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THE MULTIPLICITY PROBLEM FORINDECOMPOSABLE DECOMPOSITIONS OF MODULESOVER A FINITE-DIMENSIONAL ALGEBRA.ALGORITHMS AND A COMPUTER ALGEBRA APPROACHBYPIOTR DOWBOR and ANDRZEJ MRÓZ (Toru«)Abstra
t. Given a module M over an algebra Λ and a 
omplete set X of pair-wise nonisomorphi
 inde
omposable Λ-modules, the problem of determining the ve
tor
m(M) = (mX)X∈X ∈ NX su
h that M ∼=

⊕
X∈X

X
mX is studied. A general method of�nding the ve
tors m(M) is presented (Corollary 2.1, Theorem 2.2 and Corollary 2.3).It is dis
ussed and applied in pra
ti
e for two 
lasses of algebras: string algebras of �-nite representation type and hereditary algebras of type Ãp,q. In the se
ond 
ase detailedalgorithms are given (Algorithms 4.5 and 5.5).Introdu
tion. The main problem of 
ontemporary representation the-ory of �nite-dimensional algebras is to des
ribe in a possibly pre
ise waythe stru
ture of the module 
ategory for a given algebra; in parti
ular, todetermine its representation type. From this point of view results 
ontaining
lassi�
ation of all (up to isomorphism) inde
omposable modules in terms ofsome invariant (e.g. dimension ve
tor) have been 
onsidered to be quite sat-isfa
tory; espe
ially, if they additionally provide extra information on mor-phisms en
oded by the shape of the Auslander�Reiten quiver.Most of the resear
h methods developed in the last thirty years for study-ing representations of algebras have been dedi
ated to study this kind ofproblems. Nevertheless before they were invented, another rather universaland natural approa
h to the 
lassi�
ation of inde
omposables was 
ommon.It led via an answer to the more spe
ialized and in fa
t di�
ult question:how to de
ompose (e�e
tively) an arbitrary module into a dire
t sum of in-de
omposable submodules (isomorphi
 to inde
omposables from a �
andidatelist�). Some variants of this method were su

essfully used in several veryimportant 
lassi
al 
lassi�
ation results [16, 10, 14, 18, 19, 7℄.The above question is interesting in its own right, even if a full list X ofpairwise nonisomorphi
 inde
omposables is already known. It seems to be2000 Mathemati
s Subje
t Classi�
ation: 16G60, 16G70, 68Q99.Key words and phrases: algebra, representation, de
omposition, algorithm, multipli-
ity ve
tor. [221℄
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parti
ularly important if one thinks of appli
ations (see [16, 13℄). The weakerversion of this question, asking for a �normal form� of a module M (i.e. thefull multipli
ity sequen
e of dire
t summands from the list X for M) is alsoof importan
e (e.g. in an algebrai
 geometry approa
h to module 
ategories).These two problems 
an be 
onsidered as a �nal step of studies for a givenmodule 
ategory modΛ of �nite or tame representation type. They havea rather 
omputational and algorithmi
 
hara
ter. The a
tually availablestandard tools of representation theory are not parti
ularly useful and welladjusted for su

essful, 
omprehensive dis
ussion of these problems, on thelevel that allows formulating general answers.The main aim of this paper is to deal with the se
ond of them. More pre-
isely, given a module M and a 
omplete family X of pairwise nonisomorphi
inde
omposable modules in modΛ we want to determine the sequen
e

m(M) = (mX) ∈ NX su
h that M ∼=
⊕

X∈X

XmX .

The sequen
e (mX)X∈X is uniquely determined by the Krull�Remak�S
hmidt theorem. We provide a general method for handling this problem.It relies (Theorem 2.2) on 
omputing the sequen
e
h(m) = (hX) ∈ NXof the dimensions hX = dimk HomΛ(M, X) and the so-
alled Auslander�Reiten matrix TΛ for Λ. (Sometimes instead of TΛ it is enough to �nd theCartan matrix of the Auslander 
ategory for Λ.) In prin
iple this method 
anbe e�e
tively applied only in 
ase the 
anoni
al forms of all inde
omposablemodules are known.We dis
uss this method in pra
ti
e for two simple 
lasses of string (spe
ialbiserial) algebras: string algebras of �nite representation type and 
anoni-
al hereditary algebras of type Ãp,q (later 
alled simply Ãp,q-algebras, seealso [20℄). In the se
ond 
ase we present rather pre
ise algorithmi
 pro
e-dures for solving the problem (Algorithms 4.5 and 5.5). In 
onstru
ting thealgorithms, and to improve their e�
ien
y, we use some general informa-tion on the stru
ture of the relevant module 
ategories and basi
 methodsof representation theory (Auslander�Reiten theory, Galois 
overings). To de-
rease the 
omplexity of algorithms 
omputing the 
oordinates of the ve
tor

h(M), we also apply 
ertain simple results obtained by a detailed �numeri
alanalysis� of some 
omputational linear algebra problems, strongly related tospe
i�
 
anoni
al forms for inde
omposables (Lemmas 4.7 and 5.7).The paper is organized as follows. In Se
tion 1 we re
all basi
 de�nitionsand �x the notation. In Se
tion 2 we introdu
e the notion of the multipli
-ity ve
tor m(M), the Cartan matrix C(Λ) of the Auslander 
ategory andthe Auslander�Reiten matrix TΛ. We prove that C(Λ) is always invertible
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and its inverse is just TΛ (Theorem 2.2). We show the importan
e of thesetwo matri
es in determining the multipli
ity sequen
e. Also some strangeproperties of the partial algebra MY×Y(Z), where Y is an in�nite set, aredis
ussed.Se
tion 3 is devoted to a dis
ussion of how using a 
ombinatorial des
rip-tion of inde
omposables, one 
an e�e
tively 
onstru
t the matri
es C(Λ) forstring algebras of �nite representation type (see Algorithms 3.3 and 3.5).These algorithms are based on Proposition 3.2 (tree 
ase) and Proposition 3.4(general 
ase), des
ribing how the dimensions of the homomorphism spa
esbetween inde
omposables 
an be 
omputed.In Se
tion 4 we give a des
ription of the algorithm determining the mul-tipli
ity sequen
e for modules over the Krone
ker algebra (Algorithm 4.5).In parti
ular, we show how to restri
t a list of 
andidates for inde
omposabledire
t summands of a given module to a �nite list (Proposition 4.4). Also anindu
tive metod of 
omputing the dimensions of the homomorphism spa
esfrom a given module to inde
omposables from individual Auslander�Reiten
omponents is presented (Lemmas 4.6 and 4.7).Se
tion 5 is devoted to a des
ription of elements responsible for an anal-ogous algorithm for modules over Ãp,q-algebras in the general 
ase (Corol-lary 5.3, Lemma 5.4, Algorithm 5.5). In parti
ular, we 
onstru
t a ni
e fun
-tor that allows us to redu
e some 
onsiderations for Ãp,q-algebras to theKrone
ker algebra 
ase (see Lemma 5.2). Also an indu
tive method of 
om-puting the dimensions of the respe
tive homomorphism spa
es in the general
Ãp,q-algebra 
ase is proposed (Lemmas 5.6 and 5.7), and a pessimisti
 
om-plexity of the given algorithms is dis
ussed (Lemma 5.8).1. Preliminaries and notations. We use the de�nitions and notationwhi
h are well known and 
ommonly used. Nevertheless, for the bene�t of thereader, we brie�y re
all the most important of them. For other information
on
erning representation theory of algebras (respe
tively, ring theory, linearalgebra, algorithm theory) we refer to [2, 4℄ (respe
tively, [1℄, [15℄, [6℄).1.1. Throughout the paper k always denotes a �eld, usually algebrai
ally
losed. By a k-algebra we always mean a �nite-dimensional asso
iative 
on-ne
ted basi
 algebra with unit over k. For a k-algebra Λ (respe
tively, lo
allybounded 
ategory Λ, see [12℄) we denote by modΛ the 
ategory of all �nite-dimensional right Λ-modules, and by JΛ the Ja
obson radi
al in the 
ategory
modΛ. If (Q, I) is a bounded quiver (see [17℄) and the algebra (resp. lo
allybounded 
ategory) Λ has the form Λ = kQ/I, then we always identify modΛwith the 
ategory of all �nite-dimensional representations of the quiver Q,satisfying the relations from the ideal I (for the de�nition of the path algebra
kQ we refer to [2℄). In this 
ase for any V in modΛ we denote by suppV the



224 P. DOWBOR AND A. MRÓZ
set of all verti
es x of Q su
h that Vx 6= 0, where Vx is the dire
t summandof the ve
tor spa
e V 
orresponding to x.By the Auslander�Reiten quiver ΓΛ of Λ we always mean the translationvalued quiver

Γ = (Γ0, Γ1, τ, d, d′).The translation quiver (Γ0, Γ1, τ) is de�ned in the standard way (the set ofverti
es Γ0 
onsists of the iso
lasses of inde
omposable obje
ts in modΛ,arrows [Y ] → [X] in Γ1 re�e
t the existen
e of irredu
ible maps from Xto Y , and τ [X] = [τX], where τ is the Auslander�Reiten translate). Thevaluation (d, d′) is given by the 
olle
tions d = (d[X],[Y ]) and d′ = (d′[X],[Y ])indexed by Γ1, where for �xed [X]→ [Y ] ∈ Γ1, d[X],[Y ] (resp. d′[X],[Y ]) is thenumber of inde
omposable dire
t summands isomorphi
 to Y (resp. X) in ade
omposition of the 
odomain (resp. domain) of a minimal left (resp. right)almost split map for X (resp. for Y ).For any [X] ∈ Γ0 we denote by −[X] (resp. [X]+) the set of all dire
tprede
essors (resp. su

essors) of [X] in ΓΛ, i.e. the set of all verti
es [Y ] ∈ Γ0su
h that there exists an arrow [Y ]→ [X] (resp. [X]→ [Y ]) in ΓΛ.For any X and Y in modΛ, we denote by (X, Y ) the k-spa
e HomΛ(X, Y )and by [X, Y ] its dimension.1.2. Let Q = (Q0, Q1) be a quiver. For an arrow γ ∈ Q1, we denote by
γ−1 the formal inverse of γ (we set (γ−1)−1 = γ). Any unoriented path w in
Q 
an be presented as a sequen
e γ1 · · · γn, for some n ≥ 0, where γi ∈ Q1 or
γ−1

i ∈ Q1, for 1 ≤ i ≤ n. In the paper we 
onsider only walks, i.e. unorientedpaths w su
h that if w = w1αβ−1w2 or w = w1α
−1βw2 for some unorientedpaths w1, w2 and arrows α, β ∈ Q1, then α 6= β. For any walk w = γ1 · · · γnwe denote by w−1 the formal inverse of w, i.e. the walk γ−1

n · · · γ
−1
1 . Thetrivial walks of length 0 are simply identi�ed with the verti
es of Q0.Assume that Q is a tree. Then any walk w de�nes an inde
omposable

Λ-module V (w), 
alled a line module or simply a line, where Λ = kQ. Themodule V (w), as a representation of Q, has the one-dimensional spa
e k atea
h vertex visited by w and zero spa
es otherwise; the stru
ture maps areidentities for the arrows belonging to w and zero maps otherwise. Note that
V (w) = V (w−1) and V (w) ≃ V (v) if and only if w = v or w = v−1.1.3. The following notations are used in this paper.For any set S, we denote by |S| the 
ardinality of S.Let R be a ring. For any m, n ∈ N we denote by Mm×n(R) the set ofall m × n-matri
es with entries in R. More generally, for any sets X and Ywe denote by MX×Y(R) the set of all X × Y-matri
es M with 
oe�
ientsin R, that is, fun
tions M : X × Y → R. For any M ∈MX×Y(R) we denoteby M t the matrix transposed to M ; MX (resp. MX) is the 
olumn (resp.
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row) of M 
orresponding to X ∈ X ; �nally, for X ′ ⊆ X and Y ′ ⊆ Y ,
M|X ′×Y ′ ∈ MX ′×Y ′(R) is the restri
tion of M to X ′ × Y ′. For a sequen
e
r = (rX) ∈

∏
X∈X R, diag(r) is the �diagonal� matrix in MX×X (R) de�nedby r; we set IX = diag(r) where rX = 1 for every X ∈ X .Given a matrix M in Mm×n(k), we denote by r(M) the rank of M . By

M̂ we mean the generalized upper triangular matrix obtained by deleting allzero rows from the matrix whi
h is the result of the standard Gaussian-rowelimination pro
edure applied to M (see [15℄).For any set X and R = Z, Q, N, we set
RX =

∏

X

R, R(X ) =
⊕

X

R.

