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ON SOME NOTIONS OF CHAOS IN DIMENSION ZERO

BY

RAFAL PIKULA (Columbus, OH)

Abstract. We compare four different notions of chaos in zero-dimensional systems
(subshifts). We provide examples showing that in that case positive topological entropy
does not imply strong chaos, strong chaos does not imply complicated dynamics at all,
and w-chaos does not imply Li—Yorke chaos.

1. Introduction. In recent years the notion of chaos has become a sub-
ject of interest and a variety of definitions meant to formalize this notion have
been introduced by several authors. First results concerning chaotic behav-
ior have been obtained by A. N. Sharkovsky (well known theorem about the
order of periods of a map from the closed interval into itself, see [S]) and by
Tien-Yien Li and James A. Yorke in [LY]. Many properties of chaotic sys-
tems have been investigated mainly in the case of compact interval, where
some notions of chaos coincide (see [SS| and [Li| for equivalence of strong
chaos, w-chaos and positive topological entropy; see also [Lal|, [La2|, [SSt]
for other properties of w-chaotic maps). However, already in the case of tri-
angular maps of the square into itself some of the above equivalences no
longer hold (see [FP]). Examples of strongly chaotic systems with zero topo-
logical entropy are also known for zero-dimensional systems (see |LF]). The
importance of zero-dimensional dynamics comes from the fact that Cantor
systems are often used in constructions of higher dimensional maps to ensure
positive entropy or other chaotic features.

One should also mention that chaos has been studied in general spaces;
for instance, in [BGKM] the authors have affirmatively answered the long-
standing open question whether positive topological entropy implies Li—
Yorke chaos.

In this paper we provide examples to enlarge the collection of implica-
tions, between various notions of chaos, which fail in dimension zero.

2. Terminology and notation. By a dynamical system we mean a
pair (X, f), where X is a compact metric space with metric d, and f is a
continuous map from X to itself. A map ¢ : (X, f) — (X', f"), where ¢ is
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a continuous function from X onto X’ such that f'op = @ o f, is called a
factor map. The system (X, f) is then called an extension of (X', f'), and
(X', f") is a factor of (X, f).

A set B C X is called invariant under f if f(B) C B. A set M C X
is said to be minimal if it is nonempty, closed and invariant under f and
it does not contain any proper subsets which satisfy these three conditions.
A system (X, f) is minimal if X is a minimal set.

For € X, by the orbit of 2 we mean the set O(x) := {f*(z) : k > 0},
while its closure O(x) is called the orbit closure. The w-limit set of x € X is
the set

W(I',f) = {y e X: El{nk}zo:l,nk—)oo fnk (ZE) - y}?
denoted also by w(x) if it causes no ambiguity.
A point z is said to be recurrent for f if x € w(x, f).
A point z is said to be almost periodic for f if
v€>0 E|l<;>[) vqZO EIq§r<k—|—q d(fr(x)vx) <e.
The following fact is well known.
Fact 2.1. O(z) is minimal if and only if x is an almost periodic point.
The following definition is based on ideas in [LY].

DEFINITION 2.1. A system (X, f) is said to be chaotic in the sense of
Li—Yorke if there exists an uncountable set D C X such that for any different
points z,y € D,

(1) limsupd(f"(z), f*(y)) >0 (z,y are not asymptotic),

n—oo
(2) liminfd(f"(x), f"(y)) =0 (z,y are prozimal).
n—oo
A much more restrictive version of chaotic behavior was introduced by
Schweizer and Smital in [SS].

DEFINITION 2.2. A system (X, f) is said to be strongly chaotic if there
exists an uncountable set D C X such that for any different points x,y € D,

(1) ¥iso limsup * zlot (A7), () =1

(2) 3o hmmf—zlot (d(f* (@), F5(y))) = 0

k=1
Another definition of chaos was given by Shihai Li in [Li].

DEFINITION 2.3. A system (X, f) is said to be w-chaotic if there exists
an uncountable set D C X such that for any different points x,y € D,

(1) w(z, f) \ w(y, f) is uncountable,
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(2) w(z, f) Nw(y, f) is nonempty,
(3) w(x, f) is not contained in the set of periodic points.

Let X = {0,1}". Define the metric d : ¥ x ¥ — R as follows:
0 ifx =y,

d@,y) = { 1/k ifx #yand k =min{n >1:z(n) # y(n)}.
Define o : X — X' by
o(x(D)xz(2)z(3)...) =x(2)x(3)....

