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Abstract. Given a module M over an algebra A and a complete set X of pair-
wise nonisomorphic indecomposable A-modules, the problem of determining the vector
m(M) = (mx)xex € N* such that M = @, X™X is studied. A general method of
finding the vectors m(M) is presented (Corollary 2.1, Theorem 2.2 and Corollary 2.3).
It is discussed and applied in practice for two classes of algebras: string algebras of fi-
nite representation type and hereditary algebras of type A, 4. In the second case detailed
algorithms are given (Algorithms 4.5 and 5.5).

Introduction. The main problem of contemporary representation the-
ory of finite-dimensional algebras is to describe in a possibly precise way
the structure of the module category for a given algebra; in particular, to
determine its representation type. From this point of view results containing
classification of all (up to isomorphism) indecomposable modules in terms of
some invariant (e.g. dimension vector) have been considered to be quite sat-
isfactory; especially, if they additionally provide extra information on mor-
phisms encoded by the shape of the Auslander—Reiten quiver.

Most of the research methods developed in the last thirty years for study-
ing representations of algebras have been dedicated to study this kind of
problems. Nevertheless before they were invented, another rather universal
and natural approach to the classification of indecomposables was common.
It led via an answer to the more specialized and in fact difficult question:
how to decompose (effectively) an arbitrary module into a direct sum of in-
decomposable submodules (isomorphic to indecomposables from a “candidate
list”). Some variants of this method were successfully used in several very
important classical classification results [16, 10, 14, 18, 19, 7].

The above question is interesting in its own right, even if a full list X’ of
pairwise nonisomorphic indecomposables is already known. It seems to be
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particularly important if one thinks of applications (see [16, 13]). The weaker
version of this question, asking for a “normal form” of a module M (i.e. the
full multiplicity sequence of direct summands from the list X for M) is also
of importance (e.g. in an algebraic geometry approach to module categories).

These two problems can be considered as a final step of studies for a given
module category mod A of finite or tame representation type. They have
a rather computational and algorithmic character. The actually available
standard tools of representation theory are not particularly useful and well
adjusted for successful, comprehensive discussion of these problems, on the
level that allows formulating general answers.

The main aim of this paper is to deal with the second of them. More pre-
cisely, given a module M and a complete family X of pairwise nonisomorphic
indecomposable modules in mod A we want to determine the sequence

m(M) = (mx) € N¥ such that M = g XX,
XeXx

The sequence (mx)xex is uniquely determined by the Krull-Remak-
Schmidt theorem. We provide a general method for handling this problem.
It relies (Theorem 2.2) on computing the sequence

h(m) = (hx) € N¥

of the dimensions hy = dimy Homx (M, X) and the so-called Auslander—
Reiten matrix T4 for A. (Sometimes instead of T it is enough to find the
Cartan matrix of the Auslander category for A.) In principle this method can
be effectively applied only in case the canonical forms of all indecomposable
modules are known.

We discuss this method in practice for two simple classes of string (special
biserial) algebras: string algebras of finite representation type and canoni-
cal hereditary algebras of type &pg (later called simply &pg—algebras, see
also [20]). In the second case we present rather precise algorithmic proce-
dures for solving the problem (Algorithms 4.5 and 5.5). In constructing the
algorithms, and to improve their efficiency, we use some general informa-
tion on the structure of the relevant module categories and basic methods
of representation theory (Auslander—Reiten theory, Galois coverings). To de-
crease the complexity of algorithms computing the coordinates of the vector
h(M), we also apply certain simple results obtained by a detailed “numerical
analysis” of some computational linear algebra problems, strongly related to
specific canonical forms for indecomposables (Lemmas 4.7 and 5.7).

The paper is organized as follows. In Section 1 we recall basic definitions
and fix the notation. In Section 2 we introduce the notion of the multiplic-
ity vector m(M), the Cartan matrix C(A) of the Auslander category and
the Auslander-Reiten matrix 7)y. We prove that C(A) is always invertible
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and its inverse is just 74 (Theorem 2.2). We show the importance of these
two matrices in determining the multiplicity sequence. Also some strange
properties of the partial algebra My y(Z), where ) is an infinite set, are
discussed.

Section 3 is devoted to a discussion of how using a combinatorial descrip-
tion of indecomposables, one can effectively construct the matrices C'(A) for
string algebras of finite representation type (see Algorithms 3.3 and 3.5).
These algorithms are based on Proposition 3.2 (tree case) and Proposition 3.4
(general case), describing how the dimensions of the homomorphism spaces
between indecomposables can be computed.

In Section 4 we give a description of the algorithm determining the mul-
tiplicity sequence for modules over the Kronecker algebra (Algorithm 4.5).
In particular, we show how to restrict a list of candidates for indecomposable
direct summands of a given module to a finite list (Proposition 4.4). Also an
inductive metod of computing the dimensions of the homomorphism spaces
from a given module to indecomposables from individual Auslander—Reiten
components is presented (Lemmas 4.6 and 4.7).

Section 5 is devoted to a description of elements responsible for an anal-
ogous algorithm for modules over &p7q—algebras in the general case (Corol-
lary 5.3, Lemma 5.4, Algorithm 5.5). In particular, we construct a nice func-
tor that allows us to reduce some considerations for &p7q—algebras to the
Kronecker algebra case (see Lemma 5.2). Also an inductive method of com-
puting the dimensions of the respective homomorphism spaces in the general
Anq—algebra case is proposed (Lemmas 5.6 and 5.7), and a pessimistic com-
plexity of the given algorithms is discussed (Lemma 5.8).

1. Preliminaries and notations. We use the definitions and notation
which are well known and commonly used. Nevertheless, for the benefit of the
reader, we briefly recall the most important of them. For other information
concerning representation theory of algebras (respectively, ring theory, linear
algebra, algorithm theory) we refer to [2, 4] (respectively, [1], [15], [6]).

1.1. Throughout the paper k always denotes a field, usually algebraically
closed. By a k-algebra we always mean a finite-dimensional associative con-
nected basic algebra with unit over k. For a k-algebra A (respectively, locally
bounded category A, see [12]) we denote by mod A the category of all finite-
dimensional right A-modules, and by J4 the Jacobson radical in the category
mod A. If (@, I) is a bounded quiver (see [17]) and the algebra (resp. locally
bounded category) A has the form A = kQ/I, then we always identify mod A
with the category of all finite-dimensional representations of the quiver @),
satisfying the relations from the ideal I (for the definition of the path algebra
kQ we refer to [2]). In this case for any V' in mod A we denote by supp V' the
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set, of all vertices x of @ such that V, # 0, where V,, is the direct summand
of the vector space V' corresponding to x.

By the Auslander—Reiten quiver I’y of A we always mean the translation
valued quiver

= (Iy,I,7dd).

The translation quiver (I, I, 7) is defined in the standard way (the set of
vertices I consists of the isoclasses of indecomposable objects in mod A,
arrows [Y] — [X] in I reflect the existence of irreducible maps from X
to Y, and 7[X] = [7X], where 7 is the Auslander—Reiten translate). The
valuation (d, d’) is given by the collections d = (d[x)y]) and d' = (d/[X},[Y])
indexed by I, where for fixed [X] — [Y] € I7, djx],[y] (resp. d,[X},[Y}) is the
number of indecomposable direct summands isomorphic to Y (resp. X) in a
decomposition of the codomain (resp. domain) of a minimal left (resp. right)
almost split map for X (resp. for V).

For any [X] € Iy we denote by ~[X] (resp. [X]1) the set of all direct
predecessors (resp. successors) of [X] in I'y, i.e. the set of all vertices [Y] € I
such that there exists an arrow [Y]| — [X] (resp. [X]| — [Y]) in [4.

For any X and Y in mod A, we denote by (X, Y') the k-space Hom4(X,Y)
and by [X,Y] its dimension.

1.2. Let Q = (Qo, Q1) be a quiver. For an arrow v € @1, we denote by
71 the formal inverse of v (we set (y~!)~! = ). Any unoriented path w in
Q) can be presented as a sequence 71 - - - ¥y, for some n > 0, where v; € ()1 or
Vi l'e Qq, for 1 < i < n. In the paper we consider only walks, i.e. unoriented
paths w such that if w = wiafB  wy or w = wia~! fws for some unoriented
paths wi,wy and arrows «, 8 € Q1, then o # (. For any walk w =1 -+,
we denote by w~! the formal inverse of w, i.e. the walk ~,!-- -'yfl. The
trivial walks of length O are simply identified with the vertices of Q.

Assume that @ is a tree. Then any walk w defines an indecomposable
A-module V(w), called a line module or simply a line, where A = kQ. The
module V' (w), as a representation of @), has the one-dimensional space k at
each vertex visited by w and zero spaces otherwise; the structure maps are
identities for the arrows belonging to w and zero maps otherwise. Note that

V(w) =V (w™1) and V(w) ~ V(v) if and only if w = v or w = v~ 1.

1.3. The following notations are used in this paper.

For any set S, we denote by |S| the cardinality of S.

Let R be a ring. For any m,n € N we denote by M,,«,(R) the set of
all m x n-matrices with entries in R. More generally, for any sets X and Y
we denote by Myxy(R) the set of all X x Y-matrices M with coefficients
in R, that is, functions M : X x Y — R. For any M € M yy(R) we denote
by M! the matrix transposed to M; MX (resp. Mx) is the column (resp.
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row) of M corresponding to X € X; finally, for X’ C X and )’ C ),
Mxixyr € Myrxyr(R) is the restriction of M to &’ x )'. For a sequence
r = (rx) € [[xex R, diag(r) is the “diagonal” matrix in Myxx(R) defined
by r; we set Iy = diag(r) where rx =1 for every X € X.

Given a matrix M in M, «,(k), we denote by r(M) the rank of M. By
M we mean the generalized upper triangular matrix obtained by deleting all
zero rows from the matrix which is the result of the standard Gaussian-row
elimination procedure applied to M (see [15]).

