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TRISECTIONS OF MODULE CATEGORIES

BY

JOSÉ A. DE LA PEÑA (México) and IDUN REITEN (Dragvoll)

Abstract. Let A be a finite-dimensional algebra over a field k. We discuss the ex-
istence of trisections (mod+ A, mod0 A, mod− A) of the category of finitely generated
modules mod A satisfying exactness, standardness, separation and adjustment conditions.
Many important classes of algebras admit trisections. We describe a construction of alge-
bras admitting a trisection of their module categories and, in special cases, we describe
the structure of the components of the Auslander–Reiten quiver lying in mod0 A.

Let A be a finite-dimensional algebra over a field k. One of the main
problems of the representation theory of algebras is to describe the finite-
dimensional indecomposable left A-modules. Since this is possible only for
algebras of tame representation type, in the general situation other types
of structural results are considered. In certain important cases the category
modA of finitely generated left modules admits partitions which determine
the direction of morphisms between indecomposable modules. This is the
case for tilted algebras, tubular algebras, concealed-canonical algebras and
other important examples.

Let A be a finite-dimensional algebra. A trisection (mod+ A, mod0 A,
mod− A) of modA satisfies the following conditions:

• (Exactness) Each of mod+ A, mod0 A, mod− A is a full subcategory
of modA closed under direct sums, direct summands, extensions and
isomorphisms.
• (Standardness) The indecomposable modules in mod0 A yield a fam-

ily of generalized standard (pairwise orthogonal) components of the
Auslander–Reiten quiver ΓA of A, that is, for X, Y ∈ mod0 A, we have⋂

n≥1 radn
A(X, Y ) =: rad∞

A (X, Y ) = 0.
• (Separation) Every indecomposable A-module belongs to mod+ A,

mod0 A or mod− A. If X ∈ mod+ A and Y ∈ mod− A then

HomA(mod0 A, X) = 0 = HomA(Y, mod0 A).

2000 Mathematics Subject Classification: 16G60, 16G20, 16G70, 18G20.
Key words and phrases: trisection of a module category, Auslander–Reiten quiver,

standard component, factorization properties.

[191]



192 J. A. DE LA PEÑA AND I. REITEN

• (Adjustment) For every X ∈ mod+ A and Y ∈ mod− A we have

HomA(X, mod0 A) 6= 0 and HomA(mod0 A, Y ) 6= 0.

Many important classes of algebras admit a trisection of their module
categories, notably the tilted algebras and the algebras with a separating
tubular family of stable tubes. Recall that an algebra A is tilted if A =
EndH(T ), where H is a hereditary algebra and T is a tilting H-module
(that is, Ext1H(T, T ) = 0 and T is a direct sum of n = rankZ K0(H) pairwise
non-isomorphic indecomposable modules); in that case mod0 A = add C is
the additive closure of the modules lying in the connecting component C of
the Auslander–Reiten quiver ΓA (see [20]). On the other hand, the finite-
dimensional algebras with a separating tubular family of stable tubes (in the
sense of [12]) include the tame hereditary algebras [20], the tubular algebras
[6, 20], the canonical algebras [11, 20] and more generally the concealed-
canonical algebras [12, 13]; in that case, mod0 A = add T0, where T0 is the
separating tubular family.

Generalizing some of the above examples, the class of quasitilted algebras
was introduced in [10]. An algebra A is quasitilted if A = EndH(T ) for a
tilting object T in a hereditary abelian k-category H. It was shown by
Happel [7] (over algebraically closed fields and generalized in [8] to arbitrary
base fields) that there are only two types of quasitilted algebras: the tilted
ones and the quasitilted algebras of canonical type, that is, algebras A =
EndH(T ) for a tilting module T over a hereditary category H whose derived
category Db(H) is equivalent, as a triangulated category, to the derived
category Db(modC) of modules over a canonical algebra C. It is known
[10] that quasitilted algebras of canonical type admit a trisection of their
module categories. In Section 3 we shall give a direct proof of the fact that
a quasitilted algebra admitting a trisection of its module category is either
a tilted algebra or a quasitilted algebra of canonical type.

Recently, it was shown [16] that the class of Artin algebras A whose
Auslander–Reiten quiver admits a trisection whose middle part is a sepa-
rating family of almost cyclic coherent components coincides with the class
of generalized multicoil enlargements of concealed-canonical algebras. This
result provides the description of many algebras admitting special classes of
trisections.

The purpose of this work is to describe a construction of algebras A
admitting trisections of their module categories and in special cases, describe
also the structure of the components of the Auslander–Reiten quiver lying
in mod0 A.

In Section 1 we study subcategories H0 ⊂ indA called hearts of modA,
which under certain conditions yield trisections of modA. We shall con-
struct (and recall) many examples of algebras admitting (or not) trisections
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of their module categories, in particular we provide examples of algebras
which are not quasitilted but admit trisections. In Section 2 we prove that
for an algebra A = kQ/I admitting a trisection (mod+ A, mod0 A, mod− A)
of its module category, any quotient A = A/AexA, where ex is the idempo-
tent corresponding to a sink x in Q such that the indecomposable injective
Ix is in mod0 A, admits a trisection (mod+ A, mod0 A, mod− A) such that
mod− A = mod− A. This observation is fundamental for the proof of the
results concerning quasitilted algebras in Section 3.

Section 4 is devoted to the study of oriented cycles in the quiver Q of
an algebra of the form A = kQ/I admitting a trisection of modA. We
show that the quotient A of A obtained by killing the convex closure of
those vertices in Q lying on oriented cycles, still admits a trisection of
modA.

In case A = kQ/I is triangular, that is, Q has no oriented cycles, we get
the following description of the structure of A. For terminology see [13] or
Section 3.

Theorem A. Let A be a triangular algebra admitting a trisection of

modA. Then there are algebras A0, A1, . . . , As = A with Ai+1 = Ai[Mi] for

i = 0, . . . , s− 1 such that the following holds:

(a) Ai admits a trisection of modAi such that Mi ∈ mod0 Ai, i =
0, . . . , s− 1.

(b) A0 decomposes as a product B1 × · · · × Bt of indecomposable alge-

bras, where each Bi is either a tilted algebra or an almost concealed-

canonical algebra.

In Section 5, we shall give necessary and sufficient conditions for a one-
point extension A[M ] of an algebra A admitting a trisection (mod+ A,
mod0 A, mod− A) with M ∈ mod0 A, to admit a trisection (mod+ A[M ],
mod0 A[M ], mod− A[M ]) with mod+ A[M ] = mod+ A. Section 6 provides
the proofs of some basic results stated in Section 1. As a consequence of
the structure results established in Sections 4 and 5 we get the following
fundamental property of algebras admitting trisections.

Theorem B. Let A be an algebra admitting a trisection of modA. Then

mod0 A weakly factorizes maps from mod+ A to mod− A. That is, for any

modules X ∈ mod+ A and Y ∈ mod− A and a morphism f ∈ HomA(X, Y ),
there exist a module U ∈ mod0 A and morphisms f ′ ∈ HomA(X, U) and

f ′′ ∈ HomA(U, Y ) such that f = f ′′f ′.

Factorization properties for trisections have been considered for special
classes of algebras (see for example [12, 18]). In Section 1.7 we provide
examples to show that stronger factorization properties are not necessarily
satisfied by trisections in general.
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Concerning the structure of the Auslander–Reiten components corre-
sponding to modules in mod0 A we know from [23] that they admit only
finitely many non-periodic orbits. A more precise description is given in
Section 7 in case the algebra A is strongly simply connected. Following [21],
for an algebraically closed field k, we say that A = kQ/I is strongly simply

connected if it is triangular and for every convex subcategory B of A, the
first Hochschild cohomology H1(B) vanishes. Roughly speaking, a compo-
nent of the Auslander–Reiten quiver ΓA is said to be a multicoil if it consists
of a finite number of coils glued together by some directed parts, a coil being
a natural generalization of the notion of a tube (see [2, 24] for the precise
definitions). The structure theorem in Section 7 is the following.

Theorem C. Let A be a strongly simply connected algebra admitting a

trisection (mod+ A, mod0 A, mod− A). Then every component of ΓA lying in

mod0 A is a multicoil.

Obviously, we shall say that (H+,H0,H−) is a trisection of indA if
(addH+, addH0, addH−) is a trisection of modA. Sometimes we shall say
that (H+,H0,H−) is a trisection of A.

This work was started during a visit of the second named author to
UNAM in the spring of 1998. The completion of the paper took some time
due to non-mathematical reasons. The authors acknowledge the support of
their institutions, CONACyT and DGAPA, UNAM.