2. A general method of determining multipli
ities2.1. Let Λ be a �nite-dimensional algebra and X a �xed 
omplete list ofpairwise nonisomorphi
 inde
omposable obje
ts in modΛ. Denote by C =
C(Λ) the matrix (usually in�nite!) in MX×X (Z) de�ned by the formula

cX,Y = [Y, X]for X, Y ∈ X .Given a module M in modΛ, for any X ∈ X we denote by hX = hX(M)(resp. h′
X = h′

X(M)) the dimension [M, X] (resp. [X, M ]) and by mX =
mX(M) the multipli
ity of X in the de
omposition of M into a dire
t sumof inde
omposables (in parti
ular, M ∼=

⊕
Y ∈X Y mY ). We view the sequen
es

h(M) = (hX), h′(M) = (h′
X) and m(M) = (mX)as 
olumn ve
tors in NX . Note that in 
ontrast to m = m(M), the ve
-tors h = h(M) and h′ = h′(M) 
an have an in�nite number of nonzero
oordinates.

Definition.(a) The matrix C(Λ) is 
alled the Cartan matrix of the Auslander 
ate-gory E(Λ) of the algebra Λ.(b) The ve
tor m(M) is 
alled the multipli
ity ve
tor of the Λ-module M .
Lemma. For any M in modΛ we have h = C(Λ) ·m and h′ = C(Λ)t ·m(see also Remark below).Proof. Sin
e M ∼=

⊕
Y ∈X Y mY , for any X ∈ X we have (M, X) =⊕

Y ∈X (Y, X)mY and hX =
∑

Y ∈X cX,Y mY . Noti
e that sin
e mY = 0 foralmost all Y , the above sum is �nite and also C ·m is well de�ned. Conse-quently, h = C ·m. Similarly, we obtain h′ = Ct ·m.
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Corollary.(a) If T ∈MX×X (Q) is a left inverse of C(Λ), then T · h = m.(b) If T ∈MX×X (Q) is a right inverse of C(Λ), then T t · h′ = m.Proof. Fix T ∈ MX×X (Q) su
h that T · C = IX , where C = C(Λ). Let

X0 ⊆ X be the �nite subset 
onsisting of all X ∈ X su
h that mX 6= 0.Then h =
∑

X∈X0
mXCX (in ZX ), so the produ
t T · h is well de�ned as

T ·h =
∑

X∈X0
mX(TCX), and 
onsequently T ·h =

∑
X∈X0

mX(IX )X = m.The proof of the se
ond assertion is analogous.
Remark. Let Y be an in�nite set.(i) The set MY×Y(Z) is a partial ring with respe
t to multipli
ation ofmatri
es: for M, N ∈ MY×Y(Z), the produ
t M · N is de�ned if and onlyif for ea
h pair X, Z ∈ Y the set {Y ∈ Y : M(X, Y ) 6= 0 6= M(Y, Z)} is�nite. The partial ring admits a unit element IY (the identity matrix). In

MY×Y(Z) the following pathologies may appear:
• Multipli
ation in MY×Y(Z) is not asso
iative in the sense that theremay exist M1, M2, M3 ∈MY×Y(Z) su
h that the produ
ts M1 ·M2, M2 ·M3,

(M1 · M2) · M3, M1 · (M2 · M3) are well de�ned and (M1 · M2) · M3 6=
M1 · (M2 ·M3). For example, 
onsider the triple

M1 =




1 1 1 1 · · ·

1 2 2 2 · · ·

1 2 3 3 · · ·

1 2 3 4 · · ·... ... ... ... . . .



,

M2 =




2 −1 0 0 · · ·

−1 2 −1 0 · · ·

0 −1 2 −1 · · ·

0 0 −1 2
. . .... ... ... . . . . . .




,

M3 =




1 1 1 1 · · ·

2 2 2 2 · · ·

3 3 3 3 · · ·

4 4 4 4 · · ·... ... ... ... . . .



.

Note that M2 ·M3 = 0, M1 ·M2 = IY , M3 6= 0, (M1 ·M2) ·M3 = IY ·M3 =
M3 and M1 · (M2 ·M3) = M1 · 0 = 0.



MULTIPLICITY PROBLEM FOR DECOMPOSITIONS OF MODULES 227

• A matrix M ∈ MY×Y(Z) may admit two di�erent two-sided inverses(see Remark 2.2(iv) for an example).(ii) Any matrix M ∈MY×Y(Z) indu
es a Z-linear map M · : Z(Y) → ZY .If in ea
h row (resp. 
olumn) of M1 ∈ MY×Y(Z) (resp. M2 ∈ MY×Y(Z))almost all entries are zero then M1 (resp. M2) indu
es a Z-linear map
M1 · : ZY → ZY (resp. M2 · : Z(Y) → Z(Y)). Moreover, the 
omposites
(M1·) ◦ (M ·), (M ·) ◦ (M2·) : Z(Y) → ZY 
an be represented as multipli
a-tions by M1 ·M and M ·M2, respe
tively.(iii) Statements analogous to (i) and (ii) also hold for MY×Y(Q).The result below was suggested to us by G. Zwara.
Proposition. Let C = C(Λ) be the Cartan matrix.(a) For any nonzero D ∈ MX×X (Q) su
h that D · C is de�ned, D · Cis a nonzero matrix. Moreover, C has at most one left inverse in

MX×X (Q).(b) For any nonzero D ∈ MX×X (Q) su
h that C · D is de�ned, C · Dis a nonzero matrix. Moreover, C has at most one right inverse in
MX×X (Q).Proof. First we 
laim that for any nonzero d = (dX) ∈ QX su
h that

dt · C is de�ned, i.e. the set XY = {X ∈ X : dX 6= 0 6= cX,Y } is �nite for all
Y ∈ X , the produ
t dt · C is nonzero.We start by observing that if dt · C is de�ned then d is in Q(X ); morepre
isely, dX = 0 for every X ∈ X ′ = X \ (XP1 ∪· · ·∪XPn), where P1, . . . , Pnare all the proje
tive modules in X . Suppose that dX 6= 0 for some X ∈ X ′.Sin
e P1 ⊕ · · · ⊕ Pn is a proje
tive generator in modΛ, there exists i su
hthat cX,Pi

= [Pi, X] 6= 0, and X belongs to XPi
, a 
ontradi
tion.To prove our 
laim it su�
es to show that d = 0 whenever d ∈ Z(X ) and

dt ·C =0. Given su
h a d, we 
onsider two �nite sets: X+ ={X ∈X : dX >0}and X− = {X ∈ X : dX < 0}. For any Y ∈ X we have
0 = (dt · C)Y =

∑

X∈X

dXcX,Y =
∑

X∈X+

dX [Y, X]−
∑

X∈X−

(−dX)[Y, X]

=
[
Y,

⊕

X∈X+

XdX

]
−

[
Y,

⊕

X∈X−

X(−dX)
]

=: [Y, X+]− [Y, X−].Consequently, by the result of Auslander [3, 5℄, we obtain X+ ∼= X−, and
d = 0.Now the �rst assertion of (a) follows immediately from the above 
laim.To show the se
ond, note that if T · C = IX = T ′ · C then the produ
t
(T − T ′) · C is de�ned and (T − T ′) · C = 0. Then by the �rst assertion wehave T = T ′ and the proof of (a) is 
omplete.The proof of (b) is similar.
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2.2. Observe that if Λ is a dire
ted algebra of �nite representation typethen C(Λ) is invertible (ΓΛ is �nite and 
ontains no oriented 
y
le, so C(Λ)is triangular for a suitable ordering of X ). Now we show that C(Λ) is al-ways invertible in MX×X (Q). We give a dire
t des
ription of its inverse. The
onstru
tion is e�e
tive if one knows the Auslander�Reiten quiver ΓΛ of Λ.From now on, we identify modules from X with verti
es of ΓΛ (X ∋ X ↔

[X] ∈ Γ0). We 
an assume that for any nonproje
tive (resp. noninje
tive)
X ∈ X the module τX (resp. τ−X) belongs to X .
Definition. Let T = TΛ = [tX,Y ] ∈ MX×X (Z) be de�ned as follows: if

Y, X ∈ X and X is nonproje
tive, then
tX,Y =





1 if Y = X 6= τX or Y = τX 6= X,
2 if Y = X = τX,
−d′Y,X if Y ∈ −X,
0 otherwise,while if X is proje
tive, then
tX,Y =





1 if Y = X,
−d′Y,X if Y ∈ −X,
0 otherwise.We 
all TΛ the Auslander�Reiten matrix of Λ.For any X ∈ X , we set fX = dimk EndΛ(X)/J(EndΛ(X)).

Theorem. Let Λ be a �nite-dimensional k-algebra, C = C(Λ) the 
or-responding Cartan matrix, T = TΛ the Auslander�Reiten matrix of Λ and
F = diag((fX)X∈X ).(a) C is invertible in MX×X (Q) and F−1T is the unique two-sided in-verse of C.(b) If EndΛ(X)/J(EndΛ(X)) ∼= k for every X ∈ X (whi
h holds auto-mati
ally if k is algebrai
ally 
losed), then T is an inverse of C, so Cis invertible in MX×X (Z), and m(M) = T ·h(M) (resp. T t ·h′(M) =

m(M)) for all M in modΛ.Proof. (a) We show �rst that TC = F .For any X ∈ X we have either the almost split sequen
e
0→ τX →

⊕

Z∈−X

Zd′Z,X → X → 0

if X is nonproje
tive, or the right minimal almost split sequen
e
⊕

Z∈−X

Zd′Z,X ∼= JX →֒ X
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if X is proje
tive. They indu
e respe
tively exa
t sequen
es
(∗) 0→ (−, τX)→

⊕

Z∈−X

(−, Z) d′Z,X → (−, X)→ (−, X)→ 0

and
(∗∗) 0→

⊕

Z∈−X

(−, Z) d′Z,X → (−, X)→ (−, X)→ 0

of 
ontravariant k-fun
tors from the 
ategory modΛ to mod k, where (−, X)denotes the simple fun
tor (−, X)/J (−, X) (see [11℄). Fix an arbitrary
Y ∈ X . Then applying the exa
t sequen
es (∗)(Y ) and (∗∗)(Y ), and 
om-puting dimensions, we obtain the formulas

cτX,Y + cX,Y −
∑

Z∈−X

d′Z,X cZ,Y =

{
fX if Y = X,
0 if Y 6= X,and

cX,Y −
∑

Z∈−X

d′Z,X cZ,Y =

{
fX if Y = X,
0 if Y 6= X,respe
tively. Consequently, the required equality TC = F holds.To prove that C is invertible with inverse F−1T , 
onsider the matrix

T− = (t−X,Y ) ∈ MX×X (Z), dual to T in some sense, whi
h is de�ned asfollows:
t−X,Y =





1 if X = Y 6= τ−Y or X = τ−Y 6= Y ,
2 if X = Y = τ−Y ,
−dY,X if X ∈ Y +,
0 otherwise,if Y is noninje
tive, and

t−X,Y =





1 if X = Y ,
−dY,X if X ∈ Y +,
0 otherwise,if X is inje
tive, for Y, X ∈ X . We show that CT− = F .As before, for Y ∈ X we have either the almost split sequen
e

0→ Y →
⊕

Z∈Y +

Z dY,Z → τ−Y → 0

if X is noninje
tive, or the left minimal almost split sequen
e
Y ։ Y/SocY ∼=

⊕

Z∈Y +

ZdY,Z
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if Y is inje
tive. Again we obtain exa
t sequen
es
(∗)′ 0→ (τ−Y,−)→

⊕

Z∈Y +

(Z,−) dY,Z → (Y,−)→ (Y,−)→ 0and respe
tively
(∗∗)′ 0→

⊕

Z∈Y +

(Z,−) dY,Z → (Y,−)→ (Y,−)→ 0

of 
ovariant k-fun
tors from modΛ to modΛ, where (Y,−) denotes thesimple fun
tor (Y,−)/J (Y,−) (see [11℄). Then for any X ∈ X the exa
tsequen
es (∗)′(X) and (∗∗)′(X) yield the formulas
cX,τ−Y + cX,Y −

∑

Z∈Y +

cX,Z dY,Z =

{
fX if X = Y ,
0 if X 6= Y ,and

cX,Y −
∑

Z∈Y +

cX,Z dY,Z =

{
fX if X = Y ,
0 if X 6= Y ,respe
tively. Consequently, we have CT− = F .To 
omplete the proof of (a), we observe that the matri
es T−=T−F−1,