For any set X and R =7Z,Q,N, we set

R*=][Rr RW=EPr
X X

2. A general method of determining multiplicities

2.1. Let A be a finite-dimensional algebra and X" a fixed complete list of
pairwise nonisomorphic indecomposable objects in mod A. Denote by C =
C(A) the matrix (usually infinite!) in My x(Z) defined by the formula

cxy =Y, X]

for X,Y € X.

Given a module M in mod A, for any X € X we denote by hx = hx (M)
(resp. h'y = Ry (M)) the dimension [M, X] (resp. [X,M]) and by mx =
mx (M) the multiplicity of X in the decomposition of M into a direct sum
of indecomposables (in particular, M = Py, Y™ ). We view the sequences

h(M) = (hx), h'(M)=(hx) and m(M)= (mx)

as column vectors in N*. Note that in contrast to m = m(M), the vec-
tors h = h(M) and b/ = h/(M) can have an infinite number of nonzero
coordinates.

DEFINITION.

(a) The matrix C(A) is called the Cartan matriz of the Auslander cate-
gory E(A) of the algebra A.
(b) The vector m(M) is called the multiplicity vector of the A-module M.

LEMMA. For any M in mod A we have h = C(A)-m and h' = C(A)t-m
(see also Remark below).

Proof. Since M = @y Y™, for any X € X we have (M, X) =
Dy cr(Y,X)™ and hx = > ycpcx,ymy. Notice that since my = 0 for
almost all Y, the above sum is finite and also C - m is well defined. Conse-
quently, h = C - m. Similarly, we obtain ' = C*-m. =
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COROLLARY.

(a) If T € Mxxx(Q) is a left inverse of C(A), then T - h =m.
(b) If T € My« x(Q) is a right inverse of C(A), then T -h' = m.

Proof. Fix T' € Mxxx(Q) such that T'- C = Ly, where C = C(A). Let
Xy € X be the finite subset consisting of all X € X such that mx # O.
Then h = > vy, mxCX (in Z¥), so the product T - h is well defined as
T-h=3 yex, mx (TCX), and consequently T-h = Yo xex, myx(Ix)X =m.
The proof of the second assertion is analogous. =

REMARK. Let ) be an infinite set.

(i) The set Myyy(Z) is a partial ring with respect to multiplication of
matrices: for M, N € Myyy(Z), the product M - N is defined if and only
if for each pair X,Z € Y theset {Y € YV : M(X,Y) # 0 # M(Y,Z)} is
finite. The partial ring admits a unit element I (the identity matrix). In
My «y(Z) the following pathologies may appear:

e Multiplication in My, y(Z) is not associative in the sense that there
may exist My, My, M3 € My, y(Z) such that the products My - My, My - Ms,
(Ml . Mg) . M3, M1 . (M2 . Mg) are well defined and (Ml . Mg) . M3 75
M - (Ms - M3). For example, consider the triple

(11 1 1 i

1 2 2 2
M=|12 33 :

1 2 3 4

[ 2 1 0 o ]

-1 2 -1 0
My=| 0 -1 2 -1 7

0 0 -1 2

(11 1 1 i

2 2 2 2
Ms=|3 3 3 3

4 4 4 4

Note that M2-M3 :0, Ml'MQ :Iy, M3 7'&0, (Ml-Mz)-Mg :Iy-Mg =
M3 andMl‘(M2~M3):M1‘0:0.
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e A matrix M € Myyy(Z) may admit two different two-sided inverses
(see Remark 2.2(iv) for an example).

(ii) Any matrix M € Myyy(Z) induces a Z-linear map M- : Z) — 7Y,
If in each row (resp. column) of M; € Myyy(Z) (resp. My € Myyy(Z))
almost all entries are zero then M (resp. Ms) induces a Z-linear map
My - : 7Y — 77 (resp. My - : 7z - Z™)). Moreover, the composites
(My-) o (M), (M-) o (M) : Z&) — ZY can be represented as multiplica-
tions by M; - M and M - Ms, respectively.

(iii) Statements analogous to (i) and (ii) also hold for Myyy(Q).

The result below was suggested to us by G. Zwara.
PROPOSITION. Let C = C(A) be the Cartan matriz.

(a) For any nonzero D € Myxx(Q) such that D - C is defined, D - C
is a nonzero matrixz. Moreover, C has at most one left inverse in
My xx(Q).

(b) For any nonzero D € Mxxx(Q) such that C - D is defined, C - D
18 a nonzero matriz. Moreover, C has at most one right inverse in

Muyxx(Q).

Proof. First we claim that for any nonzero d = (dx) € Q% such that
d' - C is defined, i.e. the set Xy = {X € X : dx # 0 # cx vy} is finite for all
Y € X, the product d* - C' is nonzero.

We start by observing that if d* - C' is defined then d is in Q(Y); more
precisely, dx = 0 for every X € X/ = X'\ (Xp, U---UXp,), where Py,..., P,
are all the projective modules in X'. Suppose that dx # 0 for some X € X”.
Since P; @ --- @ P, is a projective generator in mod A, there exists ¢ such
that cx p, = [P, X] # 0, and X belongs to X'p,, a contradiction.

To prove our claim it suffices to show that d = 0 whenever d € Z(*¥) and
d'-C'=0. Given such a d, we consider two finite sets: YT ={X € X : dx >0}
and X~ ={X € X : dx < 0}. For any Y € X we have

0=(d"-C)y =) dxexy= Y dx[V,X]- ) (—dx)[Y,X]

XeX Xext XeXx—

=[v. @ x| -[v. @ x] = yixt] - yix),
Xex+ Xex-

Consequently, by the result of Auslander [3, 5], we obtain X = X~ and
d=0.

Now the first assertion of (a) follows immediately from the above claim.
To show the second, note that if T'- C = Iy = T’ - C then the product
(T —T')-C is defined and (T —T") - C = 0. Then by the first assertion we
have T'=T" and the proof of (a) is complete.

The proof of (b) is similar. =
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2.2. Observe that if A is a directed algebra of finite representation type
then C'(A) is invertible (I'4 is finite and contains no oriented cycle, so C(A)
is triangular for a suitable ordering of X’). Now we show that C(A) is al-
ways invertible in My x(Q). We give a direct description of its inverse. The
construction is effective if one knows the Auslander—Reiten quiver I’y of A.

From now on, we identify modules from X with vertices of Iy (¥ 3 X <
[X] € Ib). We can assume that for any nonprojective (resp. noninjective)
X € X the module 7X (resp. 77 X) belongs to X.

DEFINITION. Let T'=T) = [txy| € Mxxx(Z) be defined as follows: if
Y, X € X and X is nonprojective, then

1 fY=X#717XorY=7X#X,
2 ifY = X = 7X,

Py = ~dy Y € X,
0 otherwise,

while if X is projective, then

1 ifY =X,
ixy =4 —dyy ifY e X,
0 otherwise.

We call T4 the Auslander—Reiten matriz of A.
For any X € X, we set fx = dimy Ends(X)/J(Enda(X)).

THEOREM. Let A be a finite-dimensional k-algebra, C = C(A) the cor-
responding Cartan matriz, T = T, the Auslander—Reiten matriz of A and

F = diag((fx)xex)-

(a) C is invertible in Myxx(Q) and F~1T is the unique two-sided in-
verse of C.

(b) If End,(X)/J(Ends(X)) = k for every X € X (which holds auto-
matically if k is algebraically closed), then T' is an inverse of C, so C
is invertible in My xx(Z), and m(M) = T -h(M) (resp. T*-h'(M) =
m(M)) for all M in mod A.

Proof. (a) We show first that TC = F.
For any X € X we have either the almost split sequence

0—7X — @ 7%x 5 X 50
Ze X
if X is nonprojective, or the right minimal almost split sequence
P zx=ix - x
ze X
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if X is projective. They induce respectively exact sequences
() 0= (=7X) = P (-2 = (-, X) = (-, X) =0
ze X
and
() 0— P (2% - (,X) = (-, X) =0
ze X

of contravariant k-functors from the category mod A to mod k, where (—, X)
denotes the simple functor (—, X)/J(—,X) (see [11]). Fix an arbitrary
Y € X. Then applying the exact sequences (x)(Y) and (x%)(Y’), and com-
puting dimensions, we obtain the formulas

_ d, =
CrxX)y T cxy Z 72X CZY {0 ifY #£ X,
zZe X
and
_ d. =
exy = ) dyxeay {o ifY # X,

zZe X
respectively. Consequently, the required equality T'C' = F' holds.
To prove that C is invertible with inverse F'~!'T, consider the matrix

T~ = (txy) € Mxxx(Z), dual to T in some sense, which is defined as
follows:
1 fX=Y#7Yor X=7Y#Y,
2 fX=Y =1V,
Xy - —dyx if X € Y+,
0 otherwise,

if Y is noninjective, and

1 if X =Y,
t}’y = —dy}X if X € Y+,
0 otherwise,

if X is injective, for Y, X € X. We show that CT~ = F.
As before, for Y € X we have either the almost split sequence

0—Y — @ Z¥™z 7Y S0
zZey+
if X is noninjective, or the left minimal almost split sequence

Y - Y/SocY = 2%
zZey+
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if Y is injective. Again we obtain exact sequences
(%) 0= Y,=)— P (2, )% - (V,-) = (¥,-) -0
Zey+
and respectively
()’ 0— @ )z (Y, =)= (Y, =) =0
Zey+

of covariant k-functors from mod A to mod A, where (Y,—) denotes the
simple functor (Y,—)/J(Y,—) (see [11]). Then for any X € X the exact
sequences () (X) and (xx)'(X) yield the formulas

fx ifX=Y,
_ — dy 7 =
X7y tCxY Z €X,z ady,z {0 X LY,
Zey+
and I X —Y
X 1 =1,
_ dv 7 =
CX)Y Z CXx,z ay,z {0 it X £,

Zey+

respectively. Consequently, we have CT~ = F.

To complete the proof of (a), we observe that the matrices T-=T"F~!,
C and T = F~'T induce Q-linear maps: T~ : Q¥) - Q¥ .. Q¥) — Q¥
and T- : QY — QF, respectively. Now, by applying the associativity of
composition (for (T-)o (C-)o (T 7)), the two equalities proved above and the
rules from Remark 2.1(ii), we infer that the maps 7, T- : Q) — Q¥ are
equal, hence T-F~! = F~!T, and F~!T is the unique (by Proposition 2.1)
inverse of C' in Myxx(Q).

