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SUMS OF RECIPROCALS OF ADDITIVE FUNCTIONS

RUNNING OVER SHORT INTERVALS

BY

J.-M. DE KONINCK (Québec) and I. KÁTAI (Budapest)

Abstract. Letting f(n) = A log n + t(n), where t(n) is a small additive function and
A a positive constant, we obtain estimates for the quantities

∑

x≤n≤x+H
1/f(Q(n)) and

∑

x≤p≤x+H 1/f(Q(p)), where H = H(x) satisfies certain growth conditions, p runs over
prime numbers and Q is a polynomial with integer coefficients, whose leading coefficient
is positive, and with all its roots simple.

1. Introduction. Let t(n) be an additive function for which there exist
two positive constants c and ξ > 0 such that

|t(pα)| ≤ c

pξ
for all prime powers pα,(1)

and let A > 0 be a fixed number; then let

f(n) := A log n+ t(n).(2)

Additive functions of the type (2) include the family of additive functions
f for which Ivić [3] obtained estimates of

∑

n≤x, f(n) 6=0 1/f(n); the same is

true for the family of additive functions studied by Brinitzer [1].

Let Q be a polynomial with integer coefficients, whose leading coefficient
is positive, and such that all its roots are simple. Our goal here is to provide
good estimates for each of the two sums

∑

x≤n≤x+H

1

f(Q(n))
and

∑

x≤p≤x+H

1

f(Q(p))
,

where H = H(x) satisfies certain growth conditions and p runs over prime
numbers. Let D be the discriminant of Q; for each prime p dividing D,
we shall assume that there exists a positive integer β0 = β0(p) such that
τ(pβ) = τ(pβ+1) = · · · for each integer β ≥ β0.
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Research of I. Kátai supported by the Applied Number Theory Research Group of

the Hungarian Academy of Science and by a grant from OTKA.

[317]



318 J.-M. DE KONINCK AND I. KÁTAI

From these estimates will follow good estimates for the more classical
expressions

∑

x≤n≤x+H

1

f(n)
and

∑

x≤p≤x+H

1

f(p+ 1)
.

2. Main results

Theorem 1. Let f be defined by (2). Let ε < 1 be a fixed positive number

and let H = H(x) be an increasing function satisfying xε ≤ H ≤ x1−ε for all

x ≥ x0 for a certain x0 > 0. Moreover , let Q be as in Section 1. Then, given

any positive integer r, there exist computable constants e1 > 0, e2, . . . , er
such that

∑

x≤n≤x+H

1

f(Q(n))
= H

r
∑

j=1

ej

logj x
+O

(

H

logr+1 x

)

.

As usual, we define the logarithmic integral as follows:

li(x) =

x\
2

du

log u
.

Theorem 2. Let f be defined by (2). Let ε < 1 be a fixed positive number

and let H = H(x) be an increasing function satisfying x7/12+ε ≤ H ≤ x1−ε

for all x ≥ x0 for a certain x0 > 0. Moreover , let Q be as in Section 1.
Then, given any positive integer r, there exist computable constants f1 > 0,
f2, . . . , fr such that

∑

x≤p≤x+H

1

f(Q(p))
= (li(x+H) − li(x))

r
∑

j=1

fj

logj x
+O

(

H

logr+2 x

)

.

The following results are then consequences of the proofs of the above
theorems.

Theorem 3. Let f and A be as in (2). Let ε < 1 be a fixed positive

number and let H = H(x) be an increasing function satisfying xε ≤ H ≤
x1−ε for all x ≥ x0 for a certain x0 > 0. Then, given any positive integer r,
there exist computable constants b1 > 0, b2, . . . , br, independent of A, such

that
∑

x≤n≤x+H

1

f(n)
= H

r
∑

j=1

bj
(A log x)j

+O

(

H

logr+1 x

)

.

Corollary. Let g be either one of the following multiplicative func-

tions:

g(n) = σk(n) :=
∑

d|n
dk, g(n) = ϕ(n) (Euler function), g(n) = τ (e)(n),
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where τ (e)(n) = τ (e)(pα1

1 · · · pαs
s ) := τ(α1) · · · τ(αs) stands for the number of

exponential divisors of n, that is, those divisors d = pβ1

1 . . . pβs
s of n such that

βi |αi for i = 1, . . . , r. Let H = H(x) be as in Theorem 1. Then, given any

positive integer r, there exist computable constants bj = bj(g), 1 ≤ j ≤ r,
such that

∑

x≤n≤x+H

1

log g(n)
= H

r
∑

j=1

bj

logj x
+O

(

H

logr+1 x

)

.

Theorem 4. Let f , A, ε and H = H(x) be as in Theorem 2. Then, given

any positive integer r, there exist computable constants d1 > 0, d2, . . . , dr,
independent of A, such that

∑

x≤p≤x+H

1

f(p+ 1)
= (li(x+H) − li(x))

r
∑

j=1

dj

(A log x)j
+O

(

H

logr+2 x

)

.