1. Hearts of a module category and trisections

1.1. Let A be an Artin algebra and consider the category modA of
finitely generated left A-modules. It is useful to start by investigating a con-
cept more general than trisections, namely hearts of modA, which provide
trisections when additional requirements are satisfied.

A set of indecomposable A-modulesH0 is called a heart of modA if there
exist sets of indecomposable A-modules H+ and H− satisfying:

• (Exactness) For any X, Y ∈ H+ (resp. H0,H−) and Z an indecom-
posable direct summand of an extension of X by Y , we have Z ∈ H+

(resp. H0,H−).
• (Standardness) The indecomposable modules in H0 yield a family of

pairwise orthogonal generalized standard components of the Auslan-
der–Reiten quiver ΓA.
• (Separation) Every indecomposable A-module belongs to H+,H0 or
H−. If X ∈ H+ and Y ∈ H−, then HomA(H0, X) = 0 = HomA(Y,H0).

Recall that, in case the ground field k is algebraically closed, a component
C of ΓA is standard if the mesh category k(C), obtained from the path
category kC by factoring out the sums

∑s
i=1 βiαi for every almost split
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sequence

0 → τAX
(αi)
→

s⊕

i=1

Yi
(βi)
→ X → 0

with X ∈ C, is equivalent to the full subcategory of modA induced by
the modules in C. A standard component C is generalized standard, that is,
rad∞(X, Y ) = 0 for every pair X, Y ∈ C (see [15]). Observe that if a family
(Ci)i of components of ΓA is generalized standard, then HomA(Ci, Cj) = 0
for i 6= j.

We say that a heart H0 of modA is sincere if there exists a sincere
module in addH0. It is adjusted if given H+ and H− as in the definition, for
every X ∈ H+ and Y ∈ H− we have HomA(X,H0) 6= 0 6= HomA(H0, Y ).

Lemma. Let H0 be a heart of modA with H+ and H− as in the defini-

tion. Then the following statements hold :

(a) If H0 is sincere, then every indecomposable projective (resp. injec-

tive) module belongs to H+ ∪H0 (resp. H0 ∪H−).
(b) If H0 is adjusted , then H0 is sincere.

Proof. (a) Follows from the separation property.
(b) Consider a simple module S and assume S /∈ H0. Consider the case

S ∈ H−. AsH0 is adjusted, there is a module X ∈ H0 with HomA(X, S) 6= 0,
hence X has S as a composition factor. The case S ∈ H+ is treated dually.

1.2. Lemma. Let H0 be a heart of modA and suppose that (H+,H0,H−)
satisfies the conditions of the definition. If H0 is adjusted, then H+ and H−

are uniquely determined.

Proof. Indeed, H+ = {X ∈ ΓA : HomA(H0, X) = 0} and H− = {Y ∈
ΓA : HomA(Y,H0) = 0}.

In case H0 is an adjusted heart, (H+,H0,H−) is called a trisection of the
category indA of finitely generated indecomposable A-modules. In this case
mod+ A = addH+, mod0 A = addH0, mod− A = addH− yield a trisection
of the module category modA.

1.3. We present some general properties of trisections essentially proved
in [12]. We recall that given a path of non-zero maps between indecompos-
able A-modules of the form X = X0 → X1 → · · · → Xs = Y , the module X
is a predecessor of Y (and Y a successor of X).

Proposition. Let (H+,H0,H−) be a trisection of indA. Then:

(a) The categories addH+, addH0 and addH− are closed under exten-

sions; H+ is closed under predecessors and H− under successors.

(b) Each module in H+ embeds into a module in H0.

(c) If X ∈ H+ and Y ∈ H−, then HomA(Y, X) = 0.
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(d) Each module X ∈ H+ has projective dimension pdA X ≤ 1. Dually ,
every Y ∈ H− has injective dimension idA Y ≤ 1.

(e) The modules in H+ (resp. H−) form complete components of ΓA.

(f) The components C in H0 are convex (that is, X → X1 → · · · →
Xn → Y being a chain of non-zero maps between indecomposable

modules with X, Y ∈ C implies Xi ∈ C for all i).

Proof. (a) is clear.

(b) Let 0 6= X ∈ H+ and choose 0 6= f : X → U with U ∈ H0. Let

I = Im f and consider the exact sequence

0 → K → X
f
→ I → 0.

Then K ∈ addH+. Factorize I = I+⊕I0 with I+ ∈ addH+ and I0 ∈ addH0.
If f is not mono, then dimk I+ < dimk X. By induction hypothesis, we
may suppose f ′ : I+ → U0 is mono for some U0 ∈ addH0 and similarly,
f0 : K → U ′

0 is mono for some U ′
0 ∈ addH0. Form the commutative and

exact diagram

0

��

0

��
0 // K //

f0

��

X
f

//

��

I // 0

0 // U ′
0

// Y // I+ ⊕ I0
// 0

As U ′
0, I0 ∈ addH0 and I+ ∈ addH+ by (a) we see that Y ∈ add(H0 ∪H+).

Since Ext1A(I+, U ′
0) = 0, we have Y ∼= I+ ⊕ U1 for some U1 ∈ addH0.

Therefore, X →֒ Y →֒ U ′
0 ⊕ U1 is the desired inclusion.

(c) Let X ∈ H+ and Y ∈ H−. Consider X →֒ X0 with X0 ∈ addH0,
which is possible by (b). Then 0 → HomA(Y, X) → HomA(Y, X0) is exact
and we know that HomA(Y, X0) = 0.

(d) Let X be an indecomposable module in H+. Since the Auslander–
Reiten translation τAX has no injective predecessor by 1.1 and (a), it follows
that pdA X ≤ 1 by [20, p. 74].

(e) Assume X → Y is an irreducible map in ΓA with X ∈ H+. By
standardness Y /∈ H0. Assume Y ∈ H− to get a contradiction.

Since Y is not projective, we consider the almost split sequence

0 → X1
α
→ X ⊕

s⊕

i=1

Zi
β
→ Y → 0.

Then X1 ∈ H+. Moreover by adjustment, there is a non-zero map f : Z → Y
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with Z ∈ H0, hence f factorizes through β. Then there is some j ∈ {1, . . . , s}
with a non-zero map Z → Zj . It follows that Zj ∈ H−, because H0 is
standard and there is an irreducible map X1 → Zj with X1 ∈ H+. Set
Y1 = Zj . We have found an irreducible map X1 → Y1. In a similar way we
construct a family of irreducible maps Xi → Yi with Xi = τAYi−1 ∈ H+

and Yi ∈ H− for i ∈ N. The module T =
⊕

i∈N
Yi is a partial tilting

module because Ext1A(Yi, Yj) ∼= DHomA(Yj , Xi) = 0 (see [20]). Moreover,
the modules (Yi)i are pairwise non-isomorphic since they lie on a sectional

path. Indeed, there is an infinite path · · · → Yn
βn
→ Yn−1 → · · · → Y1

β1
→ Y

of irreducible maps which is sectional (since Yn+1
∼= τAYn−1 implies that

Xn−1 ∈ H0 by (a), which is a contradiction). By [4], sectional paths have
no cycles. Therefore T should have at most rankK0(A) indecomposable
pairwise non-isomorphic direct summands, a contradiction.

(f) Follows from standardness and (a).

1.4. Examples.

(a) Representation-finite algebras. In this case H0 = indA is an adjusted
heart of modA. Observe that when k is algebraically closed, the components
in H0 are not necessarily standard.

(b) Tilted algebras. Let H be a hereditary algebra and HT a tilting mod-
ule. Consider the tilted algebra A = EndA(T ). There are several possibilities:

• A is representation-finite.

• A is representation-infinite and T is a sum of preprojective modules.
Then A is a concealed algebra and ΓA has two components P and J with
complete slices. In this case both H0 = P and H0 = J are adjusted hearts
of modA. Moreover, if H is tame, then the regular modules of A form a
generalized standard family T of stable tubes. Also H0 = T is an adjusted
heart of modA. Similarly when T is a sum of preinjective modules.

• A is representation-infinite and T has regular summands. Consider the
preprojective component P and the preinjective component J of ΓA.

In case H is tame, either P or J has a complete slice (but not both).
Suppose P has a complete slice. Then bothH0 = P andH0 = indA\(P∪J )
are adjusted hearts of modA. In this case, A is a domestic tubular algebra

(see [20]).

In case H is wild, let C be the connecting component of ΓA (that is,
the unique component having a complete slice); then H0 = C is the unique
choice for an adjusted heart of modA.

For the next examples (c) to (h) we assume that k is algebraically closed.

(c) Canonical algebras. Let C = (C(p, λ) be the canonical algebra asso-
ciated to the data p = (p1, . . . , pt) ∈ Nn, λ = (λ3, . . . , λt), where the λi’s are
pairwise different elements in k∗ and C = kQ/I, where Q is the quiver
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and I is generated by α1p1 . . . α11−λiα2p2 . . . α21−αipi
. . . αi1 for i = 3, . . . , t.