Since (b) is a consequence of (a) and of Corollary 2.1, the theorem is
proved. =

COROLLARY. If A is of finite representation type then the Cartan matriz
C = C(A) is uniquely determined by the formula C = T—1F, where T = T
and F are as above. In particular, C = T~ if k is algebraically closed (cf.
Remark 2.1(i)).

REMARK. (i) The equality T-F~! = F~!T implies immediately that
in each row and each column of 7" (resp. 77) almost all entries are zero,
and also that fydxy = fxdy, for all X,Y € X, and fx = frx for every
nonprojective X € X. 7

(ii) Let X’ C X be the subclass of all vertices of a fixed connected
component in I'y. Then m(M)xr = Tjxryar - M(M)x and m(M)jx =
(T~ |wrxar)t - (M) a0 for any M in mod A, provided fx =1 for all X € &’
where m(M)xr = (mx(M))xex, h(M)xr = (hx(M))xex and h'(M)
= (W (M))xex. In particular, for any X € A’ we have m(M)x =
(Tarxxr)x - h(M)xr (resp. m(M)x = (B (M) x)" - (T jarxar) ™).
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(iii) If X = (J;e; A is a splitting of X' corresponding to the decom-
position of Iy into a disjoint union of connected components then T =
diag({T)x, x x, yier) and T~ = diag({T""|x,xx, }ier) (here “diag” denotes a
block diagonal matrix). In particular, Ty, xx, = T |x, xx, if fx = 1 for all
X e &,.

(iv) Assume that fx =1 for all X € X, and |I| > 2, where [ is as above.
Then the matrix C, in spite of the equalities CT = TC = Iy and T =
diag({7|x, x x, yier), always differs from diag({C|x,xx, }ier), since A is of infi-
nite representation type and Jg°(&;, X;) # 0 for some i # j, so Cx;xx, #0.
Nevertheless, we clearly have C|x,xx; * Tix;xx; = Ta;xx; - Clayxx, = lLa; for
every i € I, so diag({C)x,xx, }ier) forms another, different from C, inverse
for T. As a simplest concrete example of this strange behaviour one can
consider the matrices 7" and C' for a Kronecker algebra (see Section 4 for a
detailed description of 7" and C' in block form).

(v) In case A is of finite representation type and k is algebraically closed,
the formula from the corollary provides a method of finding the matrix C' if
one knows the shape of I'4, and conversely, the matrix T if one knows C.

From now on we assume that k is an algebraically closed field.

2.3. As a conclusion from Theorem 2.2 and Corollary 2.1 it follows that
to determine the multiplicity vector m(M) = (mx) € Z*) of an arbitrary
module M in mod A, one has to construct the Auslander—Reiten matrix T4
for A and compute the infinite vector h(M) = (hx) € Z* (resp. h'(M)
= (h'y) € Z%). In fact, once we know these two data the coordinates of the
vector m(M) can be computed as follows.

COROLLARY. For any X € X, we have

hx + h:x — Z d'KX hy if X is nonprojective,
Ye X
mx =
hx — Z d/Y,X hy if X is projective,
Ye X
and
/ h/ d h/ . . .. .
x+h _x— Z v.x by if X is noninjective,
— Yex+
myx =
h'y — Z dy x hy if X is injective.
YeX+

REMARK. To compute m(M) we do not need to know the entire, usually
infinite, vector h(M) (m(M) € Z?)). If we are able to find a finite subset
Xo C X containing {X € X : mx # 0} then we need to compute the
coordinates hx for X from some finite subset X7 C X containing Xj, which
can be effectively constructed from Xj. If A is representation finite then we
can always set Xy = X.
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3. String algebras of finite representation type. If A is an algebra
of finite representation type then in some situations it may be easier to
determine the matrix C' = C(A) (than T itself), and afterwards compute T
as its inverse (in case A is representation infinite this may be difficult, since
C' is then an infinite matrix). This is the case for string algebras of finite
representation type, though combinatorial formulas for Auslander—Reiten
sequences in mod A (expressed in terms of V-sequences) are known ([22]). In
this section we briefly describe how to compute the matrices C' in this case.
First we consider the tree case and next the general case.

3.1. Recall that an algebra A is called a string special biserial algebra
(or simply a string algebra) if it has the form kQ /I, where I is an admissible
ideal in k@, and the bound quiver (Q, I) satisfies the following conditions:

(S1) The numbers of arrows starting from, respectively ending in, any
fixed vertex of () are bounded by 2.

(S2) For any arrow « of ), there is at most one arrow (3 and at most one
arrow 7y such that Sa and oy are not in [I.

(S3) The ideal I is generated by zero-relations.

To describe indecomposable modules over a string algebra A = kQ /I one
uses some special walks. Following [22], a walk w in the quiver @ is called
a V-sequence in (Q,I) if for any oriented path u such that u or u~! is a
subpath of w, u does not belong to I. A V-sequence w is primitive if for
any n € N the composite walk w" is defined and w™ is again a V-sequence
in (@, I). Denote by V =V(Q, I) the set of all V-sequences in (Q,I) and
by Vo = Vo(Q, I) a fixed selection of representatives of sets {w,w~!} (these
sets define a splitting of V). Note that if ) is a tree then the indecomposable
kQ-module V(w) defined by any walk w € V (see 1.2) belongs to mod 4,
since V' (w) is annihilated by I.

Let (Q, ) be a universal cover of the bound quiver (@, ) in the sense of
[17] (in our situation Q is a universal cover of @, so a tree). We denote by

(Q I) (Q,I) the canonical Galois covering of bound quivers, defined
by passing to orbits under the identification @ = @/G, where G is the
fundamental group of @ acting on @ in the usual way. Denote by A the
locally bounded k- category k:Q/I which is a factor of the path category
k:Q of Q modulo the ideal I We have at our disposal the induced pull-up
functor F, : mod A — Mod A and its left (and right) adjoint, the pull-down
functor F)y: mod A — mod A, which, due to the fact that G acts freely on
indecomposables, have nice properties (see [12]). (Here Mod A denotes the
category of locally finite-dimensional A-modules, see [9].) It is clear that
the notions of walk, V-sequence and line module, introduced earlier, can be
extended to the situation of @, (@, I) and A, respectively.
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For any V-sequence w € V = V(Q,I) we denote by X (w) the indecom-
posable A-module of the form Fy(V(w)), where w is a fixed lifting of w
to Q (clearly @ € V = V(Q,I)). By the properties of F) the definition
of X(w) does not depend on the choice of the lifting w (for two liftings
w, W of w we have w = gw', so V(w) = 9V (w') for some g € G, hence
Fa(V(w)) = Fx(V(w@))). Notice that X (w) is indecomposable since so is
every line. Clearly, X (w) = V(w) if @ is a tree, since then Q = Q and
V="V

Following [22], we have the following characterization of representation
finite string algebras.

PROPOSITION. Let A = kQ/I be an arbitrary string algebra. The algebra
A is of finite representation type if and only if (Q,I) admits no primitive
V -sequence. In this case, the set

X ={X(w):w eV}
18 a complete family of pairwise nonisomorphic indecomposable A-modules.

COROLLARY. If A =FkQ/I is a string algebra such that Q is a tree (we
call such algebras string tree algebras), then A is of finite representation type.

3.2. Now we show how to construct the Cartan matrix

C(A) =C= [CX,Y]X,YEX = [Cv,w]v,wEVo

for a string tree algebra A = kQ/I. First we state some technical facts. We
set Sy,» = supp X (w) Nsupp X (v). Note that for any w € V, the support
supp X (w) coincides with the set .S, consisting of all vertices belonging to
the walk w.

LEMMA. For any v,w € Vy the following hold true:

(1) Cow < 1,

(ii) cpp =1,

(iii) if Swo =0 then cyy = cyw =0,

(iv) if Swe # 0 then any A-homomorphism f={fc}eeq, : X (w) — X (v)
such that fs =0 for some s € Sy, is zero,

(v) if cwp =1 for some v # w, then ¢, = 0.

Proof. Assertions (i)—(iv) follow easily from the definition of homomor-
phism and the facts that for any w € V the k-spaces corresponding to vertices
in the representation X (w) = V(w) are k or 0 and that the full subquiver of
Q@ formed by the support of .S, is connected.

To prove (v), note that A is of finite representation type and k is alge-
braically closed, so there exist oriented paths from X (v) to X (w) and from
X (w) to X(v) in the Auslander-Reiten quiver Iy, provided ¢, = ¢y = 1.
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Consequently, I’y contains oriented cycles, a contradiction. Note that Iy is
acyclic, since @) is a tree (see [2]). m

The result below furnishes a necessary and sufficient condition for the
dimension ¢, ,, to be 1.

PROPOSITION. For v,w € Vg such that Sy # 0, ¢y = 1 if and only
if for any arrow o : a — b € Q1 the following two conditions are satisfied:

(i) If a € Sy and b € S, then b € Sy,.
(i) If b€ Sy and a € S, then a € S,,.

Proof. Observe first that if for some o € @1, (i) (or (ii)) is not satisfied
then ¢, ,, = 0 from Lemma 3.2(iv). Assume now that (i) and (ii) are satisfied.
Then it is easy to show that the collection {f.}ccq, given by the formula

id, ifce Sv,w,
fc 0 ifce Qo \ Sv,wa

yields a (nonzero) A-homomorphism from X (w) to X (v). Consequently, by
Lemma 3.2(i) we have ¢, = 1. u

3.3. The proposition above yields an easy, purely combinatorial, method
of computing the dimensions ¢, .. As a consequence, we can construct the
Cartan matrix C' = C(A) using only the shape of the quiver (Q,I). We
summarize our considerations by an algorithm.

ALGORITHM (computing C(A) for string tree algebras).

Input: The set Vy = Vp(Q, I) of V-sequences in (Q, I) for a given string
tree algebra A = kQ/1.

