sm, let σ−1 =
τ1 · · · τs where τi = (ki, ki + 1) for each 1 ≤ i ≤ s. Let σ̃i = τi+1 · · · τs
for 1 ≤ i ≤ s − 1 and σ̃s be the identity permutation. Define yi = xσ̃i(ki)

and zi = xσ̃i(ki+1). If we replace TysTzs by qzsysTzsTys corresponding to τs,
Tys−1Tzs−1 by qzs−1ys−1Tzs−1Tys−1 corresponding to τs−1, and so on, we get
Tx1 · · ·Txm = qσ

1 (x) · · · qσ
s (x)Tx

σ−1(1)
· · ·Tx

σ−1(m)
where qσ

i (x) = qziyi
. Let

qσ(x) = qσ
1 (x) · · · qσ

s (x).

Proposition 3. Let T = (T1, . . . , Tn) be a q-commuting tuple and con-

sider the product Tx1 · · ·Txm where 1 ≤ xi ≤ n. Let σ ∈ Sm and qσ(x) be as

defined above. Then

qσ(x) =
∏

qx
σ−1(k)xσ−1(i)

,

where the product is over {(i, k) : 1 ≤ i < k ≤ m, σ−1(i) > σ−1(k)}. In

particular qσ(x) does not depend on the decomposition of σ as a product of

transpositions.

Proof. We have
qσ(x) = qσ

1 (x) · · · qσ
s (x)

where qσ
i (x) = qziyi

. For 1 ≤ i < k ≤ m let k′ = σ−1(k) and i′ = σ−1(i).
Define σ = τ1 · · · τs and σ̃i as above. If i′ > k′ then there are an odd number
of transpositions τr for 1 ≤ r ≤ m that interchange the positions of i′

and k′ in the image of σ̃r when we consider the composition τrσ̃r, while if
i′ < k′ then there are an even number of such transpositions. For the first
transposition in τr that interchanges i′ and k′, the corresponding factor in
qσ(x), say qσ

r (x), is qxk′xi′
, for the second such transposition the factor is

qxi′xk′
, for the third it is qxk′xi′

, and so on. But (qxi′xk′
)−1 = qxk′xi′

and so

qσ(x) =
∏

qx
σ−1(k)xσ−1(i)

,

where the product is over {(i, k) : 1 ≤ i < k ≤ m, σ−1(i) > σ−1(k)}.
Similar arguments show that if σ ∈ Sm is such that (x1, . . . , xn) =

(xσ−1(1), . . . , xσ−1(n)), then qσ(x) = 1.

Definition 4. Let H,L be two Hilbert spaces such that H is a closed
subspace of L and let T,R be n-tuples of bounded operators on H, L re-
spectively. Then R is called a dilation of T if

R∗
i u = T ∗

i u

for all u ∈ H, 1 ≤ i ≤ n. In such a case T is called a piece of R. If T
is a q-commuting tuple (i.e., TjTi = qijTiTj for all i, j), then it is called a
q-commuting piece of R. A dilation R of T is said to be a minimal dilation

if span{Rαh : α ∈ Λ̃, h ∈ H} = L. And if R is a tuple of n isometries
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with orthogonal ranges and is a minimal dilation of T , then it is called the
minimal isometric dilation or the standard noncommuting dilation of T .

A presentation of the standard noncommuting dilation taken from [Po1]
is used here to prove the main theorem. All Hilbert spaces we consider are
complex and separable. For a subspace H of a Hilbert space, PH will denote
the orthogonal projection onto H. The standard noncommuting dilation of
an n-tuple of bounded operators is unique up to unitary equivalence (cf.
[Po1-4]). An extensive study of the standard noncommuting dilation was
carried out by Popescu. He generalized many one-variable results to the
multivariable case. It is easy to see that if R is a dilation of T then

(1.1) Tα(T β)∗ = PHR
α(Rβ)∗|H,

and for any polynomials p, q in n noncommuting variables,

p(T )(q(T ))∗ = PHp(R)(q(R))∗|H.
For an n-tuple R of bounded operators on a Hilbert space M, consider

Cq(R) = {N : R∗
i leaves N invariant, R∗

iR
∗
jh = qijR

∗
jR

∗
i h, ∀h ∈ N , ∀i, j}.

It is a complete lattice, in the sense that arbitrary intersections and closed
spans of arbitrary unions of such spaces are again in this collection. So it
has a maximal element and we denote it by Mq(R) (or by Mq when the
tuple under consideration is clear).

Definition 5. Let R be an n-tuple of operators on a Hilbert space M.
The q-commuting piece Rq = (Rq

1, . . . , R
q
n) obtained by compressing R to

the maximal element Mq(R) of Cq(R) is called the maximal q-commuting

piece of R. The maximal q-commuting piece is said to be trivial if Mq(R)
is the zero space.

The following result gives a description of maximal q-commuting pieces.

Proposition 6. Let R = (R1, . . . , Rn) be an n-tuple of bounded oper-

ators on a Hilbert space M, Kij = span{Rα(qijRiRj − RjRi)h : h ∈ M,

α ∈ Λ̃} for all 1 ≤ i, j ≤ n, and K = span{⋃n
i,j=1 Kij}. Then Mq(R) = K⊥

and Mq(R)={h ∈ M : (qijR
∗
jR

∗
i −R∗

iR
∗
j )(R

α)∗h=0, ∀1 ≤ i, j ≤ n, α ∈ Λ̃}.
The above proposition can be easily proved using arguments similar to

the proof of Proposition 4 of [BBD].

Corollary 7. Suppose R, T are n-tuples of operators on two Hilbert

spaces L,M. Then the maximal q-commuting piece of (R1⊕T1, . . . , Rn⊕Tn)
acting on L ⊕ M is (Rq

1 ⊕ T q
1 , . . . , R

q
n ⊕ T q

n) acting on Lq ⊕ Mq, and the

maximal q-commuting piece of (R1 ⊗ I, . . . , Rn ⊗ I) acting on L ⊗ M is

(Rq
1 ⊗ I, . . . , Rq

n ⊗ I) acting on Lq ⊗M.

Proof. Clear from Proposition 6.
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Proposition 8. Let T,R be n-tuples of bounded operators on H, L with

H ⊆ L such that R is a dilation of T . Then Hq(T ) = Lq(R) ∩H and Rq is

a dilation of T q.

Proof. This can be proved using arguments similar to the proof of Propo-
sition 7 of [BBD].

2. A q-commuting Fock space. In this section we introduce a q-
commuting Fock space and give two descriptions of it. For any Hilbert
space K, we have the full Fock space over K,

Γ (K) = C ⊕K ⊕K⊗2 ⊕ · · · ⊕ K⊗m ⊕ · · · .
We denote the vacuum vector 1⊕0⊕· · · by ω. For fixed n ≥ 2, let C

n be the
n-dimensional complex Euclidian space with the usual inner product, and
let Γ (Cn) be the full Fock space over C

n. Let {e1, . . . , en} be the standard

orthonormal basis of C
n. For α ∈ Λ̃, eα := eα1 ⊗ · · · ⊗ eαm ∈ Γ (Cn) and

e0 := ω. Then define the (left) creation operators Vi on Γ (Cn) by

Vix = ei ⊗ x for 1 ≤ i ≤ n and x ∈ Γ (Cn)

(here ei⊗ω is interpreted as ei). It is obvious that the tuple V = (V1, . . . , Vn)
consists of isometries with orthogonal ranges and

∑
ViV

∗
i = I − I0, where

I0 is the projection onto the vacuum space. Define the q-commuting Fock

space Γq(C
n) as the subspace (Γ (Cn))q(V ) of the full Fock space. Let S =

(S1, . . . , Sn) be the tuple of operators on Γq(C
n) where Si is the compression

of Vi to Γq(C
n):

Si = PΓq(Cn)Vi|Γq(Cn).

