VOL. 108

2007

NO. 1

EMBEDDING A TOPOLOGICAL GROUP INTO A CONNECTED GROUP

BҮ

RYO OHASHI (Wilkes Barre, PA)

Abstract. It was proved in [HM] that each topological group (G, \cdot, τ) may be embedded into a connected topological group $(\hat{G}, \bullet, \hat{\tau})$. In fact, two methods of introducing $\hat{\tau}$ were given. In this note we show relations between them.

At the beginning let us recall Hartman and Mycielski's construction of the embedding of a topological group G into a connected group \widehat{G} ([HM]).

If (G, \cdot) is a group, then all functions from the interval [0, 1) to G form a group with the pointwise multiplication $f \bullet g(x) = f(x) \cdot g(x)$. Of course G is isomorphic to the subgroup of all constant functions. If \widehat{G} denotes the subset of all step functions, i.e. $f \in \widehat{G}$ if there are points $a_0 = 0 < a_1 < \cdots < a_n = 1$ such that $f|_{[a_{i-1},a_i)}$ is a constant, for $i = 1, \ldots, n$, then (\widehat{G}, \bullet) is a group.

Given a topological group (G, \cdot, τ) one can construct a topology $\hat{\tau}$ making $(\hat{G}, \bullet, \hat{\tau})$ a topological group. Namely, let β denote a symmetric open basis of the neutral element $e \in G$ and let m stand for the Lebesgue measure on [0, 1). Put $N(V, \varepsilon) = \{f \in \hat{G} : m(f^{-1}(G \setminus V)) < \varepsilon\}$ for $\varepsilon > 0$ and $V \in \beta$. Then $\{g \bullet N(V, \varepsilon) : g \in \hat{G}, \varepsilon > 0, V \in \beta\}$ is a basis for the topology $\hat{\tau}$.

If d is a metric on G, then $\widehat{d}(f,g) = \int_0^1 d(f(x),g(x)) dx$ defines a metric \widehat{d} on \widehat{G} and if (G, \cdot, τ_d) is a topological group, then $(\widehat{G}, \bullet, \tau_{\widehat{d}})$ is a topological group as well, where $\tau_d, \tau_{\widehat{d}}$ denote the topologies generated by d, \widehat{d} .

For $x_0, x_1 \in G$ the family $\{f_t\}_{t \in [0,1]} \subset \widehat{G}$, where $f_t([0,t)) = x_0$ and $f_t([t,1)) = x_1$, is an arc in both topologies $\tau_{\widehat{d}}$ and $\widehat{\tau}$ on \widehat{G} . Moreover, in both topologies \widehat{G} is arcwise and locally arcwise connected.

A natural question arises: if the topology τ in (G, \cdot, τ) is generated by a metric d, is then $\hat{\tau}$ the same topology as the one generated by \hat{d} ? In other words: is it true that $\hat{\tau} = \tau_{\hat{d}}$? We show in Proposition 1 that it

²⁰⁰⁰ Mathematics Subject Classification: Primary 54A10; Secondary 54C25, 22A05. Key words and phrases: topological group, embedding, connected group.

is not the case in general, however for bounded metrics it holds true (see Theorem 2).

PROPOSITION 1. Let $(\mathbb{Z}, +, \tau)$ be the additive group of integers with the discrete topology τ generated by the Euclidean metric d. Then $\hat{\tau} \subsetneq \tau_{\hat{d}}$, i.e. the metric \hat{d} generates a stronger topology $\tau_{\hat{d}}$ than $\hat{\tau}$ on $\hat{\mathbb{Z}}$.

