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ON THE NEUMANN PROBLEM WITH L1 DATA

BY

J. CHABROWSKI (Brisbane)

Abstract. We investigate the solvability of the linear Neumann problem (1.1) with
L

1 data. The results are applied to obtain existence theorems for a semilinear Neumann
problem.

1. Introduction. The aim of this paper is twofold. In the first part
of this paper we are concerned with the existence of solutions of the linear
Neumann problem

(1.1)

{

−∆u = λu+ f(x) in Ω,

∂u/∂ν = 0 on ∂Ω,

where Ω ⊂ R
N is a bounded domain with a smooth boundary ∂Ω and

ν denotes the outward normal to ∂Ω and λ ∈ R. We consider the case
f ∈ L1(Ω). Additional assumptions will be introduced later. In the second
part of this work the existence results for (1.1) with f ∈ L1(Ω) will be
used to investigate the solvability of the Neumann problem for semilinear
equations.

It is well known that problem (1.1) has a unique solution in W 1,2(Ω) if
f ∈ L2(Ω) whenever λ is not an eigenvalue of the problem

(1.2)

{

−∆u = λu in Ω,

∂u/∂ν = 0 on ∂Ω.

We denote by λi the sequence of eigenvalues of (1.2). It is known that λ1 = 0
and the corresponding eigenfunctions are constant. If λ = λi then problem
(1.2) has a solution provided f ∈ E⊥

i , where Ei is the eigenspace correspond-
ing to λi. In this case (1.1) has a family of solutions that can be represented
as

(1.3) u = u+ ϕ,

where u is a uniquely determined function in E⊥
i and ϕ ∈ Ei. From now on,

by a solution of (1.1) with λ = λi and f ∈ E⊥
i we mean the unique element

u ∈ E⊥
i in the representation (1.3).
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We recall that W 1,p(Ω), where p ≥ 1, is the Sobolev space equipped with
the norm

‖u‖p
W 1,p =

\
Ω

(|∇u|p + |u|p) dx.

Throughout this paper, in a given Banach spaceX, we denote strong con-
vergence by “→” and weak convergence by “⇀”. The norms in the Lebesgue
spaces Lp(Ω) are denoted by ‖ · ‖Lp .

Finally, we recall that a C1 functional Φ : X → R on a Banach space X
satisfies the Palais–Smale condition at a level c if each sequence {xn} ⊂ X
such that Φ(xn) → c and Φ′(xn) → 0 in X∗ is relatively compact in X.

If f ∈ L1(Ω) then solutions to problem (1.1) will be obtained by ap-
proximating f by L2(Ω) functions. For this we need some estimates in an
appropriate Sobolev norm of a solution by an L1 norm of a data in L2. These
estimates will be discussed in Section 2. The results of Section 2 are used in
Section 3 to obtain the existence theorem (see Theorem 3.1) for semilinear
elliptic equations under the Landesman–Lazer conditions on the nonlinear
term. Section 4 contains the extension of Theorem 3.1 to the semilinear
Neumann problem involving the Hardy potential (see Theorem 4.4). In the
final Section 5 we discuss the existence of global minimizers for a semilinear
Neumann problem with a nonhomogeneous term in L1(Ω). We point out
here that the Dirichlet problem with L1 data has been considered in [6].

2. Estimates of solutions of (1.1) in W 1,p norm, 1 ≤ p < 2. If
f ∈ L2(Ω) and λ < 0 then for a solution u ∈ W 1,2(Ω) of (1.1) we have the
estimate

(2.1) ‖u‖L1 ≤
1

|λ|
‖f‖L1 .

This easily follows by testing (1.1) with u/(ε+ u2)1/2. We then have

ε
\
Ω

|∇u|2

(ε+ u2)3/2
dx− λ

\
Ω

u2

(ε+ u2)1/2
dx =

\
Ω

f
u

(ε+ u2)1/2
dx ≤

\
Ω

|f | dx.

Letting ε→ 0 yields (2.1).

First we derive estimates of solutions of (1.1) in the case λ < 0.

Lemma 2.1. Suppose that N > 2, 1 < m < 2N/(N + 2) and λ < 0. Let

q = m∗ = Nm/(N −m). If u is a solution of (1.1) with f ∈ L2(Ω), then\
Ω

|u|q
∗

dx ≤ C1

(\
Ω

(|∇u|q + |u|q) dx
)q∗/q

≤ C2‖f‖
q∗/2
Lm(Ω)

(\
Ω

|u|q
∗

dx
)(1−r)/2(\

Ω

(1 + u2)q∗/2 dx
)r/2

,
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where q∗ = Nq/(N − q), r = N(2 − q)/(N − q) and the constants C1, C2

> 0 are independent of u and f .