Clearly each V ∗
i leaves Γq(C

n) invariant. Observe that the vacuum vector
is in Γq(C

n). It is easy to see that
∑
SiS

∗
i = Iq − Iq

0 (where Iq, Iq
0 are the

identity and the projection onto the vacuum space respectively in Γq(C
n)).

So V and S are contractive tuples, SjSi = qijSiSj for all 1 ≤ i, j ≤ n, and
S∗

i x = V ∗
i x for x ∈ Γq(C

n).

Define Um,q
σ on (Cn)⊗

m
by

(2.1) Um,q
σ (ex1 ⊗ · · · ⊗ exm) = qσ(x)ex

σ−1(1)
⊗ · · · ⊗ ex

σ−1(m)

on the standard basis vectors and extend it linearly to (Cn)⊗
m

. As |qij | = 1
for 1 ≤ i, j ≤ n, Um

σ is unitary and it extends uniquely to a unitary operator
on (Cn)⊗

m
. Let

(Cn)©q
m

= {u ∈ (Cn)⊗
m

: Um,q
σ u = u ∀σ ∈ Sm}

and (Cn)©q
0

= C. The dimension of (Cn)©q
m

is the number of ways in which
m identical objects can be distributed in n buckets. From standard combi-
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natorics it follows that

dim (Cn)©q
m

=

(
n+m− 1

m

)
.

Lemma 9. The map from Sm to B((Cn)⊗
m

) defined by σ 7→ Um,q
σ is a

unitary representation of the permutation group Sm.

Proof. Let ⊗m
i=1exi

,⊗m
i=1eyi

∈ (Cn)⊗
m
, 1 ≤ xi, yi ≤ n. Suppose there ex-

ist σ ∈ Sm such that ⊗m
i=1eyi

= ⊗m
i=1ex

σ−1(i)
. Then 〈Um,q

σ (⊗m
i=1exi

),⊗m
i=1eyi

〉
= qσ(x) and 〈⊗m

i=1exi
, Um,q

σ−1(⊗m
i=1eyi

)〉 = q(σ
−1)(y). Also

q(σ
−1)(y) =

∏
qyσ(k)yσ(i)

=
∏

qxkxi

where the products are over {(i, k) : 1 ≤ i < k ≤ m, σ(i) > σ(k)}. If we
substitute k = σ−1(i′) and i = σ−1(k′) in the last term we get

qσ−1
(y) =

∏
qx

σ−1(i′)xσ−1(k′)
=

(∏
qx

σ−1(k′)xσ−1(i′)

)−1
= (qσ(x))−1

where the products are over {(i′, k′) : 1 ≤ i′ < k′ ≤ m, σ−1(i′) > σ−1(k′)}.
So

qσ(x) = (qσ−1
(y))−1 = qσ−1(y).

The last equality holds as |qij | = 1. This implies

〈Um,q
σ (⊗m

i=1exi
),⊗m

i=1eyi
〉 = 〈⊗m

i=1exi
, Um,q

σ−1(⊗m
i=1eyi

)〉.
If there does not exist any σ ∈ Sm such that ⊗m

i=1eyi
= ⊗m

i=1ex
σ−1(i)

then

〈Um,q
σ′ (⊗m

i=1exi
),⊗m

i=1eyi
〉 = 0 = 〈⊗m

i=1exi
, Um,q

(σ′)−1(⊗m
i=1eyi

)〉
for all σ′ ∈ Sm. So for all σ ∈ Sm, (Um,q

σ )∗ = Um,q
σ−1 on the basis elements

of (Cn)⊗
m
, and hence on the whole of (Cn)⊗

m
.

Next let σ = σ1σ2 for some σ1, σ2 ∈ Sm.We show that Um,q
σ = Um,q

σ1 Um,q
σ2 .

Let ex = ex1 ⊗ · · · ⊗ exm where xj ∈ {1, . . . , n} for 1 ≤ j ≤ m. Let σ−1
1 =

τ1 · · · τr and σ−1
2 = τr+1 · · · τs where the τi are transpositions of the form

(ki, ki + 1). Then

Um,q
σ1

Um,q
σ2

(ex1 ⊗ · · · ⊗ exm) = Um,q
σ1

(qσ2(x)ex
σ
−1
2

(1)
⊗ · · · ⊗ ex

σ
−1
2

(m)
)

= qσ1(z)qσ2(x)ex
σ
−1
2

σ
−1
1

(1)
⊗ · · · ⊗ ex

σ
−1
2

σ
−1
1

(m)

where ez = ez1 ⊗ · · · ⊗ ezm , i.e. zi = xσ−1
2 (i). But as σ = τ1 . . . τrτr+1 . . . τs it

is easy to see that qσ(x) = qσ1(z)qσ2(x). So

Um,q
σ1

Um,q
σ2

(ex1 ⊗ · · · ⊗ exm) = qσ(x)ex
σ−1(1)

⊗ · · · ⊗ ex
σ−1(m)

= Um,q
σ (ex1 ⊗ · · · ⊗ exm),

and hence Um,q
σ1σ2 = Um,q

σ1 Um,q
σ2 .
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In the next lemma and theorem we derive a formula for the projection
operator onto the q-commuting Fock space.

Lemma 10. Define Pm on (Cn)⊗
m

by

(2.2) Pm =
1

m!

∑

σ∈Sm

Um,q
σ .

Then Pm is the projection of (Cn)⊗
m

onto (Cn)©q
m

.

Proof. First we see that

P ∗
m =

1

m!

∑

σ∈Sm

(Um,q
σ )∗ =

1

m!

∑

σ∈Sm

Um,q
σ−1 = Pm.

For σ′ ∈ Sm we have

(2.3) PmU
m,q
σ′ =

1

m!

∑

σ∈Sm

Um,q
σσ′ =

1

m!

∑

σ∈Sm

Um,q
σ = Pm.

Similarly Um,q
σ′ Pm = Pm. So P 2

m = Pm and hence Pm is a projection.

Theorem 11.
⊕∞

m=0(C
n)©q

m

= Γq(C
n).

Proof. Let Q =
⊕∞

m=0 Pm be a projection of Γ (Cn) onto
⊕∞

m=0(C
n)©q

m

where Pm is defined in Lemma 10. Next we show that
⊕∞

m=0(C
n)©q

m

is invari-
ant under V ∗

i . Let ⊗m
j=1exj

∈ (Cn)⊗
m
, 1 ≤ xj ≤ n. Then V ∗

i {Pm(⊗m
j=1exj

)}
is zero if no xj is equal to i. Otherwise V ∗

i {Pm(⊗m
j=1exj

)} is a nonzero el-

ement of
⊕∞

m=0(C
n)©q

(m−1)
because of the following: Suppose xj = i if and

only if j ∈ {r1, . . . , rp}, and let Ak be the set of all σ ∈ Sm such that σ−1

sends 1 to rk, 1 ≤ k ≤ p. Then Ak consists of all compositions τ̺ where
τ = (1, rk) and ̺ keeps rk fixed and permutes the other m− 1 symbols. Let
x = (x1, . . . , xm) and y = (xτ−1(1), . . . , xτ−1(m)). As the Vi are isometries
with orthogonal ranges,

V ∗
i {Pm(⊗m

j=1exj
)} = V ∗

i

{
1

m!

∑

σ∈Sm

Um,q
σ (⊗m

j=1exj
)

}

=
1

m!

p∑

k=1

V ∗
i

{ ∑

τ̺∈Ak

Um,q
τ Um,q

̺ (⊗m
j=1exj

)
}

=
1

m!

p∑

k=1

qx1iq
̺(y)V ∗

i

{ ∑

τ̺∈Ak

ex
̺−1(rk)

⊗ ex
̺−1(2)

⊗ · · ·

⊗ ex
̺−1(rk−1)

⊗ ex
̺−1(1)

⊗ ex
̺−1(rk+1)

⊗ · · · ⊗ ex
̺−1(m)

}
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=
1

m!

p∑

k=1

qx1iq
̺(y)V ∗

i

{ ∑

τ̺∈Ak

ei ⊗ ex
̺−1(2)

⊗ · · ·

⊗ ex
̺−1(rk−1)

⊗ ex
̺−1(1)

⊗ ex
̺−1(rk+1)

⊗ · · · ⊗ ex
̺−1(m)

}

=

p∑

k=1

qx1i

m!