C and T =F−1T indu
e Q-linear maps: T−· : Q(X )→ Q(X ), C· : Q(X )→ QXand T · : QX → QX , respe
tively. Now, by applying the asso
iativity of
omposition (for (T ·)◦ (C·)◦ (T−)), the two equalities proved above and therules from Remark 2.1(ii), we infer that the maps T−·, T · : Q(X ) → QX areequal, hen
e T−F−1 = F−1T , and F−1T is the unique (by Proposition 2.1)inverse of C in MX×X (Q).Sin
e (b) is a 
onsequen
e of (a) and of Corollary 2.1, the theorem isproved.
Corollary. If Λ is of �nite representation type then the Cartan matrix

C = C(Λ) is uniquely determined by the formula C = T−1F, where T = TΛand F are as above. In parti
ular, C = T−1 if k is algebrai
ally 
losed (
f.Remark 2.1(i)).
Remark. (i) The equality T−F−1 = F−1T implies immediately thatin ea
h row and ea
h 
olumn of T (resp. T−) almost all entries are zero,and also that fY dX,Y = fXd′X,Y for all X, Y ∈ X , and fX = fτX for everynonproje
tive X ∈ X .(ii) Let X ′ ⊆ X be the sub
lass of all verti
es of a �xed 
onne
ted
omponent in ΓΛ. Then m(M)|X ′ = T|X ′×X ′ · h(M)|X ′ and m(M)|X ′ =

(T−
|X ′×X ′)t ·h′(M)|X ′ for any M in modΛ, provided fX = 1 for all X ∈ X ′,where m(M)|X ′ = (mX(M))X∈X ′ , h(M)|X ′ = (hX(M))X∈X ′ and h′(M)|X ′

= (h′
X(M))X∈X ′ . In parti
ular, for any X ∈ X ′ we have m(M)X =

(T|X ′×X ′)X · h(M)|X ′ (resp. m(M)X = (h′(M)|X ′)t · (T−
|X ′×X ′)X).
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(iii) If X =
⋃

i∈I Xi is a splitting of X 
orresponding to the de
om-position of ΓΛ into a disjoint union of 
onne
ted 
omponents then T =
diag({T|Xi×Xi

}i∈I) and T− = diag({T−
|Xi×Xi

}i∈I) (here �diag� denotes ablo
k diagonal matrix). In parti
ular, T|Xi×Xi
= T−

|Xi×Xi
if fX = 1 for all

X ∈ Xi.(iv) Assume that fX = 1 for all X ∈ X , and |I| ≥ 2, where I is as above.Then the matrix C, in spite of the equalities CT = TC = IX and T =
diag({T|Xi×Xi

}i∈I), always di�ers from diag({C|Xi×Xi
}i∈I), sin
e Λ is of in�-nite representation type and J∞

Λ (Xi,Xj) 6= 0 for some i 6= j, so C|Xj×Xi
6=0.Nevertheless, we 
learly have C|Xi×Xi

· T|Xi×Xi
= T|Xi×Xi

· C|Xi×Xi
= IXi

forevery i ∈ I, so diag({C|Xi×Xi
}i∈I) forms another, di�erent from C, inversefor T . As a simplest 
on
rete example of this strange behaviour one 
an
onsider the matri
es T and C for a Krone
ker algebra (see Se
tion 4 for adetailed des
ription of T and C in blo
k form).(v) In 
ase Λ is of �nite representation type and k is algebrai
ally 
losed,the formula from the 
orollary provides a method of �nding the matrix C ifone knows the shape of ΓΛ, and 
onversely, the matrix T if one knows C.From now on we assume that k is an algebrai
ally 
losed �eld.2.3. As a 
on
lusion from Theorem 2.2 and Corollary 2.1 it follows thatto determine the multipli
ity ve
tor m(M) = (mX) ∈ Z(X ) of an arbitrarymodule M in modΛ, one has to 
onstru
t the Auslander�Reiten matrix TΛfor Λ and 
ompute the in�nite ve
tor h(M) = (hX) ∈ ZX (resp. h′(M)

= (h′
X) ∈ ZX ). In fa
t, on
e we know these two data the 
oordinates of theve
tor m(M) 
an be 
omputed as follows.
Corollary. For any X ∈ X , we have

mX =





hX + hτX −
∑

Y ∈−X

d′Y,X hY if X is nonproje
tive,
hX −

∑

Y ∈−X

d′Y,X hY if X is proje
tive,and
mX =





h′
X + h′

τ−X −
∑

Y ∈X+

dY,X h′
Y if X is noninje
tive,

h′
X −

∑

Y ∈X+

dY,X h′
Y if X is inje
tive.

Remark. To 
ompute m(M) we do not need to know the entire, usuallyin�nite, ve
tor h(M) (m(M) ∈ Z(X )). If we are able to �nd a �nite subset
X0 ⊂ X 
ontaining {X ∈ X : mX 6= 0} then we need to 
ompute the
oordinates hX for X from some �nite subset X1 ⊆ X 
ontaining X0, whi
h
an be e�e
tively 
onstru
ted from X0. If Λ is representation �nite then we
an always set X0 = X .
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3. String algebras of �nite representation type. If Λ is an algebraof �nite representation type then in some situations it may be easier todetermine the matrix C = C(Λ) (than TΛ itself), and afterwards 
ompute TΛas its inverse (in 
ase Λ is representation in�nite this may be di�
ult, sin
e

C is then an in�nite matrix). This is the 
ase for string algebras of �niterepresentation type, though 
ombinatorial formulas for Auslander�Reitensequen
es in modΛ (expressed in terms of V -sequen
es) are known ([22℄). Inthis se
tion we brie�y des
ribe how to 
ompute the matri
es C in this 
ase.First we 
onsider the tree 
ase and next the general 
ase.3.1. Re
all that an algebra Λ is 
alled a string spe
ial biserial algebra(or simply a string algebra) if it has the form kQ/I, where I is an admissibleideal in kQ, and the bound quiver (Q, I) satis�es the following 
onditions:(S1) The numbers of arrows starting from, respe
tively ending in, any�xed vertex of Q are bounded by 2.(S2) For any arrow α of Q, there is at most one arrow β and at most onearrow γ su
h that βα and αγ are not in I.(S3) The ideal I is generated by zero-relations.To des
ribe inde
omposable modules over a string algebra Λ = kQ/I oneuses some spe
ial walks. Following [22℄, a walk w in the quiver Q is 
alleda V -sequen
e in (Q, I) if for any oriented path u su
h that u or u−1 is asubpath of w, u does not belong to I. A V -sequen
e w is primitive if forany n ∈ N the 
omposite walk wn is de�ned and wn is again a V -sequen
ein (Q, I). Denote by V = V(Q, I) the set of all V -sequen
es in (Q, I) andby V0 = V0(Q, I) a �xed sele
tion of representatives of sets {w, w−1} (thesesets de�ne a splitting of V). Note that if Q is a tree then the inde
omposable
kQ-module V (w) de�ned by any walk w ∈ V (see 1.2) belongs to modΛ,sin
e V (w) is annihilated by I.Let (Q̃, Ĩ) be a universal 
over of the bound quiver (Q, I) in the sense of[17℄ (in our situation Q̃ is a universal 
over of Q, so a tree). We denote by
F : (Q̃, Ĩ) → (Q, I) the 
anoni
al Galois 
overing of bound quivers, de�nedby passing to orbits under the identi�
ation Q = Q̃/G, where G is thefundamental group of Q a
ting on Q̃ in the usual way. Denote by Λ̃ thelo
ally bounded k-
ategory kQ̃/Ĩ whi
h is a fa
tor of the path 
ategory
kQ̃ of Q̃ modulo the ideal Ĩ. We have at our disposal the indu
ed pull-upfun
tor F• : modΛ→ Mod Λ̃ and its left (and right) adjoint, the pull-downfun
tor Fλ : mod Λ̃ → modΛ, whi
h, due to the fa
t that G a
ts freely oninde
omposables, have ni
e properties (see [12℄). (Here Mod Λ̃ denotes the
ategory of lo
ally �nite-dimensional Λ̃-modules, see [9℄.) It is 
lear thatthe notions of walk, V -sequen
e and line module, introdu
ed earlier, 
an beextended to the situation of Q̃, (Q̃, Ĩ) and Λ̃, respe
tively.
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For any V -sequen
e w ∈ V = V(Q, I) we denote by X(w) the inde
om-posable Λ-module of the form Fλ(V (w̃)), where w̃ is a �xed lifting of wto Q̃ (
learly w̃ ∈ Ṽ = V(Q̃, Ĩ)). By the properties of Fλ the de�nitionof X(w) does not depend on the 
hoi
e of the lifting w̃ (for two liftings
w̃, w̃′ of w we have w̃ = gw̃′, so V (w̃) = gV (w̃′) for some g ∈ G, hen
e
Fλ(V (w̃)) = Fλ(V (w̃′))). Noti
e that X(w) is inde
omposable sin
e so isevery line. Clearly, X(w) = V (w) if Q is a tree, sin
e then Q̃ = Q and
V = Ṽ.Following [22℄, we have the following 
hara
terization of representation�nite string algebras.
Proposition. Let Λ = kQ/I be an arbitrary string algebra. The algebra

Λ is of �nite representation type if and only if (Q, I) admits no primitive
V -sequen
e. In this 
ase, the set

X = {X(w) : w ∈ V0}is a 
omplete family of pairwise nonisomorphi
 inde
omposable Λ-modules.
Corollary. If Λ = kQ/I is a string algebra su
h that Q is a tree (we
all su
h algebras string tree algebras), then Λ is of �nite representation type.3.2. Now we show how to 
onstru
t the Cartan matrix

C(Λ) = C = [cX,Y ]X,Y ∈X = [cv,w]v,w∈V0for a string tree algebra Λ = kQ/I. First we state some te
hni
al fa
ts. Weset Sw,v = supp X(w) ∩ suppX(v). Note that for any w ∈ V, the support
suppX(w) 
oin
ides with the set Sw 
onsisting of all verti
es belonging tothe walk w.
Lemma. For any v, w ∈ V0 the following hold true:(i) cv,w ≤ 1,(ii) cv,v = 1,(iii) if Sw,v = ∅ then cw,v = cv,w = 0,(iv) if Sw,v 6= ∅ then any Λ-homomorphism f ={fc}c∈Q0 : X(w)→X(v)su
h that fs = 0 for some s ∈ Sw,v is zero,(v) if cw,v = 1 for some v 6= w, then cv,w = 0.Proof. Assertions (i)�(iv) follow easily from the de�nition of homomor-phism and the fa
ts that for any w ∈ V the k-spa
es 
orresponding to verti
esin the representation X(w) = V (w) are k or 0 and that the full subquiver of

Q formed by the support of Sw is 
onne
ted.To prove (v), note that Λ is of �nite representation type and k is alge-brai
ally 
losed, so there exist oriented paths from X(v) to X(w) and from
X(w) to X(v) in the Auslander�Reiten quiver ΓΛ, provided cw,v = cv,w = 1.
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Consequently, ΓΛ 
ontains oriented 
y
les, a 
ontradi
tion. Note that ΓΛ isa
y
li
, sin
e Q is a tree (see [2℄).The result below furnishes a ne
essary and su�
ient 
ondition for thedimension cv,w to be 1.
Proposition. For v, w ∈ V0 su
h that Sv,w 6= ∅, cv,w = 1 if and onlyif for any arrow α : a→ b ∈ Q1 the following two 
onditions are satis�ed:(i) If a ∈ Sv,w and b ∈ Sv then b ∈ Sw.(ii) If b ∈ Sv,w and a ∈ Sw then a ∈ Sv.Proof. Observe �rst that if for some α ∈ Q1, (i) (or (ii)) is not satis�edthen cv,w = 0 from Lemma 3.2(iv). Assume now that (i) and (ii) are satis�ed.Then it is easy to show that the 
olle
tion {fc}c∈Q0 given by the formula

fc =

{
idk if c ∈ Sv,w,
0 if c ∈ Q0 \ Sv,w,yields a (nonzero) Λ-homomorphism from X(w) to X(v). Consequently, byLemma 3.2(i) we have cv,w = 1.3.3. The proposition above yields an easy, purely 
ombinatorial, methodof 
omputing the dimensions cv,w. As a 
onsequen
e, we 
an 
onstru
t theCartan matrix C = C(Λ) using only the shape of the quiver (Q, I). Wesummarize our 
onsiderations by an algorithm.

