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ON SOME NOTIONS OF CHAOS IN DIMENSION ZEROBYRAFA� PIKU�A (Columbus, OH)Abstra
t. We 
ompare four di�erent notions of 
haos in zero-dimensional systems(subshifts). We provide examples showing that in that 
ase positive topologi
al entropydoes not imply strong 
haos, strong 
haos does not imply 
ompli
ated dynami
s at all,and ω-
haos does not imply Li�Yorke 
haos.1. Introdu
tion. In re
ent years the notion of 
haos has be
ome a sub-je
t of interest and a variety of de�nitions meant to formalize this notion havebeen introdu
ed by several authors. First results 
on
erning 
haoti
 behav-ior have been obtained by A. N. Sharkovsky (well known theorem about theorder of periods of a map from the 
losed interval into itself, see [S℄) and byTien-Yien Li and James A. Yorke in [LY℄. Many properties of 
haoti
 sys-tems have been investigated mainly in the 
ase of 
ompa
t interval, wheresome notions of 
haos 
oin
ide (see [SS℄ and [Li℄ for equivalen
e of strong
haos, ω-
haos and positive topologi
al entropy; see also [La1℄, [La2℄, [SSt℄for other properties of ω-
haoti
 maps). However, already in the 
ase of tri-angular maps of the square into itself some of the above equivalen
es nolonger hold (see [FP℄). Examples of strongly 
haoti
 systems with zero topo-logi
al entropy are also known for zero-dimensional systems (see [LF℄). Theimportan
e of zero-dimensional dynami
s 
omes from the fa
t that Cantorsystems are often used in 
onstru
tions of higher dimensional maps to ensurepositive entropy or other 
haoti
 features.One should also mention that 
haos has been studied in general spa
es;for instan
e, in [BGKM℄ the authors have a�rmatively answered the long-standing open question whether positive topologi
al entropy implies Li�Yorke 
haos.In this paper we provide examples to enlarge the 
olle
tion of impli
a-tions, between various notions of 
haos, whi
h fail in dimension zero.2. Terminology and notation. By a dynami
al system we mean apair (X, f), where X is a 
ompa
t metri
 spa
e with metri
 d, and f is a
ontinuous map from X to itself. A map ϕ : (X, f) → (X ′, f ′), where ϕ is2000 Mathemati
s Subje
t Classi�
ation: 37B10, 37B40, 37B05.Key words and phrases: Li�Yorke 
haos, strong 
haos, ω-
haos, topologi
al entropy.[167℄



168 R. PIKU�Aa 
ontinuous fun
tion from X onto X ′ su
h that f ′ ◦ ϕ = ϕ ◦ f , is 
alled afa
tor map. The system (X, f) is then 
alled an extension of (X ′, f ′), and
(X ′, f ′) is a fa
tor of (X, f).A set B ⊂ X is 
alled invariant under f if f(B) ⊂ B. A set M ⊂ Xis said to be minimal if it is nonempty, 
losed and invariant under f andit does not 
ontain any proper subsets whi
h satisfy these three 
onditions.A system (X, f) is minimal if X is a minimal set.For x ∈ X, by the orbit of x we mean the set O(x) := {fk(x) : k ≥ 0},while its 
losure O(x) is 
alled the orbit 
losure. The ω-limit set of x ∈ X isthe set

ω(x, f) = {y ∈ X : ∃{nk}
∞

k=1
, nk→∞ fnk(x) → y},denoted also by ω(x) if it 
auses no ambiguity.A point x is said to be re
urrent for f if x ∈ ω(x, f).A point x is said to be almost periodi
 for f if