{
q̺(y)

∑

̺∈Sm−1

ex
̺−1(2)

⊗ · · · ⊗ ex
̺−1(rk−1)

⊗ ex
̺−1(1)

⊗ ex
̺−1(rk+1)

⊗ · · · ⊗ ex
̺−1(m)

}

=

p∑

k=1

ak(x)Pm−1(ex1 ⊗ · · · ⊗ êxik
⊗ · · · ⊗ exm)

where ak(x) are constants and the hat denotes omission of the corresponding
term. This shows that

⊕∞
m=0(C

n)©q
m

is invariant under V ∗
i .

Taking Ri = QViQ we show that R is q-commuting. Define U q
(1,2) =

⊕∞
m=0 U

m,q
(1,2) where U0,q

(1,2) = I and U1,q
(1,2) = I. Let ⊗k

i=1eαi
∈ (Cn)⊗

k
, 1 ≤

αi ≤ n. Using Lemma 10 we get

RiRjR
αω = QViVjV

αω = QU q
(1,2)ViVj(⊗k

i=1eαi
)

= QU q
(1,2){ei ⊗ ej ⊗ (⊗k

i=1eαi
)} = Qqjiej ⊗ ei ⊗ (⊗k

i=1eαi
)

= qjiQVjViV
αω = qjiRjRiR

αω,

and clearly
⊕∞

m=0(C
n)©q

m

= span{Rαω : α ∈ Λ̃}. So (R1, . . . , Rn) is a
q-commuting piece of V .

To show maximality we make use of Proposition 6. Suppose x ∈ Γ (Cn)

and 〈x, V α(qijViVj − VjVi)y〉 = 0 for all α ∈ Λ̃, 1 ≤ i, j ≤ n and y ∈ Γ (Cn).
We wish to show that x ∈ Γq(C

n). Suppose xm is the m-particle component
of x, i.e., x = ⊕m≥0xm with xm ∈ (Cn)⊗

m
. For m ≥ 2 and any σ ∈ Sm we

need to show that the unitary Um,q
σ : (Cn)⊗

m → (Cn)⊗
m

defined by (2.1)
leaves xm fixed. Since Sm is generated by {(1, 2), (2, 3), . . . , (m− 1,m)} it is
enough to verify Um,q

σ (xm) = xm for σ of the form (i, i+ 1). So fix m and i
with m ≥ 2 and 1 ≤ i ≤ m− 1. We have

(2.4) 〈⊕pxp, V
α(qklVkVl − VlVk)V

βω〉 = 0

for every β ∈ Λ̃, 1 ≤ k, l ≤ n. This implies that

〈xm, e
α ⊗ (qklek ⊗ el − el ⊗ ek) ⊗ eβ〉 = 0

for any α ∈ Λi−1, β ∈ Λm−i−1. So if

xm =
∑

a(s, t, α, β)eα ⊗ es ⊗ et ⊗ eβ

where the sum is over α ∈ Λi−1, β ∈ Λm−i−1 and 1 ≤ s, t ≤ n, and
a(s, t, α, β) are constants, then for fixed α and β it follows from (2.4) that
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qkla(k, l, α, β) = a(l, k, α, β) or qlka(k, l, α, β) = a(l, k, α, β). Hence for σ =
(i, i+ 1),

Um,q
σ (a(k, l, α, β)eα ⊗ ek ⊗ el ⊗ eβ + a(l, k, α, β)eα ⊗ el ⊗ ek ⊗ eβ)

= qlka(k, l, α, β)eα ⊗ el ⊗ ek ⊗ eβ + qkla(l, k, α, β)eα ⊗ ek ⊗ el ⊗ eβ

= a(l, k, α, β)eα ⊗ el ⊗ ek ⊗ eβ + a(k, l, α, β)eα ⊗ ek ⊗ el ⊗ eβ.

This clearly implies Um,q
σ (xm) = xm.

Corollary 12. For u ∈ (Cn)⊗
k
, v ∈ (Cn)⊗

l
, w ∈ (Cn)⊗

m
,

Pk+l+m{Pk+l(u⊗ v) ⊗ w} = Pk+l+m{u⊗ Pl+m(v ⊗ w)}.
Proof. If we identify Sk+l and Sl+m with the subgroups of Sk+l+m such

that σ ∈ Sk+l fixes the last m elements of {1, . . . , k + l +m} and σ ∈ Sl+m

fixes the first k elements of {1, . . . , k + l + m}, the assertion follows easily
using (2.3).

When qij = 1 for all i, j, we denote (Cn)©q
m

by (Cn)©s
m

and the q-
commuting Fock space Γq(C

n) by Γs(C
n), and call it the symmetric Fock

space (or the boson Fock space) (cf. [BBD]). The map Um,q : Sm → B(Cn)⊗
m

given by

Um,q(σ) = Um,q
σ

gives a representation of Sm on B(Cn)⊗
m
. Denote Um,q

σ by Um,s
σ if qij = 1

for all i, j. It is easy to see that for all q = (qij)n×n with |qij | = 1, the
representations are unitarily equivalent. So there exists a unitary Wm,q :
(Cn)⊗

m → (Cn)⊗
m

such that

(2.5) Wm,qUm,s
σ = Um,q

σ Wm,q.

This Wm,q is not unique as for k ∈ C with |k| = 1, the operator kWm,q is
also a unitary satisfying (2.5). We will give one such Wm,q explicitly.

For m ∈ N, yi ∈ Λ define Wm,q over (Cn)⊗
m

as

Wm,q(ey1 ⊗ · · · ⊗ eym) = qτ−1
(x)ey1 ⊗ · · · ⊗ eym

where x = (x1, . . . , xm) is the tuple (y1, . . . , ym) rearranged in nondecreasing
order and τ ∈ Sm is such that yi = xτ(i). From Proposition 3 it is clear that

qτ−1
(x) does not depend upon the choice of τ and

Wm,qUm,s
σ (ey1 ⊗ · · · ⊗ eym) = Wm,q(ey

σ−1(1)
⊗ · · · ⊗ ey

σ−1(m)
)

= q(σ
−1τ)−1

(x)ey
σ−1(1)

⊗ · · · ⊗ ey
σ−1(m)

= qτ−1σ(x)ey
σ−1(1)

⊗ . . .⊗ ey
σ−1(m)
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= qσ(xτ(1), . . . , xτ(m))q
τ−1

(x)ey
σ−1(1)

⊗ · · · ⊗ ey
σ−1(m)

= Um,q
σ qτ−1

(x)ey1 ⊗ · · · ⊗ eym

= Um,q
σ Wm,q(ey1 ⊗ · · · ⊗ eym).

So, Wm,qUm,s
σ = Um,q

σ Wm,q. Denoting the unitary operator
⊕∞

m=0W
m,q on

Γ (Cn) by W q where W 0,q = I, we get

W qPΓS(Cn) = PΓq(Cn)W
q

and for q and q′ we get the intertwining unitary W q′(W q)∗ such that

W q′(W q)∗PΓq(Cn) = PΓq′ (C
n)W

q′(W q)∗.

Under the Schur product, Q = {q = (qij)n×n : |qij | = 1} forms a group.

Proposition 13. The map from Q to B((Cn)⊗
m

) given by q 7→ Wm,q

is a unitary representation of Q.
Proof. From the definition of Wm,q we get

Wm,q.q′ = Wm,qWm,q′ and (Wm,q)−1 = Wm,q−1

for q, q′ ∈ Q and q−1 = (q−1
ij )n×n. When q is the identity element of Q, all

entries qij are 1 and hence Wm,q is the identity matrix. Hence the assertion
holds.