It was shown in [20] that there is a standard family T = (Tλ)λ∈P1k of
stable tubes such that H0 = T is an adjusted heart of modA.

If C is a tubular algebra (that is, p=(2, 2, 2, 2), (3, 3, 3), (2, 4, 4), (2, 3, 6)),
then there are standard families T γ = (T γ

λ )λ∈P1k of stable tubes in ΓA

(γ ∈ Q+ ∪ {0,∞}) such that Hγ
0 = T γ is an adjusted heart of modA

(see [20]).

(d) Quasitilted algebras of canonical type. We recall that an algebra A
is quasitilted if gl dimA ≤ 2 and for every indecomposable A-module X
either pdA X ≤ 1 or idA X ≤ 1 (see [10]). Quasitilted algebras of the form
A = EndC(T ), where C is a canonical algebra with a trisection (H+,H0,H−)
and T is a tilting module in addH+, are said to be concealed-canonical. In
case A is not a tubular algebra, modA has a unique adjusted heart. A gen-
eral quasitilted algebra of canonical type may be obtained as a semiregular
branch enlargement of a concealed-canonical algebra (see [13]).

(e) Consider the path algebra B associated to the quiver Q below. The

quiver of ΓB contains a standard family T = (Tλ)λ∈P1k of stable tubes which
are all homogeneous exception two tubes T1 and T2 of rank 2. Let M be an
indecomposable module in T1 with regular length 2. Consider the one-point
extension A = B[M ] (=

(
B BMk

0 k

)
with the usual matrix operations, see

[20]). Then T ′ = (Tλ)λ6=1 is a family of components of ΓA. We find that
H0 = T ′ is a heart of modA with H+ = P where P is the preprojective
component of ΓB (and also of ΓA) and H− = ΓA \ (P ∪ T ′). Since M is not
simple regular, the component C′ of ΓA where M lies is not standard (see
for example [18]). It follows that indA does not have an adjusted heart.

(f) Consider the algebra A given as A = kQ/I where Q is the quiver
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and I is generated by γα1, δε, and β1λ. As shown in [2], A is a multicoil

algebra, that is, every component of ΓA is a multicoil. The components of
ΓA may be described as follows: let P be the preprojective component of the
algebra A(1, 2) associated with the full subcategory of A with vertices 1, 2;

let (T 1
λ )λ be the standard family of tubes of A(1, 2), where M1 : (k2

0
⌢
⌣
1

k1) ∈

T 1
1 (where ki is the vector space k “sitting” at the vertex i); let J ′ be the

preinjective component of A(1, 2, 3, 4); let P ′ be the preprojective component
of A(4, 5, 6, 7); let (T 2

λ )λ be the standard family of tubes of A(6, 7), where

M2 : (k6
0
⌢
⌣
1

k7) ∈ T 2
1 ; let J be the preinjective component of A(6, 7). Then

P,P ′, (T 1
λ )λ6=1, (T

2
λ )λ6=1,J ,J ′ are the components of ΓA with exception of

the following multicoil C:

where dotted lines should be identified and indecomposable modules are
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represented by their dimension vectors. Then H0 = add((T 1
λ )λ6=1 ∪ (T 2

λ )λ6=1

∪ C) is an adjusted heart of modA.
(g) The algebra A = kQ/I where Q is the quiver

and I is generated by αiδ1 − αiδ2, γ1βi − γ2βi, i = 1, 2, 3, 4, δ1ε − δ2ε,
λγ1 − λγ2 and ελ. The algebra A(a, b, 1, 2, 3, 4, 5) is a tubular extension of
the hereditary tame algebra B = A(1, 2, 3, 4, 5) of tubular type (2, 2, 2, 3)
and hence is wild. Thus A is wild. Let (T 1

λ )λ be the tubular family of ΓB

and M = rad Pa ∈ T 1
1 ; similarly, let (T 2

λ )λ be the tubular family of ΓB′

where B′ = A(1′, 2′, 3′, 4′, 5′) and M ′ = Ib/soc Ib ∈ T 2
1 . Then T 1

λ , T 2
λ , λ 6= 1,

are components of ΓA and there is a multicoil C of ΓA containing both M
and M ′. The category H0 given by the modules in (T 1

λ )λ6=1 ∪ (T 2
λ )λ6=1 ∪ C is

an adjusted heart of modA.
(h) Let A be the algebra given by kQ/I where Q is the quiver

with I generated by α1β, δγ, λδ, ελ and λε. Then ΓA consists of all com-
ponents of ΓA′ where A′ = A(a, b, c, 1) except the component T where the
projective Pa lies which is substituted by a new component T ′ obtained by
identifying T and ΓA′′ , where A′′ = A(1, 2, 3), along the simple module S1.
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Then modA admits an adjusted heart which contains a cycle of maps be-
tween indecomposable projective modules.

1.5. Observe that there are algebras A admitting two trisections (H+,
H0,H−) and (H′

+,H′
0,H

′
−) with H0 6= H

′
0. Indeed, the following cases are

well known (see [20]):

(a) A is a representation-infinite concealed algebra with preprojective
component P and preinjective component J . We may choose H0 to
be P or J .

(b) A is domestic tubular with a tubular family T and a preinjective
component J containing all injectives. Then H0 = T or H0 = J .

(c) A is a tubular algebra with separating tubular families (T ̺), ̺ ∈
{0} ∪Q+ ∪ {∞}. Then we may choose H = T ̺ for any ̺.

Theorem. Let A be an algebra admitting two trisections (H+,H0,H−)
and (H′

+,H′
0,H

′
−) with H0 6= H

′
0. Then there is a quotient A of A satisfying

the following conditions:

(a) there are only finitely many indecomposable A-modules (up to iso-

morphism) which are not A-modules;
(b) A = A1 × · · · × As is a product of indecomposable algebras, at least

one of which is either a concealed algebra, a domestic tubular algebra

or a tubular algebra.

The proof is based upon Theorem A, whose proof will only be given in
Section 3, and on the reduction process given in Section 4. We postpone the
proof until Section 6.

1.6. We say that a triple (H+,H0,H−) is a weak trisection of indA
if H0 is a heart of modA and (H+,H0,H−) are sets of indecomposable
A-modules satisfying the exactness, standardness and separation conditions
and moreover all indecomposable projective (resp. injective) modules lie in
H+ ∪H0 (resp. H0 ∪H−).

We introduce this definition to simplify some statements, since in Sec-
tion 6 we shall show the following result.

Theorem. Any weak trisection of indA is a trisection.

1.7. Let (H+,H0,H−) be a trisection of indA. Consider the following
properties of the trisection:

• (Strong factorization property) for all X ∈ H+, Y ∈ H− and f ∈
HomA(X, Y ) and for every component T of H0, there exists U ∈ T
and maps f ′ ∈ HomA(X, U) and f ′′ ∈ HomA(U, Y ) such that f = f ′′f ′.
• (Weak factorization property) for all X ∈ H+, Y ∈ H− and f ∈

HomA(X, Y ) there exists a module U ∈ addH0 and maps f ′ ∈
HomA(X, U) and f ′′ ∈ HomA(U, Y ) such that f = f ′′f ′.
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In [12] it is shown that the concealed-canonical algebras have the strong
factorization property. On the other hand, Theorem B shows that every
trisection has the weak factorization property. We now give an example
showing that trisections do not always have the strong factorization prop-
erty.

Example. Consider the algebra A = kQ/I, over an algebraically closed
field k, given by the quiver

bound by the relations µiνi = 0, ̺iλi = 0 (i = 1, 2), αγ1 = 0 = δ1α,
δ1βγ1 = µ1λ1, βγ2 = 0 = δ2β and δ2αγ2 = µ2λ2. Then ΓA is formed by a
unique preprojective component P, a unique preinjective component J , the
homogeneous tubes (Ts)s having in their mouths the Kronecker modules

Ms : k

1
&&

s

88 k, s ∈ k \ {0},

and two additional quasi-tubes T0 and T∞ (see [2] for definitions) whose
modules are given by dimension vectors as follows:
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The family T = (Ts)s∈P1(k) spans a full subcategory mod0 A of modA
such that every map from P to J factorizes through mod0 A, as is not hard to
check from the construction. On the other hand, the map f ∈ HomA(X, Y )
between X ∈ P and Y ∈ J with dimension vectors

and Im f = S1 ⊕ S2 factorizes through add(T0 ∨ T∞) but not through any
tube Ts, s ∈ P1(k).