Algorithm (
omputing C(Λ) for string tree algebras).Input: The set V0 = V0(Q, I) of V -sequen
es in (Q, I) for a given stringtree algebra Λ = kQ/I.Output: The Cartan matrix C = C(Λ).for any w ∈ V0 set cw,w := 1;for any distin
t v, w ∈ V0 doif cv,w is not 
omputed then do {if Sv,w = ∅ then set cv,w := 0, cw,v := 0;else do {for any a ∈ Sv,w, a→ b ∈ Q1, b ∈ Sv doif b /∈ Sw then {set cv,w := 0; break;}if cv,w is not 
omputed then dofor any b ∈ Sv,w, a→ b ∈ Q1, a ∈ Sw doif a /∈ Sv then {set cv,w = 0; break;}
}if cv,w is not 
omputed then set cv,w := 1, cw,v := 0;
}Observe that the matrix TΛ 
an be easily 
omputed as an inverse of

C sin
e all elements of the set V0 (see 3.1) 
an be viewed as a sequen
e
(w1, . . . , wn) su
h that [cwi,wj

]1≤i,j≤n ∈ Mn×n(k) is a triangular 0-1 matrix(
f. 2.1).
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3.4. Now we 
onsider general string algebras. Let Λ = kQ/I be anystring algebra of �nite representation type and Ṽ ′0 = {w̃ : w ∈ V0} a subsetof Ṽ0 formed by a �xed 
omplete sele
tion of liftings (see 3.1). For any
v, w ∈ V0 we set Gv,w = {g ∈ G : Sṽ ∩ gSw̃ 6= ∅}. Note that ea
h Gv,w is�nite sin
e the standard a
tion of G on Q̃0 is free. Denote by Q′ = (Q′

0, Q
′
1)the smallest 
onne
ted (�nite) subquiver of Q̃ 
ontaining the �nite set of all

x ∈ Q̃0 that are visited by the walks gw̃ for some w̃ ∈ Ṽ ′0 and g ∈
⋃

v∈V0
Gv,w.Denote by Λ′ the algebra 
orresponding to the full sub
ategory of Λ̃formed by Q′

0. As Λ′ is a string tree algebra, it is of �nite representation type,and it has the form Λ′ = kQ′/I ′, where I ′ 
orresponds to the appropriaterestri
tion of the ideal Ĩ in kQ̃ to kQ′. We 
an assume that Ṽ ′0 ⊆ V ′0 =

V0(Q
′, I ′). Clearly, V ′ = V(Q′, I ′) ⊂ Ṽ. Set C ′ = C(Λ′) = [c′v′,w′ ] v′,w′∈V′

0
.The following result yields a method for 
omputing the matrix C = C(Λ) inthe form C = [cv,w] v,w∈V0 , on
e we know C ′ (the latter 
an be 
omputed byapplying the algorithm above).

Proposition. For any v, w ∈ V0 the (w, v)th entry of C = C(Λ) is
cw,v =

∑

g∈Gv,w

c′gw̃,ṽ.Proof. For any w′ ∈ V ′0 let V ′(w′) denote the line module in modΛ′de�ned by w′ (as opposed to the line V (w′) in mod Λ̃). It is easily seen thatfor any v′, w′ ∈ V ′0 there exists a 
anoni
al k-isomorphism
HomΛ′(V ′(v′), V ′(w′)) ∼= Hom

Λ̃
(V (v′), V (w′)).Then for �xed v, w ∈ V0 we have

HomΛ(X(v), X(w)) ∼=
⊕

g∈Gv,w

Hom
Λ̃
(V (ṽ), V (gw̃))

∼=
⊕

g∈Gv,w

HomΛ′(V ′(ṽ), V ′(gw̃))

(apply properties of the fun
tor Fλ, see [12℄). Consequently, taking dimen-sions we obtain the required equality.3.5. Applying Proposition 3.4 (in fa
t its proof) and Proposition 3.2we formulate an analogue of Algorithm 3.3 for all string algebras of �niterepresentation type. We use the notation introdu
ed in 3.4.
Algorithm (
omputing C(Λ) for string algebras of �nite representationtype).Input: The sets V0 = V0(Q, I), Ṽ ′0 = {w̃ ∈ Ṽ0 : w ∈ V0} and Gv,w,

v, w ∈ V0, for a given string algebra Λ = kQ/I of �nite representation type.
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Output: The Cartan matrix C = C(Λ).for any w, v ∈ V0 do {set cw,v := 0;for any g ∈ Gv,w do {if g = 1, w̃ = ṽ then set c′gw̃,ṽ := 1;else if c′gw̃,ṽ is not 
omputed then do {for any a ∈ Sgw̃,ṽ, a→ b ∈ Q′

1, b ∈ Sgw̃ doif b /∈ Sṽ then {set c′gw̃,ṽ := 0; break;}if c′gw̃,ṽ is not 
omputed then dofor any b ∈ Sgw̃,ṽ, a→ b ∈ Q′

1, a ∈ Sṽ doif a /∈ Sgw̃ then {set c′gw̃,ṽ := 0; break;}if c′gw̃,ṽ is not 
omputed then set c′gw̃,ṽ := 1, c′ṽ,gw̃ := 0;
}set cw,v := cw,v + c′gw̃,ṽ;
}

}

Remark. One 
an give an algorithmi
 re
ursive method of 
omputingthe ve
tors h(M) for M in modΛ, where Λ is a string algebra. It is basedon a deep analysis of 
hanges in the systems of linear equations des
ribingthe spa
e (M, X(w)), w ∈ V0, under the pro
ess of extending walks w byarrows or their inverses. It has a te
hni
al and rather 
ompli
ated 
hara
ter,and will be presented in a separate publi
ation.4. Ãp,q-algebras: the Krone
ker algebra 
ase. In the next two se
-tions we dis
uss how to apply the general method, outlined in Se
tion 1, tomodules over Ãp,q-algebras, i.e. the path algebras of the quivers

1A
AK

α1

2
�
��
β1

p+1

6
α2

3
6
β2

p+2

... ...p p+q−1
�
��αp

A
AK βq

p+q

where p, q ≥ 1. These string algebras, in 
ontrast to biserial trees, are oftame and so in�nite representation type, and require a slightly di�erent ap-proa
h (see Remark 2.3). For a given M in modΛ, it may be hard to �ndthe in�nite ve
tor h(M). Moreover, we 
annot sequentially 
ompute all mul-tipli
ities m(M)X , X ∈ X , applying Corollary 2.3. We show how to extra
te�e
tively a �nite set of potential inde
omposable dire
t summands for M
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and 
ompute a �nite number of 
oordinates of the ve
tor h(M), whi
h arene
essary to determine m(M). (The des
ription of TΛ is not a problem inthis 
ase.)First we 
onsider the simplest 
ase of Ã1,1 (the Krone
ker algebra) andgive a pre
ise des
ription of the algorithm. This algorithm di�ers essentiallyfrom the 
lassi
al one (see [13, 16℄). In the next se
tion we show how to deal,in spite of some di�eren
es, with the general Ãp,q-algebra 
ase, and to redu
eit partially to the previous one.4.1. Let Λ be the Krone
ker algebra, i.e. Λ = kQ, where Q looks asfollows: 1 -
β

-α 2We denote by e1, e2 the idempotents 
orresponding to the verti
es. We �rstdistinguish three 
lasses of inde
omposable Λ-modules:
Pi: ki−1 -

Wi

-Vi

ki, Ij : kj -
W t

j

-V
t
j

kj−1, Rλ,l: kl -
Il

-Jl(λ)

kl,where i, j, l ≥ 1, λ ∈ k, Wi, Vi ∈Mi×(i−1)(k) are of the form
Vi =




1 0 · · · 0

0 1 · · · 0... ... ...
0 0 · · · 1

0 0 · · · 0




, Wi =




0 · · · 0 0

1 · · · 0 0... ... ...
0 · · · 1 0

0 · · · 0 1




,

Jl(λ) ∈ Ml×l(k) is an upper triangular Jordan blo
k with eigenvalue λand Il ∈ Ml×l(k) the unit matrix. The representations from the sets P =
{Pi}i≥1 and I = {Ii}i≥1 are 
alled respe
tively postproje
tive and prein-je
tive (P1, P2 are proje
tive, I1, I2 inje
tive, and P1, I1 simple, see [2℄). Allmodules {Rλ,l}λ∈k, l≥1 together with representations of the form

R∞,n: kn -
Jn(0)

-In
kn

for n ≥ 1, are 
alled regular . We set R = {Rλ,n}λ∈k∪{∞}, n≥1.We brie�y list below those (well known, see e.g. [8, 21℄) fa
ts 
on
erningthe stru
ture of the module 
ategory modΛ that we use in this paper.
Proposition.(i) The disjoint union X = P ∪R ∪ I is a 
omplete family of pairwisenonisomorphi
 inde
omposable Λ-modules.
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(ii) For any P ∈ P, R ∈ R, I ∈ I we have

(R, P ) = (I, P ) = (I, R) = 0.(iii) For any n1, n2 ≥ 1 we have
[Pn1, Pn2 ] =

{
n2 − n1 + 1 if n1 ≤ n2,
0 if n1 > n2,

[In1 , In2 ] =

{
n1 − n2 + 1 if n1 ≥ n2,
0 if n1 < n2.(iv) For any n1, n2 ≥ 1 and λ, λ1, λ2 ∈ k ∪ {∞}, λ1 6= λ2, we have

[Rλ,n1 , Rλ,n2 ] = min{n1, n2}, [Rλ1,n1 , Rλ2,n2 ] = 0.(v) The 
lasses P and I are 
onne
ted 
omponents in ΓΛ. More pre
ise-ly, a minimal right (respe
tively, left) almost split map for a pro-je
tive (respe
tively, inje
tive) nonsimple module has the form 0 →
P 2

1 → P2 (respe
tively, I2 → I2
1 → 0); moreover, the almost splitsequen
es are of the form

0→ Pi → P 2
i+1 → Pi+2 → 0and respe
tively

0→ Ij+2 → I2
j+1 → Ij → 0for i, j ≥ 1. In parti
ular, P2s−1 = τ−(s−1)P1 and P2s = τ−(s−1)P2

(respe
tively, I2s−1 = τ (s−1)I1 and I2s = τ (s−1)I2) for every s ≥ 1,where τ denotes the Auslander�Reiten translate.(vi) The 
lass R is a 1-parameter family {Tλ}λ∈k∪{∞} of 
onne
ted 
om-ponents in ΓΛ, where ea
h Tλ is a rank 1 stable tube with verti
esrepresented by {Rλ,n}n≥1. More pre
isely, the almost split sequen
esin the tube Tλ, λ ∈ k ∪ {∞}, have the form
0→ Rλ,1 → Rλ,2 → Rλ,1 → 0and

0→ Rλ,i → Rλ,i−1 ⊕Rλ,i+1 → Rλ,i → 0for all i ≥ 2. In parti
ular, τ iRλ,n = Rλ,n for all i ∈ Z, n ≥ 1 and
λ ∈ k ∪ {∞}.

Corollary. Consider the matri
es T = TΛ and C = C(Λ) as blo
kmatri
es with respe
t to the splitting X = P ∪ (
⋃

λ∈k∪{∞} Tλ) ∪ I.
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(a) The nonzero blo
k-
oordinates for T look as follows:
T|P×P =




1 0 0 0 0 · · ·

−2 1 0 0 0 · · ·

1 −2 1 0 0 · · ·

0 1 −2 1 0 · · ·

0 0 1 −2 1 · · ·... ... ... ... . . . . . .




,

T|Tλ×Tλ
=




2 −1 0 0 0 · · ·

−1 2 −1 0 0 · · ·

0 −1 2 −1 0 · · ·

0 0 −1 2 −1 · · ·

0 0 0 −1 2 · · ·... ... ... ... . . . . . .




, λ ∈ k ∪ {∞},

T|I×I = (T|P×P)t.(b) The diagonal 
oordinate-blo
ks for the lower blo
k-triangular matrix
C look as follows:

C|P×P =




1 0 0 0 · · ·

2 1 0 0 · · ·

3 2 1 0 · · ·

4 3 2 1 · · ·... ... ... ... . . .




,

C|Tλ×Tλ
=




1 1 1 1 · · ·

1 2 2 2 · · ·

1 2 3 3 · · ·

1 2 3 4 · · ·... ... ... ... . . .