Define

(Cn)©a
m

= {u ∈ (Cn)⊗
m

: Um,s
σ (u) = sign(σ)u ∀σ ∈ Sm}.

Then define the antisymmetric Fock space or the fermion Fock space Γa(C
n)

as

Γa(C
n) =

∞⊕

m=0

(Cn)©a
m

.

We observed before that the symmetric Fock space is the q-commuting Fock
space where qij = 1. But the antisymmetric Fock space is not equal to any
Γq(C

n). However, consider the case when q = (qij)n×n is such that qij = −1
for 1 ≤ i 6= j ≤ n. Then the antisymmetric Fock space Γa(C

n) is a proper
subset of Γq(C

n) because clearly (Cn)©a
m

is the set of all u ∈ (Cn)©q
m

which
are orthogonal to those Pme

β for which there exist s, t ∈ {1, . . . ,m}, s 6= t,
such that βs = βt (Pm is given by (2.2)).

Next we give another realization of the standard tuple S. Let P be the
vector space of all polynomials in q-commuting variables z1, . . . , zn, that is,
zjzi = qijzizj . Any multi-index k is an ordered n-tuple of non-negative inte-
gers (k1, . . . , kn). We write |k| = k1 + · · ·+ kn. The multi-index with 0 in all
positions except the ith which is 1, is denoted by ei. For any nonzero multi-

index k the monomial zk1
1 · · · zkn

n will be denoted by zk; for k = (0, . . . , 0),
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let zk be the complex number 1. Let us equip P with the following inner

product. Declare zk and zl orthogonal if k 6= l as ordered multi-indices. Let

‖zk‖2 =
k1! · · · kn!

|k|! .

Note that this inner product also appears in [BB, Definition (1.1)] in the
general case. Now define H′ to be the closure of P with respect to this inner
product. Define S′ = (S′

1, . . . , S
′
n) where for f ∈ P,

S′
if(z1, . . . , zn) := zif(z1, . . . , zn)

and Si is linearly extended to H′. In the case of our standard q-commuting

n-tuple S of operators on Γq(C
n), when k = (k1, . . . , kn) let Sk = Sk1

1 . . . Skn
n

and when k = (0, . . . , 0) let Sk = 1.

Using (2.2) and the fact that the Vi’s are isometries with orthogonal
ranges, for k = (k1, . . . , kn) with |k| = m we get

‖Skω‖ = 〈PmV
kω, V kω〉 =

〈
1

|k|!
∑

σ∈Sm

Um,q
σ V kω, V kω

〉
=
k1! · · · kn!

|k|! .

If we denote V kω by ex1 ⊗· · ·⊗exm , 1 ≤ xi ≤ n, then to get the last term of
the above equation we used the fact that there are k1! · · · kn! permutations
σ ∈ Sm such that

ex1 ⊗ · · · ⊗ exm = ex
σ−1(1)

⊗ · · · ⊗ ex
σ−1(m)

.

Next we show that the above tuples S′ and S are unitarily equivalent.

Proposition 14. Let S′ = (S′
1, . . . , S

′
n) be the operator tuple on H′ as

introduced above and let S = (S1, . . . , Sn) be the standard q-commuting tuple

of operators on Γq(C
n). Then there exists a unitary U : H′ → H such that

US′
i = SiU for 1 ≤ i ≤ n.

Proof. Define U : P → Γq(C
n) as

U
( ∑

|k|≤s

bkz
k
)

=
∑

|k|≤s

bkS
kω

for any constants bk. As ‖zk‖ = ‖Skω‖ we have

∥∥∥
∑

|k|≤s

bkz
k
∥∥∥

2
=

∑

|k|≤s

|bk|2‖zk‖2 =
∑

|k|≤s

|bk|2‖Skω‖2 =
∥∥∥

∑

|k|≤s

bkS
kω

∥∥∥
2
.

So we can extend U linearly to H′ and it is a unitary. Moreover,
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US′
i

( ∑

|k|≤s

bkz
k
)

= U
(
zi

∑

|k|≤s

bkz
k
)

= qk1
1i · · · q

ki−1

i−1,iU
( ∑

|k|≤s

bkz
k+ei

)

= qk1
1i · · · q

ki−1

i−1,i

∑

|k|≤s

bkS
k+eiω = Si

( ∑

|k|≤s

bkS
kω

)

= SiU
( ∑

|k|≤s

bkz
k
)
,

i.e., US′
i = SiU for 1 ≤ i ≤ n.

For any complex number z, define the z-commutator of two operators
A,B as

[A,B]z = AB − zBA.

As S′ and S are unitarily equivalent and the same properties have been
proved for S′ in [BB], we have

Lemma 15.

(1) Each monomial Skω is an eigenvector for
∑
S∗

i Si − I, so the latter

operator is diagonal on the standard basis. In fact ,
n∑

i=1

S∗
i Si(S

kω) =

( n∑

i=1

‖Sk+eiω‖2

‖Skω‖2

)
Skω.

Also
∑
S∗

i Si − I is compact.

(2) The commutator [S∗
i , Si] is as follows:

[S∗
i , Si]S

kω =

(‖Sk+eiω‖2

‖Skω‖2
− ‖Skω‖2

‖Sk−eiω‖2

)
Skω when ki 6= 0.

If ki = 0, then

[S∗
i , Si]S

kω = S∗
i SiS

kω =
‖Sk+eiω‖2

‖Skω‖2
Skω.

(3) [S∗
i , Sj ]qij

is compact for all 1 ≤ i, j ≤ n.

3. Dilation of q-commuting tuples and the main theorem

Definition 16. Let T = (T1, . . . , Tn) be a contractive tuple on a Hilbert
space H. The operator ∆T = [I− (T1T

∗
1 + · · ·+TnT

∗
n)]1/2 is called the defect

operator of T and the subspace ∆T (H) is called the defect space of T. The

tuple T is said to be pure if
∑

α∈Λm Tα(Tα)∗ converges to zero in the strong
operator topology as m tends to infinity.

When
∑
TiT

∗
i = I, we have

∑
α∈Λm Tα(Tα)∗ = I for all m and hence

T is not pure. Let T be a pure tuple on H. Set H̃ = Γ (Cn) ⊗∆T (H), and



DILATIONS OF q-COMMUTING TUPLES 153

define an operator A : H → H̃ by

(3.1) Ah =
∑

α

eα ⊗∆T (Tα)∗h,

where the sum is taken over all α ∈ Λ̃ (this operator was used by Popescu
and Arveson in [Po3, Po4, Ar2] and in the q-commuting case by Bhat and
Bhattacharyya in [BB]). Then A is an isometry and Tα = A∗(V α ⊗ I)A for

all α ∈ Λ̃ (see [Po4]). Also the tuple Ṽ = (V1 ⊗ I, . . . , Vn ⊗ I) of operators

on H̃ is a realization of the minimal noncommuting dilation of T .

Lemma 17. Suppose T = (T1, . . . , Tn) is a pure q-commuting tuple on

a Hilbert space H. Then there exists a Hilbert space K such that (S1 ⊗ IK,
. . . , Sn ⊗ IK) is a dilation of T and dim(K) = rank(∆T ).

Proof. Let A be the operator introduced in (3.1). Let Bm denote the set
of all α ∈ Λm such that α1 ≤ · · · ≤ αm. Then for f ∈ H,

A(h) =
∞∑

m=0

∑

σ,α

eα
σ−1(1)

⊗ · · · ⊗ eα
σ−1(m)

⊗∆T (Tα
σ−1(1)

· · ·Tα
σ−1(m)

)∗h

where the second summation is over σ ∈ Sm and α ∈ Bm. Further

A(h) =
∞∑

m=0

∑

σ,α

eα
σ−1(1)

⊗ · · · ⊗ eα
σ−1(m)

⊗ (qσ(α))−1∆T (Tα1 · · ·Tαm)∗h

=
∞∑

m=0

∑

σ,α

qσ(α)eα
σ−1(1)

⊗ · · · ⊗ eα
σ−1(m)

⊗∆T (Tα1 · · ·Tαm)∗h

=
∞∑

m=0

∑

α∈Bm

(m!)Pmeα1 ⊗ · · · ⊗ eαm ⊗∆T (Tα1 · · ·Tαm)∗h.

