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Abstract. We show that if a > 1 is any fixed integer, then for a sufficiently large
x > 1, the nth Cullen number Cn = n2n + 1 is a base a pseudoprime only for at most
O(x log log x/log x) positive integers n ≤ x. This complements a result of E. Heppner
which asserts that Cn is prime for at most O(x/log x) of positive integers n ≤ x. We also
prove a similar result concerning the pseudoprimality to base a of the Woodall numbers
given by Wn = n2n

− 1 for all n ≥ 1.

1. Introduction. Let a > 1 be an integer. A base a pseudoprime is
a composite integer n such that n | an − a. Note that the set consisting of
primes and base a pseudoprimes is of asymptotic density zero, with main
contribution coming from the primes (see Section 3 in [1]).

Distribution of pseudoprimes in various sequences has been considered
in [5]. Here, we consider this question for two classical sequences, namely
the sequence of Cullen numbers Cn = n2n + 1 and the sequence of Woodall

numbers Wn = n2n−1. We recall that C. Hooley [4] proves that Cn is prime
for at most o(x) of positive integers n ≤ x. This bound has been improved
to O(x/log x) by Heppner [3] (see also [7] and [8]). Results on the counting
function of the set of primes p ≤ x such that Cp is prime can be found in [3]
and [6]. All the results mentioned above for the sequence {Cn}n≥1 apply to
the sequence {Wn}n≥1 as well. We define

C(x) = {n ≤ x : Cn is a base a pseudoprime},

and show the following result which complements the aforementioned esti-
mates.

Theorem 1. We have the bound

#C(x) = O(x log log x/log x).

Our approach uses the method of Hooley [4] in the refined form given by
Heppner [3], but also includes some new arguments which allow us to study
pseudoprime values of Cn rather than prime values.
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Furthermore, one can easily check (see also the comment at the end of
Section 3 of Chapter 8 of [4]) that with the method of [4] one can study
primes in several more sequences, like n2n − 1 or 2n + n2. Quite on the
contrary, our treatment of pseudoprime values is quite specific to the se-
quence Cn. However, for the sequence of Woodall numbers, setting

W(x) = {n ≤ x : Wn is a base a pseudoprime},

we use even more ingredients and prove the following (somewhat weaker)
estimate.

Theorem 2. We have the bound

#W(x) = O(x(log log x)2/log x).

2. Notation. Throughout this paper, we use the Vinogradov symbols
≫ and ≪ with their usual meaning. We recall that the conditions U ≪ V
and V ≫ U are both equivalent to the assertion that U = O(V ). The
constants implied by them may depend on the base a.

For a positive real number x, we use log x for the maximum between the
natural logarithm of x and 1. Furthermore, for every positive integer k, we
write logk x for the k-fold iteration of log x.

The letters p, q and r always denote prime numbers, and the letters k
and n always denote positive integers.

3. Proof of Theorem 1. It is shown in Lemma 2 of [3] that for any
squarefree positive integer k, the number Nk(x) of solutions of the congru-
ence

Cn ≡ 0 (modk) with n ≤ x

satisfies the estimate

Nk(x) =
x

k
+ O(ϕ(k))(1)

(here, as usual, ϕ(k) stands for the Euler function of k).

Put

y = x1/10 and z = (log x)10.

The argument from the proof of Satz 1 in [3] (based on the estimate (1)
and on the Selberg sieve) shows that the cardinality of the set D(x) of those
n ≤ x such that Cn is free of primes from the interval [z, y] satisfies the
bound

#D(x) ≪ x
∏

z≤q≤y

(

1 −
1

q

)

+
∑

d<y2

µ2(d)3ω(d)ϕ(d),

where ω(d) is the number of distinct prime factors of d. Since ϕ(d)3ω(d) ≤
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d2 ≤ y4, we derive, by the Mertens formula, that

#D(x) ≪ x
log z

log y
+ y6 ≪

x log2 x

log x
.(2)

From now on, we deal only with those n ≤ x such that p |Cn for some
prime p ∈ [z, y]. As we have noticed, for each fixed prime p ∈ [z, y], there
are x/p + O(p) integers n ≤ x with Cn ≡ 0 (modp). Let us denote by ℓ(p)
the multiplicative order of a modulo p. Let E(x) be the set of n ≤ x which
are divisible by at least one prime p ∈ [z, y] with ℓ(p) ≤ p1/3. We then have

#E(x) ≪ x
∑

p∈[z,y]

ℓ(p)≤p1/3

1

p
+ y2.(3)

For a sufficiently large positive real t, putting

W =
∏

1≤s≤t1/3

(as − 1),

we see that
∑

p≤t

ℓ(p)≤p1/3

1 ≤ ω(W ) ≪ log W ≪ t2/3.