∀ε>0 ∃k>0 ∀q≥0 ∃q≤r<k+q d(f r(x), x) < ε.The following fa
t is well known.Fa
t 2.1. O(x) is minimal if and only if x is an almost periodi
 point.The following de�nition is based on ideas in [LY℄.Definition 2.1. A system (X, f) is said to be 
haoti
 in the sense ofLi�Yorke if there exists an un
ountable set D ⊂ X su
h that for any di�erentpoints x, y ∈ D,
(1) lim sup

n→∞
d(fn(x), fn(y)) > 0 (x, y are not asymptoti
),

(2) lim inf
n→∞

d(fn(x), fn(y)) = 0 (x, y are proximal).A mu
h more restri
tive version of 
haoti
 behavior was introdu
ed byS
hweizer and Smítal in [SS℄.Definition 2.2. A system (X, f) is said to be strongly 
haoti
 if thereexists an un
ountable set D ⊂ X su
h that for any di�erent points x, y ∈ D,
(1) ∀t>0 lim sup

n→∞

1

n

n∑

k=1

1[0,t)(d(fk(x), fk(y))) = 1,

(2) ∃t>0 lim inf
n→∞

1

n

n∑

k=1

1[0,t)(d(fk(x), fk(y))) = 0.Another de�nition of 
haos was given by Shihai Li in [Li℄.Definition 2.3. A system (X, f) is said to be ω-
haoti
 if there existsan un
ountable set D ⊂ X su
h that for any di�erent points x, y ∈ D,(1) ω(x, f) \ ω(y, f) is un
ountable,



CHAOS IN DIMENSION ZERO 169(2) ω(x, f) ∩ ω(y, f) is nonempty,(3) ω(x, f) is not 
ontained in the set of periodi
 points.Let Σ = {0, 1}N. De�ne the metri
 d : Σ × Σ → R as follows:
d(x, y) =

{
0 if x = y,
1/k if x 6= y and k = min{n ≥ 1 : x(n) 6= y(n)}.De�ne σ : Σ → Σ by

σ(x(1)x(2)x(3) . . .) = x(2)x(3) . . . .This 
ontinuous map is 
alled the shift on Σ.If X ⊂ Σ is 
losed, nonempty and shift-invariant, then (X, σ|X) is 
alleda subshift or a symboli
 system on two symbols.If A = a(1) . . . a(n) ∈ {0, 1}n, then A is 
alled a blo
k and |A| := n de-notes the length of A. If we have two blo
ks A = a(1) . . . a(n) and B = b(1) . . .
. . . b(m) then we 
an form another blo
k by 
on
atenation,

AB := a(1) . . . a(n)b(1) . . . b(m).We say that a blo
k B o

urs in some blo
k A if A = CBD, where C and
D are some blo
ks (maybe empty), and we denote it by B ≺ A. A blo
k Ao

urs in a point x ∈ Σ if it o

urs in some initial blo
k of x.Let X ⊂ Σ. For given n ≥ 1 denote by Qn(X) the number of blo
ks oflength n o

urring in X, i.e., the 
ardinality of the set

{A = a(1) . . . a(n) : there is some x ∈ X su
h that A ≺ x}.Let (X, σ) be a symboli
 system. Let h(X) denote the topologi
al entropy(for the de�nition see [W℄). Then we have the following well known lemma([W℄).Lemma 2.1. Let (X, σ) be a subshift. Then
h(X) = lim

n→∞

log Qn(X)

n
.Let T = [0, 1] with the endpoints identi�ed and let Sβ : T → T, where β isan irrational number from the interval (0, 1), be given by the formula Sβ(t) :=

t+β (mod1). De�ne ϕα,β(t)(n) = 1[0,α)(S
n
β (t)), where α ∈ (0, 1). Then ϕα,βis a map from T to Σ. Now we 
an de�ne a system (Mα,β, σ) := (ϕα,β(T), σ)whi
h we will 
all a (two-parameter) Sturmian system. The following is abasi
 fa
t about Sturmian systems.Fa
t 2.2. For every α ∈ (0, 1) and every irrational number β ∈ (0, 1)the system (Mα,β, σ) is minimal and it is an extension of (T, Sβ).3. Some te
hni
al lemmas. In this se
tion we present a number oflemmas needed later on. The �rst one is a slight generalization of Lemma 2.2



170 R. PIKU�Ain [Li℄. Let a = a(1)a(2) . . . , b = b(1)b(2) . . . ∈ Σ. De�ne the followingoperation:
a ⋄ b := a(1) b(1) a(1)a(2) b(1)b(2) a(1)a(2)a(3) b(1)b(2)b(3) . . . .Lemma 3.1. Let a = a(1)a(2) . . . , b = b(1)b(2) · · · ∈ Σ. Then