, λ ∈ k ∪ {∞},

C|I×I = (C|P×P)t.Moreover, C|P×Tλ
= C|P×I = C|Tλ×I = 0 for all λ ∈ k ∪ {∞}.4.2. To 
ompute the multipli
ity sequen
es m(M) = (mX)X∈X , X =

P ∪R ∪ I, for modules M in modΛ, we 
an apply the following rules.
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Lemma. For any M as above the following equalities hold :(i) mP1 = [M, P1], mP2 = [M, P2] − 2[M, P1] and mPi

= [M, Pi] −
2[M, Pi−1] + [M, Pi−2] for all i ≥ 3;(ii) mI1 = [I1, M ], mI2 = [I2, M ] − 2[I1, M ] and mIj

= [Ij, M ] −
2[Ij−1, M ] + [Ij−2, M ] for all j ≥ 3;(iii) mRλ,1

= 2[M, Rλ,1]−[M, Rλ,2] and MRλ,l
= [M, Rλ,l]−[M, Rλ,l−1]−

[M, Rλ,l+1] for all l ≥ 2, λ ∈ k ∪ {∞}.Proof. The assertions follow easily from Corollary 2.3, Remark 2.2 andProposition 4.1.By the lemma above, to determine the multipli
ity ve
tor m(M)X for all
X from one Auslander�Reiten 
omponent, it su�
es to 
ompute �
onse
u-tively� the dimensions [M, X] (resp. [X, M ]), referring to the natural linearorder in that 
omponent (note that in this 
ase all 
omponents have su
han order). We use this general observation to give an algorithmi
 pro
edureyielding the sequen
e m(M). We show how to redu
e the 
onsiderations toa �nite number of 
omponents and potential dire
t summands 
ontainedin them. We also dis
uss the stop problem for the 
onstru
ted algorithm.Finally, we propose an indu
tive method of e�e
tive 
omputation of the
onse
utive dimensions for individual 
omponents.4.3. Given a module, we apply the following te
hni
al fa
t to restri
tthe list of 
andidates for its inde
omposable dire
t summands to a �nite list.
Lemma. For any j, n ≥ 1 and λ ∈ k ∪ {∞} we have [Pj, Rλ,n] = n. Inparti
ular,

C|Tλ×P =




1 1 1 · · ·

2 2 2 · · ·

3 3 3 · · ·... ... ... . . .



Proof. Re
all that the fun
tor τ− : modΛ→ modΛ establishes an equiv-alen
e between the full sub
ategories of Λ-modules without inje
tive andrespe
tively proje
tive dire
t summands. Moreover, Rλ,n is τ -invariant and
HomΛ(eiΛ, R) ≃ Rei. Therefore, for any s, n ≥ 1 and λ ∈ k ∪ {∞},

[P2s−1, Rλ,n] = [τ−(s−1)P1, Rλ,n] = [τ−(s−1)P1, τ
−(s−1)Rλ,n]

= [P1, Rλ,n] = [e2Λ, Rλ,n] = dimRλ,ne2 = n,and analogously
[P2s, Rλ,n] = [P2, Rλ,n] = [e1Λ, Rλ,n] = dimRλ,ne1 = n.

Corollary. Let P be a Λ-module su
h that P ≃
⊕nP

i=1 P si

i for some
nP , s1, . . . , snP

∈ N. Then [P, Rλ,n] =
∑nP

i=1 sin for any λ ∈ k and n ≥ 1.
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Remark. The remaining nonzero 
oordinate-blo
ks of the lower-trian-gular matrix C = C(Λ) look as follows:
C|I×Tλ

= (C|Tλ×P)t, C|I×P =




0 1 2 · · ·

1 2 3 · · ·

2 3 4 · · ·... ... ... . . .



(
f. Corollary 4.1 and Lemma 4.3). The �rst formula is straightforward. Toprove the se
ond, one shows that [Pi, Ij ] = i + j − 2 for all i, j ≥ 1 (applyarguments similar to those in the proof above).4.4. Now we formulate a ne
essary and su�
ient 
ondition for a modulefrom the tube Tλ, λ ∈ k, to be a dire
t summand of a given Λ-module.
Proposition. Let M : kn1 −→−→

A

B
kn2 be a �nite-dimensional Λ-module,where A, B ∈ Mn2×n1(k), n1, n2 ≥ 1. The module Rλ0,n, λ0 ∈ k, is adire
t summand of M, for some n ≥ 1, if λ0 is a 
ommon root of all

(n2 −
∑nP

i=1 si)-minors of the matrix A − λB, regarded as polynomialsfrom k[λ], where P s1
1 ⊕· · ·⊕P

snP
nP is a maximal postproje
tive dire
t summandof M .Proof. We 
an assume that M has the form M = P ⊕ R ⊕ I, where

P ∈ addP, R ∈ addR, I ∈ add I and P =
⊕nP

i=1 P si

i . Fix λ0 ∈ k and assumethat for some n ≥ 1, R ≃ Rλ0,n⊕R′ for some R′. Then by Corollary 4.3 andProposition 4.1 we have
[M, Rλ0,1] = [P, Rλ0,1]+ [Rλ0,n, Rλ0,1]+ [R′, Rλ0,1]+ [I, Rλ0,1]=

nP∑

i=1

si +1+xfor some x ∈ N (note that x is stri
tly positive exa
tly when R′ 
ontainsa dire
t summand from Tλ0). Conversely, if Rλ0,n is not a dire
t summandof M for any n ≥ 1, then 
learly [M, Rλ0,1] =
∑nP

i=1 si. Consequently, theinequality [M, Rλ0,1] ≥
∑nP

i=1 si always holds and it is stri
t if and onlyif Rλ0,n is a dire
t summand of M for some n ≥ 1.Now we estimate the dimension of HomΛ(M, Rλ0,1). Note that any f ∈
(M, Rλ0,1) is a pair (x, y) ∈M1×n1(k)×M1×n2(k), satisfying the system

{
yA = λ0x,

yB = x,of linear equations, or the equivalent one
{

yB = x,

y(A− λ0B) = 0.
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Therefore we have
(∗) [M, Rλ0,1] = n2 − r(A− λ0B)(x is determined by y and [M, Rλ0,1] is equal to the dimension of the solutionspa
e of y(A−λ0B) = 0). Sin
e [M, Rλ0,1] ≥

∑nP

i=1 si, we have r(A−λ0B) ≤

n2 −
∑nP

i=1 si. The last inequality is stri
t if and only if all (n2 −
∑nP

i=1 si)-minors of A− λ0B are zero, and the proof is �nished.Let {λ1, . . . , λt} ⊂ k, t ≥ 0, be the set of all λ ∈ k su
h that M 
ontains adire
t summand from the tube Tλ (we 
an determine this set by applying theproposition). The fa
t below shows how to 
ompute the number of summandsof M in Tλi
, knowing the rank of the matrix A− λiB.

Corollary. Given i ∈ {1, . . . , t} denote by ji the number of inde
om-posable dire
t summands of M from the tube Tλi
. Then ji = n2− r(A−λiB)

−
∑nP

l=1 sl.Proof. Fix i ∈ {1, . . . , t}. Let Rλi,m1 , . . . , Rλi,mji
, m1, . . . , mji

≥1, be a
omplete list of inde
omposable dire
t summands of M in Tλi
, i.e. R ≃

Rλi,m1 ⊕· · ·⊕Rλi,mji
⊕R′, where R′ 
ontains no dire
t summands from Tλi

.Then by Corollary 4.3 and Proposition 4.1 we have
[M, Rλi,1] = [P, Rλi,1] + [Rλi,m1 , Rλi,1] + · · ·+ [Rλi,mji

, Rλi,1]

+ [R′, Rλi,1] + [I, Rλi,1]

=

nP∑

l=1

sl + 1 + · · ·+ 1 + 0 + 0 =

nP∑

l=1

sl + ji.Now applying the equality (∗) from the previous proof, we immediately ob-tain ji = n2 − r(A− λiB)−
∑nP

l=1 sl.4.5. Now we summarize our previous 
onsiderations and present 
on-se
utive steps of algorithm whose task is to determine the full mutipli
itysequen
e m(M), for a given Λ-module M , if we know �su�
iently many�
oordinates of the ve
tor h(M) (resp. h′(M)).
Algorithm (the Krone
ker algebra 
ase).Input: A Λ-module M in the form

M : kn1 -
B

-A
kn2Output: The integers

nP , nI , s1, . . . , snP
, t1, . . . , tnI

≥ 0;

s ≥ 0, m1, . . . , ms ≥ 1;

a1
1, . . . , a

1
m1

, a2
1, . . . , a

2
m2

, . . . , as
1, . . . a

s
ms
≥ 0;

m∞, b1, . . . , bm∞
≥ 0,
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and elements λ1, . . . , λs ∈ k su
h that M ≃ P ⊕R⊕I, where P =
⊕nP

i=1 P si

i ,
I =

⊕nI

i=1 Iti
i and R = (

⊕s
i=1

⊕mi

j=1 R
ai

j

λi,j
)⊕ (

⊕m∞

l=1 Rbl

∞,l).(1) Determining the multipli
ity ve
tor for a postproje
tive 
omponent :set s1 := mP1
= [M, P1]

s2 := mP2
= [M, P2]− 2[M, P1]

n := 3while ∑n−1

i=1
si(i− 1) + (n− 1) ≤ n1 and ∑n−1

i=1
sii + n ≤ n2 do {

sn := mPn
= [M, Pn]− 2[M, Pn−1] + [M, Pn−2]

n := n + 1
}set

nP := max{i : i = 1, . . . , n− 1, si 6= 0}
n′

1 := n1 −
∑nP

i=1
si(i− 1)

n′

2 := n2 −
∑nP

i=1
sii(2) Determining the multipli
ity ve
tor for a preinje
tive 
omponent :set

t1 := mI1
= [I1, M ]

t2 := mI2
= [I2, M ]− 2[I1, M ]

n := 3while ∑n−1

i=1
tii + n ≤ n′

1 and ∑n−1

i=1
ti(i− 1) + (n− 1) ≤ n′

2 do {
tn := mIn

= [In, M ] + 2[In−1, M ] + [In−2, M ]

n := n + 1
}set

nI := max{i : i = 1, . . . , n− 1, ti 6= 0}(3) Determining the multipli
ity ve
tor for a regular 
omponent Tλ with
λ 6=∞: Let {λ1, . . . , λs} ⊂ k be all 
ommon roots of (n2 −

∑nP

i=1 si)-minorsof the matrix A− λB treated as polynomials from k[λ] (see Corollary 4.4).for i = 1, . . . , s do
ji := n2 − r(A− λiB)−

∑nP

l=1
slfor i = 1, . . . , s do {

ai
1 := mRλi,1

= 2[M, Rλi,1]− [M, Rλi,2]

n := 2while ∑n−1

l=1
ai

l < ji do {
ai

n := mRλi,n
= 2[M, Rλi,n]− [M, Rλ1,n−1]− [M, Rλi,n+1]

n := n + 1

}
mi := n− 1

}
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(4) Determining the multipli
ity ve
tor for a regular 
omponent Tλ with

λ =∞: set
b1 := mR∞,1

= 2[M, R∞,1]− [M, R∞,2]
n := 2

n′

1 := n1 −
∑nP

i=1
si(i− 1)−

∑nI

i=1
tii−

∑s
i=1

∑mi

j=1
ai

jjwhile ∑n−1

i=1
bii < n′

1do {
bn := mR∞,n

= 2[M, R∞,n]− [M, R∞,n−1]− [M, R∞,n+1]
n := n + 1

}
m∞ := max{i : i = 1, . . . , n− 1, mi > 0}

Remark. (i) It is easily seen that the algorithm stops in ea
h of the foursteps. In steps (1) and (2) the index n in
reases in ea
h exe
ution of the loop.In step (3) the loop must stop when the sum of the multipli
ities of the dire
tsummands from Tλi
rea
hes ji (see Corollary 4.4), i.e. if ai

1 + · · ·+ ai
mi

= jifor some mi < ∞. Finally, in step (4) the loop stops sin
e 2n′
1 = dimk M ′,where M ′ is the maximal dire
t summand of M formed by modules from T∞,i.e. n′

1 =
∑m∞

i=1 bii, for some m∞ < ∞ (
learly under the assumption thatthe algorithm is 
orre
t).(ii) The 
orre
tness of the algorithm follows from Lemma 4.2, Propo-sition 4.4 and Corollary 4.4. After stop of loops in steps (1) and (2) weobtain the multipli
ities of all postproje
tive (respe
tively, preinje
tive) di-re
t summands of M . A possible next run of any of these loops would testan inde
omposable dire
t summand whose dimension is already greater thanthe 
odimension of the dire
t sum of all inde
omposable summands dete
tedup to that stage. This estimation is very impre
ise in 
ase dimkM is mu
hgreater than dimkP . In steps (3) and (4) the situation is mu
h better, the ex-e
ution of loops stops immediately after dete
ting all the summands sear
hedfor.The algorithm requires 
onse
utive 
omputations of the dimensions
[M, Pi] for i ≥ 1 (and analogously for the remaining 
onne
ted 
omponents).Generally, the 
omplexity of the 
omputations grows fast with in
reasing i.We show how to avoid full 
omputations of [M, Pi] in ea
h step, redu
ingthem to the already known result of 
omputations for [M, Pi−1] and somesimple 
omputational problem, depending only on the dimension ve
tor of
M and su
h that its 
omplexity in ea
h step is the same.4.6. Now we des
ribe an indu
tive method of 
omputing the dimensions
[M, X] (resp. [X, M ]) where X is of the form Pi, Rλ,i, R∞,i (resp. Ii) for
i ∈ N. First, one has to translate this problem into the language of systemsof linear equations.
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Lemma. Let M : kn1 −→−→
A

