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Abstract. We show that if a > 1 is any fixed integer, then for a sufficiently large
x > 1, the nth Cullen number C,, = n2"™ + 1 is a base a pseudoprime only for at most
O(zloglog z/log x) positive integers n < z. This complements a result of E. Heppner
which asserts that C), is prime for at most O(z/logz) of positive integers n < z. We also
prove a similar result concerning the pseudoprimality to base a of the Woodall numbers
given by W,, = n2" — 1 for all n > 1.

1. Introduction. Let a > 1 be an integer. A base a pseudoprime is
a composite integer n such that n|a™ — a. Note that the set consisting of
primes and base a pseudoprimes is of asymptotic density zero, with main
contribution coming from the primes (see Section 3 in [1]).

Distribution of pseudoprimes in various sequences has been considered
in [5]. Here, we consider this question for two classical sequences, namely
the sequence of Cullen numbers C, = n2™ 4+ 1 and the sequence of Woodall
numbers Wy, = n2"™ —1. We recall that C. Hooley [4] proves that C,, is prime
for at most o(z) of positive integers n < z. This bound has been improved
to O(z/log x) by Heppner [3] (see also [7] and [8]). Results on the counting
function of the set of primes p < x such that C), is prime can be found in [3]
and [6]. All the results mentioned above for the sequence {C), },>1 apply to
the sequence {W, },>1 as well. We define

C(x) ={n <z :C), is a base a pseudoprime},

and show the following result which complements the aforementioned esti-
mates.

THEOREM 1. We have the bound
#C(x) = O(xloglog z/log x).

Our approach uses the method of Hooley [4] in the refined form given by
Heppner [3], but also includes some new arguments which allow us to study
pseudoprime values of C,, rather than prime values.
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Furthermore, one can easily check (see also the comment at the end of
Section 3 of Chapter 8 of [4]) that with the method of [4 ] one can study
primes in several more sequences, like n2" — 1 or 2" + n?. Quite on the
contrary, our treatment of pseudoprime values is quite spe(nﬁc to the se-
quence C,. However, for the sequence of Woodall numbers, setting

W(z) = {n <z : W, is a base a pseudoprime},

we use even more ingredients and prove the following (somewhat weaker)
estimate.

THEOREM 2. We have the bound
#W(x) = O(x(loglogz)?/log z).

2. Notation. Throughout this paper, we use the Vinogradov symbols
> and < with their usual meaning. We recall that the conditions U <« V
and V' > U are both equivalent to the assertion that U = O(V). The
constants implied by them may depend on the base a.

For a positive real number x, we use log x for the maximum between the
natural logarithm of « and 1. Furthermore, for every positive integer k, we
write log; « for the k-fold iteration of log z.

The letters p, ¢ and r always denote prime numbers, and the letters k
and n always denote positive integers.

3. Proof of Theorem 1. It is shown in Lemma 2 of [3] that for any
squarefree positive integer k, the number Ny (x) of solutions of the congru-
ence

Cp=0 (modk) withn <z

satisfies the estimate

x
(1) Ni(e) = &+ O(p(k))
(here, as usual, p(k) stands for the Euler function of k).
Put
y=2"" and z= (logz)™.

The argument from the proof of Satz 1 in [3] (based on the estimate (1)
and on the Selberg sieve) shows that the cardinality of the set D(x) of those
n < x such that C), is free of primes from the interval [z,y] satisfies the

bound
#D(x) <z [] (1——) > ()3 Dp(d),

d<y?

where w(d) is the number of distinct prime factors of d. Since ¢(d)3*(® <
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d? < y*, we derive, by the Mertens formula, that

2) #D(z) < v 2BE | 6 o T108 T
logy log
From now on, we deal only with those n < x such that p|C), for some
prime p € [z,y]. As we have noticed, for each fixed prime p € [z,y], there
are z/p + O(p) integers n < z with C;, = 0 (modp). Let us denote by ¢(p)
the multiplicative order of a modulo p. Let £(z) be the set of n < x which
are divisible by at least one prime p € [z,y] with £(p) < p'/3. We then have