(1) ω(a ⋄ b) ⊇ O(a) ∪O(b),

(2) ω(a ⋄ b) ⊆ O(a) ∪O(b) ∪ {a(i) . . . a(j)b(1)b(2) . . . : j ≥ i ≥ 1}

∪ {b(i) . . . b(j)a(1)a(2) . . . : j ≥ i ≥ 1}.Moreover , if a and b are re
urrent points then in (2) equality holds.Proof. It is obvious that a, b belong to ω(a ⋄ b). This set is 
losed andinvariant, therefore it 
ontains O(a) and O(b), so (1) is proved.Let x ∈ ω(a ⋄ b). There exists a sequen
e {nk} of positive integers su
hthat nk → ∞ and σnk(a ⋄ b) → x. It is easy to see that, depending onwhether the initial blo
k of σnk(a⋄ b) belongs to a or to b for in�nitely manyindi
es k, and whether its length is bounded or not, x has one of the fourpossible forms:
x = a(i) . . . a(j)b(1)b(2)b(3) . . . , where j ≥ i ≥ 1,

x = b(i) . . . b(j)a(1)a(2)a(3) . . . , where j ≥ i ≥ 1,

x ∈ O(a) or x ∈ O(b).This proves (2).Suppose that a is a re
urrent point. There exists a sequen
e {nk} ofpositive integers su
h that nk → ∞ and σnk(a) → a, whi
h means that anyinitial blo
k from a o

urs in a in�nitely many times.Let x = a(i) . . . a(j)b(1)b(2) . . . for some j ≥ i ≥ 1. By the re
urren
eproperty of a the blo
k a(1) . . . a(j), and so a(i) . . . a(j), o

urs in a ⋄ bin�nitely often, followed by ever longer blo
ks b(1) . . . b(n). Therefore, x ∈
ω(a ⋄ b). The proof for x = b(i) . . . b(j)a(1)a(2) . . . is analogous.Let (Z, f) be a topologi
al dynami
al system, let A be a 
losed subsetof Z, and let z ∈ Z. We say that a point x ∈ Σ is A-
ompatible with z if

∀k∈N fk(z) ∈ Int(A) ⇒ x(k) = 1 and fk(z) ∈ Ac ⇒ x(k) = 0.Let XA = {x : there exists z ∈ Z su
h that x is A-
ompatible with z}.Then (XA, σ) is a subshift.Lemma 3.2. Let An, A ⊂ Z be 
losed subsets of Z su
h that An → Aand Ac
n → Ac in the Hausdor� metri
. Then

∞⋂

k=1

∞⋃

n=k

XAn
⊂ XA.



CHAOS IN DIMENSION ZERO 171Proof. Let d, dist, dH denote the metri
 in Z, the distan
e between apoint and a set in Z, and the Hausdor� metri
, respe
tively.Let xj ∈ XAnj
, where nj → ∞ and xj → x ∈ Σ as j → ∞. We want toshow that x ∈ XA. Let zj be a point su
h that xj is Anj

-
ompatible with
zj . We may assume that zj → z ∈ Z. We will show that x is A-
ompatiblewith z (this fa
t will be used later in the proof of Lemma 3.3).We will prove only the �rst impli
ation in the de�nition of A-
ompat-ibility (the proof of the other one is analogous). Let k be an integer su
hthat fk(z) ∈ Int(A), let ε = dist(fk(z), Ac) > 0 and let j0 be an integer su
hthat for every j > j0 the following 
onditions are satis�ed:1) d(fk(zj), f

k(z)) < ε/3,2) dH(Ac
nj

, Ac) < ε/3.Assume that there exists j1 ≥ j0 su
h that for all j ≥ j1 we have
fk(zj) ∈ Ac

nj
.Using 1) we 
on
lude that dist(fk(zj), Ac) > 2

3ε, hen
e dH(fk(zj), Ac) > 2
3ε,but using 2) we dedu
e that dH(fk(zj), Ac) ≤ dH(Ac

