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ON CERTAIN FOUR-DIMENSIONALALMOST KÄHLER MANIFOLDSBYW�ODZIMIERZ JELONEK (Kraków)Abstrat. We study four-dimensional almost Kähler manifolds (M, g, J) whih admitan opposite almost Kähler struture.0. Introdution. V. Apostolov and T. Draghii [A-D℄ studied almostKähler 4-manifolds satisfying Gray's seond urvature ondition (G2). Theyproved that suh manifolds admit an opposite Kähler struture J suhthat (M, g, J ) has J -invariant Rii tensor and symmetri ∗-Rii tensor.T. Oguro, K. Sekigawa and Y. Yamada [O-S-Y℄ proved that every stritlyalmost Kähler Einstein and weakly ∗-Einstein 4-manifold admit two om-plementary foliations and have to be Rii �at. Nurowski and Przanowski[N-P℄ gave expliit examples of Einstein and weakly ∗-Einstein stritly al-most Kähler 4-manifolds. The examples admit two opposite almost Kählerstrutures, one of whih is Kähler.A. Gray [G℄ introdued the notion of A-manifolds. Davidov and Mu²ka-rov [D-M℄ gave examples of six-dimensional almost Kähler non-Kähler stru-tures on the twistor bundle over self-dual Einstein manifolds with negativesalar urvature. Davidov, Grantharov and Mu²karov [D-G-M℄ proved thatthese examples areA-manifolds. These examples were generalized by Alexan-drov, Grantharov and Ivanov [A-G-I℄ and later by the author [J-3℄. All theseexamples are proper A-manifolds and have Hermitian Rii tensor. On theother hand, A. Gray (see [G℄, [S-V℄) proved that every Kähler A-manifoldhas parallel Rii tensor. If we onsider almost Kähler manifolds then a sim-ilar result does not hold in general even if we assume that the Rii tensoris Hermitian.The aim of this note is to give a simple proof that every four-dimensionalalmost Kähler A-manifold with Hermitian Rii tensor has parallel Riitensor and to haraterize 4-manifolds (M, g) admitting two opposite almost2000 Mathematis Subjet Classi�ation: 53C15, 53B20.Key words and phrases: almost Kähler manifold, almost Kähler struture.The Editorial Committee apologizes to the author and readers for the unusually longdelay in the publiation of this paper. [7℄ © Instytut Matematyzny PAN, 2007



8 W. JELONEK
Kähler strutures. In partiular we prove that every stritly almost Kähler
4-manifold (M, g, J) with J-invariant Rii tensor and symmetri ∗-Riitensor admits an opposite almost Kähler struture J . We also prove thatan almost Kähler surfae whose Rii tensor is Hermitian and has onstanteigenvalues admits an opposite almost Kähler struture. In partiular everyKähler surfae whose Rii tensor has onstant eigenvalues admits an op-posite almost Kähler struture. Our results are onneted with the questionof Blair and Ianu³ (see [B-I℄, [D-1℄): �Is it true that every four-dimensionalalmost Kähler ompat manifold with Hermitian Rii tensor is Kähler?�and with the Goldberg onjeture (see [S-2℄).The present work was inspired by the example by Nurowski and Przanow-ski [N-P℄ of a stritly almost Kähler Einstein 4-manifold admitting an op-posite Kähler struture and by the paper [O-S-Y℄ by Oguro, Sekigawa andYamada. After writing the paper the author has learned that similar resultswere obtained by Apostolov, Armstrong and Draghii in [A-A-D℄.1. Preliminaries. Let (M, g) be a smooth, onneted and orientedRiemannian manifold. For a tensor T (X1, . . . , Xk) we de�ne a tensor
∇T (X0, X1, . . . , Xk) by ∇T (X0, X1, . . . , Xk) = ∇X0

T (X1, . . . , Xk). By aKilling tensor on M we mean an endomorphism S ∈ End(TM) satisfyingthe following onditions:(a) g(SX, Y ) = g(X,SY ) for all X,Y ∈ TM ,(b) g(∇S(X,X), X) = 0 for all X ∈ TM .We also write S ∈ A if S is a Killing tensor. We all S a proper Killing tensorif ∇S 6= 0. A Riemannian manifold is alled an A-manifold (after Gray [G℄)if its Rii tensor is a Killing tensor. An A-manifold is alled proper if itsRii tensor is a proper Killing tensor.Let (M, g, J) be an almost Hermitian manifold. We say that (M, g, J) isan almost Kähler manifold if its Kähler form Ω(X,Y ) = g(JX, Y ) is losed(dΩ = 0). In the following we shall onsider four-dimensional almost Kählermanifolds (M, g, J). Suh manifolds are always oriented and we hoose anorientation in suh a way that Ω is a self-dual form (i.e. Ω ∈
∧+M). Thevetor bundle of self-dual forms admits a deomposition