So the range of A is contained in H̃q = Γq(C
n) ⊗ ∆T (H). This with the

above stated properties of A implies that S ⊗ IK is a dilation of T for some
space K with dim(K) = rank(∆T ).

In other words, now H can be considered as a subspace of H̃q. Moreover,

S̃ = (S1 ⊗ I, . . . , Sn ⊗ I), as a tuple of operators in H̃q, is the standard
q-commuting dilation of (T1, . . . , Tn). More abstractly we can get a Hilbert
space K such that H can be isometrically embedded in Γq(C

n) ⊗ K and
(S1 ⊗ IK, . . . , Sn ⊗ IK) is a dilation of T and span{(Sα ⊗ IK)h : h ∈ H,
α ∈ Λ̃} = Γq(C

n) ⊗K. There is a unique such dilation up to unitary equiv-
alence and dim(K) = rank(∆T ).

Let C∗(V ) and C∗(S) be the unital C∗-algebras generated by tuples V
and S (defined in the introduction) on the Fock spaces Γ (Cn) and Γq(C

n)

respectively. For any α, β ∈ Λ̃, V α(I−∑
ViV

∗
i )(V β)∗ is the rank one operator
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x 7→ 〈eβ, x〉eα, and so C∗(V ) contains all compact operators. Similarly we see
that C∗(S) also contains all compact operators on Γq(C

n). As V ∗
i Vj = δijI,

it is easy to see that C∗(V ) = span{V α(V β)∗ : α, β ∈ Λ̃}. As the qij-
commutators [S∗

i , Sj ]qij
are compact for all i, j, we can also get C∗(S) =

span{Sα(Sβ)∗ : α, β ∈ Λ̃}.
Consider a contractive tuple T on a Hilbert space H. For 0 < r < 1 the

tuple rT = (rT1, . . . , rTn) is clearly pure. So by (3.1) we have an isometry
Ar : H → Γ (Cn) ⊗∆r(H) defined by

Arh =
∑

α

eα ⊗∆r((rT )α)∗h, h ∈ H,

where ∆r = (I−r2 ∑
TiT

∗
i )1/2. So for every 0 < r < 1 we have a completely

positive map ψr : C∗(V ) → B(H) defined by ψr(X) = A∗
r(X ⊗ I)Ar, X ∈

C∗(V ). By taking the limit as r ր 1 (see [Po1-4] for details), we get a
unital completely positive map ψ from C∗(V ) to B(H) (Popescu’s Poisson
transform) satisfying

ψ(V α(V β)∗) = Tα(T β)∗ for α, β ∈ Λ̃.

As C∗(V ) = span{V α(V β)∗ : α, β ∈ Λ̃}, ψ is the unique such completely
positive map. Let the minimal Stinespring dilation of ψ be a unital ∗-
homomorphism π : C∗(V ) → B(H̃) where H̃ is a Hilbert space containing H,
and

ψ(X) = PHπ(X)|H ∀X ∈ C∗(V ),

and span{π(X)h : X ∈ C∗(V ), h ∈ H} = H̃. Let Ṽ = (Ṽ1, . . . , Ṽn) where

Ṽi = π(Vi) and so Ṽ is the unique standard noncommuting dilation of T and

clearly (Ṽi)
∗ leaves H invariant. If T is q-commuting, by considering C∗(S)

instead of C∗(V ), and restricting the range of Ar to Γq(C
n) ⊗∆T (H), and

taking limits as r ր 1 as before we get the unique unital completely positive
map φ : C∗(S) → B(H) (see also [BB]) satisfying

(3.2) φ(Sα(Sβ)∗) = Tα(T β)∗, α, β ∈ Λ̃.

Definition 18. Let T be a q-commuting tuple. Then we have a unique
unital completely positive map φ : C∗(S) → B(H) satisfying (3.2). Con-
sider the minimal Stinespring dilation of φ, so there is a Hilbert space H1

containing H and a unital ∗-homomorphism π1 : C∗(S) → B(H1) such that

φ(X) = PHπ1(X)|H ∀X ∈ C∗(S),

and span{π1(X)h : X ∈ C∗(S), h ∈ H} = H1. Let S̃i = π1(Si) and S̃ =

(S̃1, . . . , S̃n). Then S̃ is called the standard q-commuting dilation of T.

The standard q-commuting dilation is also unique up to unitary equiva-
lence as the minimal Stinespring dilation is unique up to unitary equivalence.
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Theorem 19. Let T be a pure tuple on a Hilbert space H.

(1) Then the maximal q-commuting piece Ṽ
q

of the standard noncom-

muting dilation Ṽ of T is a realization of the standard q-commuting

dilation of T q if and only if ∆T (H) = ∆T (Hq(T )). Moreover , if

∆T (H) = ∆T (Hq(T )) then rank(∆T ) = rank(∆T q) = rank(∆Ṽ ) =

rank(∆
Ṽ q).

(2) Let Ṽ be the standard noncommuting dilation of T . If rank(∆T )

and rank(∆T q) are finite and equal then Ṽ
q

is a realization of the

standard q-commuting dilation of T q.

Proof. The proof is similar to the proofs of Theorem 10 and Remark 11
of [BBD].

If the ranks of both ∆T and ∆T q are infinite then we cannot ensure

that ∆T (H) = ∆T (Hq(T )) and hence cannot ensure the converse of the

second part of the last theorem, as seen by the following example. For any
n ≥ 2 consider the Hilbert space H0 = Γq(C

n) ⊗M where M is of infinite
dimension, and letR = (S1⊗I, . . . , Sn⊗I) be a q-commuting pure n-tuple. In
fact, one can take R to be any q-commuting pure n-tuple on some Hilbert
space H0 with ∆R(H0) of infinite dimension. Suppose Pk = (pk

ij)n×n for
1 ≤ k ≤ n are n× n matrices with complex entries such that

pk
ij =

{
tk if i = k, j = k + 1,

0 otherwise,
for 1 ≤ k < n,

pn
ij =

{
tn if i = n, j = 1,

0 otherwise,

where tk’s are complex numbers satisfying 0 < |tk| < 1. Let H = H0 ⊕ C
n.

Set T = (T1, . . . , Tn) where Tk for 1 ≤ k ≤ n are operators on H defined by

Tk =

[
Rk

Pk

]
.

So T is a pure tuple, the maximal q-commuting piece of T is R, and Hq(T ) =

H0 (by Corollary 7). Here rank(∆T q) = rank(∆T ) = ∞ but ∆T (H) =

∆R(H0) ⊕ C
n. But the converse of Theorem 17(2) holds when the rank of

∆T is finite.

Consider the case when T is a q-commuting tuple on a Hilbert space H
satisfying

∑
TiT

∗
i = I. As C∗(S) contains the ideal of all compact operators,

by standard C∗-algebra theory we have a direct sum decomposition of π1

as follows. Set H1 = H1C ⊕H1N where H1C = span{π1(X)h : h ∈ H, X ∈
C∗(S) and X is compact} and H1N is the orthogonal complement of it.
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Clearly H1C is a reducing subspace for π1. Therefore π1 = π1C ⊕π1N where
π1C(X) = PH1C

π1(X)PH1C
and π1N(X) = PH1N

π1(X)PH1N
. Also π1C(X)

is just the identity representation with some multiplicity. In fact H1C can be
written as H1C =Γq(C

n)⊗∆T (H) (see Theorem 4.5 of [BB]) and π1N (X)=0

for compact X. But ∆T (H) = 0 and the commutators [S∗
i , Si] are compact.