nj
, Ac) < ε/3, whi
hgives us a 
ontradi
tion. Therefore, for in�nitely many j ≥ j0 we have

dist(fk(zj), Ac
nj

) > 0.Thus, fk(zjm) ∈ Int(Anjm
) for some sequen
e {jm}, whi
h implies that

xjm(k) = 1. Sin
e xjm → x, we obtain x(k) = 1.Let αk, α ∈ (0, 1) and let β be an irrational number. Let Iα = [0, α].Noti
e that the sets Iαk
, Ic

αk
tend to Iα, Ic

α, respe
tively, in the Hausdor�metri
 whenever αk tends to α. We will 
onsider the Sturmian system Mα,βand the slightly larger system M̃α,β obtained as the set XIα
of all sequen
es

Iα-
ompatible with elements of T with respe
t to the rotation by β. Thesystem (M̃α,β, σ) is an extension of (T, Sβ); the fa
tor map asso
iates toea
h point a ∈ M̃α,β the unique z ∈ T with whi
h a is 
ompatible. Ea
h z in
T has one, two or four preimages depending on whether the orbit of z passesthrough none, one or both endpoints of Iα. Sin
e these preimages di�er fromea
h other at at most two 
oordinates, they are asymptoti
. Clearly the setof points having more than one preimage is 
ountable. It is also easily seenthat Mα,β ⊂ M̃α,β, and that every point a ∈ M̃α,β satis�es σn(a) ∈ Mα,β forsome integer n.Lemma 3.3. Let αk, α ∈ (0, 1) and αk → α. Let ak ∈ Mαk,β be anextension of zk ∈ T. Then

lim
k→∞

ak = a ⇒ a ∈ M̃α,β, lim
k→∞

zk = z and a is an extension of z.



172 R. PIKU�AProof. This follows dire
tly from Lemma 3.2: in our setup a point ak ∈
M̃αk,β is 
ompatible with zk ∈ T if and only if it is its extension. The fa
tthat the sequen
e {zk} 
onverges in T follows from the proof of Lemma 3.2:
a is an extension of any a

umulation point of the sequen
e {zk}, so su
h ana

umulation point is unique.The last lemma in this se
tion is taken from [LF, Lemma 5℄.Lemma 3.4. There exists an un
ountable subset E ⊂ Σ su
h that for anydi�erent points x = x(1)x(2) . . . , y = y(1)y(2) . . . in E we have x(n) = y(n)for in�nitely many n and x(m) 6= y(m) for in�nitely many m.4. The main results. In this se
tion we give examples of dynami
alsystems in whi
h one kind of 
haoti
 behavior does not imply another.The �rst example based on Example 3.4 in [GW℄ shows that there existpositive entropy systems whi
h are not strongly 
haoti
.Example 4.1. Let p ≥ 3 be an integer. Let w be a point from (Σ, σ)su
h that w(n) = 0 for every positive integer n from the set

A =

∞⋃

k=1

∞⋃

m=1

{mpk, mpk + 1, . . . , mpk + k − 1},and w(n) = 1 for n 6∈ A.First of all, noti
e that sin
e mpk + i = (mpk−i−1)pi+1 + i for i < k, theset A may be rewritten as
A =

∞⋃

k=1

∞⋃

m=1

{mpk + k − 1} =
∞⋃

k=1

{mpk + k − 1 : m ∈ N}.Thus, for n ∈ N, we have#{j ∈ A : j ≤ n}

n
≤

∞∑

k=1

#{j ∈ {mpk + k − 1 : m ∈ N} : j ≤ n}

n

<

∞∑

k=1

1

pk
=

1

p − 1
.The above inequality implies that the number of zeros whi
h o

ur inthe blo
k w(1) . . . w(n) is smaller than n/(p − 1), for n ∈ N. Thus for a
hosen j ∈ N there are in�nitely many blo
ks, among the blo
ks of the form

w(mpj) . . . w((m + 1)pj − 1), where m ∈ N, in whi
h the number of zeros isnot greater than pj/(p − 1).We will now modify w by 
hanging some of its ones to zeros. Firstly,noti
e that among the above blo
ks of length pj with no more than pj/(p−1)zeros, in�nitely many must be identi
al. Therefore, we may 
hoose some �nitebut large enough number of these blo
ks (e.g. 2 to the power (1−1/(p−1))pj)