Proof. First we will show that $\hat{\tau} \subset \tau_{\hat{d}}$. Let $N(V, \varepsilon) \in \hat{\tau}$ be a neighborhood of the neutral element $\hat{0} \in \hat{\mathbb{Z}}$. Choose $n \in \mathbb{N}$ such that $1/n < \varepsilon$. Consider a ball $B(\hat{0}, 1/n^2) \in \tau_{\hat{d}}$, i.e. the set of all functions in $\hat{\mathbb{Z}}$ with distance $< 1/n^2$ to the constant function $\hat{0}(x) = 0$. For $f \in B(\hat{0}, 1/n^2)$ we have $\hat{d}(f, \hat{0}) = \int_0^1 |f(x) - \hat{0}(x)| \, dx = \int_0^1 |f(x)| \, dx < 1/n^2$. Since $\{x \in [0, 1) : f(x) \notin V\} \subset \{x \in [0, 1) : f(x) \neq 0\} = \{x \in [0, 1) : |f(x)| \ge 1/n\}$, we obtain $m(\{x \in [0, 1) : f(x) \notin V\}) \le m(\{x \in [0, 1) : |f(x)| \ge 1/n\}) < 1/n < \varepsilon$. This shows $B(\hat{0}, 1/n^2) \subset N(V, \varepsilon)$.

Conversely, we consider a ball $B(\widehat{0}, 1/n) \in \tau_{\widehat{d}}$. Suppose for contradiction that $\tau_{\widehat{d}} \subset \widehat{\tau}$, hence $N(V, \varepsilon) \subset B(\widehat{0}, 1/n)$ for some $V \in \beta$ and $\varepsilon > 0$. Let $\{f_k\}_{k=1}^{\infty}$ be a sequence defined by $f_k = k^2 \chi_{[0,1/k)}$. Then $f_k \in N(V, \varepsilon)$ for $k > 1/\varepsilon$. On the other hand, $\widehat{d}(f_k, \widehat{0}) = \int_0^1 |f_k(x)| \, dx = k$, thus $f_k \notin B(\widehat{0}, 1/n)$ for all $k \in \mathbb{N}$.

We can improve the statement of Proposition 1 as follows:

THEOREM 2. Let $(G, \cdot, \tau_{\varrho})$ be a topological group with the topology τ_{ϱ} generated by a metric ϱ . If ϱ is bounded, then the metric $\hat{\varrho}$ generates the topology $\tau_{\hat{\varrho}}$ coinciding with $\hat{\tau}_{\varrho}$ on \hat{G} . In particular, if G is compact, then $\hat{\tau}_{\varrho} = \tau_{\hat{\varrho}}$.

Proof. Let e and \hat{e} denote the neutral elements of G and \hat{G} (respectively), where \hat{e} is the constant function $\hat{e}(x) = e$. Let $B_r(e) \subset G$ and $\widehat{B_r(\hat{e})} \subset \widehat{G}$ denote the open balls of radius r centered at e in (G, ϱ) and centered at \hat{e} in $(\widehat{G}, \widehat{\varrho})$, respectively. Let $\lambda \in \mathbb{R}$ be such that $\varrho(x, y) \leq \lambda$ for all $x, y \in G$.

First we will show $\widehat{\tau_{\varrho}} \subset \tau_{\widehat{\varrho}}$. Suppose $N(V, \varepsilon) \in \widehat{\tau_{\varrho}}$ is given, where $e \in V \in \tau_{\varrho}$ and $\varepsilon > 0$. There is $0 < r < \varepsilon$ such that $B_r(e) \subset V$. For $\delta = r^2$, we show that $\widehat{B_{\delta}(\widehat{e})}$ is a subset of $N(V, \varepsilon)$, so we suppose $g \in \widehat{B_{\delta}(\widehat{e})}$.

Put $E = \{x \in [0,1) : \varrho(g(x), \hat{e}(x)) \ge r\}$ and $F = [0,1) \setminus E$.