Proof. Put ϕ(x) = u/(1 + u2)r/2, 0 < r < 1, where r will be determined
later. Testing (1.1) with ϕ we obtain

(2.2) (1 − r)
\
Ω

|∇u|2

(1 + u2)r/2
dx+

\
Ω

|λ|u2

(1 + u2)r/2
dx ≤

\
Ω

|f | |u|

(1 + u2)r/2
dx

≤ ‖f‖Lm(Ω)

(\
Ω

|u|(1−r)m′

dx
)1/m′

,

where m′ = m/(m− 1). In what follows, we denote by C a constant which
is independent of u and f and may vary from line to line. By the Sobolev
inequality we have, for 1 < q < 2,

(2.3)
(\

Ω

|u|q
∗

dx
)q/q∗

≤ C
\
Ω

(|∇u|q + |u|q) dx

= C
\
Ω

|∇u|q

(1 + u2)rq/4
(1 + u2)rq/4 dx+ C

\
Ω

|u|q

(1 + u2)rq/4
(1 + u2)rq/4 dx

≤ C

(\
Ω

|∇u|2

(1 + u2)r/2
dx

)q/2
(\

Ω

(1 + u2)rq/2(2−q) dx
)(2−q)/2

+ C

(\
Ω

u2

(1 + u2)r/2
dx

)q/2
(\

Ω

(1 + u2)rq/2(2−q) dx
)(2−q)/2

.

Inserting (2.2) into (2.3) we obtain
(\

Ω

|u|q
∗

dx
)q/q∗

≤ C
\
Ω

(|∇u|q + |u|q) dx

≤ C‖f‖
q/2
Lm

(\
Ω

|u|(1−r)m′

dx
)q/2m′(\

Ω

(1 + u2)rq/2(2−q) dx
)(2−q)/2

.

We now choose r so that rq/(2 − q) = q∗ and (1 − r)m′ = q∗. This yields
r = N(2 − q)/(N − q) and q = m∗ = Nm/(N −m). Since 1 < m <
2N/(N + 2), we have 0 < r < 1 and 1 < q < 2. With this choice of r
the above inequality becomes\

Ω

|u|q
∗

dx ≤ C
(\

Ω

(|∇u|q + |u|q) dx
)q∗/q

≤ C‖f‖
q∗/2
Lm

(\
Ω

|u|q
∗

dx
)q∗/2m′(\

Ω

(1 + u2)q∗/2 dx
)(2−q)q∗/2q

.

Since q∗/2m′ = (1 − r)/2 and (2 − q)q∗/2q = r/2, the result follows.
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Corollary 2.2. Suppose that N > 2, 1 < m < 2N/(N + 2) and λ < 0.
Let {fn} be a sequence in L2(Ω) bounded in Lm(Ω). For each n ≥ 1 let un

be a solution of (1.1) with f = fn. Then the sequence {un} is bounded in

W 1,q(Ω), where q = m∗ = Nm/(N −m).

We now consider the case λ = 0. If f ∈ L2(Ω) and
T
Ω f(x) dx = 0, then

problem (1.1) has a solution of the form

(2.4) u = u+ t,

where t ∈ R and (∗)
T
Ω u(x) dx = 0. According to the comments made in

the introduction, by a solution of (1.1) we mean the u from representation
(2.4). Functions u in W 1,2(Ω) satisfying (∗) obey the inequality

(2.5)
(\

Ω

|u|q
∗

dx
)1/q∗

≤ C
(\

Ω

|∇u|q dx
)1/q

,

where C > 0 is a constant independent of u (see [5, p. 66]). Therefore
repeating the proof of Lemma 2.1 we obtain

Lemma 2.3. Suppose that N > 2, 1 < m < 2N/(N + 2) and λ = 0. Let

q = m∗ = Nm/(N −m). If u is solution of (1.1) with f ∈ L2(Ω), then\
Ω

|u|q
∗

dx ≤ C1

(\
Ω

|∇u|q dx
)q∗/q

≤ C2‖f‖
q∗/2
Lm

(\
Ω

|u|q
∗

dx
)(1−r)/2(\

Ω

(1 + u2)q∗/2 dx
)r/2

,

where C1, C2 > 0 are constants independent of f and u, and 0 < r < 1 is

the constant from Lemma 2.1.

Corollary 2.4. Suppose that N > 2, 1 < m < 2N/(N + 2) and λ = 0.
Let {fn} be sequence in L2(Ω) bounded in Lm(Ω). For each n ≥ 1 let un

be a solution of (1.1) with f = fn. Then the sequence {un} is bounded in

W 1,q(Ω), where q = m∗ = Nm/(N −m).

Lemma 2.5. Suppose that 1 ≤ q < N/(N − 1), f ∈ L2(Ω) and λ ∈ R. If

u ∈W 1,2(Ω) is a solution of problem (1.1) then

(2.6)
\
Ω

|u|q
∗

dx ≤ C1

(\
Ω

(|∇u|q + |u|q) dx
)q∗/q

≤ C2

(\
Ω

(1 + |u|)q∗ dx
)(2−q)q∗/2q

[‖f‖
q∗/2
L1 + ‖u‖

(2−r)q∗/2
L1 + ‖u‖

q∗/2
L1 ],

where r = N(2 − q)/(N − q) and C1, C2 > 0 are constants independent of f
and u.
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Proof. First we establish (2.6) in the case λ < 0. We assume that f ≥ 0
on Ω. By the maximum principle u > 0 on Ω. As a test function we take
ϕ(x) = (1 + u)1−r, r > 1. Since ϕ(x) ≤ 1 on Ω, we have

(2.7)
\
Ω

|∇u|2

(1 + u)r
dx ≤

1

r − 1

(

|λ|
\
Ω

|u| dx+
\
Ω

|f | dx
)

.