2. Going down with trisections

2.1. Let A = kQ/I be a finite-dimensional algebra such that indA ad-
mits a trisection (H+,H0,H−). We shall examine the set Q0

0 of vertices
x ∈ Q0 such that the corresponding indecomposable projective A-module
Px lies in H0.

Lemma. Q0
0 is closed under predecessors in Q.

Proof. Let x ∈ Q0
0 and y → x be an arrow in Q. Then there is a non-zero

map Px → Py in modA. Since Px ∈ H0, we have Py ∈ H0 ∪ H− but since
H− does not contain projective modules, we conclude that y ∈ Q0

0.

2.2. Assume Px ∈ H0. First we consider the case when x is a source in
Q and we form the quotient algebra A(x) = A/AexA.

Theorem. Let A = kQ/I be an algebra with a trisection (H+,H0,H−)
of indA. Let x be a source of Q such that Px ∈ H0. Then A(x) admits a

trisection (H′
+,H′

0,H
′
−) with H′

+ = H+.
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Proof. First observe that any module X ∈ H+ is an A(x)-module. Then
define H′

+ = H+.

DefineH′
0 as the set of indecomposable A(x)-modules {τ−i

A(x)X : i ≥ 0 and

X is an indecomposable A(x)-module in H0} and H′
− = ΓA(x) \ (H′

+ ∪ H
′
0).

Observe that H′
− ⊂ H−.

We claim that H′
0 is an adjusted heart of modA(x). We divide the proof

into several steps.

(1) By definition, H′
+ is closed under predecessors. Moreover, H′

− is
closed under successors. Indeed, assume that Y is a successor of X ∈ H′

−. If
Y /∈ H′

−, then Y ∈ H+ ∪H0 and also X ∈ (H+ ∪H0) ∩H− = ∅.

(2) We check that H′
0 is formed by complete components of ΓA(x) . Let

X ∈ H0 be an indecomposable A(x)-module and let i ≥ 0. Let Y be a
neighbour of Z = τ−i

A(x)X in ΓA(x).

Assume Y → Z. If some P = τ j

A(x)Y is projective for 0 ≤ j < i, then

X is a predecessor of P and hence P ∈ H0. Since τ−j

A(x)P = Y , it follows

that Y ∈ H′
0. If no τ j

A(x)Y is projective for 0 ≤ j ≤ i, then τ i
A(x)Y → X is

an arrow in ΓA(x) . Therefore τ i
A(x)Y is a predecessor of X ∈ H0 but τ i

A(x)Y

is not in H+ = H′
+, since otherwise X ∈ H+. Hence τ i

A(x)Y ∈ H0 and

Y = τ−i

A(x)(τ
i
A(x)Y ) ∈ H′

0.

Assume Z → Y . If Y is projective, then, since Y is a successor of X, we
get Y ∈ H0. Hence Y ∈ H′

0. Otherwise, there is an arrow τA(x)Y → Z in
ΓA(x) and the case above implies that τA(x)Y ∈ H0, that is, τA(x)Y = τ−i

A(x)N

for some indecomposable N ∈ H0. Therefore, Y = τ−i−1
A(x) N ∈ H′

0.

(2′) We shall prove that H′
0 is formed by a generalized standard fam-

ily of components. For this purpose, consider indecomposable A(x)-modules
X1, X2 ∈ H0 and Y1 = τ−a

A(x)X1, Y2 = τ−b

A(x)X2 for some a, b ≥ 0. We shall
prove that rad∞

A(x)(Y1, Y2) = 0 by induction on a + b.

Assume rad∞
A(x)(Y1, Y2) 6= 0. Since Hom A(x)(Y1, Y2) ∼= HomA(x)(τA(x)Y1,

τA(x)Y2) and by induction hypothesis rad∞
A(x)(τA(x)Y1, τA(x)Y2) = 0, we get

an indecomposable projective A(x)-module Py (which is therefore projective
as an A-module) with 0 6= f = gh ∈ rad∞

A(x)(Y1, Y2) and h ∈ radA(x)(Y1, Py),
g ∈ radA(x)(Py, Y2). Since Py ∈ H+ ∪ H0, both Y1 and Py belong to H0.
Standardness implies that Y2 ∈ H− and g ∈ rad∞

A (Py, Y2).

Consider the left almost split map Py
r
→ E in modA. Then there is

an indecomposable direct summand E1 of E and g1 ∈ rad∞
A (E1, Y2) with

Py
r1→ E1

g1
→ Y2 non-zero. Observe that E1 ∈ H0 and E1 ∈ modA(x).

If E1 is non-projective, then Hom A(x)(E1, Y2) ∼= HomA(x)(τA(x)E1, τA(x)Y2)
and by induction hypothesis rad∞

A(x)(τA(x)E1, τA(x)Y2) = 0. Hence there ex-

ists a projective A(x)-module Py′ ∈ H0 and maps h′ ∈ radA(x)(E1, Py′),
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g′ ∈ rad∞
A(x)(Py′ , Y2) with the composition Py

r1→ E1
h′

→ Py′

g′

→ Y2 non-zero.
Iteration of this process yields rad∞

A (Ps, Pt) 6= 0 for some projective modules
Ps, Pt ∈ H0. This contradiction proves the claim.

(3) By definition every indecomposable A(x)-module lies in H′
t∪H

′
0∪H

′
−.

Moreover, HomA(x)(H′
0,H

′
+) = 0 since H′

+ = H+ and H′
0 ⊂ add(H0 ∪ H−).

We show that HomA(x)(Y, τ−i

A(x)X) = 0 for X ∈ H0 ∩ modA(x), i ≥ 0

and Y ∈ H′
−. Assume otherwise, that is, HomA(x)(Y, τ−i

A(x)X) 6= 0, imply-

ing that τ−i

A(x)X ∈ H−. Since there are no projective modules in H−, we
get

0 6= HomA(x)(Y, τ−i

A(x)X) ∼= HomA(x)(τA(x)Y, τ−i+1
A(x) X)

and therefore HomA(x)(τA(x)Y, τ−i+1
A(x) X) 6= 0. Repeating the procedure we

infer that HomA(x)(τ i
A(x)Y, X) 6= 0, where τ i

A(x)Y ∈ H− and X ∈ H0, a

contradiction. Hence HomA(x)(Y, τ−i

A(x)X) = 0 as desired.

(4) We prove the adjustment condition. Let X ∈ H′
+ = H+ and Y ∈ H′

−

be indecomposable A(x)-modules. There are modules Z, Z ′ ∈ H0 such that
HomA(X, Z) 6= 0 6= HomA(Z ′, Y ).

Consider first the decomposition of the restriction of Z to A(x) into
indecomposable modules,

⊕s
i=1 Zi, such that HomA(x)(R, Zi) 6= 0 for all

i = 1, . . . , s, where R = radPx. Since each Zi is a submodule of Z and both
R, Z ∈ H0, we have Zi ∈ H

′
0 (i = 1, . . . , s). Moreover, HomA(X, Z) 6= 0

implies that HomA(x)(X, Zj) 6= 0 for some j. Similarly we get an indecom-
posable direct summand Z ′

j of the restriction of Z ′ to A(x) such that Z ′
j ∈ H

′
0

and HomA(x)(Z ′
j , Y ) 6= 0.

2.3. Let (H+,H0,H−) be a trisection of indA. Let P+ be the direct
sum of all indecomposable projective A-modules Px ∈ H+ and define A+ =
EndA(P+)op. Similarly, define A− = EndA(I−)op, where I− is the direct sum
of all indecomposable projective A-modules Px such that the corresponding
injective Ix is in H−. We call A+ (resp. A−) the left (resp. right) extremal

quotient of A.

For the following, recall that a component C of ΓA is semiregular if either
τn
AX or τ−n

A X is well defined for every X ∈ C and n ≥ 0.

Theorem.

(a) The module category modA+ admits a trisection (H+
+,H+

0 ,H+
−) with

H+
+ = H+ and such that the indecomposable modules in H+

0 form

semiregular generalized standard components of the Auslander–Rei-

ten quiver ΓA+ without projective modules.

(b) The module category modA− admits a trisection (H−
+,H−

0 ,H−
−) with

H−
− = H− and such that the indecomposable modules in H−

0 form
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semiregular generalized standard components of ΓA− without injec-

tive modules.

(c) The algebras A+ and A− are quasitilted.

Proof. (a) Let A = kQ/I and observe by 2.1 that A+ is convex (= path
closed) in A. The proof follows verbatim 2.2.

(b) Dual to (a).
(c) Observe that X ∈ H+

+ has pdA+ X ≤ 1 and Y ∈ H+
0 ∪ H

+
− has

idA+ Y ≤ 1. Moreover, every indecomposable direct summand R of radPx

in modA+ lies in H+
+, hence pdA+ R ≤ 1 and gl dimA+ ≤ 2. Therefore A+

is quasitilted. For A− the proof is dual.