Therefore, by partial summation, we obtain
∑

p∈[z,y]

ℓ(p)≤p1/3

1

p
≪ z−1/3 ≪ (log x)−1.(4)

Thus, we derive from (3) that

#E(x) ≪ x(log x)−1.(5)

Let ‖k‖2 denote the 2-adic part of k, that is, ‖k‖2 = 2s, where the integer
s is defined by 2s | k and 2s+1 ∤ k.

Let F(x) be the set of n ≤ x which are divisible by at least one prime
p ∈ [z, y] with ‖p − 1‖2 ≥ p1/6. By partial summation

∑

p∈[z,y]

‖p−1‖2≥p1/6

1

p
≪

∑

k∈[z,y]

‖k‖2≥k1/6

1

k
≪ z−1/6 ≪ (log x)−1.

Thus, as before, we obtain

#F(x) ≪ x(log x)−1.

Finally, let G(x) = C(x) \ (D(x) ∪ E(x) ∪ F(x)).

We see that for every n ∈ G(x), there is a prime p ∈ [z, y] with p |Cn

such that ℓ(p) > p1/3 and ‖p − 1‖2 < p1/6.
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For every such p, we see that if n ∈ G(x), then, since p |Cn and Cn is a
base a pseudoprime, we have ℓ(p) |n2n. Thus, gcd(n, ℓ(p)) > p1/6 ≥ z1/6.

Hence, let us fix some integer d ∈ [z, y] and some prime p ∈ [z, y] with
d | p−1. Then a slight modification of the argument from Section 3 of Chap-
ter 8 of [4] which has led to a somewhat weaker version of (1), also implies
that there are x/dp+O(p/d) integers n ≤ x such that d |n and p |Cn. Indeed,
we need to count the number of positive integers m ≤ x/d with p |Cdm. Let
f = (p− 1)/d. Writing m = kf + r in the unique way with integers k and r
in the ranges 1 ≤ r < f , 0 ≤ k ≤ (x/d− r)/f = x/(p− 1)− r/f , we see that

0 ≡ Cdm ≡ (k(p − 1) + dr)2k(p−1)+dr + 1 ≡ (dr − k)2dr + 1 (mod p).

Thus, for every fixed value for r, the value of k is uniquely determined
modulo p, and thus takes no more than x/(p − 1)p + O(1) values in the
above range. Hence, the total number of pairs (k, r) (and therefore the total
number of m also) does not exceed

xf

(p − 1)p
+ O(f) =

x

dp
+ O

(

p

d

)

,

as claimed.
Summing up over all such possibilities for d and p, we get

#G(x) ≪ x
∑

d∈[z,y]

1

d

∑

p∈[z,y]
p≡1 (modd)

1

p
+ O(y2 log y).

Clearly,
∑

p∈[z,y]
p≡1 (mod d)

1

p
≪

∑

k≤y
k≡1 (mod d)

1

k
≪

log y

d
.

Hence,

#G(x) ≪ x log y
∑

d∈[z,y]

1

d2
+ O(y3) ≪ xz−1 log y + x1/5 log x ≪ x(log x)−1,

which finishes the proof.

4. Proof of Theorem 2. As in Lemma 2 of [3], for any squarefree
positive integer k, the number Mk(x) of solutions of the congruence

Wn ≡ 0 (modk) with n ≤ x,

satisfies the estimate

Mk(x) = x/k + O(ϕ(k)).(6)

We now set

y = x1/10 and z = exp(144(log2 x)2).
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As before, for a positive integer k coprime to a we use ℓ(k) to denote the
multiplicative order of a modulo k. Further, for an odd positive integer k,
we write κ(k) for the multiplicative order of 2 modulo k.

We define the set R(x) of n ≤ x such that Wn is

• either free of primes in the interval [z, y],
• or divisible by at least one prime p ∈ [z, y] with min{κ(p), ℓ(p)} ≤ p1/3.

As in the proof of Theorem 1 (see the bounds (2) and (5) on #D(x) and
#E(x), respectively), we obtain the bound

#R(x) ≪ x
log z

log y
≪

x(log2 x)2

log x
.(7)

We now set

w = exp(
√

log z) = (log x)12,

and use P (k) to denote the largest prime divisor of the positive integer k
with the convention that P (1) = 1.

We let S(x) be the set of n ≤ x such that n 6∈ R(x) and Wn is divisible
by at least one prime p ∈ [z, y] with min{P (κ(p)), P (ℓ(p))} ≤ w.