B
kn2 be a �nite-dimensional representation,where A, B ∈Mn2×n1(k), n1, n2 ≥ 1. Then

[M, Pi] = in2 − r(M i
P ),(i)

[Ii, M ] = in1 − r(M i
I),(ii)

[M, Rλ,i] = in2 − r(M i
λ),(iii)

[M, R∞,i] = in2 − r(M i
∞),(iv)for all i ≥ 1 and λ ∈ k, where M i

P ∈Min2×(i+1)n1
(k), M i

I ∈Min1×(i+1)n2
(k),

M i
λ ∈Min2×in1(k) and M i

∞ ∈Min2×in1(k) are the following blo
k matri
es:
M i

P =




−A B 0 0 · · · 0

0 −A B 0 · · · 0

0 0 −A B · · · 0... ... ... . . . . . . ...
0 0 0 · · · −A B




,

M i
I =




−At Bt 0 0 · · · 0

0 −At Bt 0 · · · 0

0 0 −At Bt · · · 0... ... ... . . . . . . ...
0 0 0 · · · −At Bt




,

M i
λ =




C 0 0 · · · 0

−B C 0 · · · 0

0 −B C · · · 0... ... . . . . . . ...
0 0 · · · −B C




, M i
∞ =




B 0 0 · · · 0

−A B 0 · · · 0

0 −A B · · · 0... ... . . . . . . ...
0 0 · · · −A B




,

where C = C(λ) = A− λB.Proof. We 
onsider the 
ase of postproje
tive inde
omposables Pi. For-mula (i) is 
lear for i = 1, sin
e ea
h f : M → P1 is given by x ∈ M1×n2(k)satisfying the system xA = 0 = xB, or equivalently x[A|B] = 0. In the gen-eral 
ase i ≥ 2 the morphism f : M → Pi is a pair (X, Y ) ∈M(i−1)×n1
(k)×

Mi×n2(k) of matri
es, satisfying the system
(∗)

{
Y A = ViX,

Y B = WiX,
onsisting of two subsystems (∗)α and (∗)β. Denote by x1, . . . , xi−1 (respe
-
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tively, y1, . . . , yi) the rows of X (respe
tively, Y ). Then (∗) has the form

(∗)′





y1A = x1,... ...
yi−1A = xi−1,

yiA = 0,

y1B = 0,

y2B = x1,... ...
yiB = xi−1,and is equivalent to

(∗)′′





y1A = x1,... ...
yi−1A = xi−1,

yiA = 0,

y1B = 0,

y2B − y1A = 0,... ...
yiB − yi−1A = 0.((∗)′′ is obtained from (∗)′ by subtra
ting from the (j+1)th matrix equationof (∗)′β the jth matrix equation of (∗)′α, for every j = 1, . . . , i− 1.) Let (∗∗)be obtained from (∗)′′ by dropping the �rst i−1 equations; as a blo
k matrixequation it has the form

[yn, . . . , y1] ·M
i
P = 0.Sin
e the ve
tors x1, . . . , xi−1 are determined in (∗)′′ by y1, . . . , yi−1, thedimensions of the solution spa
es for systems (∗)′′ and (∗∗) are the same,and 
onsequently, we have (i).It is easily seen that applying the standard duality D : modΛ→ modΛopand (i) we immediately obtain (ii).To 
ompute the number [M, Rλ,i], 
onsider an arbitrary homomorphism

f : M → Rλ,i, given by a pair (X, Y ) ∈ Mi×n1(k) ×Mi×n2(k) of matri
essatisfying the system
(∗∗∗)

{
Y A = Ji(λ)X,

Y B = X,
onsisting of two subsystems (∗∗∗)α and (∗∗∗)β. Denote by x1, . . . , xi and
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y1, . . . , yi the rows of X and Y , respe
tively. Then (∗∗∗) 
an be written inthe form
(∗∗∗)′





y1A = λx1 + x2,... ...
yi−1A = λxi−1 + xi,

yiA = λxi,

y1B = x1,... ...
yiB = xi.Now, we pro
eed as before. For every j = 1, . . . , i, we subtra
t from the jthequation of (∗∗∗)′α the jth equation of (∗∗∗)′β multiplied by λ, then we dropthe last i equations and we arrive at the system
[y1, . . . , yi] ·M

i
λ = 0whose solution spa
e has the same dimension as that of (∗∗∗). In this waywe obtain (iii).The last formula (iv) follows easily from (iii) (one has to ex
hange ma-tri
es A and B, for λ = 0).4.7. Finally, we brie�y outline an indu
tive method of rank 
omputationfor matri
es from Lemma 4.6. This method follows from their very spe
i�
form. We use the notation introdu
ed in 1.3.

Lemma.(a) Let N = N (A, B) be a family of generalized upper triangular matri
es
Ni, i ∈ N, de�ned indu
tively by setting N1 = ̂[−A|B] and

Ni+1 =

[
N

(i)
11 [N

(i)
12 |0]

0 Ûi

]

where Ni =

[
N

(i)
11 N

(i)
12

N
(i)
21 N

(i)
22

] with maximal zero blo
k N
(i)
21 
ontaining

in1 
olumns and Ui =

[
N

(i)
22 0

−A B

]. Then r(Ni+1) = r(Ni) + r(Ûi) −

r(N
(i)
22 ) and r(M i

P ) = r(Ni), for every i ∈ N; moreover, N
(i)
22 = U

(i−1)
22 ,where Ûi =

[
U

(i)
11 U

(i)
12

U
(i)
21 U

(i)
22

] with maximal zero blo
k U
(i)
21 
ontaining n1
olumns.(b) Let N = N (−C,−B) be a family of matri
es as above. Then r(M i

λ) =

r(Ni−1)−r(N
(i−1)
22 )+r(Ẑi−1) for every i ≥ 2, where Zi−1 =

[
N

(i−1)
22

C

].
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Proof. Assertion (a) follows from the detailed analysis of Gauss elimina-tion. To show (b), note that r(M i

λ) = r

([
Ni−1

[ 0 |C]

]) and apply the argumentsused in (a).
Remark. (i) The matri
es M i

I and M i
∞ have respe
tively the same formas M i

P and M i
λ so their ranks 
an be 
omputed analogously.(ii) In Algorithm 4.5, for a given number d, we have to 
ompute thedimensions [M, Pi], or equivalently the ranks r(M i

P ) (see Lemma 4.6), for
i = 1, . . . , d. The last lemma allows us to redu
e the 
omplexity of the aboverank 
omputations. They are realized in pra
ti
e as a sequen
e of d Gausseliminations for the matri
es M i

P of linearly in
reasing sizes in2 × (i + 1)n1and now 
an be repla
ed by a sequen
e of d Gauss eliminations for matri
esof size at most 2n2 × 2n1.5. Ãp,q-algebras: the general 
ase. In this se
tion we dis
uss the dif-feren
e between the problem of determining the multipli
ity ve
tors of gen-eral Ãp,q-algebras and of the Krone
ker algebra. In the general 
ase we donot present the algorithm in detail, but rather indi
ate how to modify Al-gorithm 1.5 and how to redu
e partially the problem to the previous one.To deal with inde
omposables and handle 
ertain homomorphism spa
es ina more 
onvenient way, we use some elements of the 
overing te
hnique forstring algebras (brie�y outlined in 3.1).5.1. Let Λ = kQ be the path algebra of the quiver Q of type Ãp,q (seeSe
tion 4). The universal 
over Q̃ of Q is then an in�nite quiver of the form
· · ·

αn
1−→ · · ·

αn
p
−→

βn
q
←− · · ·

βn
1←−

αn+1
1−→ · · ·

αn+1
p
−→

βn+1
q
←− · · ·

βn+1
1←− · · ·for n ∈ Z. The 
anoni
al Galois 
overing of bound quivers is in fa
t just anordinary quiver morphism F : Q̃→ Q (I = 0!), given by the natural formulas

F (αn
i ) = αi and F (βn

i ) = βi for n ∈ Z, i = 1, . . . , p, j = 1, . . . , q. Thefundamental group G of Q 
an be identi�ed with Z; under this identi�
ationthe a
tion of G on Q̃ is given by m · αn
i = αn+m

i and m · βn
i = βn+m

i for
n, m ∈ Z. Clearly, we have Λ = kQ and Λ̃ = kQ̃.Note that any walk in Q (resp. Q̃) is a V -sequen
e in (Q, 0) (resp.
(Q̃, 0)). Therefore to list all inde
omposable Λ-modules of the form X(w) =
Fλ(V (w̃)), w ∈ V0 (see 3.1), it su�
es to write down all walks in Q 
onsistentwith a �xed, arbitrarily sele
ted 
y
le orientation of the underlying unori-ented graph for Q. We do this in some quite ordered and stri
tly pres
ribedway.For this purpose, we �x some notation. For any 1 ≤ i < j ≤ p (resp.
1 ≤ s < t ≤ q), we distinguish the walk αi,j = αiαi+1 · · ·αj−1αj (resp.
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β−1
s,t = β−1

t β−1
t−1 · · ·β

−1
s+1β

−1
s ) in the quiver Q. We also set α = α1,p and

β−1 = β−1
1,q .First, 
onsider the inde
omposable modules P0,p+q = X(p + q), P0,p+q−1

= X(β−1
q ), P0,p+q−2 = X(β−1

q−1,q), . . . , P0,p+1 = X(β−1
2,q ), P0,p = X(αp),

P0,p−1 = X(αp−1,p), . . . , P0,2 = X(α2,p), and P0,1 = X(β−1
1,qα1,p). It iseasy to see that they are all proje
tive. Note that P0,i = P (i) for every

i = 1, . . . , p + q. Given i ∈ {1, . . . , p + q}, we de�ne by indu
tion the mod-ules P−n,i of the form X(w) for all n > 0. Suppose that P−(n−1),i = X(w)for some walk w already 
onstru
ted. Then we set P−n,i := X(v), where vis a walk obtained from w as follows. We extend w with one arrow αs onthe left-hand side and one inverse β−1
t on the right-hand side (noti
e thatthey always exist!); in 
ase s = 1 (resp. t = 1) we also add the walk β−1(resp. α).For example, if p = 2, q = 3 we have P0,3 = X(β−1

2,3), P−1,3 = X(α2β
−1α),

P−2,3 = X(β−1αβ−1αβ−1
3 ), P−3,3 = X(α2β

−1αβ−1αβ−1
2,3) and so on.

Λ-modules from the 
lass
P = {P−n,i}n≥0, 1≥i≥p+qare 
alled postproje
tive [2℄.We 
an 
onstru
t dually the 
lass of preinje
tive Λ-modules. We set

I0,1 = X(1), I0,2 = X(α1), I0,3 = X(α1,2), . . . , I0,p = X(α1,p−1), I0,p+1 =
X(β−1

1 ), I0,p+2 = X(β−1
1,2), . . . , I0,p+q−1 = X(β−1

1,q−1) and I0,p+q = X(αβ−1)(these modules are inje
tive and I0,i = I(i) for every i = 1, . . . , p + q). If
In−1,i = X(w) for some walk w already 
onstru
ted, then we set In,i := X(v),where v is a walk obtained by extending w with one inverse β−1

s on the left-hand side and one arrow αt on the right-hand side; in 
ase s = q (resp. t = p)we also add the walk α (resp. β−1). Λ-modules from the 
lass
I = {In,i}n≥0, 1≥i≥p+qare 
alled preinje
tive.To de�ne the next two 
lasses of inde
omposables in modΛ, we introdu
eindu
tively two families of walks de�ning them. A walk w is 
alled a walk oftype alpha with quasi-length n starting at a ∈ {1, . . . , p} (denoted by αa,n)if w = a for 2 ≤ a ≤ p, or w = β−1 for a = 1, in the 
ase n = 1; and

w = αaαt(αa),n−1 for 2 ≤ a ≤ p, or w = β−1α1αt(α1),n−1 for a = 1, in the
ase n > 1 (we identify verti
es p + q and 1, if ne
essary). For example,if p = 2, q = 3, we have α1,2 = β−1α1, α2,2 = α2β
−1, α1,3 = β−1αβ−1,

α2,3 = α2β
−1α1, α1,4 = β−1αβ−1α1, α2,4 = α2β

−1αβ−1. Dually, we say that
w is a walk of type beta with quasi-length n starting at a ∈ {p +1, . . . , p+ q}(denoted by βa,n) if w = a for p + 1 ≤ a ≤ p + q− 1, or w = α for a = p + q,in the 
ase n = 1; and w = β−1

a−pβs(βa−p),n−1 for p + 1 ≤ a ≤ p + q − 1, or
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w = αβ−1

q βs(βq),n−1 for a = p + q, in the 
ase n > 1 (we identify verti
es 1and 1 + q if ne
essary).For simpli
ity, we denote by Aa,n and Ba,n the inde
omposable Λ-modulesof the form X(αa,n) and X(βa,n), respe
tively, whi
h are de�ned by walksfrom the two newly 
onstru
ted families of walks. We set
A = {Aa,n}1≤a≤p, n≥1, B = {Ba,n}p+1≤a≤p+q, n≥1.Observe that by the 
onstru
tion ea
h of the families P, I, A, B 
onsists ofpairwise nonisomorphi
 Λ-modules, these families are pairwise disjoint and

P ∪ I ∪A∪B exhausts all inde
omposables of the form X(w), for all walks
w in Q.5.2. For any λ ∈ k \ {0} and n ≥ 1 we denote by Rλ,n the Λ-modulegiven by the representation of the quiver Q that has the k-spa
e kn at ea
hvertex, the k-linear map 
orresponding to the arrow α1 is de�ned by theJordan blo
k Jn(λ) and all remaining stru
ture maps are identities. We set

R = {Rλ,n}λ∈k\{0}, n≥1 ∪ A ∪ B.