Corollary. Assume moreover that A = kQ/I is a triangular algebra.

Then:

(a) The algebra A may be reconstructed from A+ by a sequence of one-

point extensions A0 = A+, A1 = A0[M0], . . . , An+1 = An[Mn] and

An+1 = A in such a way that for each i = 0, 1, . . . , n + 1, indAi

admits a trisection (Hi
+,Hi

0,H
i
−) with Hi

+ = H+, Mi ∈ addHi
0 and

Hn+1
0 = H0, H

n+1
− = H−.

(b) The algebra A may be reconstructed from A− by a sequence of one-

point coextensions A0 = A−, A1 = [N1]A0, . . . , An+1 = [Nn]An = A,
in such a way that for each i = 0, 1, . . . , n + 1, indAi admits a

trisection (Hi
+,Hi

0,H
i
−) with Hi

− = H−, Ni ∈ addHi
0 = H0 and

Hn+1
+ = H+.

2.4. Let A = kQ/I be an algebra. We consider the process of “killing”
projectives in H0 when (H+,H0,H−) is a weak trisection of indA.

Proposition. Let (H+,H0,H−) be a weak trisection of indA. Then:

(a) Let x be a source of Q. Then A(x) admits a weak trisection (H′
+,H′

0,

H′
−) of indA(x) with H′

+ = H+ and rad Px ∈ addH′
0.

(b) Let A+ = EndA(P+)op where P+ is the direct sum of all indecom-

posable projectives Px ∈ H+. Then A+ admits a weak trisection

(H+,H0,H−) of indA+ with H+
+ = H+ and H+

0 without projective

modules. In particular , A+ is a quasitilted algebra.

Proof. The proof given in 2.2 may be repeated verbatim. Additionally,
we have to check that all indecomposable projective (resp. injective) A(x)-
modules lie in H′

+ ∪H
′
0 (resp. H′

0 ∪H
′
−). Since H′

+ = H+ and H0 ∩ indA(x)

⊂ H′
0, this is clear.

3. Directing components in the heart of a module category

3.1. Recall that an indecomposable module X in modA is said to be
directing if there are no cycles X = X1 → X2 → · · · → Xn = X of non-zero
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non-isomorphisms between indecomposable A-modules. A component C of
ΓA is directing if all modules X ∈ C are directing.

The following result is fundamental for the understanding of the struc-
ture of trisections in module categories. It follows from Theorem 3.2 in [23],
but we present a different proof below.

Proposition. Let A be an indecomposable triangular algebra admitting

a trisection (H+,H0,H−) of indA. Suppose that H0 contains a semiregular

directing component C. Then A is a tilted algebra and C is a connecting

component.

Proof. Assume A = kQ/I, where the quiver Q has no oriented cycles.
Since C is semiregular, we may assume that C has no injective modules. Let
B be the full subcategory of A formed by the vertices x in Q such that
HomA(Px, M) 6= 0 for some M ∈ C.

We first show that B is convex in A: assume there is a path

x = x0
α1→ x1

α2→ x2 → · · · → xs−1
αs−1
−→ xx = y

in Q such that HomA(Px, M) 6= 0 and HomA(Py, N) 6= 0 for M, N ∈ C and
that x1, . . . , xs−1 are not in B. Consider the algebra C = A/J , where J is

the ideal generated by the paths x0
α1→ x1

γ
→ t and t′

δ
→ xs−1

αs−1
−→ y for any

vertices t, t′ in Q. Denote by I0 the indecomposable injective C-module as-
sociated to the vertex y and by P0 the indecomposable projective C-module
associated to x. Then clearly, Sxs−1 is a summand of I0/soc I0 and Sx1 is a
summand of rad P0. Since moreover M, N ∈ modC and HomC(P0, M) 6= 0
and HomC(N, I0) 6= 0, we obtain a chain of non-zero maps

N → I0 → Sxs−1 →

(
Sxs−2

Sxs−1

)
→ Sxs−2 → · · · →

(
Sx1

Sx2

)
→ Sx1 → P0 →M,

where
(
Sa

Sb

)
denotes the indecomposable two-dimensional module with socle

Sb and top Sa. Since N, M ∈ H0, all the modules of the chain lie in H0.
Since N ∈ C and I0 /∈ C, we have rad∞

A (N, I0) 6= 0, contradicting H0 having
only generalized standard components (cf. [5]).

In this way we get an algebra B admitting a semiregular directing and
sincere component C in ΓB , hence B is a tilted algebra [20]. Therefore we
get a trisection (HB

+,HB
0 ,HB

−) of indB with HB
0 = C.

We now show that A = B. Assume to the contrary that B 6= A. By
duality we may suppose that there is an arrow x0 → y in Q with x0 /∈ B
and y ∈ B; we may moreover assume that x0 has no successors in the
path order of Q with the same property. Let C be the full subcategory of
A formed by B and x0, that is, C = B[M ] is a one-point extension with
M = radPC

x0
and PC

x0
the projective C-module associated with the vertex x0.

Write M =
⊕s

i=1 Mi for the indecomposable decomposition of M .



208 J. A. DE LA PEÑA AND I. REITEN

We want to show that each Mi is in HB
−. Otherwise let Mi ∈ H

B
+ ∪ C

and let X ∈ C = HB
0 be such that HomB(Mi, X) 6= 0. Since Px0 /∈ C, we get

Mi ∈ H
B
+. Since X is not injective, we consider the almost split sequence in

modB

0→ X → E → τ−
B X = Y → 0.

Hence in modC, τCY = (HomB(M, X), X, id) 6∼= X, which is impossible
since in the component C of ΓA, we have τAY = X. Therefore all Mi are
in HB

−.

Observe that since HB
0 ⊂ H0, we have HB

− ⊂ H−. Since Px0 /∈ H− and
PC

x0
lies in the same component where the Mi ∈ H− lie, this implies that no

Mi is a direct summand of radPx0 , a contradiction proving that A = B.

3.2. We get a better insight into the above result in the context of qu-
asitilted algebras. Indeed, let (H+,H0,H−) be a trisection of indA with
a directing semiregular component C in H0. Suppose C has no injective
modules. Consider the algebra A− as in 2.3. Then A− is quasitilted and
C is a component ΓA− . By the classification theorem for quasitilted alge-
bras [16], A− is a tilted algebra and C is the connecting component, that
is, H−

0 = C. Coinserting back the injectives which were killed when form-
ing A− gives rise to A. But these injectives should lie in H−

0 and hence
in C, which did not have injective modules. Therefore A− = A is a tilted
algebra.

Due to the importance of the classification of quasitilted algebras given
in [7], we think it is convenient to present an alternative proof of 3.1 which is
closer in spirit to the homological definition of quasitilted algebras. Indepen-
dent proofs of this statement have already appeared in print (Corollary B
in [25]; see also [1, 19] for related results).

Recall that for a quasitilted algebra A, the class LA is formed by those
indecomposable A-modules X such that any predecessor Y  X has pdA Y
≤ 1; dually, the class RA is formed by those indecomposable A-modules
Y such that any successor Y  X has idA X ≤ 1. By [10], indA =
LA ∪RA.

Proposition. Let A be a quasitilted algebra with a directing module

X ∈ RA ∩ LA. Then A is tilted.

Proof. Let T = addRA and F = add(LA \RA) be classes of A-modules.
As shown in [10, II.2.3] the pair (T ,F) is a torsion pair in modA. Con-
sider the construction φ(modA; (T ,F)) as defined in [10, I.2]. We find that
H is a full subcategory of the derived category Db(modA) whose objects
Z• have homology Z−1 ∈ Y = add(LA \ RA)[1] and Z0 ∈ addRA. Then
φ(modA; (T ,F)) = (H; (X ,Y)) and H is a hereditary category derived
equivalent to modA.
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We shall prove that the object X ∈ LA∩RA ⊂ X is still a directing object
in H. Indeed, letting 0 6= f : Z• → X ′ be a map in H with X ′ ∈ LA ∩ RA,
we show that Z• ∈ LA ∩RA. This shows that X stays directing in H.

Suppose that Z• is equivalent to the projective complex P• : · · · → P2 →

P1
g
→P0 → 0 with homologies Z−1 → 0 and Z0

0 6=f
→ X ′

0 = X ′ ∈ LA ∩ RA.
Hence Z0 ∈ LA and pdA Z0 ≤ 1. The exactness of P1

g
→ P0 → Z0 → 0

implies that g is mono and Z−1 = 0. Thus Z• ∈ RA ∩ LA.

Observe that Homk(A, k) is a tilting object in H. Then H is a hereditary
category with a tilting object and a directing object. By [9], H is derived
equivalent to modH for a hereditary algebra H. There is a directing com-
ponent C in H where X lies. Therefore A is a tilted algebra.