By the Sobolev inequality we have

(2.8)
(\

Ω

|u|q
∗

dx
)q/q∗

≤ C
\
Ω

(|∇u|q + |u|q) dx

= C
\
Ω

|∇u|q

(1 + u)rq/2
(1 + u)rq/2 dx+ C

\
Ω

uq

(1 + u)rq/2
(1 + u)rq/2 dx

≤ C

(\
Ω

|∇u|2

(1 + u)r
dx

)q/2
(\

Ω

(1 + u)rq/(2−q) dx
)(2−q)/2

+ C

(\
Ω

u2

(1 + u)r
dx

)q/2
(\

Ω

(1 + u)rq/(2−q) dx
)(2−q)/2

.

We now choose rq/(2 − q) = q∗. This yields r = N(2 − q)/(N − q). So r > 1
if and only if q < N/(N − 1). Since N > 2, we have r < 2. Using (2.7) we
rewrite (2.8) as

(2.9)
(\

Ω

|u|q
∗

dx
)q/q∗

≤ C
\
Ω

(|∇u|q + |u|q) dx

≤ C
(\

Ω

(1 + u)q∗ dx
)(2−q)/2(\

Ω

|u| dx+
\
Ω

|f | dx
)q/2

+ C
(\

Ω

(1 + u)q∗ dx
)(2−q)/2(\

Ω

|u|2−r dx
)q/2

≤ C
(\

Ω

(1 + u)q∗ dx
)2−q/2

[‖u‖
q/2
L1 + ‖f‖

q/2
L1 + ‖u‖

q(2−r)/2
L1 ].

From this we derive estimate (2.6) in the case f ≥ 0 on Ω.
If f ≤ 0 on Ω then u ≤ 0 on Ω and we use as a test function ϕ(x) =

(1 − u)1−r. By similar estimates we arrive at

(2.10)
(\

Ω

|u|q
∗

dx
)q/q∗

≤ C
\
Ω

(|∇u|q + |u|q) dx

≤ C
(\

Ω

(1 − u)q∗ dx
)(2−q)/2

[‖u‖
q/2
L1 + ‖f‖

q/2
L1 + ‖u‖

2(2−r)/2
L1 ],

which yields (2.6) in this case.
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If f changes sign and λ < 0 we represent a solution u as u = u1 − u2,
where u1 is a solution of (1.1) with f = f+ and u2 is a solution of (1.1) with
f = f−. Combining (2.9) and (2.10) we obtain estimate (2.6).

If λ ≥ 0, we consider the problem
{

−∆v + v = f + (λ+ 1)u in Ω,

∂v/∂ν = 0 on ∂Ω.

By the uniqueness of a solution we obviously have v = u on Ω. Applying to
v estimate (2.6) with f replaced by f + (λ+ 1)u gives the result follows.

Remark 2.6. If λ < 0, then we always have
T
Ω |u| dx ≤ (1/|λ|)

T
Ω |f | dx.

Therefore in this case inequality (2.6) from Lemma 2.5 takes the form\
Ω

|u|q
∗

dx ≤ C1

(\
Ω

(|∇u|q + |u|q) dx
)q∗/q

(2.11)

≤ C2

(\
Ω

(1 + |u|)q∗ dx
)(1−q)q∗/2q

[‖f‖
q∗/2
L1 + ‖f‖

(2−r)q∗/2
L1 ].

To construct solutions by approximation we need the following result:

Proposition 2.7. Let 1 ≤ q < N/(N − 1) and {fn} ⊂ L2(Ω) be such

that for every n ∈ N there exists a solution vn of problem (1.1) with f = fn,
where λ ∈ R. Suppose that fn → 0 in L1(Ω) and that {vn} is bounded in

L1(Ω). Then vn ⇀ 0 in W 1,q(Ω).

Proof. We follow the argument used in the proof of Lemma 2.3 in [6].
We choose k ∈ N such that

2k ≤ N < 2(k + 1).

We then have
N

N − k + 1
≤

2N

N + 2
<

N

N − k
.

For every j ∈ N we define a Sobolev exponent

p(j)∗ =
Np

N − jp
whenever jp < N.

We put p(0)∗ = p. We now choose 1 ≤ p < N/(N − 1) so that

2N

N + 2
≤ p(k − 1)∗ <

N

N − k
.

This inequality is valid if and only if

(2.12)
2N

N + 2k
≤ p <

N

N − 1
.

Since N < 2(k + 1) yields 2N/(N + 2k) < N/(N − 1), the choice of p
satisfying (2.12) is possible. Moreover, if k > 1, since p(k−1)∗ < N/(N − k),
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we also have

p(k − 2)∗ <
N

N − k + 1
<

2N

N + 2
.