In particular, since n 6∈ R(x), we see that every “forbidden” prime factor
p of n is such that p ≡ 1 (modd) for some d ≥ p1/3 and P (d) ≤ w (we take
d = κ(p) if P (κ(p)) ≤ P (ℓ(p)) and d = ℓ(p) otherwise). By estimate (6), we
derive

#S(x) ≪ x
∑

z1/3≤d≤y
P (d)<w

∑

p<d3

p≡1 (mod d)

1

p
+ y3.

We now recall the bound
∑

p<t
p≡1 (mod k)

1

p
≪

log2 t

ϕ(k)
,(8)

which is uniform in 2 ≤ k ≤ t and which follows from the Brun–Titchmarsh
theorem after simple calculations (see, for example, inequality (3.1) in [2]).
Applying (8) with k = d and t = d3, and using the fact that ϕ(d)/d ≫
(log2 d)−1 ≫ (log2 x)−1 for d ∈ [1, x], we obtain

∑

z1/3≤d≤y
P (d)<w

∑

p<d3

p≡1 (modd)

1

p
≪

∑

z1/3≤d≤y
P (d)<w

log2 d

ϕ(d)
≪ (log2 x)2

∑

z1/3≤d≤y
P (d)<w

1

d
.(9)

For 2 ≤ s ≤ t, we write

Ψ(t, s) = #{n ≤ t : P (n) ≤ s}.
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It is known (see Chapter III in [9]) that the inequality

Ψ(t, s) ≪ t exp(−u/2), where u =
log t

log s
,(10)

holds uniformly in 2 ≤ s ≤ t. Furthermore, for s = w and t ∈ [z1/3, y], we
have

u =
log t

log s
≥

log(z1/3)

log w
=

1

3

√

log z = 4 log2 x.

It now follows easily from (10) by partial summation that
∑

z1/3≤d≤y
P (d)<w

1

d
≪ exp(−2 log2 x)

∑

d<x

1

d
≪ (log x)−1,

which together with the estimate (9) gives

#S(x) ≪ x(log2 x)2(log x)−1.(11)

We now let T (x) be the set of n ≤ x not in R(x) ∪ S(x) such that Wn has
a factor p ∈ [z, y] with q = P (ℓ(p)) ≥ w but κ(q) < q1/3. Fix a prime q ≥ w
with κ(q) < q1/3. For every p ∈ [z, y] with p ≡ 1 (mod q), the number of
n ≤ x such that p |Wn is x/p + O(p). Hence, summing up over all possible
values of q and p, we get

#T (x) ≤ x
∑

w≤q≤y

κ(q)<q1/3

∑

z≤p≤y
p≡1 (mod q)

1

p
+ O(y3) ≪ x log2 x

∑

w≤q≤y

κ(q)<q1/3

1

q
+ x3/10,

where in the above estimate we have applied again the bound (8) to esti-
mate the inner sums. An argument identical to the one which leads to the
estimate (4) (just change a to 2 in the two estimates preceding (4)) shows
that

∑

w≤q≤y

κ(q)<q1/3

1

q
≪ w−1/3,

therefore

#T (x) ≪ x(log2 x)w−1/3 + x3/10 ≪ x(log x)−1.(12)

For a prime p we define
qp = P (ℓ(p)).

Now let U(x) be the set of n ≤ x not in R(x) ∪ S(x) ∪ T (x) such that Wn

is a multiple of some prime p ∈ [y, z] with

gcd(lcm[κ(p), ℓ(p)], κ(qp)) ≥ κ(qp)
1/2.

Let p be such a “special” prime and let

dp = gcd(lcm[κ(p), ℓ(p)], κ(qp)).
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Thus, dp ≥ κ(qp)
1/2. Since n 6∈ R(x) ∪ S(x) ∪ T (x), we have

min{κ(p), ℓ(p)} ≥ p1/3 ≥ z1/3, qp ≥ w, κ(qp) ≥ w1/3.

Note that dp | lcm[κ(p), ℓ(p)] | p − 1. Furthermore, qp | ℓ(p) | p − 1, and since
dp |κ(qp) | qp−1, we deduce that dp and qp are coprime and are both divisors
of p − 1. Thus, dpqp | p − 1. Furthermore, we also have qp ≤ κ(qp)

3 ≤ d6
p.

We now fix d ≥ w1/6 and then a prime q ≤ d6 with q ≡ 1 (modd).
For primes p ∈ [z, y] with dp = d and qp = q we see that p ≡ 1 (moddq).