(3) #E(x) L x Z ! + 92

PE(2,y]
£(p)<p'/3

For a sufficiently large positive real ¢, putting

we see that
Y 1<w(W) <logW < /3,

p<t
£(p)<pt/3

Therefore, by partial summation, we obtain

1
(4) Z - < 2P < (logx) L
Pelz,y]
Up)<p'/®
Thus, we derive from (3) that
(5) #&(r) < z(logz) ™t

Let || k||2 denote the 2-adic part of k, that is, ||k||2 = 2°, where the integer
s is defined by 2% |k and 25! { k.

Let F(z) be the set of n < x which are divisible by at least one prime
p € [z,y] with ||p — 1|2 > p/®. By partial summation

1 1
Yoo e< ) o< 2 Y0 <« (logz)~".
velral P kel
lp=1l>p!®  [kf2>k/0

Thus, as before, we obtain
#F(z) < z(logz) L.
Finally, let G(z) = C(z) \ (D(z) U&(z) U F(x)).

We see that for every n € G(x), there is a prime p € [z,y] with p|C),
such that £(p) > p'/? and ||p — 1||2 < p*/S.
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For every such p, we see that if n € G(x), then, since p|C), and C,, is a
base a pseudoprime, we have ¢(p)|n2". Thus, gcd(n, £(p)) > p*/6 > 21/6,

Hence, let us fix some integer d € [z,y] and some prime p € [z,y] with
d|p—1. Then a slight modification of the argument from Section 3 of Chap-
ter 8 of [4] which has led to a somewhat weaker version of (1), also implies
that there are z/dp+O(p/d) integers n < x such that d|n and p | C,,. Indeed,
we need to count the number of positive integers m < x/d with p | Cgy,. Let
f=(p—1)/d. Writing m = kf + r in the unique way with integers k and r
intheranges 1 <r < f,0< k< (z/d—r)/f =x/(p—1)—r/f, we see that

0= Cym = (k(p — 1) + dr)2FP~DF" L1 = (dr — k)27 + 1 (mod p).

Thus, for every fixed value for r, the value of k is uniquely determined
modulo p, and thus takes no more than z/(p — 1)p + O(1) values in the
above range. Hence, the total number of pairs (k,r) (and therefore the total
number of m also) does not exceed

xf x D
o=z o(2)
(p—1p () dp d
as claimed.
Summing up over all such possibilities for d and p, we get

#G(x) <z Y % > %Jro(yuogy).

de[z,y] PE[z,y]
p=1 (modd)
Clearly,
1 1 logy
Y ole Yy lele
PE[z,y] k<y
p=1 (mod d) k=1 (mod d)
Hence,

1
#G(x) < xlogy Z 7 +0(y®) < 2zt logy + 2P logr < z(logz)™1,

delz,y]
which finishes the proof. =

4. Proof of Theorem 2. As in Lemma 2 of [3], for any squarefree
positive integer k, the number My (x) of solutions of the congruence

Wy, =0 (modk) withn <z,

satisfies the estimate

(6) My (z) = z/k + O(p(k))-

We now set

y=a"1% and 2z = exp(144(logy z)?).
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As before, for a positive integer k coprime to a we use ¢(k) to denote the
multiplicative order of @ modulo k. Further, for an odd positive integer k,
we write k(k) for the multiplicative order of 2 modulo k.

We define the set R(z) of n < z such that W, is

e cither free of primes in the interval [z, y],
e or divisible by at least one prime p € [z, y] with min{x(p), £(p)} < p'/3.

As in the proof of Theorem 1 (see the bounds (2) and (5) on #D(z) and
#E(x), respectively), we obtain the bound

logz  x(log,x)?

(M) #R(@) <@ logy log

We now set
w = exp(y/log z) = (log x)'?,

and use P(k) to denote the largest prime divisor of the positive integer k
with the convention that P(1) = 1.