We now put v
(1)
n = vn. Then v

(1)
n satisfies the equation

(2.13) −∆v(1)
n + v(1)

n = λv(1)
n + v(1)

n + fn in Ω.

Since {v
(1)
n } is bounded in L1(Ω), we deduce from inequality (2.6) in Lem-

ma 2.5 applied to u = v
(1)
n and f = λv

(1)
n + v

(1)
n + fn that {v

(1)
n } is bounded

in W 1,q(Ω) for every 1 ≤ q < N/(N − 1). In particular, the sequence v
(1)
n is

bounded in W 1,p(Ω) with p chosen above. Therefore, up to a subsequence,

v
(1)
n ⇀ v(1) in W 1,p(Ω). If k > 1 (this holds in the case N > 2) we define

for every j = 2, . . . , k a sequence of solutions of the following Neumann
problem:

(2.14)

{

−∆v
(j)
n + v

(j)
n = λv

(j−1)
n + v

(j−1)
n in Ω,

∂v
(j)
n /∂ν = 0 on ∂Ω.

Since {v
(1)
n } is bounded in Lp(Ω) with p < 2N/(N + 2), we can apply

Lemma 2.1 with u = v
(2)
n , fn = λv

(1)
n + v

1)
n and m = p to get the bound-

edness of v
(2)
n in W 1,p(1)∗(Ω) and consequently in Lp(1)∗(Ω). We can now

repeat this procedure for the sequence {v
(j)
n } using the fact that {v

(j−1)
n }

is bounded in Lp(j−2)∗(Ω) and that p(j − 2)∗ ≤ p(k − 2)∗ < 2N/(N + 2).

In the final step we deduce that {v
(k)
n } is bounded in W 1,p(k−1)∗(Ω), so

by the Sobolev embedding theorem {v
(k)
n } is bounded in Lp(k)∗(Ω). By the

hypothesis on p we have p(k)∗ ≥ 2 and so {v
(k)
n } is bounded in L2(Ω).

We now consider the sequence {v
(k+1)
n } as solutions of the Neumann prob-

lem
{

−∆v
(k+1)
n + v

(k+1)
n = λv

(k)
n + v

(k)
n in Ω,

∂v
(k+1)
n /∂ν = 0 on ∂Ω.

Testing this equation with v
(k+1)
n we obtain\

Ω

(|∇v(k+1)
n |2 + (v(k+1)

n )2) dx = (λ+ 1)
\
Ω

v(k)
n v(k+1)

n dx.

Since {v
(k)
n } is bounded in L2(Ω), with the aid of the Hölder inequality we

show that {v
(k+1)
n } is bounded in W 1,2(Ω). Therefore we may assume that

v
(k+1)
n ⇀ v(k+1) in W 1,2(Ω). Subtracting these equations successively we

obtain
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−∆(v(2)
n − v(1)

n ) + (v(2)
n − v(1)

n ) = fn,

−∆(v(3)
n − v(2)

n ) + (v(3)
n − v(2)

n ) = (λ+ 1)(v(2)
n − v(1)

n ),

. . .

−∆(v(k+1)
n − v(k)

n ) + (v(k+1)
n − v(k)

n ) = (λ+ 1)(v(k)
n − v(k−1)

n ).

Applying Lemma 2.5 (see Remark 2.6) to the first equation we deduce that

v
(2)
n − v

(1)
n → 0 in W 1,p(Ω) since fn → 0 in L1(Ω) and

T
Ω |v

(2)
n − v

(1)
n | dx ≤T

Ω |fn| dx. From the second equation and from Lemma 2.1 we deduce that

v
(3)
n − v

(2)
n → 0 in W 1,p(1)∗(Ω). Repeating this argument successively we

show that v
(k+1)
n − v

(k)
n → 0 in W 1,p(k−1)∗(Ω). This shows that every se-

quence v
(j)
n has the same limit in W 1,p(Ω) and that this limit is v(1). Hence

v(k+1) = v(1). Letting n→ ∞ in (2.13) we obtain

(2.15)

{

−∆v(1) = λv(1) in Ω,

∂v(1)/∂ν = 0 on ∂Ω.

We now distinguish two cases. If λ is not an eigenvalue, then obviously

v(1) = 0. If λ = λi for some i then v(1) ∈ Ei. Since v
(1)
n ∈ E⊥

i , it is easy to
show that also v(1) ∈ E⊥

i . Hence in this case also v(1) = 0. Therefore up to a

subsequence, v
(1)
n ⇀ 0 in W 1,p(Ω). Since {v

(1)
n } is also bounded in W 1,q(Ω)

for 1 ≤ q < N/(N − 1), it is easy to show that up to a subsequence v
(1)
n ⇀ 0

in W 1,q(Ω) for every 1 ≤ q < N/(N − 1). Since every subsequence of vn has
the same limit, namely 0, we see that the sequence vn converges to 0 weakly
in W 1,q(Ω) for every 1 ≤ q < N/(N − 1).

As an application of Proposition 2.7 we establish the following theorem.

Theorem 2.8. Suppose that f ∈ L1(Ω) and 1 ≤ q < N/(N − 1).