This continuous map is called the shift on .
If X C X is closed, nonempty and shift-invariant, then (X, o|x) is called
a subshift or a symbolic system on two symbols.
If A=a(l)...a(n) € {0,1}", then A is called a block and |A| :=n de-
notes the length of A. If we have two blocks A = a(1)...a(n)and B =b(1)...
..b(m) then we can form another block by concatenation,

AB :=a(l)...a(n)b(1)...b(m).
We say that a block B occurs in some block A if A= CBD, where C' and
D are some blocks (maybe empty), and we denote it by B < A. A block A
occurs in a point x € X if it occurs in some initial block of z.

Let X C X. For given n > 1 denote by @, (X) the number of blocks of
length n occurring in X, i.e., the cardinality of the set

{A=a(l)...a(n) : there is some z € X such that A < z}.

Let (X, o) be a symbolic system. Let h(X) denote the topological entropy
(for the definition see [W]). Then we have the following well known lemma

(WD
LEMMA 2.1. Let (X,0) be a subshift. Then

h(X) = lim 10g Qn(X)

n—oo n
Let T = [0, 1] with the endpoints identified and let Sg : T — T, where 3 is
an irrational number from the interval (0, 1), be given by the formula S3(t) :=
t+ [ (mod1). Define ¢, 5(t)(n) = 1)9,q)(S5(t)), where a € (0,1). Then ¢4 g
is a map from T to X. Now we can define a system (M, g,0) := (pq,8(T),0)
which we will call a (two-parameter) Sturmian system. The following is a
basic fact about Sturmian systems.

FAacT 2.2. For every a € (0,1) and every irrational number 5 € (0,1)
the system (M, g, o) is minimal and it is an extension of (T, Sg).

3. Some technical lemmas. In this section we present a number of
lemmas needed later on. The first one is a slight generalization of Lemma 2.2
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in [Li]. Let a = a(1)a(2)...,b = b(1)b(2)... € X. Define the following
operation:
aob:=a(1)b(1)a(1)a(2)b(1)b(2)a(l)a(2)a(3)b(1)b(2)b(3) ....
LEMMA 3.1. Let a = a(1)a(2)...,b=b(1)b(2)- - € X. Then

0(a) U O() U {a(i) ...a(j)b(1)b(2) ... : j =i > 1}
U{b(i)...b(j)a(L)a(2)...:j =1 > 1}
Moreover, if a and b are recurrent points then in (2) equality holds.

Proof. Tt is obvious that a,b belong to w(a ¢ b). This set is closed and
invariant, therefore it contains O(a) and O(b), so (1) is proved.

Let z € w(a ¢ b). There exists a sequence {n;} of positive integers such
that ny — oo and 0" (a ¢ b) — z. It is easy to see that, depending on
whether the initial block of 6™ (a©b) belongs to a or to b for infinitely many
indices k, and whether its length is bounded or not,  has one of the four
possible forms:

x=ua(i)...a(j)b(1)b(2)b(3)..., where j >i>1,
x="0b(i)...b(j)a(l)a(2)a(3)..., where j >i>1,
z € 0(a) or z € Ob).

This proves (2).

Suppose that a is a recurrent point. There exists a sequence {ny} of
positive integers such that ny — oo and ¢"*(a) — a, which means that any
initial block from a occurs in @ infinitely many times.

Let x = a(i)...a(7)b(1)b(2) ... for some j > i > 1. By the recurrence
property of a the block a(l)...a(j), and so a(7)...a(j), occurs in a ¢ b
infinitely often, followed by ever longer blocks b(1)...b(n). Therefore, x €
w(a o b). The proof for x = b(7)...b(j)a(1)a(2)... is analogous. =

Let (Z, f) be a topological dynamical system, let A be a closed subset
of Z, and let z € Z. We say that a point x € X' is A-compatible with z if
Vien fF(2) € Int(A) = 2(k) =1 and f¥(2) € A° = z(k) = 0.
Let X4 = {x : there exists z € Z such that x is A-compatible with z}.
Then (X 4,0) is a subshift.

LEMMA 3.2. Let Ay, A C Z be closed subsets of Z such that A, — A
and AS — A° in the Hausdorff metric. Then

(e e XNe o]

N U X4, € Xa.

k=1n=k
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Proof. Let d, dist, dy denote the metric in Z, the distance between a
point and a set in Z, and the Hausdorff metric, respectively.

Let z; € XAnj, where n; — oo and z; — x € X as j — oco. We want to
show that x € X 4. Let z; be a point such that x; is An].—compatible with
zj. We may assume that z; — z € Z. We will show that x is A-compatible
with z (this fact will be used later in the proof of Lemma 3.3).