We let S(x) be the set of n < x such that n ¢ R(x) and W), is divisible
by at least one prime p € [z, y] with min{P(x(p)), P(¢(p))} < w.

In particular, since n € R(x), we see that every “forbidden” prime factor
p of n is such that p = 1 (modd) for some d > p'/? and P(d) < w (we take
d = k(p) if P(k(p)) < P(¢(p)) and d = £(p) otherwise). By estimate (6), we

derive
1
#S(r) <z Z Z ~ 4y
dhicdey  p<d T
P(d)<w p=1(modd)

We now recall the bound

1 10g2 t
(8) Z - <K )
<~ p ek

p=1 (mod k)

which is uniform in 2 < k < ¢t and which follows from the Brun—Titchmarsh
theorem after simple calculations (see, for example, inequality (3.1) in [2]).
Applying (8) with k = d and t = d>, and using the fact that o(d)/d >
(logy d)™1 > (logy )~ for d € [1, 2], we obtain

9) Z Z 1<< Z IZ%Z)d < (logy z)? Z %

2/3<d<y  p<d? Z1/3<d<y 21/3<d<y
P(d)<w p=1(modd) P(d)<w P(d)<w

For 2 < s <t, we write

U(t,s) =#{n <t:P(n) < s}.
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It is known (see Chapter III in [9]) that the inequality
logt
(10) U(t,s) < texp(—u/2), where u = %,

holds uniformly in 2 < s < t. Furthermore, for s = w and ¢ € [z1/3

have
\/logz = 4log, x.

It now follows easily from (10) by partlal summation that

1 1 .
Z 1< exp(—2logy x) Z < (logx)™",

21/3<d<y d<x
P(d)<w

,yl, we

_ logt log 1/3

logs —  logw

which together with the estimate (9) gives

(11) #S5(z) < z(logy z)?(log z) L.

We now let 7 (z) be the set of n < z not in R(x) US(x) such that W, has
a factor p € [z,y] with ¢ = P(£(p)) > w but x(q) < ¢'/3. Fix a prime ¢ > w
with k(q) < ¢'/3. For every p € [z,y] with p = 1 (modg), the number of
n < x such that p| W, is /p + O(p). Hence, summing up over all possible
values of ¢ and p, we get

1 1
r)<uw Z Z ~+0(y®) < zlogy @ Z =430,
w<q<y 2<p<y p w<qg<y 1
k(q)<g*/3 p=1(modq) K(q)<q'/3

where in the above estimate we have applied again the bound (8) to esti-
mate the inner sums. An argument identical to the one which leads to the
estimate (4) (just change a to 2 in the two estimates preceding (4)) shows

that )
Yo —<w B
w<q<y e
r(q)<q/?
therefore
(12) #7 () < z(logy 2)w™ /3 + 2310 <« z(log ).
For a prime p we define
dp = P(e(p))

Now let U(x) be the set of n < z not in R(z) US(x) U T (z) such that W,
is a multiple of some prime p € [y, z] with

ged(lem(k(p), £(p)], £(ap)) > K(gp)"/.
Let p be such a “special” prime and let

dp = ged(lem[x(p), £(p)], £(gp))-
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Thus, d, > #(gy)'/?. Since n & R(x) US(x) U T (z), we have
min{r(p), £(p)} > p'* > 2% gy >w,  K(gy) = w/.