Observe that $m(E) < \varepsilon$. Indeed, since $m(E) = (1/r) \int_E r \, dx$, we have

$$m(E) \leq \frac{1}{r} \int_{E} \varrho(g(x), \widehat{e}(x)) \, dx \leq \frac{1}{r} \int_{0}^{1} \varrho(g(x), \widehat{e}(x)) \, dx = \frac{1}{r} \, \widehat{\varrho}(g, \widehat{e}) < \varepsilon.$$

Further note that $g(F) \subset V$. Indeed, suppose $y \in g(F)$, hence y = g(x)for some $x \in F$. Thus, $\varrho(g(x), \hat{e}(x)) < r$, which implies $y = g(x) \in B_r(e) \subset V$. Therefore $m(\{x \in [0, 1) : g(x) \notin V\}) \leq m(E) < \varepsilon$ and $g \in N(V, \varepsilon)$, which proves $\widehat{B_{\delta}(e)} \subset N(V, \varepsilon)$. Notice that this part of proof does not depend on the boundedness assumption on ϱ , hence $\widehat{\tau_{\varrho}} \subset \tau_{\widehat{\varrho}}$ is always true.

Next, we will show $\widehat{\tau_{\varrho}} \supset \tau_{\widehat{\varrho}}$. Suppose $\widehat{B_{\varepsilon}(\widehat{e})} \in \tau_{\widehat{\varrho}}$ is given. There is $V \in \tau_{\varrho}$ containing e such that $V \subset B_{\varepsilon/2}(e)$. Put $\delta = \varepsilon/2\lambda$. We prove that $N(V, \delta) \subset \widehat{B_{\varepsilon}(\widehat{e})}$. Suppose $g \in N(V, \delta)$. Let E and F be subsets of [0, 1) defined by $E = \{x \in [0, 1) : g(x) \in V\}$ and $F = \{x \in [0, 1) : g(x) \notin V\}$.

Since $V \subset B_{\varepsilon/2}(e)$, we have

$$\int_{E} \varrho(g(x), \widehat{e}(x)) \, dx \leq \int_{E} \frac{\varepsilon}{2} \, dx \leq \int_{0}^{1} \frac{\varepsilon}{2} \, dx = \frac{\varepsilon}{2}.$$

Since $g \in N(V, \delta)$ implies $m(F) < \delta$, we have

$$\int_{F} \varrho(g(x), \widehat{e}(x)) \, dx \leq \int_{F} \lambda \, dx = \lambda m(F) < \lambda \delta = \frac{\varepsilon}{2}$$

Therefore

$$\widehat{\varrho}(g,\widehat{e}) = \int_{E} \varrho(g(x),\widehat{e}(x)) \, dx + \int_{F} \varrho(g(x),\widehat{e}(x)) \, dx < \varepsilon,$$

and this implies $g \in \widehat{B_{\varepsilon}(\hat{e})}$ which completes the proof.

EXAMPLE 3. Consider a function $\rho : \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ defined by $\rho(m, n) = 1/2^k$, where k is the highest power of 2 that divides |n - m| for $n \neq m$, and $\rho(m, m) = 0$. Then ρ is a metric on \mathbb{Z} , called the "2-adic" metric, which is bounded. Therefore, we have $(\widehat{\mathbb{Z}}, \widehat{\tau_{\rho}}) = (\widehat{\mathbb{Z}}, \tau_{\widehat{\rho}})$.

Finally, I would like to remark that any metric ρ on a metric space (G, τ) is equivalent to a bounded metric ρ' . Such a bounded metric can be obtained by defining either $\rho' = \rho/(\rho + 1)$ or $\rho' = \min\{\rho, 1\}$. Thus, ρ and ρ' generate the same topology on G. If we use such a bounded metric ρ' on the group G, then the ρ' -topology and $\widehat{\tau_{\rho'}}$ topology are the same.

Acknowledgments. I thank Professor T. Christine Stevens who handed me [HM]'s paper for an expository poster session. I noticed that [HM] did not make explicit the relation between $\hat{\tau}$ and \hat{d} -metric topologies on \hat{G} which made me think about it. She supervised my work on this paper. I would also like to thank Professor David G. Costa of the University of Nevada, Las Vegas who taught me foundations of analytic problems.

REFERENCES

[HM] S. Hartman and J. Mycielski, On the embedding of topological groups into connected topological groups, Colloq. Math. 5 (1958), 167–169.

Department of Mathematics Kings's College 133 North River Street Wilkes Barre, PA 18711, U.S.A. E-mail: ryoohashi@kings.edu

> Received 23 June 2005; revised 15 October 2006

(4627)