(i) If λ 6= λi for every i, then (1.1) has a unique solution u ∈ W 1,q(Ω)
(obtained by approximation).

(ii) If λ = λi for some i and
T
Ω fϕ dx = 0 for every ϕ ∈ Ei, then

(1.1) has a family of solutions in W 1,q(Ω) having a representation

u = u + ϕ, where u is uniquely determined by approximation and

ϕ ∈ Ei. Moreover
T
Ω uϕdx = 0 for every ϕ ∈ Ei.

Proof. We follow the argument used in the proof of Theorem 1.1 in [6].

We need the following statement. Suppose that f ∈ L1(Ω) and
T
Ω fϕ

j
i dx = 0

for some i and every j = 1, . . . , k, where ϕ1
i , . . . , ϕ

k
i form a basis of Ei. Then

there exists a sequence {fn} of functions in L2(Ω) such that fn → f in

L1(Ω) and (∗)
T
Ω fnϕ

j
i dx = 0 for j = 1, . . . , k.

To prove our theorem we take any sequence {fn} ⊂ L2(Ω) such that
fn → f in L1(Ω). If λ = λi, {fn} is chosen so that relation (∗) is satisfied.
Then for every n ∈ N there exists a solution un ∈W 1,2(Ω) of problem (1.1)
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with f = fn. In the next step we show that {un} is bounded in L1(Ω). This
can be established arguing by contradiction and using Proposition 2.7. It
then follows from Lemma 2.5 that {un} is bounded in W 1,q(Ω). Thus, up
to a subsequence, un ⇀ u in W 1,q(Ω), where u is a solution of (1.1). For
details we refer to the paper [6].

3. Neumann problem with Landesman–Lazer conditions. We
consider the semilinear Neumann problem

(3.1)

{

−∆u+ g(x, u) = f(x) in Ω,

∂u/∂ν = 0 on ∂Ω.

We assume that

(G) g : Ω × R → R is a Carathéodory function such that

lim
s→∞

g(x, s) = g+(x) and lim
s→−∞

g(x, s) = g−(x)

exist, g+, g− ∈ L∞(Ω) and g−(x) ≤ g(x, s) ≤ g+(x) a.e. on Ω × R.

Theorem 3.1. Let f ∈ L1(Ω) and assume that\
Ω

g−(x) dx <
\
Ω

f(x) dx <
\
Ω

g+(x) dx.

Then problem (3.1) has at least one solution belonging to W 1,q(Ω) for every

1 ≤ q < N/(N − 1).

Proof. First we assume that f ∈ L2(Ω). In this case the result is well
known and it has been proved using degree theory. We offer a different proof
inspired by the paper [3]. The method that we shall use will also be applied
in the case where f ∈ L1(Ω). For every n ∈ N we consider the semilinear
problem

(3.2)

{

−∆u+ 1
nu = −g(x, u) + f(x) in Ω,

∂u/∂ν = 0 on ∂Ω.

Since g is a bounded function, with the aid of the Schauder fixed point
theorem we obtain the existence of a solution un ∈W 1,2(Ω).

We now show that the sequence {un} is bounded in L2(Ω). If ‖un‖L2

→ ∞, then we put vn = un/‖un‖L2 . It is clear that\
Ω

|∇vn|
2 dx+

1

n
=
\
Ω

f
vn

‖un‖L2

dx−
\
Ω

g(x, un)vn

‖un‖L2

dx.

Since the right-hand side converges to 0 we deduce that limn→0

T
Ω |∇vn|

2 dx
= 0. By the Sobolev embedding theorem vn → v in L2(Ω). Obviously v is
a nonzero constant function. Assume v = t > 0. Then un = vn‖un‖L2 → ∞
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a.e. on Ω. We now observe that
1

n

\
Ω

un dx =
\
Ω

f(x) dx−
\
Ω

g(x, vn‖un‖L2) dx.

Letting n→ ∞ we obtain\
Ω

g+(x) dx ≤
\
Ω

f(x) dx,

which is impossible. If t < 0 by the same argument we obtain\
Ω

f(x) dx ≤
\
Ω

g−(x) dx,

which is again impossible. Thus {un} is bounded in L2(Ω). It is easy to
see that {un} is also bounded in W 1,2(Ω). Therefore we may assume that
un ⇀ u in W 1,2(Ω) and u is a solution of (3.1).

If f ∈ L1(Ω) we approximate f in L1(Ω) by a sequence of functions
{fn} ⊂ L2(Ω). By the first part of the proof, problem (3.1) with f = fn

has a solution in un ∈ W 1,2(Ω). Repeating the argument used in the first
part of the proof we show that {un} is bounded in L1(Ω). We now apply
Lemma 2.5 with f replaced by fn−g(x, un) to deduce that {un} is bounded
in W 1,q(Ω). Therefore, up to a subsequence, un ⇀ u in W 1,q(Ω) and u is a
solution of (3.1).

4. Problems involving Hardy potentials. We commence by extend-
ing Lemma 2.1 to the following problem:

(4.1)

{

−∆u− µu/|x|2 = λu+ f in Ω,

∂u/∂ν = 0 on ∂Ω.