So W = (W1, . . . ,Wn), Wi = π1N (Si), is a tuple of normal operators. It
follows that the standard q-commuting dilation of T is a tuple of normal
operators.

Definition 20. A q-commuting n-tuple T = (T1, . . . , Tn) of operators
on a Hilbert space H is called a q-spherical unitary if each Ti is normal and
T1T

∗
1 + · · · + TnT

∗
n = I.

If H is a finite-dimensional Hilbert space and T is a q-commuting tuple
on H satisfying

∑
TiT

∗
i = I, then T is a q-spherical unitary because in this

case each Ti is subnormal and all finite-dimensional subnormal operators
are normal (see [Ha]).

Theorem 21 (Main Theorem). Let T be a q-commuting contractive

tuple on a Hilbert space H. Then the maximal q-commuting piece of the

standard noncommuting dilation of T is a realization of the standard q-
commuting dilation of T .

Proof. Let S̃ denote the standard q-commuting dilation of T on a Hilbert
space H1 and we follow the notations as at the beginning of this section. As
S is also a contractive tuple, we have a unique unital completely positive
map η : C∗(V ) → C∗(S) satisfying

η(V α(V β)∗) = Sα(Sβ)∗, α, β ∈ Λ̃.

It is easy to see that ψ = φ ◦ η. Let the unital ∗-homomorphism π2 :
C∗(V ) → B(H2), for some Hilbert space H2 containing H1, be the min-
imal Stinespring dilation of the map π1 ◦ η : C∗(V ) → B(H1) such that
π1 ◦ η(X) = PH1π2(X)|H1 for X ∈ C∗(V ), and

span{π2(X)h : X ∈ C∗(V ), h ∈ H1} = H2.

We get the following commutative diagram:

C∗(V ) −→ C∗(S) −→ B(H)

B(H1)

B(H2)

�
�

�
�

�
�

�
�

��>

�
�

�> ↓

↓

η φ

π1

π2
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where the vertical arrows are compression maps, the horizontal arrows are
unital completely positive maps and the diagonal arrows are unital ∗-homo-
morphisms. Let V̂ = (V̂1, . . . , V̂n) where V̂i = π2(Vi). We now show that

V̂ is the standard noncommuting dilation of T. We will have this result if
we can show that π2 is a minimal dilation of ψ = φ ◦ η, as the minimal
Stinespring dilation is unique up to unitary equivalence. For this we first

show that S̃ = (π1(S1), . . . , π1(Sn)) is the maximal q-commuting piece of V̂ .
First we consider a particular case when T is a q-spherical unitary on

a Hilbert space H. In this case we prove that the standard q-commuting
dilation and the maximal q-commuting piece of the standard noncommut-
ing dilation of T is T itself. We have φ(Sα(I − ∑

SiS
∗
i )(Sβ)∗) = Tα(I −∑

TiT
∗
i )(T β)∗ = 0 for any α, β ∈ Λ̃. This forces φ(X) = 0 for any compact

operator X in C∗(S). Now as the qij-commutators [S∗
i , Sj ]qij

are all com-
pact we see that φ is a unital ∗-homomorphism. So the minimal Stinespring
dilation of φ is φ itself and the standard q-commuting dilation of T is T
itself. Next we show that the maximal q-commuting piece of the standard
noncommuting dilation of T is T. The presentation of the standard noncom-
muting dilation which we use is taken from [Po1]. The dilation space H̃ can

be decomposed as H̃ = H⊕ (Γ (Cn)⊗D) where D is the closure of the range
of the operator

D : H⊕ · · · ⊕ H︸ ︷︷ ︸
n copies

→ H⊕ · · · ⊕ H︸ ︷︷ ︸
n copies

where D is the positive square root of

D2 = [δijI − T ∗
i Tj ]n×n.

For convenience, at some places we identify H⊕ · · · ⊕ H︸ ︷︷ ︸
n copies

with C
n ⊗ H so

that (h1, . . . , hn) =
∑n

i=1 ei ⊗ hi. Then

(3.3) D(h1, . . . , hn) = D
( n∑

i=1

ei ⊗ hi

)
=

n∑

i=1

ei ⊗
(
hi −

n∑

j=1

T ∗
i Tjhj

)

and the standard noncommuting dilation Ṽi is

(3.4) Ṽi

(
h⊕

∑

α∈Λ̃

eα ⊗ dα

)
= Tih⊕D(ei ⊗ h) ⊕ ei ⊗

(∑

α∈Λ̃

eα ⊗ dα

)

for h ∈ H, dα ∈ D for α ∈ Λ̃, and 1 ≤ i ≤ n (Cnω ⊗ D has been identified
with D). We have

TiT
∗
i = T ∗

i Ti and TjTi = qijTiTj ∀1 ≤ i, j ≤ n.

Also by the Fuglede–Putnam theorem ([Ha], [Pu])

T ∗
j Ti = qijTiT

∗
j = qjiTiT

∗
j and T ∗

j T
∗
i = qijT

∗
i T

∗
j ∀1 ≤ i, j ≤ n.
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As
∑
TiT

∗
i = I, by direct computation D2 is seen to be a projection. So,

D = D2. Note that qijqij = 1, i.e., qij = qji. Then we get

D(h1, . . . , hn) =
n∑

i,j=1

ei ⊗ Tj(T
∗
j hi − qjiT

∗
i hj)(3.5)

=

n∑

i,j=1

ei ⊗ Tj(hij)

where hij = T ∗
j hi − qjiT

∗
i hj = T ∗

j hi − qijT
∗
i hj for 1 ≤ i, j ≤ n. Note that

hii = 0 and hji = −qijhij .

As clearly H ⊆ H̃q(V ), let y ∈ H⊥ ∩ H̃q(Ṽ ). We wish to show that
y = 0. Decompose y as y = 0 ⊕ ∑

α∈Λ̃
eα ⊗ yα with yα ∈ D. We assume

y 6= 0 and arrive at a contradiction. If for some α, yα 6= 0, then 〈ω ⊗ yα,

(Ṽ α)∗y〉 = 〈eα ⊗ yα, y〉 = 〈yα, yα〉 6= 0. Since (Ṽ α)∗y ∈ H̃q(Ṽ ), we can
assume ‖y0‖ = 1. Setting ỹm =

∑
α∈Λm eα ⊗ yα, we get y = 0 ⊕ (⊕m≥0ỹm).

Since D is a projection, its range is closed, and as y0 ∈ D, there exist
some (h1, . . . , hn) such that y0 = D(h1, . . . , hn). Let x̃0 = ỹ0 = y0 and
x̃1 =

∑n
i,j=1 ei ⊗ D(ej ⊗ hij). Further denoting

∏
1≤r<s≤m qiris by pm, for

m ≥ 1 let

x̃m =
n∑

i1,...,im−1,i,j=1

ei1 ⊗ · · · ⊗ eim−1 ⊗ ei

⊗D
(
ej ⊗ pm−1

(m−1∏

k=1

qikiqikj

)
T ∗

i1 · · ·T ∗
im−1

hij

)
.