3. Preliminary results

Lemma 1. Let t be as in Section 1. Then

|t(n)| ≪ (logn)β

log logn
(n ≥ 3),(3)

where β = max(1 − ξ, 1/4).

Proof. First, consider the case where 0 < ξ ≤ 3/4. Then, let t(1) be the
additive function defined on prime powers pα by

t(1)(pα) =
c

pξ
.

One can easily establish that

max
3≤n≤x

t(1)(n) ≪ (log x)1−ξ

log log x
,

which clearly implies (3). On the other hand, if ξ > 3/4, then we have
|t(pα)| ≤ c/pξ < c/p3/4, so that the argument for the first case may be used
again, and then case (3) follows once more.

Lemma 2. Let Q ∈ Z[x] have all roots simple. Let ̺(m) be the number

of solutions of Q(n) ≡ 0 (modm). Let D be the discriminant of Q. Then for

each prime number p such that (p,D) = 1, we have ̺(pβ) = ̺(p) for each

positive integer β.

Proof. It is known that, for some positive integer x, D = u(x)Q(x) +
v(x)Q′(x) for some polynomials u, v ∈ Z[x]. Now, given β ≥ 1, let x1, . . . , xt

(modpβ) be the solutions of Q(x) ≡ 0 (mod pβ). If Q(y) ≡ 0 (modpβ+1),
then y=xi+tp

β (modpβ+1) for some t∈{0, 1, . . . , p−1}, so that Q(xi + tpβ)
≡ Q(xi)+ tpβQ′(xi) (mod pβ+1). Therefore, since p |Q(xi) and p ∤Q′(xi), we
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infer that exactly one t is appropriate, which means that ̺(pβ+1) = ̺(pβ),
thus completing the proof of Lemma 2.

Let π(x, k, l) denote the number of primes p ≤ x such that p ≡ l (modk).

Theorem A. Let E be an arbitrary positive number and let H = H(x)
be as in Theorem 2. If (k, l) = 1, then uniformly for k ≤ logE x,

π(x+H, k, l) − π(x, k, l) =
li(x+H) − li(x)

ϕ(k)
(1 +O(exp{−c1

√

log x}))

for some positive constant c1.

Proof. This follows directly from the Siegel–Walfisz Theorem (see Pra-
char [4, Chap. IX, Theorem 3.1]), according to which, uniformly for k ≤
logE x,

ψ(x+H, k, l) − ψ(x, k, l) =
H

ϕ(k)
(1 +O(exp{−c1

√

log x})),

where
ψ(x, k, l) :=

∑

n≤x
n≡l (mod k)

Λ(n),

with Λ standing for the von Mangoldt function.

Remark. The exponent 7/12 tied to the conditions on H(x) (see state-
ment of Theorem 2) comes from a result of Huxley [2].

4. The proof of Theorem 1. We may clearly assume that r + 1 is
even. Let x > 0 be a large number. Let k be the degree of the polynomial Q
and let E be its leading coefficient. Let J = [x, x+H], Y = Y (x) = logη x,
where η is a large number to be chosen later. Let also tY be the additive
function defined on prime powers pα by

tY (pα) =

{

t(pα) if pα ≤ Y ,

0 otherwise,

and set
κY (n) = t(n) − tY (n).

Finally, let ̺(m) be the number of solutions of Q(n) ≡ 0 (modm) and set

f1(Q(n)) = A logQ(x) + t(Q(n)), f2(Q(n)) = A logQ(x) + tY (Q(n)).

Since
Q(x+ j)

Q(x)
= 1 +O

(

j

x

)

for 1 ≤ j ≤ H,

it follows that
∑

n∈J

∣

∣

∣

∣

1

f(Q(n))
− 1

f1(Q(n))

∣

∣

∣

∣

≪ 1

log2 x

∑

n∈J
log

∣

∣

∣

∣

Q(n)

Q(x)

∣

∣

∣

∣

≪ H2

x log2 x
.(4)
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Moreover,
∑

n∈J

∣

∣

∣

∣

1

f1(Q(n))
− 1

f2(Q(n))

∣

∣

∣

∣

≪ T

log2 x
,(5)

where

T :=
∑

n∈J
|κY (Q(n))|.