Output: The Cartan matrix C' = C(4).

for any w €V set ¢y 1= 1;
for any distinct v,w €V, do
if ¢, is not computed then do {
if S, =0 then set ¢, =0, ¢y, :=0;
else do {
for any a € Sy, a —bEQL, bE S, do
if b¢ S, then {set ¢,, :=0; break;}
if ¢y, 1is not computed then do
for any b€ S, w, a—bc @1, ac€ S, do
if a ¢ S, then {set ¢,, =0; break;}

if ¢y, is not computed then set c, ., (=1, Cy,p :=0;
}
Observe that the matrix T4 can be easily computed as an inverse of
C' since all elements of the set Vy (see 3.1) can be viewed as a sequence
(w1, ..., wy) such that [cu,w;]1<ij<n € Mpxn(k) is a triangular 0-1 matrix
(cf. 2.1).
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3.4. Now we consider general string algebras. Let A = kQ/I be any
string algebra of finite representation type and V) = {w:w € Vp} a subset
of Vy formed by a fixed complete selection of liftings (see 3.1). For any
v,w € Vo we set Gy = {g € G : S3NgSyz # 0}. Note that each G, is
finite since the standard action of G on Qy is free. Denote by Q' = (Qh, Q1)
the smallest connected (finite) subquiver of Q containing the finite set of all
T € Qo that are visited by the walks gw for some w € Vo and g € UUGVO vaw-

Denote by A’ the algebra corresponding to the full subcategory of A
formed by Qf. As A’ is a string tree algebra, it is of finite representation type,
and it has the form A" = kQ’ /I’ where I’ corresponds to the appropriate
restriction of the ideal I in kQ to k:Q’ We can assume that VO CV) =
Vo(Q, T'). Clearly, V' = V(Q',I') C V. Set C' = C(A') = [ ] ot wrevy-
The following result yields a method for computing the matrix C’ C(A) in
the form C = [cyw) v,wev,, once we know C’ (the latter can be computed by
applying the algorithm above).

PROPOSITION. For any v,w € Vg the (w,v)th entry of C = C(A) is
> i
9€Gov,w

Proof. For any w' € V| let V'(w') denote the line module in mod A’

defined by w' (as opposed to the line V(') in mod A). It is easily seen that
for any o', w" € V, there exists a canonical k-isomorphism

Hom y (V'(v"), V'(w')) = Hom 3(V (v'), V(w')).
Then for fixed v, w € Vy we have
Hom (X (v), X (w)) = @ Hom z(V(3), V(g@))

(apply properties of the functor F), see [12]). Consequently, taking dimen-
sions we obtain the required equality. =

3.5. Applying Proposition 3.4 (in fact its proof) and Proposition 3.2
we formulate an analogue of Algorithm 3.3 for all string algebras of finite
representation type. We use the notation introduced in 3.4.

ALGORITHM (computing C(A) for string algebras of finite representation
type).

Input: The sets Vy = W (Q, ), 176 ={w € Vo 1w € Vo} and Gy,
v, w € V), for a given string algebra A = kQ/I of finite representation type.
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Output: The Cartan matrix C' = C(A).

for any w,v €V, do {
set Cyp = 0;
for any g € Gy, do {
if g=1, w =7 then set c;mﬁ =1;
else if ¢l ;; is not computed then do {
for any a € Sgp5, a »beQ], be Sy do
if b¢ Sy then {set c;ﬂﬁ :=0; break;}
if c;ﬂ)’% is not computed then do
for any b€ Sy, a > beEQ], a€ Sy do
/1f a §§ Sgw then {set c ;- :=0; Preak;} /
g5 1S mot computed then set ¢ ;5 :=1, ¢

if ¢ = 0;

}

set cyp = Cyp T C

9w *
/

quw,v’

}
}

REMARK. One can give an algorithmic recursive method of computing
the vectors h(M) for M in mod A, where A is a string algebra. It is based
on a deep analysis of changes in the systems of linear equations describing
the space (M, X (w)), w € Vy, under the process of extending walks w by
arrows or their inverses. It has a technical and rather complicated character,
and will be presented in a separate publication.

4. &pyq-algebras: the Kronecker algebra case. In the next two sec-
tions we discuss how to apply the general method, outlined in Section 1, to
modules over A, ,-algebras, i.e. the path algebras of the quivers

p+q

ap /‘ ‘\ﬁq

p p+q—1
3 p+2

o1 1a

2 p+1

N Jo

where p,q > 1. These string algebras, in contrast to biserial trees, are of
tame and so infinite representation type, and require a slightly different ap-
proach (see Remark 2.3). For a given M in mod A, it may be hard to find
the infinite vector h(M). Moreover, we cannot sequentially compute all mul-
tiplicities m(M)x, X € X, applying Corollary 2.3. We show how to extract
effectively a finite set of potential indecomposable direct summands for M
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and compute a finite number of coordinates of the vector h(M), which are
necessary to determine m(M). (The description of T is not a problem in
this case.)

First we consider the simplest case of ,&171 (the Kronecker algebra) and
give a precise description of the algorithm. This algorithm differs essentially
from the classical one (see [13, 16]). In the next section we show how to deal,
in spite of some differences, with the general &p,q—algebra case, and to reduce
it partially to the previous one.

4.1. Let A be the Kronecker algebra, i.e. A = kQ, where @ looks as
follows:
1772

B

We denote by e, es the idempotents corresponding to the vertices. We first
distinguish three classes of indecomposable A-modules:

V; Vi Ji(N)
. i—1 — 1.1 . j — > 1.—1 . | — 1.
P kTR It KTk Ryp;: k' Tk,
e Wt I,

where i,5,0 > 1, X € k, Wi, V; € Mjy (;_1)(k) are of the form

01 -~ 0 1 -~ 00
Vi=1] 1 s Wi= | SR

00 - 1 0 - 10

_0 o --- 0_ _0 0 0 ]__

Ji(A) € My (k) is an upper triangular Jordan block with eigenvalue \
and I; € M (k) the unit matrix. The representations from the sets P =
{P;}i>1 and T = {I;};>1 are called respectively postprojective and prein-
jective (Py, P, are projective, Iy, I injective, and Pp, I; simple, see [2]). All
modules {R);} ek, i>1 together with representations of the form
In
Room: kK" T K"
Tn(0)

for n > 1, are called regular. We set R = {Rx n}xekufoo}, n>1-

We briefly list below those (well known, see e.g. [8, 21]) facts concerning
the structure of the module category mod A that we use in this paper.

PROPOSITION.

(i) The disjoint union X = P URUZ is a complete family of pairwise
nonisomorphic indecomposable A-modules.
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(i)

(iii)

(iv)

(v)

For any Pe P, Re R, I €1 we have
(R,P)=(I,P)=(I,R)=0.

For any ny1,n9 > 1 we have

{ng—n1+1 if n1 < na,

[Pn 7Pn]:
! : 0 if m1 > no,

n1—n2+1 if ng>ne,
[In17In2] = .
0 if n1 <ns.

For any ni,ng > 1 and A\ A1, Mg € kU {00}, A1 # Ao, we have

[R)\,nl’ R)\,ng] — min{nla TLQ}, [Rz\l,nl 3 R/\Q,HQ] = 0.

The classes P and I are connected components in Iy. More precise-
ly, a minimal right (respectively, left) almost split map for a pro-
jective (respectively, injective) nonsimple module has the form 0 —
P} — P, (respectively, I — I? — 0); moreover, the almost split
sequences are of the form

0— P, — Py — P2 — 0
and respectively
O—>Ij+2—>IJ2+1—>Ij—>O

fori,j > 1. In particular, Pos_1 = T_(S_l)Pl and Py = T_(S_l)PQ
(respectively, Ios—1 = =D and Iy = 7(5_1)12) for every s > 1,
where T denotes the Auslander—Reiten translate.

The class R is a 1-parameter family {7\ } xexufoo} Of connected com-
ponents in I'y, where each Ty is a rank 1 stable tube with vertices
represented by { R, }n>1. More precisely, the almost split sequences
in the tube Ty, A € kU {oc}, have the form

0—Ryx1— Ryx2— Ry1—0

and

0— Ry; — Ry;—1®Ryj41 — Ry; —0

for all © > 2. In particular, TiR)\m =Ry, forallic€Z,n>1 and
A€ kU {oo}.

COROLLARY. Consider the matrices T = Ty and C = C(A) as block
matrices with respect to the splitting X =P U (Urepugoo} 1) UL
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(a) The nonzero block-coordinates for T look as follows:

1 0 0 0
2 1 0 0 0
-2 1 0 0
=19 1 —2 1 o0 ’
0 1 -2 1
[ 2 -1 0 ]
-1 2 -1 0
0 -1 2 -1 0
Toxn=1 ¢ ¢ -1 2 -1 ...|» Aekufoel
0 0 -1 2

Tizxz = (Tipxp)".

(b) The diagonal coordinate-blocks for the lower block-triangular matrix
C look as follows:

1000
210 0

Cipxp=|3 210 :
43 2 1
111 1 1
12 2 9

Cirxr,=| 123 3 . Aeku{cl},
1 2 3 4

Cizxz = (Cipxp)”.
Moreover, Cipy1, = Cipxz = Ciz3xz = 0 for all A € kU {oo}.

4.2. To compute the multiplicity sequences m(M) = (mx)xex, X =
PURUZ, for modules M in mod A, we can apply the following rules.
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LEMMA. For any M as above the following equalities hold:

(i) mp, = [M, P1], mp, = [M, Ps] — 2[M, Pi] and mp, = [M,P;] —
2[M, P,_1] 4+ [M, P;_5] for all i > 3;
(11) mp = [Il,M], mp, = [IQ,M] - Q[Il,M] and ij = [I],M] -
2[Ij_1, M| + [Ij—2, M] for all j > 3;
(111) mRM = 2[M, R)\’l]—[M, R)\’Q] and MR)\J = [M, RA,Z]_[M7 R)\,l—l]_
[M, Ry 41| for all 1 > 2, X € kU {oo}.