So x̃m ∈ (Cn)⊗m ⊗D for all m ∈ N. As T is a q-commuting n-tuple and D
is a projection, we have

∑

1≤i<j≤n

(qijṼiṼj − ṼjṼi)qjihij

=
∑

1≤i<j≤n

(qijTiTj − TjTi)qjihij +
∑

1≤i<j≤n

D(ei ⊗ Tjhij − qjiej ⊗ Tihij)

+
∑

1≤i<j≤n

(ei ⊗D(ej ⊗ hij) − qjiej ⊗D(ei ⊗ hij))

= 0 +D
( n∑

i,j=1

ei ⊗ Tjhij

)
+

n∑

i,j=1

ei ⊗D(ej ⊗ hij)

= D2(h1, . . . , hn) +

n∑

i,j=1

ei ⊗D(ej ⊗ hij) = x̃0 + x̃1.
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So by Proposition 6, 〈y, x̃0 + x̃1〉 = 0. Next let m ≥ 2. Then
n∑

i1,...,im−1=1

Ṽi1 . . . Ṽim−1

{ n∑

i,j=1

(qijṼiṼj − Ṽj Ṽi)pm−1

(m−2∏

k=1

qikj

)

· (T ∗
i T

∗
i1 . . . T

∗
im−2

him−1j)
}

=
n∑

i1,...,im−1=1

ei1 ⊗ · · · ⊗ eim−1 ⊗
[ n∑

i,j=1

D
(
pm−1

(m−2∏

k=1

qikj

)
(qijei ⊗ TjT

∗
i

· T ∗
i1 · · ·T ∗

im−2
him−1j − ej ⊗ TiT

∗
i T

∗
i1 · · ·T ∗

im−2
him−1j)

)

+
n∑

i,j=1

pm−1

(m−2∏

k=1

qikj

){
qijei ⊗D(ej ⊗ T ∗

i T
∗
i1 · · ·T ∗

im−2
him−1j)

− ej ⊗D(ei ⊗ T ∗
i T

∗
i1 · · ·T ∗

im−2
him−1j)

}]

= −
n∑

i1,...,im−1=1

ei1 ⊗ · · · ⊗ eim−1

⊗
{ n∑

j=1

pm−1

(m−2∏

k=1

qikj

)
D(ej ⊗ T ∗

i1 · · ·T ∗
im−2

him−1j)
}

+
n∑

i1,...,im−1=1

ei1 ⊗ · · · ⊗ eim−1

⊗
{ n∑

i,j=1

ei ⊗D
(
ej ⊗ qijpm−1

(m−2∏

k=1

qikj

)
(T ∗

i T
∗
i1 · · ·T ∗

im−2
him−1j)

)

−
n∑

i,j=1

ei ⊗D
(
ej ⊗ pm−1

(m−2∏

k=1

qiki

)
(T ∗

j T
∗
i1 · · ·T ∗

im−2
him−1i)

)}

(in the term above, i and j have been interchanged in the last summation)

= −
n∑

i1,...,im−2,i=1

ei1 ⊗ · · · ⊗ eim−2 ⊗ ei

⊗
{ n∑

j=1

pm−2qiris

(m−2∏

k=1

qikiqikj

)
D(ej ⊗ T ∗

i1 · · ·T ∗
im−2

hij)
}

+
n∑

i1,...,im−1=1

ei1 ⊗ · · · ⊗ eim−1 ⊗
n∑

i,j=1

ei
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⊗D
(
ej

{
⊗ pm−1qij

(m−2∏

k=1

qikj

)
(T ∗

i T
∗
i1 · · ·T ∗

im−2
T ∗

j him−1

− qim−1jT
∗
i T

∗
i1 · · ·T ∗

im−2
T ∗

im−1
hj)

− pm−1

(m−2∏

k=1

qiki

)
(T ∗

j T
∗
i1 · · ·T ∗

im−2
T ∗

i him−1 − qim−1iT
∗
j T

∗
i1 · · ·T ∗

im−2
T ∗

im−1
hi)

)}

(in the term above, im−1 has been replaced by i in the first summation)

= −
n∑

i1,...,im−2,i,j=1

ei1 ⊗ · · · ⊗ eim−2 ⊗ ei

⊗ pm−2

(m−2∏

k=1

qikiqikj

)
D(ej ⊗ T ∗

i1 · · ·T ∗
im−2

hij)

+
n∑

i1,...,im−1,i,j=1

ei1 ⊗ · · · ⊗ eim−1 ⊗ ei

⊗ pm−1

(m−1∏

k=1

qikiqikj

)
D(ej ⊗ T ∗

i1 · · ·T ∗
im−1

hij)

= −x̃m−1 + x̃m.

Hence by Proposition 6, 〈y, x̃m−1 − x̃m〉 = 0. Further for all m ∈ N, ‖x̃m‖2

equals
〈 n∑

i1,...,im−1,i,j=1

ei1 ⊗ · · · ⊗ eim−1 ⊗ ei

⊗D
(
ej ⊗ pm−1

(m−1∏

k=1

qikiqikj

)
T ∗

i1 · · ·T ∗
im−1

hij

)
,

n∑

i′1,...,i′m−1,i′,j′=1

ei′1
⊗ · · · ⊗ ei′m−1

⊗ ei′

⊗D
(
ej′ ⊗ pm−1

(m−1∏

k′=1

qi′
k′

i′qi′
k′

j′

)
T ∗

i′1
· · ·T ∗

i′m−1
hi′j′

)〉

=
n∑

i1,...,im−1,i=1

〈 n∑

j=1

D
(
ej ⊗ pm−1

(m−1∏

k=1

qikiqikj

)
T ∗

i1 · · ·T ∗
im−1

hij

)
,

n∑

j′=1

D
(
ej′ ⊗ pm−1

(m−1∏

k′=1

qik′ iqik′j′
)
T ∗

i1 · · ·T ∗
im−1

hij′

)〉

=
n∑

i1,...,im−1,i=1

〈
D

( n∑

j=1

ej ⊗ pm−1

(m−1∏

k=1

qikiqikj

)
T ∗

i1 · · ·T ∗
im−1

hij

)
,
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n∑

j′=1

ej′ ⊗ pm−1

(m−1∏

k′=1

qik′ iqik′j′
)
T ∗

i1 · · ·T ∗
im−1

hij′

〉

=
n∑

i1,...,im−1,i=1

〈
pm−1

{ n∑

j,l=1

(m−1∏

k=1

qikiqikj

)
(ej ⊗ Tl(T

∗
l T

∗
i1 · · ·T ∗

im−1
hij

− qjlT
∗
j T

∗
i1 . . . T

∗
im−1

hil))
}
,

n∑

j′=1

pm−1

(m−1∏

k′=1

qik′ iqik′j′
)
ej′ ⊗ T ∗

i1 · · ·T ∗
im−1

hij′

〉

=
n∑

i1,...,im−1,i,j=1

〈
pm−1

(m−1∏

k=1

qikiqikj

) n∑

l=1

Tl(T
∗
l T

∗
i1 · · ·T ∗

im−1
hij

− qjlT
∗
j T

∗
i1 · · ·T ∗

im−1
hil), pm−1

(m−1∏

k′=1

qik′ iqik′j

)
T ∗

i1 · · ·T ∗
im−1

hij

〉

=

n∑

i,j=1

〈hij, hij〉 −
n∑

i1,...,im−1,i,j,l=1

〈Tim−1 . . . Ti1T
∗
j TlT

∗
i1 · · ·T ∗

im−1
hil, hij〉.

Define τ : B(H) → B(H) by τ(X) =
∑n

i=1 TiXT
∗
i for X ∈ B(H),

and τ̃m : Mn(B(H)) → Mn(B(H)) by τ̃m(X) = (τm(Xij))n×n for X =
(Xij)n×n ∈ Mn(B(H)). As τ is a contractive completely positive map, so
is τ̃m.

Hence we have τ̃m(D) ≤ I and

‖x̃m‖2 =
n∑

r=1

〈τ̃m−1(D)(hr1, . . . , hrn), (hr1, . . . , hrn)〉

≤
n∑

r=1

〈(hr1, . . . , hrn), (hr1, . . . , hrn)〉

=
n∑

r,i=1

〈hri, hri〉 =
n∑

i,r=1

〈T ∗
i hr − qirT

∗
r hi, T

∗
i hr − qirT

∗
r hi〉

=

n∑

i,r=1

{〈T ∗
i Tihr − T ∗

r Tihi, hr〉 − 〈T ∗
i Trhr − T ∗

r Trhi, hi〉}

=

n∑

r=1

〈
hr −

n∑

i=1

T ∗
r Tihi, hr

〉
−

n∑

i=1

〈 n∑

r=1

T ∗
i Trhr − hi, hi

〉

= 2

n∑

r=1

〈
hr −

n∑

i=1

T ∗
r Tihi, hr

〉
= 2〈D(h1, . . . , hn), (h1, . . . , hn)〉

= 2‖x̃0‖2 = 2.
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As 〈y, x̃0+x̃1〉 = 0 and 〈y, x̃m−1−x̃m〉 = 0 for m+1 ∈ N, we get 〈y, x̃0+x̃m〉
= 0 for m ∈ N. So 1 = 〈ỹ0, ỹ0〉 = 〈ỹ0, x̃0〉 = −〈ỹm, x̃m〉. By the Cauchy–
Schwarz inequality, 1 ≤ ‖ỹm‖ ‖x̃m‖ , which implies 1/

√
2 ≤ ‖ỹm‖ for m ∈ N.