CHAOS IN DIMENSION ZERO 173and 
hange some of its ones to zeros so that after this modi�
ation all theseblo
ks are distin
t. Se
ondly, noti
e that the above 
hange does not interferewith the property w(n) = 0 for n ∈ A and that it a�e
ts only some initialblo
k of w, so there is enough �free spa
e� for further modi�
ations in thenext steps, whi
h are, in fa
t, indu
tive steps with respe
t to j.Finally, we obtain an estimation of Qpj ({w}), the number of blo
ks oflength pj whi
h o

ur in w after all the above modi�
ations:
Qpj ({w}) ≥ 2(1−1/(p−1))pj for j ∈ N.Let (X, σ) := (O(w), σ). Applying Lemma 2.1 we 
an estimate the topo-logi
al entropy:

h(X) ≥

(
1 −

1

p − 1

)
log(2) > 0.Now we will show that for any two di�erent points in (X, σ) the se
ond
ondition in the de�nition of strong 
haos is not satis�ed. Re
all that this
ondition is

∃t>0 lim inf
n→∞

1

n

n∑

k=1

1[ 0,t)(d(σk(x), σk(y))) = 0,where x, y (x 6= y) belong to some un
ountable set D ⊂ X.Let x and y be any two distin
t points in X and let t ∈ (0, 1). Let
k0 = [1/t] + 1. From the 
onstru
tion of (X, σ) we 
an dedu
e the followingfa
ts:1) in x there is a blo
k of zeros of length k0 o

urring periodi
ally withperiod pk0 ,2) in y there is a blo
k of zeros of length pk0 +2k0 o

urring periodi
allywith period ppk0+2k0 , whi
h is a multiple of pk0 .The above properties imply that there exists an in
reasing sequen
e
{nk}

∞
k=1 of positive integers, whi
h is, in fa
t, an arithmeti
 progression withdi�eren
e ppk0+2k0 , su
h that the initial blo
ks of both points σnk(x), σnk(y)
onsist of at least k0 
onse
utive zeros. Thus

d(σnk(x), σnk(y)) <
1

k0
< t for ea
h k ≥ 1.Hen
e

lim inf
n→∞

1

n

n∑

k=1

1[0,t)(d(σk(x), σk(y))) ≥
1

ppk0+2k0

> 0,whi
h shows that (X, σ) is not strongly 
haoti
.The above example 
ombined with the fa
t that strong 
haos does notimply positive topologi
al entropy ([LF℄, see also Example 4.2 below) showsthat these two notions are independent in dimension zero.



174 R. PIKU�AThe aim of the next example (whose idea is based on [LF℄) is to 
onstru
ta system whi
h is formally strongly 
haoti
, but whose dynami
s is almosttrivial; every orbit �boun
es� ba
k and forth between two �x-points or �sinks�in one of them. Not only does this system have zero topologi
al entropy, butits 
omplexity is easily seen to be linear.Example 4.2. De�ne ϕ : Σ → Σ by ϕ(x) = B1B2 . . . for all x ∈ Σ,where
Bi =





00 . . . 0︸ ︷︷ ︸
22i

times

if x(i) = 0,
11 . . . 1︸ ︷︷ ︸
22i

times

if x(i) = 1, for i = 1, 2, . . . .

By Lemma 3.4 there exists an un
ountable set E su
h that for any distin
tpoints x = x(1)x(2) . . . , y = y(1)y(2) . . . ∈ E, we have xn = yn for in�nitelymany n and xm 6= ym for in�nitely many m. Sin
e ϕ is inje
tive, the set
ϕ(E) is un
ountable. De�ne

X =
⋃

x∈Σ

O(ϕ(x)).