Proof. The assertions follow easily from Corollary 2.3, Remark 2.2 and
Proposition 4.1. =

By the lemma above, to determine the multiplicity vector m(M)x for all
X from one Auslander—Reiten component, it suffices to compute “consecu-
tively” the dimensions [M, X] (resp. [X, M]), referring to the natural linear
order in that component (note that in this case all components have such
an order). We use this general observation to give an algorithmic procedure
yielding the sequence m(M ). We show how to reduce the considerations to
a finite number of components and potential direct summands contained
in them. We also discuss the stop problem for the constructed algorithm.
Finally, we propose an inductive method of effective computation of the
consecutive dimensions for individual components.

4.3. Given a module, we apply the following technical fact to restrict
the list of candidates for its indecomposable direct summands to a finite list.

LEMMA. For any j,n > 1 and XA € kU {oo} we have [P}, Ry ] = n. In
particular,

1
2
C‘T)\XP = 3

W N =

1
2
3

Proof. Recall that the functor 7~ : mod A — mod A establishes an equiv-
alence between the full subcategories of A-modules without injective and
respectively projective direct summands. Moreover, R) , is 7-invariant and
Homy(e; A, R) ~ Re;. Therefore, for any s,n > 1 and X € kU {00},

[Pos—1, Rag] = [rC7VPL Ry, = [0V P O7URy )
= [P1, Ry n] = [e24, Ry ] = dim R pe2 = n,
and analogously
[P2Sa R)\,n] = [P27R)\,n] = [61/1, R/\,n] = dim R/\,nel =N.m

COROLLARY. Let P be a A-module such that P ~ @;F, P’ for some

np,Si,...,Snp € N. Then [P, Ry ] = > X sin for any X\ € k and n > 1.
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REMARK. The remaining nonzero coordinate-blocks of the lower-trian-
gular matrix C' = C(A) look as follows:

01 2
. 1 2 3
C‘IXT)\ = (ClTAXP) ) C‘IXP = 2 3 4
(cf. Corollary 4.1 and Lemma 4.3). The first formula is straightforward. To

prove the second, one shows that [P;, I;] =i+ j — 2 for all 4,5 > 1 (apply
arguments similar to those in the proof above).

4.4. Now we formulate a necessary and sufficient condition for a module
from the tube 7, A € k, to be a direct summand of a given A-module.

PROPOSITION. Let M : k™ % k™ be a finite-dimensional A-module,
where A, B € My,xn,(k), n1,n2 > 1. The module Ry, ,, Ao € k, is a
direct summand of M, for some n > 1, if Ay is a common root of all
(ng — >0 si)-minors of the matriz A — AB, regarded as polynomials
from k[\], where P;* &- - -@PZT;P 1s a maximal postprojective direct summand

of M.

Proof. We can assume that M has the form M = P & R & I, where
PecaddP,ReaddR, I € addZ and P = @F) P". Fix g € k and assume
that for some n > 1, R ~ R), , ® R for some R’. Then by Corollary 4.3 and
Proposition 4.1 we have

[M, Rko,l] =[P, R)\Oyl]+[R)\O7H’RAO71]+[R/?R)\071] +[1 R/\O 1 ZS’+1+:U

for some x € N (note that x is strictly positive exactly when R’ contains
a direct summand from 7). Conversely, if R, ,, is not a direct summand
of M for any n > 1, then clearly [M, Ry, 1] = Y. if; s;. Consequently, the
inequality [M, Ry, 1] > Yo" s; always holds and it is strict if and only
if Ry, is a direct summand of M for some n > 1.

Now we estimate the dimension of Homa(M, Ry, 1). Note that any f €
(M, Ry,1) is a pair (z,y) € Mixn, (k) x Mixn,(k), satisfying the system

{ yA = o,
yB =z,

of linear equations, or the equivalent one

yB =u,
y(A— X oB) =0.
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Therefore we have
(%) (M, Ry,.1) = no —1(A — XoB)
(x is determined by y and [M, Ry, 1] is equal to the dimension of the solution
space of y(A—XoB) = 0). Since [M, Ry, 1] > > 7, si, we have r(A— XgB) <
ng — Y i, si. The last inequality is strict if and only if all (ny — Y"1 s;)-
minors of A — \gB are zero, and the proof is finished. =

Let {\1,..., At} C k, £ > 0, be the set of all A € k such that M contains a
direct summand from the tube 7, (we can determine this set by applying the

proposition). The fact below shows how to compute the number of summands
of M in 7,,, knowing the rank of the matrix A — \;B.

COROLLARY. Given i € {1,...,t} denote by j; the number of indecom-
posable direct summands of M from the tube Ty,. Then j; = no —1(A—\;B)
- 27:131 S1.

Proof. Fix i € {1,...,t}. Let Ry, my,---, Ry, my,» ma, ... ,my, 21, be a
complete list of indecomposable direct summands of M in 7, i.e. R ~
R,y @@ Ry, m; © R', where R’ contains no direct summands from 7.
Then by Corollary 4.3 and Proposition 4.1 we have

[M, Ry, 1] = [P, By 1] + [Bxgms Ba ] + - 4 [Ba,my, , B 1]

+ [R/’ Rki,l] + [Iv R/\i,l]

np np
= si+l++1404+0=) s+
=1 =1

Now applying the equality () from the previous proof, we immediately ob-
tain j; = ng — I‘(A — )\ZB) — 27:131 S;.- m

4.5. Now we summarize our previous considerations and present con-
secutive steps of algorithm whose task is to determine the full mutiplicity
sequence m(M), for a given A-module M, if we know “sufficiently many”
coordinates of the vector h(M) (resp. h'(M)).

ALGORITHM (the Kronecker algebra case).
Input: A A-module M in the form

A
M: KM k™

B
Output: The integers
NP, NI, 81,y 8npy b1yt = 05
§2>0, my,...,mg>1;
a%,...,a}m,a%,...,a?m,...,a‘{,...afns > 0;

Moo, b1, .oy, >0,



MULTIPLICITY PROBLEM FOR DECOMPOSITIONS OF MODULES 243

and elements A1,..., s € k such that M ~ P® R® I, where P = @?:Pl Pisi,
i i aj o b
=@, ;' and R = (Bi_, D2 Ry ;) @ (BT R y)-

(1) Determining the multiplicity vector for a postprojective component:
set s :=mp, = [M, P]
sg :=mp, = [M, Ps] — 2[M, P]
n:=3
while S0 's;(i—1)+(n—1)<nj and > 'sii+n<ny do {
Sp = Mmp, = [M, Pn] — 2[M, Pnfl] + [M, Pnfg]
n:=n+1
}
set
np:=max{i:i=1,...,n—1,s #0}
ny=mny— >0 s (i — 1)

. np .
ny i=mng — . st

(2) Determining the multiplicity vector for a preinjective component:
set
tl =my = [Il,M]
tQ =my, = [IQ,M] — Q[Il,M]
n =3
while S0 tii+n<nj and Y/ t;(i—1)+(n—1)<nh do {
ty :=my, = L, M] 4 2[I,—1, M| + [I,—2, M]
n:=n-+1

}

set
nr:=max{i:i=1,...,n—1,¢ # 0}

(3) Determining the multiplicity vector for a reqular component T with
A # oot Let {A1,...,As} C k be all common roots of (ng — > 1", s;)-minors
of the matrix A — AB treated as polynomials from k[A] (see Corollary 4.4).
for i1 =1,...,5 do
Ji=n2 —1(A=NB) =31 s
for i=1,...,5 do {
CLil = mRM_l = Q[M, R)\i,l] - [M, R)\i,g]
n:i=2
while >/ al < j; do {
afl = TTLRMJL = Q[M, RAi,n] — [M, R)\l,nfﬂ — [M, R/\i,nJrl]
n:=n-+1

}

m; :=n—1
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(4) Determining the multiplicity vector for a regular component T, with
A = 00:
set
by == MR = 2[M, Reo 1] — [M, Roo,Q]
n:i=2
ny =g — 3l (= 1) = 300 i — 0 Z;n:l a;j

while 7' by < )

do {
bn = mRW,,L = Q[M; Room] - [Ma Roo,nfl] - [M; Roo7n+1]
n:=n-+1
}
Moo :=max{i:i=1,...,n—1,m; >0} m

REMARK. (i) It is easily seen that the algorithm stops in each of the four
steps. In steps (1) and (2) the index n increases in each execution of the loop.
In step (3) the loop must stop when the sum of the multiplicities of the direct
summands from 7}, reaches j; (see Corollary 4.4), i.e. if ai +--- +al, = ji
for some m; < co. Finally, in step (4) the loop stops since 2n} = dimy M’,
where M’ is the maximal direct summand of M formed by modules from 7,
ie. ny = > "% bi, for some my < oo (clearly under the assumption that
the algorithm is correct).

(ii) The correctness of the algorithm follows from Lemma 4.2, Propo-
sition 4.4 and Corollary 4.4. After stop of loops in steps (1) and (2) we
obtain the multiplicities of all postprojective (respectively, preinjective) di-
rect summands of M. A possible next run of any of these loops would test
an indecomposable direct summand whose dimension is already greater than
the codimension of the direct sum of all indecomposable summands detected
up to that stage. This estimation is very imprecise in case dimyM is much
greater than dimy P. In steps (3) and (4) the situation is much better, the ex-
ecution of loops stops immediately after detecting all the summands searched
for.

The algorithm requires consecutive computations of the dimensions
[M, P;] for i > 1 (and analogously for the remaining connected components).
Generally, the complexity of the computations grows fast with increasing .
We show how to avoid full computations of [M, P,] in each step, reducing
them to the already known result of computations for [M, P;_;] and some
simple computational problem, depending only on the dimension vector of
M and such that its complexity in each step is the same.