Note that dj |lem[x(p),¢(p)] | p — 1. Furthermore, g, | £(p) | p — 1, and since
dy | k(gp) | gp —1, we deduce that d, and g, are coprime and are both divisors
of p — 1. Thus, dpgy, | p — 1. Furthermore, we also have g, < x(gp)3 < dg.
We now fix d > w'/% and then a prime ¢ < d° with ¢ =1 (mod d).
For primes p € [z, y] with d;, = d and ¢, = q we see that p =1 (mod dg).
Furthermore, once p is fixed, the number of n < x such that p| W, is z/p +
O(p). Summing up first over all p, then over all ¢, and then over all d, we

get
1
SETS JHED DEEED DRI SYI)
wl/6<d q<d® P<y p
g=1(modd) p=1(moddg)

Applying the estimate (8) twice to estimate the inner sums above and using
also the minimal order of the Euler function o(d)/d > (logyz)~! in the
interval [1, z], we get

)DEED DEND SR

wl/6<d  q<db p<y
g=1(mod d) p=1(moddg)

<%, T ezt s

qp(d)

wl/6<d  ¢<dS wl/6<d q<d®
¢=1(modd) ¢=1 (modd)
log, d 1 _
< logy Z ¢<;)2 < (logy z)* Z 7 < (logy ) w18,
wl/6<d wl/6<d
Thus,
(13) #U () < x(logy z) w0 + 2%/° <« z(logz)~".

Now let V(x) be the set of n < z which do not belong to R(z) U S(z) U
7 (x) UU(x) such that W, is a base a pseudoprime.
Let p € [z,y] be such that p| W,,. We may assume furthermore that

Up) >p'®, g =PUp) >w, klg) >/ >w'?
and that
dp = ged(lem(k(p), £(p)], 5(qp)) < Klgp)"/.
Let fp, = k(qp)/dp > /@((]p)l/2 > w!/% and put my = lem[k(p), £(p)].
We now count the number of n < x such that p|W,, and W, is a base
a pseudoprime. Let a be some positive integer and assume that n = «

(modmy). Then n = o (mod k(p)), therefore 2" = 2% (mod p). Since p | W,
we get n2% = 1 (modp), therefore n = 27 (modp). Hence, the residue of



42 F. LUCA AND I. E. SHPARLINSKI

n modulo m,, determines the residue of n modulo pm,. Furthermore, since
p| W, |a"" — a, and p is large, we get p|a"»~! — 1, therefore ¢(p) | W, —1.
Thus, g, | £(p) | 2(n2"~! — 1), and since g, > 2, we get g, |n2" ! — 1. Since
qp | £(p) | mp, it follows that n is already determined modulo gp, and, in
fact, n = o (modgp). The above congruence now implies that ol = o1
(mod ¢p), which determines uniquely n — 1 modulo ¢(g,). Thus, n is deter-
mined modulo lem[pmy, £(g,)] = pmy, fp. To summarise, the congruence class
of n modulo m,;, determines n modulo pmy, fp.

For each congruence class modulo m,, there are therefore no more than
x/pmy, fp+O(1) values of n in V(z). Summing up over all the residue classes
modulo m,, we deduce that the number of n € V(z) which are multiples of
p does not exceed x/pf, + O(m,) < z/pw'/® + O(y). Summing up over all
the prime values of p € [z,y], we get

1 1
(14) #V(z) < ﬁ > ot O(y*) < xﬁim + 2'/° <« z(logx) 7!,
pE[z,y

I }

which together with the estimates (7), (11), (12) and (13) completes the
proof. =

5. Remarks. As we have seen, the proof of Theorem 1 used the particu-
lar shape of the Cullen numbers, and in particular, the fact that C,—1 = n2"
is a number which, multiplicatively, looks almost like a power of 2. On the
other hand, the proof of Theorem 2 does not use this structure and achieves
almost the same bound. It is now clear that the proof of Theorem 2 can be
adapted to study pseudoprimality of other numbers of this shape, such as
2" 4+ n? or, in general, 2" f(n) + 1 or 2" & f(n), where f(X) € Q[X] is any
integer-valued polynomial with rational coefficients. In order to achieve this,
one first needs analogues of Lemma 2 from [3] for these more general Cullen
type numbers. We give no further details and leave this as an open problem.
Following Heppner [3] and Mil’uolo [6], it would also be of interest to study
the pseudoprimality of numbers of the type p2P + 1, where p is prime. We
leave this as a problem for further study as well.
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