It is assumed that 0 ∈ Ω and N ≥ 3. We put

0 < µ∗ = inf

{ \
Ω

(|∇u|2 + u2) dx : u ∈W 1,2(Ω),
\
Ω

u2

|x|2
dx = 1

}

.

Testing µ∗ with constant functions we obtain

µ∗ ≤
|Ω|T

Ω
dx
|x|2

.

For every 0 < µ < µ∗ we consider the eigenvalue problem

(4.2)

{

−∆u− µu/|x|2 = λu in Ω,

∂u/∂ν = 0 on ∂Ω.

It is not difficult to show that for every 0 < µ < µ∗ the first eigenvalue
λ1(µ) < 0 is strictly negative and the corresponding principal eigenfunc-
tion φµ can be taken positive. This is an easy consequence of an obvious
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modification of the proof of Proposition 5.1 in [2]. Obviously λ1(µ) is given
by

λ1(µ) = inf

{ \
Ω

(

|∇u|2 − µ
u2

|x|2

)

dx : u ∈W 1,2(Ω),
\
Ω

u2 dx = 1

}

.

It is easy to show that −1 < λ1(µ) < −µ|Ω|−1
T
Ω |x|−2 dx. Testing (4.1)

with ϕ = u/(1 + u2)r/2, 0 < r < 1, we obtain

(4.3) (1 − r)
\
Ω

|∇u|2

(1 + u2)r/2
dx− λ

\
Ω

u2

(1 + u2)r/2
dx

≤ µ
\
Ω

u2

|x|2(1 + u2)r/2
dx+

\
Ω

uf

(1 + u2)r/2
dx.

Let ψ = u/(1 + u2)r/4. Since |∇ψ|2 ≤ |∇u|2/(1 + u2)r/2, from the definition
of µ∗ we obtain

µ∗
\
Ω

u2

|x|2(1 + u2)r/2
dx ≤

\
Ω

|∇u|2

(1 + u2)r/2
dx+

\
Ω

u2

(1 + u2)r/2
dx.

This combined with (4.3) gives

((1 − r)µ∗ − µ)
\
Ω

u2

|x|2(1 + u2)r/2
dx− (λ+ 1 − r)

\
Ω

u2

(1 + u2)r/2
dx

≤
\
Ω

|fu|

(1 + u2)r/2
dx.

If µ < (1 − r)µ∗ and λ < −1 + r, then

(4.4)
\
Ω

u2

|x|2(1 + u2)r/2
dx ≤

1

(1 − r)µ∗ − µ

\
Ω

|fu|

(1 + u2)r/2
dx.

Estimate (4.3) allows us to repeat the proof of Lemma 2.1 and establish the
following estimate for solutions of problem (4.1):

Lemma 4.1. Suppose that N > 2, 1 < m < 2N/(N + 2), q = m∗ =
Nm/(N −m) and r = N(2 − q)/(N − q). If 0 < µ < µ∗, λ < −1 + r and u
is a solution of (4.1) with f ∈ L2(Ω), then there exist constants C1, C2 > 0
such that\

Ω

|u|q
∗

dx ≤ C1

(\
Ω

(|∇u|q + |u|q) dx
)q∗/q

(4.5)

≤ C2‖f‖
q∗/2
Lm

(\
Ω

|u|q
∗

dx
)(1−r)/2(\

Ω

(1 + u2)q∗/2 dx
)r/2

.

To proceed further, we need the following form of the maximum principle.
If f ≥ 0 on Ω (resp. f ≤ 0 on Ω) and λ < λ1(µ), then a solution of (4.1) is
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non-negative (resp. non-positive) on Ω. Indeed, let f ≥ 0 and u be a solution
in W 1,2(Ω) of (4.1). Testing (4.1) with u− we obtain

(4.6) −
\
Ω

(

|∇u−|2 −
µ

|x|2
(u−)2 − λ(u−)2

)

dx =
\
Ω

u−f dx.

Since λ < λ1(µ), we have\
Ω

(

|∇u−|2 −
µ

|x|2
(u−)2 − λ(u−)2

)

dx ≥ 0.

This combined with (4.6) yields u− = 0 a.e. on Ω.

Lemma 4.2. Suppose that 1 < q < N/(N − 1), f ∈ L2(Ω) and λ ∈ R. If

u is a solution of problem (4.1) then

(4.7)
\
Ω

|u|q
∗

dx ≤ C1

(\
Ω

(|∇u|q + |u|q) dx
)q∗/q

≤ C2

(\
Ω

(1 + |u|)q∗ dx
)(2−q)q∗/2q

(‖f‖
q∗/2
L1 + ‖u‖

(2−r)q∗/2
L1 + ‖u‖

q∗/2
L1 ),

where r = N(2 − q)/(N − q).