4.6. Now we describe an inductive method of computing the dimensions
[M, X] (resp. [ X, M]) where X is of the form P;, R);, R, (resp. I;) for
¢ € N. First, one has to translate this problem into the language of systems
of linear equations.
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LEMMA. Let M : k™ —= k™ be a finite-dimensional representation,
where A, B € My, xn, (k), nl,nz > 1. Then
(i) [M, P;] = ingy — x(Mp),
(ii) [IZ,M] ing — r(M?}),
(iii) [M, Ry ;] = ing — 1(My),
(iv) [M, Rooi] = ing — r(MY),

foralli>1 and X € k, where M} € M, x (i41yn; (K)5 Mie M, x (i41)n2 (K),
M} € Min,xing (k) and MY, € Min,xin, (k) are the following block matrices:

A4 B 0 0 - 0]
0 A B 0 --- 0
Mio=| 0 0 -4 B - 0|,
0 0 0 ~A B |
[ At Bt 0 0 0 |
0 —-A" Bt 0 0
Mi=| 0 0 —A" B 0 |,
0 0 0 ~A! B |
Cc 0 0 ] [ B 0 0 0]
-B 0 0 A B 0
Mi=| 0 -B C 0|, Mi=|0 -A B 01,
0 0 -B C | 00 ~A B |

where C = C(\) = A— \B.
Proof. We consider the case of postprojective indecomposables P;. For-
mula (i) is clear for ¢ = 1, since each f: M — Pj is given by x € My, (k)
satisfying the system xA = 0 = xB, or equivalently z[A|B] = 0. In the gen-
eral case i > 2 the morphism f: M — P is a pair (X,Y) € M;_1)xp, (k) X
M xn, (k) of matrices, satisfying the system
(%) YA=V,X,
*
YB = WX,

consisting of two subsystems (x), and (x)g. Denote by x1,...,2;-1 (respec-
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tively, y1,...,y;) the rows of X (respectively, V). Then (%) has the form

A =z,
Yi-1A = xi_1,
(*)/ %A = 07
le = O,
yQB = I1,
yiB =z,
and is equivalent to
ylA = I1,
yi1A = Ti_1,
(*)// yZA = 07
le = 0,
2B -y A =0,
yiB —yi—1A = 0.

((x)” is obtained from (%)’ by subtracting from the (j+1)th matrix equation
of (*)j; the jth matrix equation of (x);,, for every j =1,...,i—1.) Let (x*)
be obtained from ()" by dropping the first i —1 equations; as a block matrix
equation it has the form

[yn,...,yl]-Mf;:O.

Since the vectors x1,...,x;—1 are determined in (x)” by yi,...,y;—1, the
dimensions of the solution spaces for systems (x)” and (x*) are the same,
and consequently, we have (i).

It is easily seen that applying the standard duality D : mod A — mod A°P
and (i) we immediately obtain (ii).

To compute the number [M, R) ;], consider an arbitrary homomorphism
[+ M — Ry, given by a pair (X,Y) € My, (k) X Mixn, (k) of matrices
satisfying the system

YA=J,(MNX,
(k) { YB= X,

consisting of two subsystems (x#%), and (¥%%)g. Denote by x1,...,z; and
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Y1,---,Yy; the rows of X and Y, respectively. Then (x#x) can be written in
the form

ylA - )\xl + o,

Yi-1A = Axi1 + x5,

(k) yid = Az,
le = I,
yiB = .
Now, we proceed as before. For every j = 1,...,4, we subtract from the jth

equation of (##x);, the jth equation of (++x)j; multiplied by A, then we drop
the last ¢ equations and we arrive at the system

[y, wil - My =0
whose solution space has the same dimension as that of (xxx). In this way
we obtain (iii).
The last formula (iv) follows easily from (iii) (one has to exchange ma-

trices A and B, for A =10). =

4.7. Finally, we briefly outline an inductive method of rank computation
for matrices from Lemma 4.6. This method follows from their very specific
form. We use the notation introduced in 1.3.

LEMMA.
(a) Let N = N (A, B) be a family of generalized upper triangular matrices
N;, i € N, defined inductively by setting Ny = [—A|B] and

NO v
Ni+1 _ 11 [ 1/2\| ]
0o T

Ny N

where N; = [ : ;
M N

] with mazimal zero block Nz(? containing
N o .
2 I Then r(N;y1) = r(N;) + r(U;) —

iny columns and U; = [

r(NQ(;)) and r(M}) = t(N;), for every i € N; moreover, Né;) = 2(;_1),
~ (4) (@) .
where U; = [ Ul(j) Ul(f) ] with maximal zero block Uz(? containing ni
U21 U22
columns. ‘
(b) Let N' = N (—C, —B) be a family of matrices as above. Thenr(M}) =

‘ = (1)
r(Nifl)_T(Néé_l))‘i‘r(ZiA) for every i > 2, where Z; 1 = [NQZ* ]
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Proof. Assertion (a) follows from the detailed analysis of Gauss elimina-

tion. To show (b), note that r(M}) = r([ Ni—1

[01C) D and apply the arguments
used in (a). m

REMARK. (i) The matrices M} and M’ have respectively the same form
as Mp and M; so their ranks can be computed analogously.

(ii) In Algorithm 4.5, for a given number d, we have to compute the
dimensions [M, P;], or equivalently the ranks r(M}) (see Lemma 4.6), for
1 =1,...,d. The last lemma allows us to reduce the complexity of the above
rank computations. They are realized in practice as a sequence of d Gauss
eliminations for the matrices M5 of linearly increasing sizes ing x (i + 1)ny
and now can be replaced by a sequence of d Gauss eliminations for matrices

of size at most 2ny X 2n;.

5. Anq-algebras: the general case. In this section we discuss the dif-
ference between the problem of determining the multiplicity vectors of gen-
eral A, ;-algebras and of the Kronecker algebra. In the general case we do
not present the algorithm in detail, but rather indicate how to modify Al-
gorithm 1.5 and how to reduce partially the problem to the previous one.
To deal with indecomposables and handle certain homomorphism spaces in
a more convenient way, we use some elements of the covering technique for
string algebras (briefly outlined in 3.1).

5.1. Let A = kQ be the path algebra of the quiver @ of type ,&pﬁq (see
Section 4). The universal cover @ of @ is then an infinite quiver of the form

n n
o ®p

1 1 1 1
& R N A AR

for n € Z. The canonical Galois covering of bound quivers is in fact just an
ordinary quiver morphism F': Q — @ (I = 0!), given by the natural formulas
F(a}) = o and F(B') = B forn € Z, i =1,...,p, j = 1,...,q. The
fundamental group G of @ can be identified with Z; under this identification
the action of G on @ is given by m - o] = a;”m and m - ' = ﬂf'”” for
n, m € Z. Clearly, we have A = kQ and A= k@

Note that any walk in @ (resp. @) is a V-sequence in (Q,0) (resp.
(Q,0)). Therefore to list all indecomposable A-modules of the form X (w) =
Fa(V(w)), w € Vy (see 3.1), it suffices to write down all walks in @) consistent
with a fixed, arbitrarily selected cycle orientation of the underlying unori-
ented graph for Q. We do this in some quite ordered and strictly prescribed
way.

For this purpose, we fix some notation. For any 1 < i < j < p (resp.
1 < s <t < q), we distinguish the walk «;; = ojay1---aj_1a; (resp.

3
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1= ﬁt_lﬁt__ll---ﬁs__:lﬂgl) in the quiver Q. We also set a = a;, and
_ a1

ﬁs,t
g1 = Br.
First, consider the indecomposable modules Py g = X (p+q), Poptq—1
X(ﬁq_l)v Poprq—2 = X( q_—ll,q)v ooy Popr1 = X(ﬁi;)a Pop = X(Oép),
PO,p—l = X(ap—l,p)y ey PO’Q = X(a27p), and PO,l = X(ﬁi;aLp). It is
easy to see that they are all projective. Note that Py; = P(i) for every
i=1,...,p+gq. Given i € {1,...,p+ ¢}, we define by induction the mod-
ules P, ; of the form X (w) for all n > 0. Suppose that P_(,_1); = X(w)
for some walk w already constructed. Then we set P_,; := X (v), where v
is a walk obtained from w as follows. We extend w with one arrow «g on
the left-hand side and one inverse 3, ! on the right-hand side (notice that
they always exist!); in case s = 1 (resp. t = 1) we also add the walk 31
(resp. ).

For example, if p = 2, ¢ = 3 we have Py 3 = X(ﬁi;), P_13=X(a2p71a),
Poos=X(Btap laps!), Pogs = X(ogﬁ_laﬁ_laﬁi;) and so on.

A-modules from the class

P = {P-pni}n>0,1>i>p+q

are called postprojective [2].

We can construct dually the class of preinjective A-modules. We set
1071 = X(l), 1072 = X(al), 1073 = X(Oq,Q), . ,I()J2 = X(al,p_l), Io7p+1 =
X(B7Y), Toprz = X(B13), > oprg1 = X(Bi4_y) and Toprg = X(aB™)
(these modules are injective and Ip; = I(i) for every i = 1,...,p+ q). If
I—1; = X (w) for some walk w already constructed, then we set I, ; :== X (v),
where v is a walk obtained by extending w with one inverse 3; ! on the left-
hand side and one arrow a; on the right-hand side; in case s = g (resp. t = p)
we also add the walk a (resp. 37 1). A-modules from the class

T = {In;i}n>0,1>i>p+q

are called preinjective.

To define the next two classes of indecomposables in mod A, we introduce
inductively two families of walks defining them. A walk w is called a walk of
type alpha with quasi-length n starting at a € {1,...,p} (denoted by @)
if w=uafor2<a<p orw= " fora=1,in the case n = 1; and
W = QQy(q,)n—1 for 2 < a < p, or w = 5_1041@15(@1),71—1 for ¢ = 1, in the
case n > 1 (we identify vertices p + ¢ and 1, if necessary). For example,
if p =2 ¢g =3, we have o120 = B oy, Qoo = a1, a3 = B~ taB 1,
Qg3 = asftaq, 014 = B lap oy, g4 = a3 o™t Dually, we say that
w is a walk of type beta with quasi-length n starting ata € {p+1,...,p+q}
(denoted by Ban) fw=aforp+1<a<pt+g—1,orw=afora=p+g,

in the case n = 1; and w = 5;_1p35(5a,p) ne1forp+1<a<p+qg-—1,or

)
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w = aﬁ;lﬁs(ﬁq)m_l for a = p+ ¢, in the case n > 1 (we identify vertices 1
and 1 + ¢ if necessary).
For simplicity, we denote by A, ,, and B, ,, the indecomposable A-modules

of the form X (@) and X(f3,,), respectively, which are defined by walks
from the two newly constructed families of walks. We set

A={Awn}1<a<pn>1, B ={Ban}pti<a<ptqn>1-

Observe that by the construction each of the families P, Z, A, B consists of
pairwise nonisomorphic A-modules, these families are pairwise disjoint and
P UZU AU B exhausts all indecomposables of the form X (w), for all walks

w in Q.