Λ-modules from this family are 
alled regular .Now we 
onstru
t a restri
tion fun
tor Ψ : modΛ → modΛ′, whi
hallows us to redu
e partially 
omputations of homomorphism spa
es over Λto those over the Krone
ker algebra Λ′ = kQ′ (here Q′ denotes the quiver
1′ ⇉ 2′). In view of appli
ations we de�ne Ψ only on a dense full sub
ategory
onsisting of matrix representations.Let M be a �nite-dimensional Λ-module, whi
h as a representation of Qis de�ned by the k-spa
es ka1, . . . , kap, kb1 , . . . , kbq , 
orresponding to ver-ti
es 1, . . . , p, p + 1, . . . , p + q, and the k-linear maps given by matri
es
A1, . . . , Ap, B1, . . . , Bq of suitable dimensions, 
orresponding to the arrows
α1, . . . , αp, β1, . . . , βq, respe
tively, where a1, . . . , ap, b1, . . . , bq ∈ N. Then weset

Ψ(M) = (ka1
A
−→−→

B
kbq)where A = Ap · · ·A2A1, B = Bq · · ·B2B1. For a homomorphism f =

{fi}1≤i≤p+q : M → N between Λ-modules M and N given by matrix repre-sentations of Q, we set
Ψ(f) = {f1, fp+q}where the maps f1, fp+q 
orrespond to verti
es 1′, 2′ of Q′, respe
tively. Itis easily seen that the above mappings yield a fun
tor between the relevant
ategories. Noti
e that Ψ(Rλ,n) = R′

λ,n for all λ ∈ k \{0}, n ≥ 1, where R′
λ,ndenotes the regular inde
omposable Rλ,n in modΛ′.
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Lemma. For any Λ-module M and λ ∈ k \ {0}, n ≥ 1, the fun
tor Ψyields the isomorphism
HomΛ(M, Rλ,n) ≃ HomΛ′(Ψ(M), R′

λ,n)of k-linear spa
es.Proof. An easy 
he
k on de�nitions.5.3. Below we 
olle
t some (well known, see e.g. [8℄) fa
ts 
on
erning thestru
ture of the 
ategory modΛ, to be used later.
Proposition.(i) The disjoint union X = P ∪R ∪ I is a 
omplete family of pairwisenonisomorphi
 inde
omposable Λ-modules.(ii) For any P ∈ P, R ∈ R, I ∈ I we have

(R, P ) = (I, P ) = (I, R) = 0.(iii) The 
lasses P and I are 
onne
ted 
omponents in the Auslander�Reiten quiver ΓΛ of Λ of the form (−N)Qop and NQop, respe
tively.The 
orresponden
e between verti
es and modules is given by themappings (−n, i) 7→ P−n,i and (n, i) 7→ In,i. In parti
ular, P−n,i =
τ−nP0,i and In,i = τnI0,i for every n ≥ 0, i = 1, . . . , p + q.(iv) The regular modules form a 1-parameter family {Tλ}λ∈k∪{∞} of pair-wise orthogonal (in the Hom-sense) 
onne
ted 
omponents in ΓΛ.Ea
h 
omponent Tλ for λ ∈ k \ {0} is a rank 1 stable tube withverti
es represented by {Rλ,n}n≥1 (in parti
ular, the almost split se-quen
es are exa
tly of the same form as in Proposition 4.1(v)). The
omponent T0 (resp. T∞) is a rank p (resp. q) stable tube with ver-ti
es represented by A (resp. B). More pre
isely, the almost splitsequen
es in the tube T0 have the form

0→ Aa,n → Aa−1,n+1 ⊕Aa,n−1 → Aa−1,n → 0for all a = 1, . . . , p, n ≥ 0, where A0,n = Ap,n and Aa,0 = 0.Similarly in the tube T∞ we have the almost split sequen
es of theform
0→ Ba,n → Ba−1,n−1 ⊕Ba,n+1 → Ba−1,n → 0for all a = p+1, . . . , p+q, n ≥ 0, where Bp,n = Bp+q,n and Ba,0 = 0.In parti
ular, τ rpAa,n = Aa,n and τ rqBa,n = Ba,n for any r ∈ Z.

Corollary. Let M be an arbitrary Λ-module.(i) For any λ ∈ k \ {0}, n ≥ 1 we have
mRλ,n

(M) = mR′
λ,n

(Ψ(M)).



252 P. DOWBOR AND A. MRÓZ
(ii) For any n ≥ 0, a = 1, . . . , p, b = p + 1, . . . , p + q we have

mAa,n(M)= [M, Aa−1,n]−[M, Aa−1,n+1]−[M, Aa,n−1]+[M, Aa,n],

mBb,n
(M)= [M, Bb−1,n]−[M, Bb−1,n−1]−[M, Bb,n+1]+[M, Bb,n].Proof. (i) follows from Lemma 5.2 and the fa
t that Ψ preserves almostsplit sequen
es for inde
omposables from the tubes Tλ, λ ∈ k \ {0} (seeProposition 5.3).(ii) follows immediately from Proposition 5.3.

Remark. Pre
ise formulas giving the multipli
ities for postproje
tiveand preinje
tive inde
omposables 
an be obtained as in Lemma 4.2 by apply-ing the shape of the postproje
tive and preinje
tive 
omponent (see Propo-sition 5.3(iii)). We do not present them be
ause of their rather 
ompli
atedform. In parti
ular, to 
ompute the multipli
ities of the form mP0,a
for all

a ∈ Q0, we use right minimal almost split homomorphisms in the �start-ing� full subquiver {0} × Qop of −NQop. We 
an indu
tively 
ontinue thispro
edure using the shape of the quiver −NQop.5.4. Let M be an arbitrary Λ-module (notations as in 5.2). We have ananalogous ne
essary and su�
ient 
ondition for a module from the tube Tλ,
λ ∈ k \ {0}, to be a dire
t summand of a given module M .
Lemma. Rλ0,n, λ0 ∈ k \ {0}, is a dire
t summand of M, for some

n ≥ 1, if and only if λ0 is a 
ommon root of all (bq − s)-minors of thematrix A − λB, regarded as polynomials from k[λ], where A = Ap · · ·A1,
B = Bq · · ·B1, and s is the sum of the multipli
ities of inde
omposable post-proje
tive dire
t summands of M . Moreover, the number of inde
omposabledire
t summands of M from the tube Tλ is equal to bq − r(A − λB)− s forany λ ∈ k \ {0}.Proof. Sin
e every postproje
tive module is of the form τ−mP0,a for some
m ≥ 0, a ∈ Q0 and regular modules from Tλ for λ ∈ k \ {0} are τ -invariants(see Proposition 5.3), we have [P−i,a, Rλ,n] = n for all i ≥ 0, a ∈ Q0,
λ ∈ k \ {0}, n ≥ 1. Then the argument from the proof of Proposition 4.4yields [M, Rλ0,1] ≥ s and the inequality is stri
t if and only if Rλ0,n is a dire
tsummand of M for some n ≥ 1. Now by the properties of the fun
tor Ψ (seeLemma 5.2), we obtain the assertion of the lemma.5.5. Now we modify the 
onse
utive steps of Algorithm 4.5 and brie�youtline the algorithm dete
ting the multipli
ity ve
tors in the general Ãp,q
ase, under the assumption as in 4.5. We also assume that a Λ-module M isgiven by data as in 5.2.



MULTIPLICITY PROBLEM FOR DECOMPOSITIONS OF MODULES 253

Algorithm (the general 
ase).Input: A Λ-module M .Output: The multipli
ity ve
tor m(M).(1+2) Determining the multipli
ity ve
tor for postproje
tive and prein-je
tive 
omponents:set n := 0while there exists a = 1, . . . , p + q with dimk P−n,a ≤ codimk M, do {for i = p + q downto 1 do
ompute the number mP−n,i
(see Remark 5.3)

n := n + 1
}Here codimk M is the di�eren
e between dimk M and the dimension ve
torof the dire
t sum of the inde
omposable dire
t summands already dete
tedby the algorithm.For preinje
tive modules the pro
edure is an analogous generalizationof that for the Krone
ker 
ase (i.e. 
omputing the dimensions [X, M ] for

X ∈ I).(3) Determining the multipli
ity ve
tor for Tλ with λ ∈ k \ {0}: Let
{λ1, . . . , λt} be all 
ommon roots of (bq − s)-minors of the matrix A − λBtreated as polynomials from k[λ] (see Lemma 5.4).By Corollary 5.3(i), to 
ompute multipli
ities, we apply the main partof Algorithm 4.5(3) for {λ1, . . . , λt} and representation Ψ(M) (now ji =
bq − r(A− λiB)− s for i = 1, . . . , t, see Lemma 5.4).(4) Determining the multipli
ity ve
tor for T0 and T∞:set n := 1while there exists a = 1, . . . , p su
h that dimk Aa,n ≤ codimk M, do {for i = 1 to p do
ompute the number mAi,n

(apply Corollary 5.3(ii))
n := n + 1

}For modules from the tube T∞ we pro
eed analogously.
Remark. (i) The 
orre
tness and stop property for the algorithm for-mulated above follow by arguments analogous to those from Remark 4.5.(ii) To determine the number mP−n,a

, in ea
h loop exe
ution we have to
ompute only one new dimension [M, P−n,a] (the remaining needed dimen-sions are already 
omputed in the previous loop exe
ution). Analogously,to determine mAa−1,n
for any n ≥ 2 and a = 1, . . . , p, we 
ompute just
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one new dimension [M, Aa−1,n+1] and use the already 
omputed dimensions
[M, Aa−1,n], [M, Aa,n−1], [M, Aa,n].Noti
e that also in the general 
ase, the shape and nature of the abovepro
edures motivate sear
hing for an �indu
tive� method of 
omputing thedimensions h(M)X = [M, X]. In the next paragraphs we present our pro-posal of handling this problem.5.6. We start by observing that (from the 
onstru
tion) for any n ≥ 0and a = 1, . . . , p+q there exist uniquely determined m ≥ 0, i ∈ {2, . . . , p+1},
j ∈ {2, . . . , q + 1} (and vi
e versa) su
h that P−n,a = X(αi,p(β

−1α)mβ−1
j,q ),where αp+1,p = β−1

q+1,q = (p + q). Analogously, for any n′ ≥ 0 and a′ =
1, . . . , p + q there exist uniquely determined m′ ≥ 0, i′ ∈ {0, . . . , p − 1},
j′ ∈ {0, . . . , q − 1} (and vi
e versa) su
h that In′,a′ = X(β−1

1,j′(αβ−1)m′

α1,i′),where α1,0 = β−1
1,0 = (1). Similarly, for any m ≥ 1 and a = 1, . . . , p,we have αa,m = αs,p(β

−1α)nβ−1α1,t for some n ≥ 0, s ∈ {2, . . . , p + 1},
t ∈ {0, . . . , p − 1} or αa,m = αi,j for some 2 ≤ i ≤ j ≤ p − 1 or αa,m = (a)(if m = 1, a 6= 1). Analogously for any m′ ≥ 1 and a′ = p + 1, . . . , p + qwe have βa′,m′ = β−1

1,t′α(β−1α)n′

β−1
s′,q for some n′ ≥ 0, s′ ∈ {2, . . . , q + 1},

t′ ∈ {0, . . . , q−1} or βa′,m′ = β−1
i,j for some 2 ≤ i ≤ j ≤ q−1 or βa′,m′ = (a′)(if m′ = 1, a′ 6= p + q).To des
ribe an indu
tive method of 
omputing, for a given M , the di-mensions [M, X] (resp. [M, X]) for all inde
omposables X from an individual
omponent, we pro
eed as in the Krone
ker algebra 
ase. (We use the nota-tion for M established in 5.2.)