3.3. Recall from [13] that an algebra A = EndC(T ), where T is a tilting
module over a canonical algebra C, is called almost concealed-canonical if T
is the sum of indecomposable modules of non-negative rank.

Corollary. Let A be a triangular algebra admitting a trisection. Let

A+ and A− be the extremal quotients of A as defined in 2.3. Let A+ =
A+

1 × · · · ×A+
s and A− = A−

1 × · · · ×A−
t be indecomposable decompositions

of algebras. Then for each 1 ≤ i ≤ s and 1 ≤ j ≤ t, the factors A+
i and A−

j

are either tilted or almost concealed-canonical algebras.

Proof. Follows directly from [16] or by 3.1 combined with the character-
ization of quasitilted algebras of canonical type in [13].

Theorem A stated in the introduction follows from the Corollary above
and 2.3.

4. Cycles of projectives

4.1. We shall look more attentively at the cycles in Q for algebras A =
kQ/I admitting a trisection of modA.

Proposition. Let A = kQ/I be an algebra admitting a trisection (H+,
H0,H−) of indA. Let x be a vertex on an oriented cycle of Q. Then:

(a) There is a component C of H0 such that for every vertex y ∈ Q0

lying on a cycle containing both x and y, the modules Py and Iy are

in C.
(b) There are only finitely many indecomposable modules Y with Y (x)
6= 0. They all belong to C.

Proof. (a) Let x = x0 → x1 → · · · → xs = x be a cycle in Q. If Ixi
/∈ H0,

then Ixi
∈ H− and then Ixj

∈ H− for all 1 ≤ j ≤ s. Hence A− = kQ−/I−

where Q− contains the above cycle, which contradicts the fact that A− is
quasitilted. Hence all Ixi

are in H0.
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Since H0 is generalized standard, all Ixi
belong to the same component C

inH0. Similarly all Pxi
belong to C (since Px, Ix ∈ C and HomA(Px, Ix) 6= 0).

(b) By standardness, there is m ∈ N with radm
A (Px, Iy) = 0. Let Y be an

indecomposable A-module with Y (x) 6= 0. Then there are g ∈ HomA(Px, Y )
and h ∈ HomA(Y, Ix) with hg 6= 0. Therefore, there exists a path Px =
Y0 → Y1 → · · · → Ys = Y → Ys+1 → · · · → Yt = Ix of irreducible maps
between indecomposable A-modules, of length t ≤ m + 1. Clearly, there are
only finitely many modules Y (up to isomorphism) that may appear in such
a path. All those modules belong to C.

4.2. Let A = kQ/I admit a trisection (H+,H0,H−) of indA. Let Qc be
the convex closure in Q of points lying on cycles in Q. Consider the quotient
A = A/(x : x ∈ Qc).

Proposition. The algebra A admits a trisection (H+,H0,H−) of indA
such that H+ = H+, H− = H− and there are only finitely many indecom-

posable A-modules Y ∈ H0 such that Y /∈ H0.

Proof. Let Qc = Q1 ∐ · · · ∐ Qs be written as the union of connected
quivers. By 4.1, it is clear that there is a component Ci of H0 such that
any indecomposable A-module Y with Y (x) 6= 0 for some x ∈ Qi lies in
Ci. Moreover, there are only finitely many such modules. Hence for all Y ∈
H+ ∪H−, Y (x) = 0 for any x ∈ Qc.

Set H+ = H+, H− = H− and H0 = {Y ∈ H0 : Y (x) = 0 for all x ∈ Qc}.
Clearly (H+,H0,H−) is a trisection of modA.

5. Going up with trisections

5.1. As seen in Section 2 (and using 4.2), the problem of finding trisec-
tions can be reduced to the question of deciding when a one-point exten-
sion B[M ] of an algebra B admitting a trisection (H+,H0,H−) and with
M ∈ addH0 has again a trisection. We shall prove the following characteri-
zation for extensions of (weak) trisections.

Theorem. Let B be an algebra admitting a weak trisection (H+,H0,H−)
of indB. Let M ∈ addH0 and let C be the finite union of components in H0

containing indecomposable summands of M . Let A = B[M ] and denote by C′

the component of ΓA containing a new projective Pω (and all indecomposable

direct summands of M). Then indA has a weak trisection (Ĥ+, Ĥ0, Ĥ−) with

Pω ∈ Ĥ0 if and only if the following conditions hold :

(a) C′ is generalized standard.

(b) If Px ∈ C, then Px ∈ C
′ and for every arrow X → Y in C with

Y ∈ C′, also X ∈ C′.

We give the proof in 5.4 after some technical preparation.
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5.2. Lemma. Let A = B[M ], C, C′ and (H+,H0,H−) be as above. Let

X be an indecomposable B-module with X ∈ C but X /∈ C′. Then X is in

the same component in ΓA as a successor Y of M , that is, there is a chain

M ′ = Y0 → Y1 → · · · → Ym = Y of non-zero maps between indecomposable

B-modules, where M ′ is an indecomposable direct summand of M and X, Y
lie in the same component of ΓA.

Proof. Take a walk M ′ α1 X1
α2 X2

αn Xn = X of irreducible maps
in C, where M ′ is an indecomposable direct summand of M . If HomB(M, Xi)
= 0 for all i = 1, . . . , n, then αi remains irreducible in modA, which would
imply X ∈ C′.

Choose j ≥ 1 maximal with HomB(M, Xj) 6= 0. Hence Xj+1 Xj+2

· · · Xn−1 Xn = X is a walk of irreducible maps in ΓA, that is, Xj+1

and X lie in the same component of ΓA. If αj : Xj+1 → Xj , then by [20,
2.2.5], also Xj is in the same component as X in ΓA and HomA(M, Xj) 6= 0.
If αj : Xj → Xj+1, we have a path of non-zero maps M → Xj → Xj+1.
Hence the claim follows.

5.3. Lemma. Keep the notations as above. Let

X =
(
V,

s⊕

i=1

Yi, f : V → HomB

(
M,

s⊕

i=1

Yi

))

be an indecomposable A(= B[M ])-module lying in C′ and suppose all Yi are

indecomposable B-modules. Then Yi ∈ C for 1 ≤ i ≤ s.

Proof. Let

M ′ = X0 X1 · · · Xt−1
α Xt = X

be a walk of irreducible maps in C′, where M ′ is an indecomposable direct
summand of M and t is smallest possible. Let X ′ = Xt−1 = (V ′,

⊕r
i=1 Y ′

i , f ′)
with all Y ′

i indecomposable B-modules. By the minimality of t, Y ′
i ∈ C for

1 ≤ i ≤ r.

If X
α
→ X ′ is irreducible, then the restriction Yi

g
→

⊕r
i=1 Y ′

i is either irre-
ducible or split mono. The latter implies Yi ≃ Y ′

j ∈ C for some j. Otherwise,
g is irreducible in modB, which implies again Yi ∈ C. The case X ′ α

→ X is
similar.

5.4. Proof of Theorem 5.1. Assume first that indA has a weak trisection
(Ĥ+, Ĥ0, Ĥ−) such that M ∈ add Ĥ0. It follows that C′ is in Ĥ0 and therefore
C′ is generalized standard.

Let Px ∈ C. If Px /∈ C′, then by 5.2, Px lies in the same component in
ΓA as an indecomposable X ∈ modA such that there is a chain of non-zero
maps

M ′ → X1 → X2 → · · · → Xn = X
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between indecomposable B-modules and M ′ an indecomposable direct sum-
mand of M . Since (Ĥ+, Ĥ0, Ĥ−) is a weak trisection, we have Px ∈ Ĥ+∪Ĥ0.

Since M ′ ∈ Ĥ0, it follows that X ∈ Ĥ0 ∪ Ĥ−. Therefore X, Px ∈ Ĥ0 and
Ĥ0 being generalized standard, we infer that Xi ∈ C

′ for i = 1, . . . , n. Thus
Px ∈ C

′, which is a contradiction.
Let α : X → Y be an irreducible map in C with Y ∈ C′. Assume X /∈ C′.

Then α is not irreducible in modA and necessarily HomB(M, X) 6= 0. We
get a path M → X → Y with M and Y in C′ which is generalized standard.
This yields again Px ∈ C

′, a contradiction. Hence conditions (a) and (b)
hold.

For the converse, assume that (a) and (b) are satisfied. We want to define
a weak trisection as follows:

Ĥ+ = H+, Ĥ0 = (H0 \ C) ∪ C
′, Ĥ− = indA \ (Ĥ+ ∪ Ĥ0).