Furthermore, once p is fixed, the number of n ≤ x such that p |Wn is x/p +
O(p). Summing up first over all p, then over all q, and then over all d, we
get

#U(x) ≤ x
∑

w1/6≤d

∑

q≤d6

q≡1 (mod d)

∑

p≤y
p≡1 (mod dq)

1

p
+ O(y4).

Applying the estimate (8) twice to estimate the inner sums above and using
also the minimal order of the Euler function ϕ(d)/d ≫ (log2 x)−1 in the
interval [1, x], we get

∑

w1/6≤d

∑

q≤d6

q≡1 (mod d)

∑

p≤y
p≡1 (mod dq)

1

p

≪
∑

w1/6≤d

∑

q≤d6

q≡1 (mod d)

log2 y

qϕ(d)
≪

∑

w1/6≤d

log2 x

ϕ(d)

∑

q≤d6

q≡1 (mod d)

1

q

≪ log2 x
∑

w1/6≤d

log2 d

ϕ(d)2
≪ (log2 x)4

∑

w1/6≤d

1

d2
≪ (log2 x)4w−1/6.

Thus,

#U(x) ≪ x(log2 x)4w−1/6 + x2/5 ≪ x(log x)−1.(13)

Now let V(x) be the set of n ≤ x which do not belong to R(x) ∪ S(x) ∪
T (x) ∪ U(x) such that Wn is a base a pseudoprime.

Let p ∈ [z, y] be such that p |Wn. We may assume furthermore that

ℓ(p) ≥ p1/3, qp = P (ℓ(p)) ≥ w, κ(qp) ≥ q1/3
p ≥ w1/3,

and that
dp = gcd(lcm[κ(p), ℓ(p)], κ(qp)) < κ(qp)

1/2.

Let fp = κ(qp)/dp > κ(qp)
1/2 ≥ w1/6 and put mp = lcm[κ(p), ℓ(p)].

We now count the number of n ≤ x such that p |Wn and Wn is a base
a pseudoprime. Let α be some positive integer and assume that n ≡ α
(modmp). Then n ≡ α (modκ(p)), therefore 2n ≡ 2α (modp). Since p |Wn,
we get n2α ≡ 1 (modp), therefore n ≡ 2−α (modp). Hence, the residue of
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n modulo mp determines the residue of n modulo pmp. Furthermore, since
p |Wn | aWn − a, and p is large, we get p | aWn−1 − 1, therefore ℓ(p) |Wn−1.
Thus, qp | ℓ(p) | 2(n2n−1 − 1), and since qp > 2, we get qp |n2n−1 − 1. Since
qp | ℓ(p) |mp, it follows that n is already determined modulo qp, and, in
fact, n ≡ α (mod qp). The above congruence now implies that 2n−1 ≡ α−1

(mod qp), which determines uniquely n − 1 modulo ℓ(qp). Thus, n is deter-
mined modulo lcm[pmp, ℓ(qp)] = pmpfp. To summarise, the congruence class
of n modulo mp determines n modulo pmpfp.

For each congruence class modulo mp, there are therefore no more than
x/pmpfp +O(1) values of n in V(x). Summing up over all the residue classes
modulo mp, we deduce that the number of n ∈ V(x) which are multiples of
p does not exceed x/pfp + O(mp) ≤ x/pw1/6 + O(y). Summing up over all
the prime values of p ∈ [z, y], we get

#V(x) ≤
x

w1/6

∑

p∈[z,y]

1

p
+ O(y2) ≪

x log2 x

w1/6
+ x1/5 ≪ x(log x)−1,(14)

which together with the estimates (7), (11), (12) and (13) completes the
proof.

5. Remarks. As we have seen, the proof of Theorem 1 used the particu-
lar shape of the Cullen numbers, and in particular, the fact that Cn−1 = n2n

is a number which, multiplicatively, looks almost like a power of 2. On the
other hand, the proof of Theorem 2 does not use this structure and achieves
almost the same bound. It is now clear that the proof of Theorem 2 can be
adapted to study pseudoprimality of other numbers of this shape, such as
2n + n2 or, in general, 2nf(n) ± 1 or 2n ± f(n), where f(X) ∈ Q[X] is any
integer-valued polynomial with rational coefficients. In order to achieve this,
one first needs analogues of Lemma 2 from [3] for these more general Cullen
type numbers. We give no further details and leave this as an open problem.
Following Heppner [3] and Mil’uolo [6], it would also be of interest to study
the pseudoprimality of numbers of the type p2p ± 1, where p is prime. We
leave this as a problem for further study as well.
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E-mail: fluca@matmor.unam.mx

Department of Computing
Macquarie University

Sydney, NSW 2109, Australia
E-mail: igor@ics.mq.edu.au

Received 4 April 2006 (4747)