(1.1)
∧+M = RΩ ⊕ LMwhere LM denotes the bundle of real J-skew-invariant 2-forms (i.e. LM =

{Φ ∈
∧
M : Φ(JX, JY ) = −Φ(X,Y )}). The bundle LM is a omplex linebundle over M with the omplex struture J de�ned by (JΦ)(X,Y ) =

−Φ(JX, Y ). For a four-dimensional almost Kähler manifold the ovariantderivative of the Kähler form Ω is loally expressed by
(1.2) ∇Ω = α⊗ Φ− Jα⊗ JΦ
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where Jα(X) = −α(JX). The Rii tensor ̺ of an almost Hermitianmanifold (M, g, J) is said to be Hermitian (or J-invariant) if ̺(X,Y ) =
̺(JX, JY ) for all X,Y ∈ X(M). In what follows we shall onsider Killingtensors with two eigenvalues λ, µ. We denote by Dλ, Dµ the orrespondingeigendistributions Dλ = ker(S − λ Id) and Dµ = ker(S − µ Id).Let D be an oriented p-dimensional distribution in (M, g) and let
{E1, . . . , Ep} be an oriented orthonormal basis of D. Then the harater-isti form of D is the p-form ω de�ned by ω(X1, . . . , Xp) = det(g(Ei, Xj)).A distribution D is alled involutive or a foliation if [X,Y ] ∈ Γ (D) for allloal setions X,Y ∈ Γ (D). A foliation D is alled minimal if every leaf of Dis a minimal submanifold of (M, g), i.e. the trae of its seond fundamentalform (the mean urvature) vanishes. Analogously if D is a p-dimensionaldistribution then its seond fundamental form α (not symmetri in general)is given by the formula

α(X,Y ) = ∇XY − π(∇XY ) for any X,Y ∈ Γ (D).A distribution D is alled minimal if trg′ α = 0 where g′ = g|D. In thefollowing we shall assume that all almost omplex strutures we onsider areorthogonal with respet to g, i.e. g(X,Y ) = g(JX, JY ) for all X,Y ∈ X(M).An almost Kähler 4-manifold (M, g, J) is said to have an opposite al-most Kähler struture if it admits an orthogonal almost Kähler struture Jwith anti-self dual Kähler form Ω. For any almost Hermitian 4-manifold thefollowing formula holds:
(1.3) 1

2(̺(X,Y )+̺(JX, JY ))− 1
2(̺∗(X,Y )+̺∗(Y,X)) = 1

4(τ−τ∗)g(X,Y )where ̺∗ is the ∗-Rii tensor de�ned by
(1.4) ̺∗(X,Y ) = 1

2 tr{Z 7→ R(X, JY )JZ}where R(X,Y )Z = ([∇X ,∇Y ] −∇[X,Y ])Z and τ∗ = trg ̺
∗.The �rst Chern lass of (M, g, J) is represented by the form γ de�ned by

(1.5) 8πγ = −φ+ 2ψwhere
φ(X,Y ) = tr(Z 7→ J∇XJ ◦ ∇Y JZ),(1.6)

ψ(X,Y ) = tr(Z 7→ R(X,Y )JZ).(1.7)Note that ψ(X,Y ) = −2̺∗(X, JY ). We denote by D the nullity distributionof (M, g, J) de�ned by D = {X ∈ TM : ∇XJ = 0}. For an almost Kählermanifold it follows from (1.2) that D is J-invariant and dimD = 2 in M0 =
{x ∈ M : ∇Jx 6= 0}. We shall all the nullity distribution integrable if D|M0is integrable.The urvature tensor R of a four-dimensional manifold (M, g) determinesan endomorphism R of the bundle ∧

M de�ned by g(R(X ∧ Y ), Z ∧W ) =
R(X ∧ Y, Z ∧W ) = −R(X,Y, Z,W ) = −g(R(X,Y )Z,W ). Note that ̺∗ =
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JR(Ω) and τ∗ = 2R(Ω,Ω). Set R∧