5.2. For any A € k\ {0} and n > 1 we denote by R, the A-module
given by the representation of the quiver () that has the k-space k™ at each
vertex, the k-linear map corresponding to the arrow «; is defined by the
Jordan block J, () and all remaining structure maps are identities. We set

R = {RA,n})\ek\{O},n21 UAUB.

A-modules from this family are called regular.

Now we construct a restriction functor ¥ : mod A — mod A’, which
allows us to reduce partially computations of homomorphism spaces over A
to those over the Kronecker algebra A’ = k@’ (here " denotes the quiver
1" = 2'). In view of applications we define ¥ only on a dense full subcategory
consisting of matrix representations.

Let M be a finite-dimensional A-module, which as a representation of ()
is defined by the k-spaces k%,... k% kb1 ... kba, corresponding to ver-
tices 1,...,p,p + 1,...,p + ¢, and the k-linear maps given by matrices

Ai,..., Ay, By, ..., By of suitable dimensions, corresponding to the arrows
at,...,0p, B1,. .., 0B respectively, where ay,...,a,,b1,...,b; € N. Then we
set

V(M) = (41 =24
B

where A = Ap - Ay, B = B, ---ByB;. For a homomorphism f =
{fiti<i<p+q : M — N between A-modules M and N given by matrix repre-
sentations of @), we set

!Z’(f) = {f17 fp-i—q}

where the maps f1, fp4q correspond to vertices 1/,2" of @', respectively. It
is easily seen that the above mappings yield a functor between the relevant
categories. Notice that ¥(Ry,) = R} ,, for all A € £\ {0}, n > 1, where R}

denotes the regular indecomposable R}, in mod A’.
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LEMMA. For any A-module M and X € k\ {0}, n > 1, the functor ¥
yields the isomorphism

Hom, (M, Ry ,,) ~ Hom 4 (¥(M), Rf\n)
of k-linear spaces.
Proof. An easy check on definitions. =

5.3. Below we collect some (well known, see e.g. [8]) facts concerning the
structure of the category mod A, to be used later.

PROPOSITION.

(i) The disjoint union X = P URUZ is a complete family of pairwise
nonisomorphic indecomposable A-modules.

(ii) For any P € P, Re R, I € T we have
(R, P) = (I, P) = (I,R) = 0.

(iii) The classes P and I are connected components in the Auslander-
Reiten quiver I'y of A of the form (—N)Q°P and NQ°P, respectively.
The correspondence between vertices and modules is given by the
mappings (—n,i) — P_,; and (n,i) — L, ;. In particular, P_, ; =
T "Py; and I, ; = 7"1o; for everyn >0,i=1,...,p+q.

(iv) The regular modules form a 1-parameter family {TA}AekU{oo} of pair-
wise orthogonal (in the Hom-sense) connected components in I'y.
Each component Ty for X € k\ {0} is a rank 1 stable tube with
vertices represented by {Rx n}n>1 (in particular, the almost split se-
quences are exactly of the same form as in Proposition 4.1(v)). The
component Ty (resp. Ts) is a rank p (resp. q) stable tube with ver-
tices represented by A (resp. B). More precisely, the almost split
sequences in the tube Ty have the form

0— Aa,n - Aa—l,n+1 ® Aa,n—l - Aa—l,n — 0

for all a = 1,...,p, n > 0, where Ay, = Apn and Agp = 0.
Similarly in the tube 7o, we have the almost split sequences of the
form

0— Ba,n - Ba—l,n—l @ Ba,n+1 i Ba—l,n —0

forall a =p+1,...,p+q,n >0, where B, ,, = Bypiqn and B, o = 0.
In particular, TP Ay = Agpn and T9Bgy p, = Bop for any r € Z.

COROLLARY. Let M be an arbitrary A-module.
(i) For any A € k\ {0}, n > 1 we have
My, (M) = mp(F(A).
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(i) Foranyn>0,a=1,...,p,b=p+1,...,p+ q we have
MAGn (M) = [Ma Aa—l,n] - [Ma Aa—l,n—l-l] - [M, Aa,n—l] + [M> Aa,n]a
meﬂl (M) = [M7 Bb—l,n] - [M7 Bb—l,n—l] - [M7 Bb,n—i—l] + [M7 Bb,n]-

Proof. (i) follows from Lemma 5.2 and the fact that ¥ preserves almost
split sequences for indecomposables from the tubes 7, A € k\ {0} (see
Proposition 5.3).

(ii) follows immediately from Proposition 5.3. =

REMARK. Precise formulas giving the multiplicities for postprojective
and preinjective indecomposables can be obtained as in Lemma 4.2 by apply-
ing the shape of the postprojective and preinjective component (see Propo-
sition 5.3(iii)). We do not present them because of their rather complicated
form. In particular, to compute the multiplicities of the form mp, , for all
a € Qp, we use right minimal almost split homomorphisms in the “start-
ing” full subquiver {0} x Q°° of —NQ°P. We can inductively continue this
procedure using the shape of the quiver —NQ°P.

5.4. Let M be an arbitrary A-module (notations as in 5.2). We have an
analogous necessary and sufficient condition for a module from the tube 7},
A € k\ {0}, to be a direct summand of a given module M.

LEMMA. Ry, n, Ao € k\ {0}, is a direct summand of M, for some
n > 1, if and only if Ao is a common root of all (by — s)-minors of the
matriz A — \B, regarded as polynomials from k[)\], where A = A,--- Ay,
B = B, --- B, and s is the sum of the multiplicities of indecomposable post-
projective direct summands of M. Moreover, the number of indecomposable
direct summands of M from the tube 7T, is equal to by — (A — AB) — s for
any A € k\ {0}.

Proof. Since every postprojective module is of the form 7= ™ F , for some
m >0, a € Qo and regular modules from 7 for A € k\ {0} are 7-invariants
(see Proposition 5.3), we have [P_;q, Ry,] = n for all i > 0, a € Qo,
A € k\ {0}, n > 1. Then the argument from the proof of Proposition 4.4
yields [M, Ry, 1] > s and the inequality is strict if and only if Ry, , is a direct
summand of M for some n > 1. Now by the properties of the functor ¥ (see
Lemma 5.2), we obtain the assertion of the lemma. m

5.5. Now we modify the consecutive steps of Algorithm 4.5 and briefly
outline the algorithm detecting the multiplicity vectors in the general A, ,
case, under the assumption as in 4.5. We also assume that a A-module M is
given by data as in 5.2.
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ALGORITHM (the general case).
Input: A A-module M.
Output: The multiplicity vector m(M).

(14-2) Determining the multiplicity vector for postprojective and prein-
jective components:
set n:=0
while there exists a=1,...,p+¢ with dim, P_, , < codim;, M, do {
for ¢ =p+ q downto 1 do
compute the number mp_

n:=n-+1

(see Remark 5.3)

n,i

}

Here codim;, M is the difference between dim; M and the dimension vector
of the direct sum of the indecomposable direct summands already detected
by the algorithm.

For preinjective modules the procedure is an analogous generalization
of that for the Kronecker case (i.e. computing the dimensions [X, M| for

X el).

(8) Determining the multiplicity vector for Ty with X € k\ {0}: Let
{A1,..., A} be all common roots of (b, — s)-minors of the matrix A — A\B
treated as polynomials from k[A] (see Lemma 5.4).

By Corollary 5.3(i), to compute multiplicities, we apply the main part
of Algorithm 4.5(3) for {A1,...,\:} and representation ¥ (M) (now j; =
by —t(A—NB)—sfori=1,...,t, see Lemma 5.4).

(4) Determining the multiplicity vector for Ty and Ts:
set n:=1
while there exists a=1,...,p such that dim, A, , < codim;, M, do {
for t=1 to p do
compute the number my,,, (apply Corollary 5.3(ii))
n=n+1

}

For modules from the tube 7., we proceed analogously. =

REMARK. (i) The correctness and stop property for the algorithm for-
mulated above follow by arguments analogous to those from Remark 4.5.

(ii) To determine the number mp_, ,, in each loop execution we have to
compute only one new dimension [M, P_, ,] (the remaining needed dimen-
sions are already computed in the previous loop execution). Analogously,
to determine m4 for any n > 2 and a = 1,...,p, we compute just

a—1,n
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one new dimension [M, Aq_1 5+1] and use the already computed dimensions
[Ma Aafl,n]a [Ma Aa,nfl]a [M7 Aa,n]-

Notice that also in the general case, the shape and nature of the above
procedures motivate searching for an “inductive” method of computing the
dimensions h(M)x = [M,X]. In the next paragraphs we present our pro-
posal of handling this problem.

5.6. We start by observing that (from the construction) for any n > 0
and a = 1,..., p+q there exist uniquely determined m > 0,4 € {2,...,p+1},
j€{2,...,q+ 1} (and vice versa) such that P_, , = X(aiyp(ﬁ_la)mﬁjqu),
where a1, = 6q_+117q = (p + q). Analogously, for any n’ > 0 and o =
1,...,p + q there exist uniquely determined m’ > 0, ¢’ € {0,...,p — 1},
j€{0,...,¢—1} (and vice versa) such that I, ,» = X(ﬁl_’;,(aﬁfl)m/alyi/),
where a1 = ﬁié = (1). Similarly, for any m > 1 and a = 1,...,p,
we have Qgm = asp(fta)"B tar, for some n > 0, s € {2,...,p + 1},
te€{0,....p—1} or @gm = o j for some 2 < i < j<p—1or @m = (a)
(if m =1, a # 1). Analogously for any m’ > 1 and d’ =p+1,....,p+¢q
we have Ba/m, = 6i;a(ﬁ*1a)”lﬁs_,}q for some n’ >0, s € {2,...,q+ 1},
' €{0,...,q—1} or By = ﬁi_’jl for some 2 < i < j < g—1or By v = ()
(ifm' =1,d #p+q).