In order to estimate T , we first observe that it follows from (1) that

|κY (Q(n))| ≤
∑

pα‖Q(n)
pα>Y

|t(pα)| =
∑

pα‖Q(n)
Y <pα≤H

|t(pα)| +
∑

pα‖Q(n)
pα>H

|t(pα)|

= κ
(1)
Y (Q(n)) + κ

(2)
Y (Q(n)),

say. Furthermore,

|κ(2)
Y (Q(n))| ≤

∑

pα‖Q(n)

p≤
√

H, pα>H

c

pξ
+

∑

p|Q(n)√
H<p≤H

c

pξ
+

c

Hξ

∑

p|Q(n)
p>H

1(6)

= K1(Q(n)) +K2(Q(n)) +K3(Q(n)),

say. Now let

Tj :=
∑

n∈J
κ

(j)
Y (Q(n)) (j = 1, 2).

On the one hand,

T1≪H
∑

p≥Y

1

p1+ξ
+H

∑

p2>Y

1

p · p1+ξ
+H

∑

pα≥Y
α≥3

1

pα−1

1

p1+ξ
≪ H

Y ξ
+

H√
Y
.(7)

On the other hand, it follows from (6) that

T2 ≤M1 +M2 +M3,(8)

where Ml =
∑

n∈J Kl(Q(n)) for l = 1, 2, 3.

In order to estimate M1, observe that the conditions pα ‖Q(n), p <
√
H,

pα > H imply that there is a divisor pβ of pα for which
√
H ≤ pβ < H with

β ≥ 2. Consequently,

M1 ≪ H
∑

pβ>
√

H

1

pβ
≪ H3/4,(9)

say. Similarly, and by using Lemma 2, we infer that

M2 ≪ H

Hξ/2

∑

√
H<p<H

̺(p)

p
≪ H1−ξ/2 log logH,(10)
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and that, since
∑

p|Q(n), p>H 1 is bounded,

M3 ≪ H1−ξ.(11)

Inserting (9), (10) and (11) in (8) shows that

T2 ≪ H3/4 +H1−ξ/2.(12)

Substituting (7) and (12) into (5), we obtain

∑

n∈J

∣

∣

∣

∣

1

f1(Q(n))
− 1

f2(Q(n))

∣

∣

∣

∣

≪ H

logξη+2 x
+

H

logη/2+2 x
,(13)

provided 0 < ξ < 1, which has indeed been assumed.
Then, letting S(x,H) :=

∑

x≤n≤x+H 1/f(Q(n)) and

S∗(x,H) :=
∑

n∈J

1

f2(Q(n))
,(14)

we deduce from (4) and (13) that

S(x,H) − S∗(x,H) = O

(

H

logr+1 x

)

,

provided η = η(r, ξ, ε) is chosen large enough. This means that in order to
complete the proof of Theorem 1, it is sufficient to prove that

S∗(x,H) = H

r
∑

j=1

ej

logj x
+O

(

H

logr+1 x

)

.(15)

First observe that it follows from Lemma 1 that

|tY (Q(n))| < A

2
logQ(x) (n ∈ J ),

so that
1

f2(Q(n))
=

1

A logQ(x) + tY (Q(n))
(16)

=
1

A logQ(x)

{

1 − tY (Q(n))

A logQ(x)
+

(

tY (Q(n))

A logQ(x)

)2

+ · · ·

+(−1)r

(

tY (Q(n))

A logQ(x)

)r

+O

( |tY (Q(n))|r+1

logr+1Q(x)

)}

.

Now let

Rj(J ) :=
∑

n∈J
tjY (Q(n)),

so that from (14) and (16), we have

S∗(x,H) =

r
∑

j=0

(−1)j Rj(J )

(A logQ(x))j+1
+O

(

Rr+1(J )

logr+2 x

)

.(17)
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We shall now estimate each Rj(J ) with good accuracy. Indeed,

Rj(J ) =

j
∑

l=1

∑

k1+···+kl=j

j!

k1! · · · kl!

∑

p
α1
1

<···<p
αl
l

≤Y

t(pα1

1 )k1 . . . t(pαl

l )kl∆,(18)

where p1, . . . , pl are any collection of distinct primes and α1, . . . , αl are pos-
itive integers such that pα1

1 < · · · < pαl

l ≤ Y and

∆ = ∆(pα1

1 , . . . , pαl

l ) := #{n ∈ J : p
αj

j ‖Q(n), j = 1, . . . , l}.
One easily sees that ∆ may be written as

∆ = H
∑

δ|p1···pl

µ(δ)

δ

̺(pα1

1 · · · pαl

l δ)

pα1

1 · · · pαl

l

+O
(

∑

δ|p1···pl

̺(pα1

1 · · · pαl

l δ)
)

.(19)

Clearly the contribution of the error term in (19) to the right hand side of
(18) is Oj(1).