We have ϕ(E) ⊂ X and it is easy to see that every element of X is eithereventually 
onstant or it is built of 
onstant blo
ks (alternately blo
ks ofzeros and blo
ks of ones) whose lengths tend to in�nity. Thus every ω-limitset 
onsists of one or two �x-points and at most 
ountably many points whi
hbe
ome �xed after a �nite number of iterations. Obviously the entropy of
(X, σ) is zero. We will show that this is a strongly 
haoti
 system. Indeed, itis enough to show that any two distin
t points in ϕ(E) satisfy the 
onditionsfrom the de�nition of strong 
haos.Let a = A1A2 . . . , b = B1B2 . . . be points in ϕ(E), where Ai, Bi areblo
ks of 
onse
utive zeros or ones of length 22i . By the de�nition of ϕ(E)there exist in
reasing sequen
es {pi} and {qi} of positive integers su
h that
Api

= Bpi
, and Aqi

is the negation of Bqi
for all i ∈ N.Let rk =

∑k
j=1 22j . Then the �rst rpi−1 symbols of σm1(a) and σm1(b)are the same for all m1 su
h that rpi−1 < m1 ≤ rpi

−rpi−1 and the �rst rqi−1symbols of σm2(a) and σm2(b) are all distin
t for all m2 su
h that rqi−1 <
m2 ≤ rqi

− rqi−1 (there are su
h m1, m2 be
ause rn < 1
2rn+1 for n ∈ N).Thus, for given 0 < t ≤ 1, the distan
e between σm1(a) and σm1(b) is notgreater than 1/rpi−1 < t for rpi−1 < m1 ≤ rpi

− rpi−1, provided pi is largeenough. Therefore the expression
1

rpi
− rpi−1

rpi
−rpi−1∑

m1=1

1[ 0,t)(d(σm1(a), σm1(b)))



CHAOS IN DIMENSION ZERO 175is bounded from below by
1

rpi
− rpi−1

rpi
−rpi−1∑

m1=rpi−1+1

1[ 0,t)(d(σm1(a), σm1(b))) ≥
rpi

− 2rpi−1

rpi
− rpi−1

→ 1,

whi
h means that
lim sup

n→∞

1

n

n∑

j=1

1[ 0,t)(d(σj(a), σj(b))) = 1,

so the �rst 
ondition in the de�nition of strong 
haos is satis�ed.Furthermore, for all m2 su
h that rqi−1 < m2 ≤ rqi
− rqi−1, the distan
ebetween σm2(a) and σm2(b) equals 1 and is greater than t. Therefore theexpression

1

rqi
− rqi−1

rqi
−rqi−1∑

m2=1

1[ 0,t)(d(σm2(a), σm2(b)))is bounded from above by
1

rqi
− rqi−1

rqi−1∑

m2=1

1[ 0,t)(d(σm2(a), σm2(b))) ≤
rqi−1

rqi
− rqi−1

→ 0,whi
h means that
lim inf
n→∞

1

n

n∑

j=1

1[ 0,t)(d(σj(a), σj(b))) = 0,

so the se
ond 
ondition in the de�nition of strong 
haos is satis�ed.The last example of this paper is the 
onstru
tion of an ω-
haoti
 systemwhi
h is not 
haoti
 in the sense of Li�Yorke. Below we use the notationintrodu
ed prior to Lemma 3.3.Example 4.3. Let J := [r, s] where 0 < β < r < s < 1. For α ∈ J let
bα ∈ Mβ,β be an extension of α and let aα ∈ Mα,β be an extension of 0 (weemphasize that, in spite of similar notation, the points bα and aα 
ome fromdi�erent systems and extend di�erent points of T). De�ne

cα := aα ⋄ bα, W :=
⋃

α∈J

O(cα).

Firstly, we show that (W, σ) is an ω-
haoti
 system. Let α1, α2 ∈ J ,
α1 6= α2. Using Lemma 3.1 we obtain

|ω(cα1
) \ ω(cα2

)| ≥ |Mα1,β| > ℵ0, ω(cα1
) ∩ ω(cα2

) ⊃ Mβ,β 6= ∅.Hen
e {cα : α ∈ J} is an un
ountable ω-
haoti
 set.