We will prove only the first implication in the definition of A-compat-
ibility (the proof of the other one is analogous). Let k& be an integer such
that f*(z) € Int(A), let & = dist(f*(2), A°) > 0 and let jy be an integer such
that for every j > jo the following conditions are satisfied:

1) d(f(z5), £4(2) < 2/3,
2) dH(A%J,AC) < 8/3

Assume that there exists j; > jo such that for all j > j; we have
FH(z) € Ag .

Using 1) we conclude that dist(f*(z;), A°) > 2, hence di(f*(z;), A°) > Ze,
but using 2) we deduce that dy(f*(z;), A¢) < dH(A%j,AC) < ¢/3, which
gives us a contradiction. Therefore, for infinitely many j > jo we have

dist(*(2), 5,) > 0

Thus, f*(zj,,) € Int(Ay, ) for some sequence {jm}, which implies that
x;,, (k) = 1. Since xj,, — x, we obtain z(k) = 1. =

Let oy, € (0,1) and let 8 be an irrational number. Let I, = [0, q].
Notice that the sets I, , I5, tend to I, , IS, respectively, in the Hausdorff
metric whenever oy, tends to a. We will con31der the Sturmian system M, g

and the slightly larger system Ma,ﬁ obtained as the set X of all sequences
I,-compatible with elements of T with respect to the rotation by 3. The
system (Mag, ) is an extension of (T, Sg); the factor map associates to

each point a € M, 8 the unique z € T with which a is compatible. Each z in
T has one, two or four preimages depending on whether the orbit of z passes
through none, one or both endpoints of I,,. Since these preimages differ from
each other at at most two coordinates, they are asymptotic. Clearly the set
of points having more than one preimage is countable. It is also easily seen
that M, 3 C Maﬁ, and that every point a € Maﬁ satisfies 0" (a) € M, g for
some integer n.

LEMMA 3.3. Let o, € (0,1) and o, — «. Let a € My, g be an
extension of z, € T. Then

khm ap=a = a¢& Mag, hm 2z = z and a is an extension of z.
— 00
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__ Proof. This follows directly from Lemma 3.2: in our setup a point a;, €
M,, g is compatible with z;, € T if and only if it is its extension. The fact
that the sequence {zx} converges in T follows from the proof of Lemma 3.2:
a is an extension of any accumulation point of the sequence {z}, so such an
accumulation point is unique. m

The last lemma in this section is taken from [LF, Lemma 5].

LEMMA 3.4. There exists an uncountable subset E C X such that for any
different points x = x(1)x(2) ..., y = y(1)y(2) ... in E we have z(n) = y(n)
for infinitely many n and x(m) # y(m) for infinitely many m.

4. The main results. In this section we give examples of dynamical
systems in which one kind of chaotic behavior does not imply another.

The first example based on Example 3.4 in [GW] shows that there exist
positive entropy systems which are not strongly chaotic.

EXAMPLE 4.1. Let p > 3 be an integer. Let w be a point from (X, 0)
such that w(n) = 0 for every positive integer n from the set

o o
A= U U {mpk,mpk—i—l,...,mpk—i—k—l},
k=1m=1
and w(n) =1 for n & A.
First of all, notice that since mp* +i = (mpF=""1p+! +i for i < k, the
set A may be rewritten as

oo [e.e] oo

A= YUt +E-13=J{mp* +E-1:me N}
k=1m=1 k=1

Thus, for n € N, we have

#{jeA:jgn}<§: Hlje{mp! +k—-1:meN}:j<n}

n n
k=1

[e.9]
1 1

The above inequality implies that the number of zeros which occur in
the block w(1)...w(n) is smaller than n/(p — 1), for n € N. Thus for a
chosen j € N there are infinitely many blocks, among the blocks of the form
w(mp?) ... w((m+ 1)p’ — 1), where m € N, in which the number of zeros is
not greater than p//(p — 1).

We will now modify w by changing some of its ones to zeros. Firstly,
notice that among the above blocks of length p/ with no more than p’//(p—1)
zeros, infinitely many must be identical. Therefore, we may choose some finite

but large enough number of these blocks (e.g. 2 to the power (1—-1/(p—1))p’)
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and change some of its ones to zeros so that after this modification all these
blocks are distinct. Secondly, notice that the above change does not interfere
with the property w(n) = 0 for n € A and that it affects only some initial
block of w, so there is enough “free space” for further modifications in the
next steps, which are, in fact, inductive steps with respect to j.