Now writing

Σ∗(Y | k1, . . . , kl) =
∑

p
α1
1

<···<p
αl
l

≤Y

t(pα1

1 )k1 · · · t(pαl

l )kl

∑

δ|p1···pl

µ(δ)̺(pα1

1 · · · pαl

l δ)

δpα1

1 · · · pαl

l

,

it follows from (18) and (19) that

Rj(J ) = H

j
∑

l=1

∑

k1+···+kl=j

j!

k1! · · · kl!
Σ∗(Y | k1, . . . , kl) +Oj(1)(20)

= HDj(Y ) +Oj(1),

say. We shall now manage to replace Dj(Y ) by

Dj :=

j
∑

l=1

∑

k1+···+kl=j

j!

k1! · · · kl!
Σ∗(∞| k1, . . . , kl),

carefully monitoring the error term created by this substitution, that is,
showing that

|Σ∗(∞| k1, . . . , kl) −Σ∗(Y | k1, . . . , kl)| ≪
1√
Y

+
1

Y ξ
,(21)

thus enabling us, using (20), to replace (17) by

S∗(x,H) = H
r

∑

j=0

(−1)j Dj

(A logQ(x))j+1
+O

(

H

logr+2 x

)

,(22)

provided η is chosen sufficiently large. Then, since

A logQ(x) = A log(Exk +O(xk−1)) = Ak log x+A logE +O(1/x),
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it follows that

1

(A logQ(x))j+1
=

r+1
∑

ν=j+1

uν,j

logν x
+O

(

1

logr+2 x

)

,(23)

with suitable constants uν,j . Using (23) in (22) yields (15).
Hence, it remains to prove (21). Indeed, by (1), it is clear that

∑

p
αl
l

>Y

t(pαl

l )kl

pαl

l

≪ 1√
Y

+
1

Y ξ
(24)

and that
∑

p
α1
1

<···<p
αl−1

l−1

l−1
∏

j=1

t(p
αj

j )kj

p
αj

j

= O(1).(25)

Since (21) clearly follows from (24) and (25), the proof of Theorem 1 is
complete.

5. The proof of Theorem 2. The proof is very similar to that of
Theorem 1. As in that proof, we may clearly assume that r+1 is even. Using
the notation introduced in Section 4 and repeating the same argument, we
obtain

(26)
∑

p∈J

∣

∣

∣

∣

1

f(Q(p))
− 1

f2(Q(p))

∣

∣

∣

∣

≤
∑

p∈J

∣

∣

∣

∣

1

f(Q(p))
− 1

f1(Q(p))

∣

∣

∣

∣

+
∑

p∈J

∣

∣

∣

∣

1

f1(Q(p))
− 1

f2(Q(p))

∣

∣

∣

∣

≪ H2

x log2 x
+

T

log2 x
≪ H

logr+2 x
,

provided η is large enough. Then, proceeding as we did to obtain (16) and
(17), we get

∑

p∈J

1

f2(Q(p))
=

r
∑

j=0

(−1)j Sj(J )

(A logQ(x))j+1
+O

(

Sr+1(J )

logr+2 x

)

,(27)

where

Sj(J ) =
∑

p∈J
tjY (Q(p)).

Then

Sj(J ) =

j
∑

l=1

∑

k1+···+kl=j

j!

k1! · · · kl!

∑

p
α1
1

<···<p
αl
l

≤Y

t(pα1

1 )k1 · · · t(pαl

l )kl∆∗,(28)
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where again p1, . . . , pl are any collection of distinct primes and α1, . . . , αl

are positive integers such that pα1

1 < · · · < pαl

l ≤ Y and

∆∗ = ∆∗(p
α1

1 , . . . , pαl

l ) := #{p ∈ J : p
αj

j ‖Q(p), j = 1, . . . , l}.

Then, letting ̺∗(m) be the number of residue classes s (modm) such that
Q(s) ≡ 0 (modm) and (s,m) = 1, and calling upon Theorem A, we obtain

∆∗(p
α1

1 , . . . , pαl

l ) = (li(x+H) − li(x))
∑

δ|p1...pl

µ(δ)

δ

̺∗(pα1

1 · · · pαl

l δ)

ϕ(pα1

1 · · · pαl

l )
(29)

+O

(

H

log x
exp{−c1

√

log x} 1

pα1

1 · · · pαl

l

)

.

Then, observing that the contribution of the error term in (29) to the sum
in (28) is at most

O

(

H

log x
exp{−c1

√

log x}
)

,

and continuing the proof as we did in Section 4, we find that

Sj(J ) = (li(x+H) − li(x))Kj +O

(

H

logr+3 x

)

,(30)

where

Kj :=

j
∑

l=1

∑

k1+···+kl=j

j!

k1! · · · kl!

∑

p
α1
1

<···<p
αl
l

t(pα1

1 )k1 · · · t(pαl

l )kl

×
∑

δ|p1···pl

µ(δ)

δ

̺∗(pα1

1 · · · pαl

l δ)

ϕ(pα1

1 · · · pαl

l )
.

Then substituting (30) in (27), and taking into account (26), completes the
proof of Theorem 2.
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