176 R. PIKU�ASe
ondly, we show that (W, σ) is not 
haoti
 in the sense of Li�Yorke. Todo this we need to investigate the stru
ture of Li�Yorke 
haoti
 sets, i.e., thesets in whi
h any two points are proximal and not asymptoti
 (see Def. 2.1).Noti
e that if in the system (W, σ) there were an un
ountable Li�Yorke
haoti
 set then for any 
overing of W by 
ountably many sets, at least oneof them would also 
ontain an un
ountable Li�Yorke 
haoti
 set.Let w belong to W . Then there exist sequen
es nk ≥ 0 and αk ∈ J with
w = lim

k→∞
σnk(cαk

).Of 
ourse, we may assume that the sequen
e {αk} 
onverges in T to some α.Consider two major 
ases: nk in
reases to in�nity or it remains bounded.In the �rst 
ase, re
all that cαk
= aαk

⋄ bαk
, so, as in the proof ofLemma 3.1, depending on whether the initial blo
k of σnk(cαk

) belongs to
aαk

or to bαk
and whether its length is bounded or not, and using Lemma 3.3,we dedu
e that the point w may have one of the following two forms:1) w = Ba, where B is some blo
k o

urring in Mβ,β (or the emptyblo
k) and a ∈ M̃α,β.2) w = Ab, where A is some blo
k o

urring in Mα,β (or the emptyblo
k) and b ∈ Mβ,β .Denote the 
olle
tion of all w ∈ W satisfying 1) by Wa and those satisfying 2)by Wb.If nk is bounded we may assume it is a 
onstant integer p ≥ 0. Then, byLemma 3.3, w = σp(a′α ⋄ b′α), where a′α is some extension of 0 in M̃α,β and

b′α is an extension of α in Mβ,β . For given p denote the 
orresponding set ofpoints w by Wp.Consider the 
overing of W by 
ountably many sets: Wa, Wb and Wp(p ≥ 0). We 
on
lude the proof by showing that none of them 
ontains anun
ountable Li�Yorke 
haoti
 set. Take a pair of points wi (i = 1, 2) in Wa.Then σn(wi) = vi ∈ M̃α,β for some n. If vi are extensions of di�erent pointsin T then they are not proximal, be
ause T 
ontains no proximal pairs. Onthe other hand, any two extensions of the same point are asymptoti
. So,
Wa 
ontains no Li�Yorke pairs at all. An identi
al argument applies to Wb.Finally, 
onsider a pair w1 = σp(a′α1

⋄ b′α1
) and w2 = σp(a′′α2

⋄ b′′α2
) in Wp andsuppose these points are proximal. Then either a′α1

is proximal to a′′α2
or b′α1is proximal to b′′α2

. In the �rst 
ase there is an n su
h that σn(a′α1
) ∈ Mα1,βand σn(a′α2

) ∈ Mα2,β. Be
ause these two sets are minimal, they are disjoint,hen
e proximality implies α1 = α2. In the other 
ase, α1 = α2 follows fromthe fa
t that b′α1
and b′′α2

are extensions in the same system Mβ,β of α1and α2, respe
tively (re
all that T has no proximal pairs). In either 
ase
α1 = α2. Thus there are only �nitely many points proximal to w1 (withat most four 
hoi
es of a′′α1

and at most two 
hoi
es of b′′α1
). Hen
e the



CHAOS IN DIMENSION ZERO 177only possible Li�Yorke 
haoti
 sets in Wp are �nite, whi
h 
on
ludes the
onstru
tion.Noti
e, however, that the above 
onstru
tion does not imply that all
ω-
haoti
 sets are �nite. In fa
t, 
ertain su
h sets are 
ountably in�nite.Remark 4.1. In [La2℄ the author 
onsiders among other things a relaxedversion of ω-
haos and shows the existen
e of a zero-dimensional ω-
haoti
system with a 
ountably in�nite ω-
haoti
 set for whi
h any Li�Yorke 
haoti
set 
onsists of only two points.
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