Finally, we obtain an estimation of Q,;({w}), the number of blocks of
length p/ which occur in w after all the above modifications:

Qpi({w}) > 207 V=D for j e N.

Let (X,0) := (O(w), o). Applying Lemma 2.1 we can estimate the topo-
logical entropy:

p J—
Now we will show that for any two different points in (X, o) the second
condition in the definition of strong chaos is not satisfied. Recall that this
condition is

h(X) > (1 - %) log(2) > 0.

R
>0 liminf ~ kZ 1o, (d(o"(2), " (1)) =0,
=1
where z,y (x # y) belong to some uncountable set D C X.
Let z and y be any two distinct points in X and let ¢ € (0,1). Let
ko = [1/t] + 1. From the construction of (X, o) we can deduce the following
facts:

1) in x there is a block of zeros of length k¢ occurring periodically with
period pko.

2) in y there is a block of zeros of length p*0 4 2kq occurring periodically
with period p?"°+2k0 which is a multiple of pko.

The above properties imply that there exists an increasing sequence
{ni}372, of positive integers, which is, in fact, an arithmetic progression with
difference ppkO +2ko | such that the initial blocks of both points o™ (), " (y)
consist of at least kg consecutive zeros. Thus

1
d(c™ (z),0™(y)) < o < t for each k > 1.
0

Hence

> 0,

S k k 1
1ﬂg}fggl[0,t)(d(0 (x),0%(y))) = PP+ 2ko

which shows that (X, o) is not strongly chaotic.

The above example combined with the fact that strong chaos does not
imply positive topological entropy (|LF], see also Example 4.2 below) shows
that these two notions are independent in dimension zero.
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The aim of the next example (whose idea is based on [LF]) is to construct
a system which is formally strongly chaotic, but whose dynamics is almost
trivial; every orbit “bounces” back and forth between two fix-points or “sinks”
in one of them. Not only does this system have zero topological entropy, but
its complexity is easily seen to be linear.

EXAMPLE 4.2. Define ¢ : ¥ — X by ¢(x) = B1B;... for all z € X,
where

00...0 if (i) =0,
——

22" times .
;= for i = e
Bi=Y1u.1 itey=1, Ori=L2

W—/

22" times
By Lemma 3.4 there exists an uncountable set E such that for any distinct
points z = z(1)z(2) ...,y = y(1)y(2) ... € E, we have x,, = y,, for infinitely
many n and x,, # Yy, for infinitely many m. Since ¢ is injective, the set
©(F) is uncountable. Define

X = O(¢(x)).

zeX

We have ¢p(E) C X and it is easy to see that every element of X is either
eventually constant or it is built of constant blocks (alternately blocks of
zeros and blocks of ones) whose lengths tend to infinity. Thus every w-limit
set consists of one or two fix-points and at most countably many points which
become fixed after a finite number of iterations. Obviously the entropy of
(X, 0) is zero. We will show that this is a strongly chaotic system. Indeed, it
is enough to show that any two distinct points in ¢(F) satisfy the conditions
from the definition of strong chaos.

Let a = AjA2..., b = B1Bs... be points in ¢(E), where A;, B; are
blocks of consecutive zeros or ones of length 22°. By the definition of ¢(FE)
there exist increasing sequences {p;} and {g¢;} of positive integers such that
Ap, = B,,, and A, is the negation of B, for all 7 € N.

Let rp = Z?:l 2%. Then the first r,,_1 symbols of ¢ (a) and o™ (b)
are the same for all m; such that r,,_; < my <r,, —7p,_1 and the first ry,_1
symbols of ¢™2(a) and ¢"2(b) are all distinct for all mg such that ry, 1 <
mg < rg, — Tq;—1 (there are such mi, my because r, < %Tm-l for n € N).
Thus, for given 0 < ¢ < 1, the distance between ¢ (a) and o™ (b) is not
greater than 1/r,,_1 <t for r,,_1 < mq < rp, — 1p,—1, provided p; is large
enough. Therefore the expression

Tp; —Tp;—1

LS o™ (@), 0™ (1))

rpi - Tpi_l mi=1
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is bounded from below by

Tp; —Tp;—1

pg
Y L™ (@) o™ (b)) 2 B Ly

Ty, — Tp, — Ty, — Tp.—
pi pi—1 mlszl-—l‘i’l pi pi—1

which means that

lim su 1 O'j a),d’ (b)) =1,

nﬁoopnz [Ot (a),0?(b)))

so the first condition in the definition of strong chaos is satisfied.
Furthermore, for all mo such that rq,_1 < mo < ry —rg,—1, the distance

between ¢™2(a) and ¢"™2(b) equals 1 and is greater than ¢. Therefore the

expression

1 Tg;—Tq;—1 - N
U Z 1[0,t)<d(0 *(a),0™2(b)))
r‘]i rQi_l mo=1
is bounded from above by
R m Tqi—1
e 2 Hop (™ (@), 0™ 1) < 0,
Tq — Tqi—1
mg 1

which means that

| n ) )
timinf 3" 1j0(d(e (@), 0/ () = .

so the second condition in the definition of strong chaos is satisfied.