Proof. The proof is similar to that of Lemma 2.5. We only consider the
case λ < λ1(µ). If f ≥ 0 we use (1 + u)1−r as a test function to obtain

(4.8) (r − 1)
\
Ω

|∇u|2

(1 + u)r
dx+ µ

\
Ω

u

|x|2
(1 + u)1−r dx ≤ |λ|

\
Ω

|u| dx+
\
Ω

|f | dx,

since r > 1. If f ≤ 0, then u ≤ 0 and we use as a test function (1 − u)1−r,
r > 1. We then obtain

(r − 1)
\
Ω

|∇u|2

(1 − u)r
dx− µ

\
Ω

u

|x|2
(1 − u)1−r dx

≤ λ
\
Ω

u(1 − u)1−r dx+
\
Ω

f(1 − u)1−r dx.

Since u ≤ 0 on Ω we deduce from this that

(4.9)
\
Ω

|∇u|2

(1 − u)r
dx ≤

|λ|

r − 1

\
Ω

|u| dx+
\
Ω

|f | dx.

Estimates (4.8) and (4.9) allow us to repeat the argument from the proof of
Lemma 2.5.

Proposition 4.3. Let 1 ≤ q < N/(N − 1) and {fn} ⊂ L2(Ω) be such

that for every n ∈ N there exists a solution vn ∈W 1,2(Ω) of the problem
{

−∆vn − µvn/|x|
2 = λvn + fn in Ω,

∂vn/∂ν = 0 in ∂Ω,
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where 0 < µ < µ∗ and λ ∈ R. Suppose that fn → 0 in L1(Ω) and that {vn}
is bounded in L1(Ω). Then vn ⇀ 0 in W 1,q(Ω).

Proof. The proof is similar to that of Proposition 2.7. We only sketch
some details. First we choose k and p as in the proof of Proposition 2.7. We

put v
(1)
n = vn; then v

(1)
n satisfies the equation

−∆v(1)
n + v(1)

n −
µ

|x|2
v(1)
n = λv(1)

n + v(1)
n + fn.

Since v
(1)
n is bounded in L1(Ω), Lemma 4.2 shows that v

(1)
n is bounded in

W 1,p(Ω) with p satisfying (2.12). Hence up to a subsequence v
(1)
n ⇀ v(1) in

W 1,p(Ω). We now define sequences of solutions for every j = 2, . . . , k of the
following Neumann problems:

{

−∆v
(j)
n + v

(j)
n − µv

(j)
n /|x|2 = λv

(j−1)
n + v

(j−1)
n in Ω,

∂v
(j)
n /∂ν = 0 on ∂Ω.

Then {v
(k)
n } is bounded in Lp(k)∗(Ω) with p(k)∗ ≥ 2. Hence {v

(k)
n } is bounded

in L2(Ω). In the next step we consider the sequence {v
(k+1)
n } which is a

solution of the Neumann problem:
{

−∆v
(k+1)
n + v

(k+1)
n − µv

(k+1)
n /|x|2 = λv

(k)
n + v

(k)
n in Ω,

∂v
(k+1)
n /∂ν = 0 on ∂Ω.

From this we deduce the estimate
(

1 −
µ

µ∗

) \
Ω

(|∇v(k+1)
n |2 + (v(k+1)

n )2) dx ≤ (|λ| + 1)‖v(k)
n ‖L2‖v(k+1)

n ‖L2 .

This implies that the sequence {v
(k+1)
n } is bounded in W 1,2(Ω). Subtracting

the equations satisfied by v
(k)
n we obtain

−∆(v(2)
n − v(1)

n ) + v(2)
n − v(1)

n −
µ

|x|2
(v(2)

n − v(1)
n ) = −fn,

−∆(v(3)
n − v(2)

n ) + v(3)
n − v(2)

n −
µ

|x|2
(v(3)

n − v(2)
n ) = (λ+ 1)(v(2)

n − v(1)
n ),

. . .

−∆(v(k+1)
n − v(k)

n ) + v(k+1)
n − v(k)

n −
µ

|x|2
(v(k+1)

n − v(k)
n )

= (λ+ 1)(v(k)
n − v(k−1)

n ).

Lemmas 4.1 and 4.2 show that v(j) = v(1) for j = 1, . . . , k + 1. To complete
the proof we repeat the final part of the proof of Proposition 2.7.

Theorem 2.8 can be extended in an obvious way to the eigenvalue prob-
lem (4.2). This allows us to establish the existence of solutions of a semilinear
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Neumann problem

(4.10)

{

−∆u− µu/|x|2 + g(x, u) = λ1(µ)u+ f in Ω,

∂u/∂ν = 0 on ∂Ω,

with the Landesman–Lazer conditions. We denote by φµ the principal eigen-
function corresponding to λ1(µ).

Theorem 4.4. Let f ∈ L1(Ω) and suppose that the nonlinearity satis-

fies (G). If\
Ω

g−(x)φµ(x) dx <
\
Ω

f(x)φµ(x) dx <
\
Ω

g+(x)φµ(x) dx,

then problem (4.10) has at least one solution belonging to W 1,q(Ω) for every

1 ≤ q < N/(N − 1).