This is a contradiction as y = 0⊕ (⊕m≥0ỹm) is in the Hilbert space H̃. This
proves the particular case.

Using arguments similar to those for Theorem 13 of [BBD], the proof of
the general case (that is, when Ti is not necessarily normal) and the proof
of “V̂ is the standard noncommuting dilation of T” both follow.

4. Distribution of Si + S∗
i and related operator spaces. Let R be

the von Neumann algebra generated by Gi = Si +S
∗
i for all 1 ≤ i ≤ n where

Si = PΓq(Cn)Vi|Γq(Cn)

as in Section 2. We are interested in calculating the moments of Si + S∗
i

with respect to the vacuum state and inferring about the distribution. The
vacuum expectation is given by ǫ(T ) = 〈ω, Tω〉 where T ∈ R. So,

ǫ((Si + S∗
i )n) = 〈ω, (Si + S∗

i )nω〉 =





0 if n is odd,

Cn/2 =
1

n/2 + 1

(
n

n/2

)
otherwise,

where Cn is the Catalan number (cf. [Com]). The above follows on observing
that forAk’s equal to Si or S∗

i the scalar product 〈ω,AnAn−1 · · ·A1ω〉 is 1 if n
is even and if for each k the number of Si’s inAkAk−1 · · ·A1 is greater than or
equal to the number of S∗

i ’s. In the remaining cases 〈ω,AnAn−1 · · ·A1ω〉 = 0.
So the expectation turns out to be the number of Catalan paths. This shows
that Si + S∗

i has semicircular distribution (cf. [Vo]). Further this vacuum
expectation is not tracial on R for n ≥ 2 as

ǫ(G2G2G1G1) = 〈ω, (S2 + S∗
2)(S2 + S∗

2)(S1 + S∗
1)(S1 + S∗

1)ω〉
= 〈ω, (S∗

2S
∗
2S1S1 + S∗

2S2S
∗
1S1)ω〉 = 1,

ǫ(G2G1G1G2) = 〈ω, (S2 + S∗
2)(S1 + S∗

1)(S1 + S∗
1)(S2 + S∗

2)ω〉
= 〈ω, (S∗

2S
∗
1S1S2 + S∗

2S1S
∗
1S2)ω〉 = 1/2.

We now investigate the operator space generated by the Gi’s, using no-
tions of the theory of operator spaces introduced by Effros and Ruan [ER].

Here we follow the ideas of [BS2] and [HP]. For some Hilbert space H̃ and

ai ∈ B(H̃), 1 ≤ i ≤ n, define

‖(a1, . . . , an)‖max = max
(∥∥∥

n∑

i=1

aia
∗
i

∥∥∥
1/2
,
∥∥∥

n∑

i=1

a∗i ai

∥∥∥
1/2)

.



DILATIONS OF q-COMMUTING TUPLES 163

Denote the operator space







r1 0 · · · 0
...

...
...

rn 0 · · · 0


 ⊕




r1 · · · rn

0 · · · 0
...

...

0 · · · 0




: r1, . . . , rn ∈ C





⊂Mn ⊕Mn

by En. Let {eij : 1 ≤ i, j ≤ n} denote the standard basis of Mn and
δi = ei1 ⊕ e1i. Then

∥∥∥
n∑

i=1

ai ⊗ δi

∥∥∥
B(H̃)⊗Mn

= ‖(a1, . . . , an)‖max.

Theorem 22. The operator space generated by Gi, 1 ≤ i ≤ n, is com-

pletely isomorphic to En.

Proof. It is enough to show that for ai ∈ B(H̃), 1 ≤ i ≤ n, we have

‖(a1, . . . , an)‖max ≤
∥∥∥

n∑

i=1

ai ⊗Gi

∥∥∥
H̃⊗Γq(Cn)

≤ 2‖(a1, . . . , an)‖max.

Note that
∥∥∥

n∑

i=1

ai ⊗ S∗
i

∥∥∥
H̃⊗Γq(Cn)

=
∥∥∥

n∑

i=1

(ai ⊗ 1)(1 ⊗ S∗
i )

∥∥∥
H̃⊗Γq(Cn)

≤
∥∥∥

n∑

i=1

aia
∗
i

∥∥∥
1/2

H̃

∥∥∥
n∑

i=1

SiS
∗
i

∥∥∥
1/2

Γq(Cn)
≤

∥∥∥
n∑

i=1

aia
∗
i

∥∥∥
1/2

H̃
.

Similarly

∥∥∥
n∑

i=1

ai ⊗ Si

∥∥∥
H̃⊗Γq(Cn)

=
∥∥∥

n∑

i=1

(1 ⊗ Si)(ai ⊗ 1)
∥∥∥
H̃⊗Γq(Cn)

≤
∥∥∥

n∑

i=1

a∗i ai

∥∥∥
1/2

H̃
.

So
∥∥∥

n∑

i=1

ai ⊗Gi

∥∥∥
H̃⊗Γq(Cn)

≤ 2‖(a1, . . . , an)‖max.

Let S denote the set of all states on B(H̃). Since ǫ(GiGj) = 〈ω, S∗
i Sjω〉 = δij

we get

∥∥∥
n∑

i=1

ai ⊗Gi

∥∥∥
2

H̃⊗Γq(Cn)
≥ sup

τ∈S
(τ ⊗ ǫ)

[( n∑

i=1

ai ⊗Gi

)∗
n∑

j=1

aj ⊗Gj

]

= sup
τ∈S

τ
( n∑

i=1

a∗i ai

)
=

∥∥∥
n∑

i=1

a∗i ai

∥∥∥.
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Similar arguments give

∥∥∥
n∑

i=1

ai ⊗Gi

∥∥∥
2

H̃⊗Γq(Cn)
≥

∥∥∥
n∑

i=1

aia
∗
i

∥∥∥.

Acknowledgements. The author is thankful to B. V. Rajarama Bhat
and Tirthankar Bhattacharyya for many helpful discussions.

REFERENCES

[Ag] J. Agler, The Arveson extension theorem and coanalytic models, Integral Equa-
tions Operator Theory 5 (1982), 608–631.

[AP1] A. Arias and G. Popescu, Noncommutative interpolation and Poisson trans-

forms, Israel J. Math. 115 (2000), 205–234.

[Ar1] W. Arveson, An Invitation to C∗-Algebras, Grad. Texts in Math. 39, Springer,
New York, 1976.

[Ar2] —, Subalgebras of C∗-algebras III , Multivariable operator theory, Acta Math.
181 (1998), 159–228.

[At] A. Athavale, On the intertwining of joint isometries, J. Operator Theory 23
(1990), 339–350.

[BB] B. V. R. Bhat and T. Bhattacharyya, A model theory for q-commuting contrac-

tive tuples, ibid. 47 (2002), 97–116.

[BBD] B. V. R. Bhat, T. Bhattacharyya and S. Dey, Standard noncommuting and

commuting dilations of commuting tuples, Trans. Amer. Math. Soc. 356 (2004),
1551–1568.

[Bh] T. Bhattacharyya, Dilation of contractive tuples: a survey, in: Survey of Anal-
ysis and Operator Theory, Proc. Centre Math. Appl. Austral. Nat. Univ. 40,
Camberra, 2002, 89–126.
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