The last example of this paper is the construction of an w-chaotic system
which is not chaotic in the sense of Li—Yorke. Below we use the notation
introduced prior to Lemma 3.3.

EXAMPLE 4.3. Let J := [r,s] where 0 < f <r < s < 1. For a € J let
bo € Mg 3 be an extension of « and let a, € M, g be an extension of 0 (we
emphasize that, in spite of similar notation, the points b, and a, come from
different systems and extend different points of T). Define

Ca =0y Oby, W := U O(cq).
acJ

Firstly, we show that (W, o) is an w-chaotic system. Let aj, 0 € J,
a1 # ao. Using Lemma 3.1 we obtain

lw(cay) \ wicay)| > |Moc17ﬁ| >Ny,  w(cay) Nw(cay) D Mg g # 0.

Hence {c, : o € J} is an uncountable w-chaotic set.
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Secondly, we show that (W, o) is not chaotic in the sense of Li—Yorke. To
do this we need to investigate the structure of Li—Yorke chaotic sets, i.e., the
sets in which any two points are proximal and not asymptotic (see Def. 2.1).

Notice that if in the system (W, o) there were an uncountable Li-Yorke
chaotic set then for any covering of W by countably many sets, at least one
of them would also contain an uncountable Li—Yorke chaotic set.

Let w belong to W. Then there exist sequences n; > 0 and oy, € J with

w = lim 0" (cq,).
k—o0

Of course, we may assume that the sequence {ay} converges in T to some a.
Consider two major cases: ny increases to infinity or it remains bounded.

In the first case, recall that c,, = aq, © ba,, so, as in the proof of
Lemma 3.1, depending on whether the initial block of ¢"*(c,, ) belongs to
Qq,, OT to by, and whether its length is bounded or not, and using Lemma 3.3,
we deduce that the point w may have one of the following two forms:

1) w = Ba, where B is some block occurring in Mg g (or the empty
block) and a € M, g.

2) w = Ab, where A is some block occurring in M, g (or the empty
blOCk) and b € Mﬂ}ﬁ.

Denote the collection of all w € W satisfying 1) by W, and those satisfying 2)
by Ws.

If ny, is bounded we may assume it is a constant integer p > 0. Then, by
Lemma 3.3, w = oP(al, o b)), where a], is some extension of 0 in M, g and
b,, is an extension of v in Mg g. For given p denote the corresponding set of
points w by W,.

Consider the covering of W by countably many sets: W,, W} and W),
(p > 0). We conclude the proof by showing that none of them contains an
uncountable Li—Yorke chaotic set. Take a pair of points w; (i = 1,2) in Wj,.

Then o"(w;) = v; € Maﬂ for some n. If v; are extensions of different points
in T then they are not proximal, because T contains no proximal pairs. On
the other hand, any two extensions of the same point are asymptotic. So,
W, contains no Li—Yorke pairs at all. An identical argument applies to W.
Finally, consider a pair wy = o”(a;,, ob;,,) and wy = o®(ar,, by, ) in W, and
suppose these points are proximal. Then either aﬁll is proximal to agz or bﬁll
is proximal to b},. In the first case there is an n such that 6™ (al,,) € My, g
and 0" (a,,,) € My, 3. Because these two sets are minimal, they are disjoint,
hence proximality implies vy = ag. In the other case, a; = ag follows from
the fact that b}, and b}, are extensions in the same system Mpg of oy
and o, respectively (recall that T has no proximal pairs). In either case
a1 = ag. Thus there are only finitely many points proximal to w; (with
at most four choices of @, and at most two choices of b}, ). Hence the
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only possible Li-Yorke chaotic sets in W), are finite, which concludes the
construction.

Notice, however, that the above construction does not imply that all
w-chaotic sets are finite. In fact, certain such sets are countably infinite.

REMARK 4.1. In [La2| the author considers among other things a relaxed
version of w-chaos and shows the existence of a zero-dimensional w-chaotic
system with a countably infinite w-chaotic set for which any Li—Yorke chaotic
set consists of only two points.
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