Lemma. Let M be a �nite-dimensional Λ-module given by data as in 4.3.Then
[M, X(αi,p(β

−1α)mβ−1
j,q )] = (m + 1)bq − r(M i,j,m

P ),(i)

[X(β−1
1,j′(αβ−1)m′

α1,i′), M ] = (m′ + 1)a1 − r(M j′,i′,m′

I ),(ii)

[M, X(αs,p(β
−1α)nβ−1α1,t)] = (n + 1)bq + at+1 − r(M s,t,n

A ),(iii)

[M, X(β−1
1,t′α(β−1α)n′

β−1
s′,q)] = (n′ + 1)bq + bt′ − r(M t′,s′,n

B ),(iv)for all m, m′, n, n′ ≥ 0, i, s ∈ {2, . . . , p + 1}, j, s′ ∈ {2, . . . , q + 1}, t, i′ ∈
{0, . . . , p− 1}, j′, t′ ∈ {0, . . . , q − 1}, where

M i,j,m
P ∈M((m+1)bq)×(ma1+ai−1+bj−2)(k),

M j′,i′,m′

I ∈M((m′+1)a1)×(m′bq+ai′+2+bj′+1)
(k),

M s,t,n
A ∈M((n+1)bq+at+1)×((n+1)a1+as−1)(k),

M t′,s′,n′

B ∈M((n′+1)bq+bt′)×((n′+1)a1+bs′−2)
(k)



MULTIPLICITY PROBLEM FOR DECOMPOSITIONS OF MODULES 255

are the blo
k matri
es
M i,j,m

P =




Ap,i−1 B 0 0 0 · · · 0

0 −A B 0 0 · · · 0

0 0 −A B 0 · · · 0... ... ... . . . . . . ... ...
0 0 · · · 0 −A B 0

0 0 · · · 0 0 −A Bq,j−1




,

M j′,i′,m′

I =




A
t

i′+1,1 Bt 0 0 0 · · · 0

0 −A
t

Bt 0 0 · · · 0

0 0 −A
t

Bt 0 · · · 0... ... ... . . . . . . ... ...
0 0 · · · 0 −A

t
Bt 0

0 0 · · · 0 0 −A
t

Bt
j′+1,1




,

M s,t,n
A =




Ap,s−1 B 0 0 · · · 0

0 −A B 0 · · · 0

0 0 −A B · · · 0... ... ... . . . . . . ...
0 0 · · · 0 −A B

0 0 · · · 0 0 −At,1




,

M t′,s′,n′

B =




Bq,s′−1 A 0 0 · · · 0

0 −B A 0 · · · 0

0 0 −B A · · · 0... ... ... . . . . . . ...
0 0 · · · 0 −B A

0 0 · · · 0 0 −Bt′,1




,

where As,t = AsAs−1 · · ·At and Bs,t = BsBs−1 · · ·Bt for s ≥ t, and A =
Ap,1, B = Bq,1, A0,1 = I, B0,1 = I.
Sublemma.(i) The dimensions of the solution spa
es for the systems of linear equa-tions
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



x1C0 = 0,

x2C1 = x1,... ...
xn+1Cn = xn,and

xn+1Cn · · ·C0 = 0are equal for any n ≥ 1 and any matri
es C0, . . . , Cn of suitablesizes, where x1, . . . , xn+1 are the unknown row ve
tors.(ii) The dimensions of solution spa
es of the systems of linear equations




ymDm = ym−1,... ...
y2D2 = y1,

y1D1 = x1,

x2C1 = x1,... ...
xn+1Cn = xn,and

ymDm · · ·D1 = xn+1Cn · · ·C1are the same for any n, m ≥ 1 and any matri
es C1, . . . , Cm,
D1, . . . , Dn of suitable sizes, where x1, . . . , xn+1, y1, . . . , ym are theunknown row ve
tors.Proof. The assertions follow easily by applying appropriate elementarytransformations and dropping the equations 
ontaining those ve
tors xi thatare determined by the other ones (see the proof of Lemma 4.6).Proof of Lemma. Fix a postproje
tive inde
omposable module of theform X(w) with w = αi,p(β

−1α)mβ−1
j,q . By the properties of the fun
tors Fλand F• (
f. 3.1) we have

HomΛ(M, X(w)) ≃ Hom
Λ̃
(F•(M), V (w̃)),therefore to 
ompute [M, X(w)], we 
onsider the spa
e Hom

Λ̃
(F•(M), V (w̃)),where w̃ is a �xed lifting of the walk w (Fλ(V (w̃)) = X(w)). Any homomor-phism f : F•(M)→ V (w̃) is given by a 
olle
tion

f = {xai
, xai+1 , . . . , xap} ∪ {y

s
b1

, . . . , ys
bq
}ms=1

∪ {xs
a1

, . . . , xs
ap
}ms=1 ∪ {ybj−1

, . . . , ybq
}
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of row ve
tors satisfying the 
ommutative diagram
kai−1-

Ai−1
kai · · · -

Ap

kbq �
Bq

· · · �
B1

ka1 -
A1

· · · -
Ap

kbq · · · -
Ap

kbq �
Bq

· · · �
Bj

kbi−1 �
Bj−1

kbj−2

0 -0 k · · · -1 k �1
· · · �1

k -1 · · · -1 k · · · -1 k �1
· · · �1

k �0
0

? ?
xai

?
y1

bq

?
x1

a1

?
y2

bq

?
ybq

?
ybj−1

?

or equivalently the system

(∗)





xai
Ai−1 = 0,

xai+1Ai = xai
,... ...

y1
bq

Ap = xap ,

y1
bq

Bq = y1
bq−1

,... ...
y1

b1
B1 = x1

a1
,

x1
a2

A1 = x1
a1

,... ...
y2

bq
Ap = x1

ap
,... ...

ybq
Ap = xm

ap
,

ybq
Bq = ybq−1 ,... ...

ybj
Bj = ybj−1

,

ybj−1
Bj−1 = 0,of linear equations. By the sublemma (with (i) applied to the �rst p− i + 2equations and the last q − j + 2 equations, and (ii) to the remaining part),the dimension of the solution spa
e for (∗) is the same as that for the sys-tem

(∗)′





y1
bq

Ap,i−1 = 0,

y1
bq

B = y2
bq

A,... ...
ym−1

bq
B = ym

bq
A,

ym
bq

B = ybq
A,

ybq
Bq,j−1 = 0.
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As a blo
k matrix equation, (∗)′ has the form

[y1
bq

, . . . , ym
bq

, ybq
] ·M i,j,m

P = 0,and 
onsequently, (i) is proved.It is easy to 
he
k that applying the standard duality D : modΛ →
modΛop we obtain (ii) (noti
e that Λop = kQop and Qop is a quiver of type
Ãq,p).Formulas (iii) and (iv) follow by applying similar arguments.
Remark. It remains to show how to 
ompute the dimension [M, Aa,n]for Aa,n = X(αa,n), when αa,n = αs,t or αa,n = (a) for 2 ≤ s ≤ t ≤ p − 1,

2 ≤ a ≤ p − 1. In the �rst 
ase [M, Aa,n] is equal to the dimension ofthe solution spa
e for the system At · · ·AsAs−1x = 0, and in the se
ond
ase to that for Aa−1x = 0. Analogously, if βa,n = β−1
s,t or βa,n = (a) for

2 ≤ s ≤ t ≤ q − 1, p + 1 ≤ a ≤ p + q − 1, then [M, Ba,n] is the dimension ofthe solution spa
e of Bt · · ·BsBs−1x = 0 or Ba−px = 0, respe
tively.5.7. The fa
t below, just as before, is 
ru
ial for improving e�
ien
yof 
omputing 
oordinates of the ve
tor h(M), and indi
ates an indu
tivemethod of rank 
omputation for the family of matri
es from Lemma 5.6.
Lemma. Let N = N (Ap,i−1, A, B) be a family of generalized upper tri-angular matri
es Nl, l ∈ N, de�ned indu
tively, for a �xed i, by setting

N1 = ̂[Ap,i−1|B] and
Nl+1 =

[
N

(l)
11 [N

(l)
12 |0]

0 Ûl

]

where Nl =

[
N

(l)
11 N

(l)
12

N
(l)
21 N

(l)
22

] with maximal zero blo
k N
(l)
21 
ontaining la1 
olumnsand Ul =

[
N

(l)
22 0

−A B

]. Then r(Nl+1) = r(Nl) + r(Ûl) − r(N
(l)
22 ); moreover,

N
(l)
22 = U

(l−1)
22 , where Ûl =

[
U

(l)
11 U

(l)
12

U
(l)
21 U

(l)
22

] with maximal zero blo
k U
(l)
21 
on-taining a1 
olumns. Moreover, for any m, n and �xed j, t we have

r(M i,j,m
P ) = r(Nm)− r(N

(m)
22 ) + r(Û ′

m),

r(M i,t,n
A ) = r(Nn+1)− r(N

(n+1)
22 ) + r(Ẑ ′

n+1),where U ′
m =

[
N

(m)
22 0

−A Bq,j−1

] and Z ′
n+1 =

[
N

(n+1)
22

−At,1

].Proof. This follows easily by analysis of Gauss elimination.5.8. Finally, we summarize previous remarks 
on
erning e�
ien
y of ourpro
edures, by estimating brie�y the pessimisti
 
omplexity of the algorithms
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for Ãp,q-algebras and 
omparing it to the �naive� approa
h. We also dis-
uss perspe
tives and possibilies for generalizations of our methods to other
lasses of algebras.Noti
e �rst that, ex
ept for solving polynomial equations, Algorithms 4.5and 5.5 
an be �automatized�. One 
an also 
onsider the situation of k beinga �nite �eld; in this 
ase the algorithms 
an be �fully automatized�.
Lemma. Ex
luding the problem of solving polynomial equations, the pes-simisti
 
omplexity of Algorithm 5.5 (for �xed p, q) is O(m4), where m is thedimension of the given module M .Proof. Set m = dimk M . First we 
onsider the Krone
ker algebra 
ase(i.e. Algorithm 4.5). It is obvious that the loop in step 1 is exe
uted at most

m times (see the loop 
ondition), and similarly in steps 2 and 4. Analyzingstep 3, we see that m1+· · ·+ms 
annot be greater than m (⊕s
i=1

⊕mi

j=1 R
ai

j

λi,jis a dire
t summand of M), so the inner loop in step 3 is also exe
uted atmost m times. All these exe
utions rely on 
omputing the dimensions [M, Pi](resp. [Ii, M ], [M, Rλ,n]), i.e. performing Gauss elimination for matri
es ofsize at most 2n2×2n1 (see Lemma 4.7 and Remark 4.7(ii)). Sin
e m = n1+n2and the 
omplexity of Gauss elimination on an n × n matrix is O(n3), theassertion holds for the Krone
ker algebra 
ase.The analysis of the 
omplexity for Algorithm 5.5 is similar, sin
e we haveLemma 5.7 at our disposal. In the new estimation one should only multiplythe parameters from the previous one by p + q (a 
onstant whi
h does nota�e
t the 
omplexity).
Remark. (i) The estimations in the proof above are very rough, so inpra
ti
e the relevant algorithms 
an be mu
h more e�
ient. In parti
ular,this is the 
ase if the support of M does not 
ontain all verti
es of Q, ormore generally, the disposition of 
oordinates in dimkM is not enough �ho-mogeneous�.(ii) Note that Lemmata 4.7 and 5.7 essentially improve the e�
ien
y ofthe algorithms. In general, without this improvement, the rank 
omputationsare realized by Gauss elimination for matri
es of in
reasing sizes estimatedby im×im, for i = 1, . . . , m (see Remark 4.7(ii)). In that 
ase the 
omplexityis O(

∑m
i=1(im)3) = O(m7).A �nal 
omment. The method of determining multipli
ity ve
tors formodules, proposed in this paper, 
an be adopted for other 
lasses of al-gebras; in parti
ular, for domesti
 
anoni
al algebras and hereditary tamealgebras. The expe
ted pessimisti
 
omplexities of the relevant algorithms inthese situations are similar to that in the 
ase of Ãp,q-algebras. We stronglybelieve that the existen
e of su
h an algorithm with reasonably low polyno-
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mial 
omplexity depends on the stru
ture and shape of the module 
ategory
onsidered, rather than on a pre
ise des
ription of 
anoni
al forms for inde-
omposables. We have already obtained some results in this dire
tion. Theywill be presented in forth
oming publi
ations.
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