It is clear that Ĥ0 is formed by components of ΓA, the new component
C′ is generalized standard and by 5.3, H0 \ C and C′ are orthogonal. Hence

the standardness condition is clearly satisfied by the triple (Ĥ+, Ĥ0, Ĥ−).
(Separation) Clearly HomA(C′,H+)=0. Assume 0 6=f : X =(V,

⊕
Xi, g)

→ Y = (U,
⊕

Yi, g
′) is a map with X ∈ Ĥ− and Y ∈ Ĥ0. Hence each

Xi ∈ H− ∪ C and Yj ∈ H0 by 5.3.
If Y ∈ C′, then each Yj ∈ C. Since g′ : U → HomB(M,

⊕
Yj) is injective,

there are i and j with HomB(Xi, Yj) 6= 0. Therefore Xi ∈ C. The chain of

maps Xi →֒ X
f
→ Y with X /∈ C′ would contradict the convexity of C′ if

Xi ∈ C
′. Therefore Xi ∈ Ĥ−.

Since Xi, Yj ∈ C and C is generalized standard, there is a chain of irre-
ducible maps Xi → Z1 → Z2 → · · · → Zs = Yj . Since Yj is a submodule

of Y , it follows that Yj ∈ Ĥ0. Moreover, Ĥ0 being generalized standard shows
that Yj ∈ C

′. Again hypothesis (b) implies that Xi ∈ C
′, a contradiction.

If Y ∈ Ĥ0 \ C
′, then Y = (0, Y1, 0). Then for some i, rad∞

B (Xi, Y1) 6= 0,
which contradicts (H+,H0,H−) being a weak trisection of indB. This shows

that HomA(Ĥ−, Ĥ0) = 0.
Finally, by condition (b), all indecomposable projective A-modules lie in

Ĥ+ ∪Ĥ0. Clearly, injective modules Iy with y 6= ω lie in Ĥ0 ∪Ĥ−. Since the

separation condition is already proved, it is not possible that Iω ∈ Ĥ+.
Therefore (Ĥ+, Ĥ0, Ĥ−) is a weak trisection of indA.

5.5. We present the following structure theorem for components in the
middle part H0 of a trisection.

Theorem. Let (H+,H0,H−) be a trisection of A. Then:

(a) Any component C′′ of H0 admits only finitely many non-periodic

orbits.
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(b) Assume A = B[M ] where M ∈ add C ∩H0 and C is a finite union of

generalized standard components in ΓB. Let C′ be the component in

H0 containing the summands of M . Then any X ∈ C with X /∈ C′ is

a non-periodic B-module.

Proof. (a) is known to hold for any generalized standard component [23].

(b) Suppose X ∈ C \ C′ and X is a τB-periodic module. By 5.1, XτB ∩C′

= ∅. Let Y τB be a neighbour periodic orbit to XτB . We may therefore assume
X

α
→ Y is an arrow in C. Since X /∈ C′, by 5.1 also Y /∈ C′.

Proceeding by induction on the connected component C′ we conclude
that only non-periodic τB-orbits of C may not lie in C′.

5.6. Proof of Theorem B. Let (H+,H0,H−) be a trisection of indA. Let
X ∈ H+ and Y ∈ H− and choose a morphism f ∈ HomA(X, Y ).

By 4.2 we may suppose that A is a triangular algebra. By 2.3, A may
be reconstructed from A+ by a sequence of one-point extensions A0 = A+,
A1 = A0[M0], . . . , An+1 = An[Mn] = A in such a way that for each i =
0, 1, . . . , n + 1, indAi admits a trisection (Hi

+,Hi
0,H

i
−) with Hi

+ = H+,

Mi ∈ addHi
0 and Hn+1

0 = H0, H
n+1
− = H−. Moreover, by 3.3, A+ =

A+
1 ×· · ·×A+

s , where each A+
i is either tilted or an almost concealed-canonical

algebra.

Hence X ∈ Hn
+ and Y = (Y0, V, γ : V → HomAn(Mn, Y0)) for some

Y0 = Y 0
0 ⊕ Y −

0 with Y 0
0 ∈ add(Hn

0 ) and Y −
0 ∈ add(Hn

−). If Y 0
0 6= 0, then for

every direct summand Y ′ of Y0 we have HomAn(Mn, Y ′) 6= 0. Since A+ has
the strong separation property (see 1.7), we may proceed by induction and
suppose that An has the weak separation property.

Let f = (f0, f1) : X → Y 0
0 ⊕Y −

0 . By hypothesis, there exist U1 ∈ addHn
0

and maps f ′
1 ∈ HomAn(X, U1) and f ′′

1 ∈ HomAn(U1, Y
−
0 ) such that f1 =

f ′′
1 f ′

1. Consider the A-module U = Y 0
0 ⊕U1 ∈ addHn

0 and the indecomposable
decompositions Y 0

0 =
⊕s

i=1 Vi and U1 =
⊕t

i=s+1 Vi which determine maps
gi = f0| : X → Vi (1 ≤ i ≤ s) and gi = f ′

1| : X → Vi (s + 1 ≤ i ≤ t). Then f
factorizes as the composition of (gi) : X → U and ((1, f ′′

1 ), 0) : (U, 0, 0) →
(Y0, V, γ) = Y . There remains the problem that not necessarily Vi ∈ H

n+1
0

= H0.

Let C be the union of the components ofHn
0 containing summands of Mn.

Let C′ be the component of Hn+1
0 = H0 containing the summands of Mn.

By the proof of 5.4 we know that H0 = (Hn
0 \ C) ∪ C

′. We shall prove
that for each 1 ≤ i ≤ t, there exist Zi ∈ C

′ and maps g′i : X → Zi and
g′′i : Zi → Vi such that gi = g′′i g′i. This yields the desired factorization
of f .

Consider a map g : X → V such that V ∈ C. If V is projective, then
V ∈ C′ by 5.1 and the result follows. Assume V /∈ C′ and V is not projective.
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Consider the almost split sequence in modAn

0 → τAnV
ν
→

m⊕

j=1

Lj
µ
→ V → 0,

where the Lj are indecomposable modules in C. Hence there exists a map
h : X →

⊕m
j=1 Lj such that µh = g. For each 1 ≤ j ≤ m, either Lj ∈ C

′ or

we proceed as before. The procedure should stop after finitely many steps.

Indeed, otherwise we get a chain of maps between indecomposable mod-
ules in C

· · · → Nr+1
µr+1
−→ Nr · · · → N2

µ2
→ N1

µ1
→ V

with Ni /∈ C′ and morphisms hi ∈ HomAn(X, Ni) such that 0 6=µ1 · · ·µi−1hi :
X → V , i ≥ 1. By 5.5, all Ni are non-periodic An-modules and there exists
a sequence (sm)m of natural numbers such that the τAn-orbit of all the Nsm

is the same, say N
τAn
sm = O (m ≥ 1). Let L be a module in C whose orbit is

a neighbour of O. By 5.1, L /∈ C′ and hence L is a non-periodic An-module.
We infer that the connected component of C where V lies is formed by
non-periodic modules.

By [14], C is contained in a translation quiver of the form Z∆ for ∆ a finite
quiver without oriented cycles (in fact, by [22], An is a tilted algebra). Hence
for some m0 ∈ N, any predecessor L of Nsm0

in C has HomAn(Mn, L) = 0.
In particular, for all m ≥ m0, Nsm ∈ C

′, a contradiction which completes
the proof of the theorem.

6. Proofs of Theorems 1.5 and 1.6

6.1. With the tools developed in the previous sections we now return to
the problems left open in the first section.

Proof of Theorem 1.5. Assume A = kQ/I is an algebra admitting two
trisections (H+,H0,H−) and (H∗

+,H∗
0,H

∗
−) of indA with H0 6= H

∗
0. By

Section 4, the quotient A = A/(x : x ∈ Qc), where Qc is the convex closure
in Q of vertices lying on cycles in Q, satisfies the following conditions:

(a) there are only finitely many indecomposable A-modules which are
not A-modules;

(b) mod A admits two trisections (H+,H0,H−) and (H
∗
+,H

∗
0,H

∗
−) with

H0 6= H
∗
0.

Therefore, A = A1 × · · · × As is a product of indecomposable trian-
gular algebras, where at least one of the factors Ai admits two trisections
(H+(i),H0(i),H−(i)) and (H∗

+(i),H∗
0(i),H

∗
−(i)) with H0(i) 6= H

∗
0(i).

To prove the claim, it is enough to assume that A is an indecomposable
triangular algebra and show that A is of one of the following well known
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types of algebras: concealed, domestic tubular or tubular algebras. We dis-
tinguish several situations.

(a) If A is a tilted algebra, then in order that A admits two different
trisections, A should be either concealed or a domestic tubular algebra.