To describe an inductive method of computing, for a given M, the di-
mensions [M, X] (resp. [M, X]) for all indecomposables X from an individual

component, we proceed as in the Kronecker algebra case. (We use the nota-
tion for M established in 5.2.)

LEMMA. Let M be a finite-dimensional A-module given by data as in 4.3.
Then

® [M, X (i (5 a)mﬁjq)] — (m + 1)by — r(ME™),

(i) [X (51,]"(045 Y™ ), M) = (m' + 1)a; — r(MJ Amhy,
(i) [M, X (asp(B7" )”ﬂ R O] = (0 + Dby + agpr — r(M5™™),
(iv) [M, X(ﬁl_,t/a(ﬁ )] = (n' +1)bg + by — r(Mg’S””),

for all m,m’,n,n’ >0, i,s € {2,...,p—|—1}, s €{2,...,q+ 1}, t,i' €
{0,...,p—1}, 7', ¢ €{0,...,q — 1}, where

ME"™ € M((mt1)by) x (mar-+as_1-+b;2) (k)
M} e I\/H((m’—i-l)al)x(m'bq‘*“W+2‘*‘bj’+1)(k)7
szt’n S M((n+1)bq+at+1)><((”*Daﬂras—l)(k)’

t',s' n'
Mp™"" € M((n/41)bg b, ) x (/4 Day +b,y ) (K)
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are the block matrices

Apici B 0 0 0
-A B 0 0
T 0 -A B 0
P = . ’
0 0 —-A B 0
i 0 0 0 —A Bgj-1 |
— _t p— -—
Ay BY 0 0 0
0o -—-A B 0 0 0
e 0 0 —-A" Bt 0 0
I = . )
0 0 0o —-A Bt 0
_t p—
0 o - 0 0 -A B, ]
[ A,s1 B 0 0 1
0 -A B 0
A 0 -A B
A - )
0 —-A B
i 0 —Ay
[ Byy-1 A 0 0 ]
0 -B A 0
g 0 0 -B A
B = )
0 o --- 0 —-B A
0 0 -+ 0 0 —By, |

Qghere_/_l&t = A81_45_1 . --A_t and Es,t = ByBy_1---B; for s > t, and A =
Ap1, B=DBg1, Aop =1, Bop = 1.

SUBLEMMA.

(i) The dimensions of the solution spaces for the systems of linear equa-
tions
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$1C() = O,

z2C1 = 1,

zn—&-lCn = Tn,

and

Tpy1Cp---Co =0
are equal for any n > 1 and any matrices Cy,...,C, of suitable
sizes, where x1,...,xny1 are the unknown row vectors.

(ii) The dimensions of solution spaces of the systems of linear equations

( ymDm = Ynm-1,

y2D2 = y1,
nD1 =,

x2C1 =z,

g mn—l—lcn = Tn,

and

YmDm -+ D1 = xn-{—lCn" -Ch
are the same for any n,m > 1 and any matrices Cq,...,Chn,
D1, ..., Dy, of suitable sizes, where x1,...,Tnt1,Y1,--.,Ym are the

unknown row vectors.

Proof. The assertions follow easily by applying appropriate elementary
transformations and dropping the equations containing those vectors x; that
are determined by the other ones (see the proof of Lemma 4.6). m

Proof of Lemma. Fix a postprojective indecomposable module of the
form X (w) with w = ai,p(ﬂ_la)mﬂj_ql. By the properties of the functors F
and F, (cf. 3.1) we have

Hom (M, X (w)) ~ Hom 3(Fe(M), V (w)),
therefore to compute [M, X (w)], we consider the space Hom 7(Fe (M), V (w)),

where w is a fixed lifting of the walk w (F(V(w)) = X (w)). Any homomor-
phism f: F¢(M) — V(w) is given by a collection

J=1{%a Tazprs - Tap y U{Ypys - - - ,yiq}gnzl
U {‘TZN s 7‘T2p};n=1 U {ybj_17 o 7ybq}
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of row vectors satisfying the commutative diagram

a_‘?ifl v Ap . Bq By Aq Ap o Ap . Bg

kil p k@i, — » kb — . e— kO — .. kba. .. kPg
1 1 2

l ll’ai lybq Tay lybq lybq

0 1 1 1 1 1 1 1

or equivalently the system
.
o 0,
xaH,lAi - xaiv
1 _
yqup - I'ap,
1 B _ .1
Yp, Pa = Yo, 1>
1 _ .1
yblBl - “%ayp»
1 _ 1
T, Al = Ty,
(%) .
2 _ .1
Yp, Ap = Tg,,
yqup = 963;,7
yquq = ybq_17
ybij = ybjfla
Yo, Bj—1 =0,

of linear equations. By the sublemma (with (i) applied to

B B
J ) j—1
e kbl & b2

.

~— k <—0

the first p — 7+ 2

equations and the last ¢ — j + 2 equations, and (ii) to the remaining part),
the dimension of the solution space for (x) is the same as that for the sys-

tem
Uy, Api-1 =0,
w,B =y A
(%)’ I -
w, B =4,
B = A,
yquq,j—l =0
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As a block matrix equation, (x)" has the form

[ygq,...,yb s Yby| - M’Jm =0,
and consequently, (i) is proved.
It is easy to check that applying the standard duality D : mod A —
mod A°P we obtain (ii) (notice that A°P? = kQ°P and Q°P is a quiver of type

;&qJ))'
Formulas (iii) and (iv) follow by applying similar arguments. m

REMARK. It remains to show how to compute the dimension [M, A, ]
for Agn = X(Qan), when @gp, = gt or @gp, = (a) for 2 < s <t <p-1,
2 < a < p—1. In the first case [M,A,] is equal to the dimension of
the solution space for the system A;---AsAs;_1x = 0, and in the second
case to that for A,_12 = 0. Analogously, if 3,, = ﬁ;tl or 3,, = (a) for
2<s<t<qg-1,p+1<a<p+q—1,then [M,B,,] is the dimension of
the solution space of B;--- BsBs_1x = 0 or B,_,x = 0, respectively.

5.7. The fact below, just as before, is crucial for improving efficiency

of computing coordinates of the vector h(M), and indicates an inductive
method of rank computation for the family of matrices from Lemma 5.6.

LEMMA. Let N = N (A, i1, A, B) be a family of generalized upper tri-
angular matrices Ny, | € N, defined inductively, for a fized i, by setting

Ny =[A,;-1|B] and

Nij1= [ B 2
U
(l) (1)
where Nj = M ; Nllz with mazximal zero block N(l) containing lay columns
IO 21
21 22
and Uy = | ™ O] Then v(Nis1) = r(N) + (00) — 1(VD);
v= | % 5| Then r(Nig1) = r(N;) + v(Up) — r(Nyy ); moreover,

O with mazimal zero block UQ(ll) con-
21 22

taining a1 columns. Moreover, for any m,n and fixzed j,t we have

r(ME™) = 1(N,,.) — e(NS3) + x(T7),

A () (l)
NQ(IQ) = U2(l2_1), where U; = [U“ Y1 }

r(M"") = r(Nup1) = v(Ng ™) 4 2(Z010),
;[N o ;o [ ety
where U,, = [ i, Eq,j1:| and Z, 1 = [ L
Proof. This follows easily by analysis of Gauss elimination.

5.8. Finally, we summarize previous remarks concerning efficiency of our
procedures, by estimating briefly the pessimistic complexity of the algorithms
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for &p’q—algebras and comparing it to the “naive” approach. We also dis-
cuss perspectives and possibilies for generalizations of our methods to other
classes of algebras.

Notice first that, except for solving polynomial equations, Algorithms 4.5
and 5.5 can be “automatized”. One can also consider the situation of k£ being
a finite field; in this case the algorithms can be “fully automatized”.

LEMMA. FEzxcluding the problem of solving polynomial equations, the pes-
simistic complexity of Algorithm 5.5 (for fived p, q) is O(m?*), where m is the
dimension of the given module M.

Proof. Set m = dimy M. First we consider the Kronecker algebra case
(i.e. Algorithm 4.5). It is obvious that the loop in step 1 is executed at most
m times (see the loop condition), and similarly in steps 2 and 4. Analyzing
step 3, we see that mj+---+m; cannot be greater than m (B;_, B2, Rij’j
is a direct summand of M), so the inner loop in step 3 is also executed at
most m times. All these executions rely on computing the dimensions [M, P}
(resp. [1;, M], [M, R)]), i.e. performing Gauss elimination for matrices of
size at most 2nyx2n; (see Lemma 4.7 and Remark 4.7(ii)). Since m = nj+na
and the complexity of Gauss elimination on an n x n matrix is O(n?), the
assertion holds for the Kronecker algebra case.

The analysis of the complexity for Algorithm 5.5 is similar, since we have
Lemma 5.7 at our disposal. In the new estimation one should only multiply
the parameters from the previous one by p + ¢ (a constant which does not
affect the complexity). =

REMARK. (i) The estimations in the proof above are very rough, so in
practice the relevant algorithms can be much more efficient. In particular,
this is the case if the support of M does not contain all vertices of @), or
more generally, the disposition of coordinates in dim; M is not enough “ho-
mogeneous”.

(ii) Note that Lemmata 4.7 and 5.7 essentially improve the efficiency of
the algorithms. In general, without this improvement, the rank computations
are realized by Gauss elimination for matrices of increasing sizes estimated
by im xim, fori =1,...,m (see Remark 4.7(ii)). In that case the complexity

is O(1, (im)?) = O(m’).

A final comment. The method of determining multiplicity vectors for
modules, proposed in this paper, can be adopted for other classes of al-
gebras; in particular, for domestic canonical algebras and hereditary tame
algebras. The expected pessimistic complexities of the relevant algorithms in
these situations are similar to that in the case of A, ;-algebras. We strongly
believe that the existence of such an algorithm with reasonably low polyno-
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mial complexity depends on the structure and shape of the module category
considered, rather than on a precise description of canonical forms for inde-
composables. We have already obtained some results in this direction. They
will be presented in forthcoming publications.
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