5. Solutions as global minimizers. In this section we investigate
global minima corresponding to L1 data. This situation occurs in the fol-
lowing nonlinear problem:

(5.1)

{

−∆u = f(x, u) + h(x) in Ω,

∂u/∂ν = 0 on ∂Ω,

where h ∈ L1(Ω), h 6≡ 0. It is assumed that f : Ω×R → R is a Carathéodory
function satisfying the following condition:

(F) |f(x, t)| ≤ C1(|t|
α + 1) for all t ∈ R and a.e. on x ∈ Ω, where C1 > 0

and 1/2 < α < 1.

Moreover, we assume that

(5.2) lim
|t|→∞

|t|−2α
\
Ω

F (x, t) dx = −∞,

where F (x, t) =
Tt
0 f(x, s) ds.

Theorem 5.1. Suppose (F) holds. If h ∈ L1(Ω) and h 6≡ 0, then problem

(5.1) admits a solution.

Proof. First we assume that h ∈ L2(Ω). A solution will be obtained as
a global minimizer of the functional

J(u) =
1

2

\
Ω

|∇u|2 dx−
\
Ω

F (x, u) dx−
\
Ω

h(x)u dx.

We commence by showing that J is a coercive functional on W 1,2(Ω). Since
W 1,2(Ω) admits the decomposition u = u + t, where t ∈ R and

T
Ω u(x) dx

= 0, we introduce an equivalent norm on W 1,2(Ω) given by

‖u‖2 =
\
Ω

|∇u|2 dx+ t2.
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By Sobolev inequalities we have, for u ∈W 1,2(Ω),

(5.3) ‖u‖L2 ≤ C‖∇u‖L2 and ‖u‖Lα+1 ≤ C‖∇u‖L2 ,

where C > 0 is a constant independent of u. We now follow some estimates
from the paper [7]. We have

∣

∣

∣

\
Ω

F (x, u) dx−
\
Ω

F (x, t) dx
∣

∣

∣
=

∣

∣

∣

\
Ω

1\
0

f(x, t+ su)u ds dx
∣

∣

∣

≤ C1

\
Ω

1\
0

(|t+ su|α + 1)|u| ds dx ≤ C1

\
Ω

(|u|α + |t|α + 1)|u| dx

≤
\
Ω

(

|u|2

8C2
+ 2(CC1)

2t2α

)

dx+ C1‖u‖
α+1
Lα+1(Ω)

+ C1‖u‖L1(Ω)

≤
1

8

\
Ω

|∇u|2 dx+ C2(|t|
2α + ‖u‖L1(Ω) + ‖u‖α+1

Lα+1(Ω)
)

for u ∈W 1,2(Ω). Therefore the Young inequality yields

(5.4)
∣

∣

∣

\
Ω

F (x, u) dx−
\
Ω

F (x, t) dx
∣

∣

∣
≤

1

4

\
Ω

|∇u|2 dx+ C3(|t|
2α + 1)

for some constant C3 > 0. Using (5.4) we derive

J(u) =
1

2

\
Ω

|∇u|2 dx−
(\

Ω

F (x, u) dx−
\
Ω

F (x, u) dx
)

−
\
Ω

F (x, u) dx−
\
Ω

hu dx

≥
1

4

\
Ω

|∇u|2 dx−
\
Ω

hu dx− t
\
Ω

h dx− C3|t|
2α −

\
Ω

F (x, u) dx− C3

≥
1

4

\
Ω

|∇u|2 dx− C3 −
(\

Ω

h2 dx
)1/2(\

Ω

u2 dx
)1/2

−
|t|2α

4

(

C3 − |t|1−2α
\
Ω

|h| dx+ t−2α
\
Ω

F (x, t) dx
)

.

This implies that lim‖u‖→∞ J(u) = ∞. Hence the functional J is coercive
and bounded below. Since J satisfies the (PS)c condition there exists v ∈
W 1,2(Ω) such that J(v) = infu∈W 1,2(Ω) J(u). The minimizer v is a solution

of problem (5.1). If h ∈ L1(Ω), we choose a sequence {hn} ⊂ L2(Ω) such
that hn → h in L1(Ω). Let un ∈W 1,2(Ω) be a solution of problem (5.1) with
h = hn. We show that {un} is bounded in L1(Ω). Arguing by contradiction
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assume ‖un‖L1(Ω) → ∞ and put vn = un/‖un‖L1(Ω). Then vn satisfies

−∆vn = gn in Ω and
∂vn

∂ν
= 0 on ∂Ω,

where gn = ‖un‖
−1
L1(Ω)(f(x, un) + hn). Since α < 1, we see that gn → 0 in

L1(Ω). By Proposition 2.7, vn ⇀ 0 in W 1,q(Ω) with 1 ≤ q < N/(N − 1).
By the Sobolev embedding theorem vn → 0 up to a subsequence in L1(Ω),
which is a contradiction. In the final step we apply Lemma 2.5.

Remark 5.2. Inspection of the proof of Theorem 5.1 shows that ifT
Ω h dx = 0 we can assume that α ∈ (0, 1). In this situation the lower

bound of J takes the form

J(u) ≥
1

4

\
Ω

|∇u|2 dx− C4 −
(\

Ω

h2 dx
)1/2(\

Ω

u2 dx
)1/2

− |t|2α
(

C4 − t−2α
\
Ω

F (x, t) dx
)

.
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