(b) Suppose that every component in H0 is semiregular. First observe
that by 3.1, the components in H0 may be assumed to be non-directing.
Then by [14], H0 is a sincere separating family of standard semiregular
tubes. Therefore [13] implies that A is a quasitilted algebra of canonical
type. In order that A admits two different trisections, A should be either
domestic tubular or a tubular algebra.

(c) Assume C is a component inH0 with projective and injective modules.
Then C cannot lie in H∗

+ or H∗
−, hence C is in H∗

0. Let x be a source in the
quiver Q such that Px ∈ C, hence Px ∈ H0 ∩ H

∗
0. Consider the algebra

A(x) and the construction 2.2 of going down trisections (H′
+,H′

0,H
′
−) and

(H∗′

+ ,H∗′

0 ,H∗′

−) of indA(x). By 2.2, H′
0 6= H

∗′

0 since otherwise H0 = H∗
0. By

induction hypothesis A(x) is either concealed, domestic tubular or tubular.

According to 5.1, the only situations in which A = A(x)[R] may have two
different trisections are the following:

• A(x) is concealed and R is preprojective. Then A is concealed.
• A(x) is domestic tubular and R is indecomposable such that A is do-

mestic tubular or tubular, since otherwise A does not admit a trisection
(see for instance [3] or [17]).

The proof is complete.

6.2. We proceed to discuss the concept of weak trisections.

Lemma. Let A=kQ/I be an algebra with a weak trisection (H+,H0,H−)
of indA. Suppose that for some vertex a ∈ Q we have X(a) = 0 for every

X ∈ H0. Let x be a source in Q such that Px ∈ H0 and consider the

quotient A(x). Then the weak trisection (H′
+,H′

0,H
′
−) of indA(x) as given

in 2.2 satisfies Y (a) = 0 for every Y ∈ H′
0.

Proof. Let A = B[M ] for M = rad Px. Consider the finite union of
components C′ in H′

0 containing indecomposable direct summands of M
and the component C in H0 containing the projective Px (and hence all
indecomposable direct summands of M). Then by 5.1 the following hold:

• if Py ∈ C
′, then Py ∈ C;

• if X → Y is an arrow in C′ with Y ∈ C, then also X ∈ C.

By definition of H0 = (H′
0 \ C

′) ∪ C, we shall check that Y (a) = 0 for all
Y ∈ C. Observe that every Y ∈ C is of the form Y = τ−i

A X for some X ∈ C,
i ≥ 0.
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Assume, in order to get a contradiction, that Y = τ−i
A X with X ∈ C

(⊂ H0), Y (a) 6= 0 and i > 0 is minimal. Hence Y = τ−
A X0 with X0(a) = 0.

Consider the almost split sequence 0→ X0 → E → Y → 0 in modA. Hence
there exists an indecomposable direct summand Y1 of E with Y1(a) 6= 0.
Moreover, observe that for X1 = τAY1 we have X1(a) = 0 [indeed, either

τ−j
A X1 is injective for some 0 ≤ j < i− 1 or τ−i+1

A X1 is a predecessor of X,
in any case in H0. The minimality of i implies that X1(a) = 0].

By repeating this procedure we get a sequence of irreducible maps

· · · → Yn → Yn−1 → · · · → Y1 → Y0 = Y

and the corresponding sequence

· · · → τAYn = Xn → τAYn−1 = Xn−1 → · · · → τAY0 = X0

with Yi(a) 6= 0 and Xi(a) = 0. By [4], all modules Yn are pairwise non-
isomorphic. We shall show that

⊕∞
n=0 Yn is a partial tilting module, which

yields the required contradiction. Indeed, for n, m ≥ 0, assume that 0 6=
Ext1A(Yn, Ym) ∼= DHomA(Ym, Xn), hence HomA(Ym, Xn) 6= 0. Then either

there is some 0 ≤ j < i− 1 such that τ j
AYm is a predecessor of a projective

in H0, or HomA(τ i−1
A Ym, τ i

AYn) 6= 0 and hence τ i−1
A Ym is a predecessor of

τ i
AY0 = X ∈ H0. In any case there is some 0 ≤ j ≤ i − 1 such that

τ j
AYm ∈ H0, which contradicts the choice of i. Therefore Ext1A(Yn, Ym) = 0

for any n, m ≥ 0, which means that
⊕∞

n=0 Yn is a partial tilting module.
Our claim is proved.

6.3. Proof of Theorem 1.6. Assume (H+,H−,H−) is a weak trisection
of indA and it is not adjusted.

Killing those vertices on cycles of Q as in Section 4, we may assume that
A is a triangular algebra. Since H0 is not adjusted, we may assume that X
is an indecomposable A-module in H+ with HomA(X,H0) = 0.

By 2.3, there is a sequence of algebras A = An[Mn], An = An−1[Mn−1],
. . . , A1 = A0[M0] such that indAi admits a trisection (Hi

+,Hi
0,H

i
−) with

Mi ∈ addHi
0 and A0 is a product of quasitilted algebras. Then by con-

struction 2.2, X ∈ Hn
+ and HomAn(X,Hn

0 ) = 0. By induction X ∈ H0
+ and

HomA0(X,H0
0) = 0, which is impossible in the class of quasitilted algebras

(see 3.3). We conclude that HomA(X,H0) 6= 0 and H0 is adjusted.

7. Strongly simply connected algebras admitting a trisection

7.1. We recall from [2] that a coil is a translation quiver constructed
inductively from a stable tube by a sequence of procedures called admissible

operations. Let Σ be a standard component of ΓA and X ∈ Σ. Consider the
following situations:
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(ad 1) The modules Y ∈ Σ with HomA(X, Y ) 6= 0 lie on a path

X = X0 → X1 → X2 → · · · .

Let D be the algebra of m × m lower triangular matrices and Z be the
unique indecomposable D-module which is projective-injective.

Let A′ = (A×D)[X ⊕ Z].

(ad 2) The modules Y ∈ Σ with HomA(X, Y ) 6= 0 lie on two sectional
paths, the first infinite and the second finite:

Yt ← · · · ← Y2 ← Y1 ← X = X0 → X1 → X2 → · · ·

with t ≥ 1.

Let A′ = A[X].

(ad 3) The modules Y ∈ Σ with HomA(X, Y ) 6= 0 are of the form Yi or
Xj in:

Y1 → Y2 →· · · → Yt

↑ ↑ ↑

X = X0→X1→· · · →Xt−1→Xt→Xt+1→· · ·

with Xt−1 injective.

Let A′ = A[X].

Then by [2], the component C′ of ΓA′ where X lies is a standard compo-
nent called a coil.

A component Σ of ΓA is called a multicoil if it contains a full translation
subquiver Σ′ such that:

(a) Σ′ is a disjoint union of coils,
(b) the modules in Σ \Σ′ are directing.

Examples of multicoils may be found in [2].

7.2. A strongly simply connected algebra A = kQ/I over an algebraically
closed field k is a triangular algebra such that for every convex subcate-
gory B = kQ′/I ′ of A and every source x of Q′ (resp. sink y of Q′) such
that B(x) (resp. B(y)) is connected, the radical of the projective B-module
Px (resp. Iy/soc Iy for the injective B-module Iy) is indecomposable. See
[21].

The main result in [24] may be (partially) rephrased in the following way
(observe the statement does not depend on the representation type of the
algebra).

Theorem ([24]). Let A be a strongly simply connected algebra. Let Σ be

a multicoil in ΓA. Let R ∈ Σ be such that the component Σ′ of ΓA[R] where

R lies is generalized standard. Then Σ′ is a multicoil in ΓA[R].
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7.3. We show Theorem C of the introduction.

Proof of Theorem C. Let A be a strongly simply connected algebra ad-
mitting a trisection (H+,H0,H−) of indA. Then by 3.3, A+ is either a tilted
algebra or an almost concealed-canonical algebra and H0 is formed, respec-
tively, by a directing component or a standard family of semiregular tubes.
In any case H0 is formed by a generalized standard family of multicoils.

Observe that there are indecomposable modules M0, M1, . . . , Ms such
that A0 = A+, A1 = A0[M0], . . . , Ai+1 = Ai[Mi] with As+1 = A and there
is a trisection (Hi

+,Hi
0,H

i
−) of indAi such that Mi ∈ H

i
0 for i = 0, . . . , s by

2.3. The result follows from 7.2 by induction.

7.4. In independent work Malicki and Skowroński [16] generalized the
procedures (admissible operations) allowing one to build standard com-
ponents, called generalized multicoil components, in the Auslander–Reiten
quiver of certain extensions of algebras with a separating family of general-
ized standard almost cyclic coherent components. Theorem C above could
be generalized to arbitrary base fields using these generalized admissible
operations.
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