+ M = p∧
+ M ◦R|

∧
+ M . Then trR∧

+ M

= τ/4.2. Almost Kähler four-dimensional manifolds with HermitianRii tensor. We start by realling some properties of A-manifolds andKilling tensors (see [J-1℄, [J-2℄):
Theorem 1. Let S be a Killing tensor on (M, g) with exatly two eigen-values λ, µ and a onstant trae. Then λ and µ are onstant on M . Thedistributions Dλ, Dµ are both integrable if and only if ∇S = 0.
Corollary 2. Let (M, g) be an A-manifold whose Rii tensor ̺ hasexatly two eigenvalues λ, µ. Then λ and µ are onstant. The Rii tensor ̺is parallel if and only if both eigendistributions of ̺ are integrable.
Theorem 3. Let S be a self-adjoint (1, 1)-tensor (g(SX, Y ) = g(SY,X))with two onstant eigenvalues λ, µ. Then S is a Killing tensor �eld if andonly if

(2.1) ∇S(X,X) = 0for all X ∈ Dλ and all X ∈ Dµ, or equivalently , if ∇XX ∈ Γ (Da) for allloal setions X ∈ Γ (Da) where a ∈ {λ, µ}.We shall prove (f. also [P-S℄):
Proposition 1. Let (M, g) be a four-dimensional A-manifold. Assumethat (M, g, J) is an almost Kähler manifold with Hermitian Rii tensor.Then either (M, g) is an Einstein spae, or (M, g, J) is a Kähler manifold.If (M, g) is not Einstein and is omplete then its overing spae is a produtof two Riemannian surfaes of onstant urvature.Proof. Write ̺(X,Y ) = g(SX, Y ) where S is the Rii endomorphismof (M, g). Sine ̺(JX, JY ) = ̺(X,Y ) we have S ◦ J = J ◦ S. Hene S hasat most two eigenfuntions, and sine (M, g) is an A-manifold, this meansthat either (M, g) is Einstein or S has exatly two onstant eigenvalues λ, µ,both of multipliity 2. Let Dλ, Dµ be the orresponding eigendistributions.They are both J-invariant. Let {E1, E2} be an orthonormal loal basis in Dλsuh that JE1 = E2, and {E3, E4} be an orthonormal loal basis in Dµ suhthat JE3 = E4. Sine S is a Killing tensor we have ∇XX ∈ Γ (Da) for all

X ∈ Γ (Da) where a ∈ {λ, µ}. Thus there exist smooth funtions α, β, γ, σsuh that
∇E1

E1 = αE2, ∇E2
E2 = βE1, ∇E3

E3 = γE4, ∇E4
E4 = σE3.From the relations JE1 = E2, JE2 = −E1, JE3 = E4, JE4 = −E3 we get

∇J(E1, E1) + J(∇E1
E1) = ∇E1

E2,(2.2a)

∇J(E2, E2) + J(∇E2
E2) = −∇E2

E1,(2.2b)
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∇J(E3, E3) + J(∇E3
E3) = ∇E3

E4,(2.2c)

∇J(E4, E4) + J(∇E4
E4) = −∇E4

E3.(2.2d)Note that a four-dimensional almost Hermitian manifold (M, g, J) is al-most Kähler if and only if its Kähler form is olosed (δΩ = 0) or equiv-alently if trg ∇J = 0. In dimension four an almost Hermitian manifold isalmost Kähler if and only if it is semi-Kähler. We have
(2.3) ∇J(JX, JY ) = −∇J(X,Y ).Note that from (2.3) we get
(2.4) ∇J(E1, E1) + ∇J(E2, E2) = 0.Consequently, summing up (2.2a) and (2.2b) we obtain [E1, E2] = −αE1 +
βE2. Analogously [E3, E4] = −γE3 + σE4. Thus the distributions Dλ, Dµare both integrable. From Theorem 1 it follows that the Rii tensor ̺ isparallel (∇̺ = 0) and Dλ, Dµ are both parallel. Thus (M, g) is loally aprodut of two Riemannian surfaes and J is one of the standard Kählerstrutures on suh a produt. If (M, g) is omplete and simply onneted thenfrom the de Rham theorem it follows that (M, g) is a produt of two (sim-ply onneted) omplete Riemannian surfaes of onstant urvature. Thus
M = S(λ)× S(µ), H(λ)×H(µ), S(λ)× T̃ , S(λ)×H(µ), or T̃ ×H(µ) where
S(λ) = CP

1 is the 2-sphere of onstant setional urvature λ > 0, T̃ = R
2(here µ = 0) and H(µ) is the two-dimensional hyperboli spae of onstantsetional urvature µ < 0. Hene the Riemannian overing of any ompletenon-Einstein 4-manifold (M, g) satisfying the above onditions is one of theseproduts.From the proof of Proposition 1 we have

Corollary. Let (M, g, J) be a four-dimensional almost Kähler A-man-ifold with Hermitian Rii tensor. Then (M, g) has parallel Rii tensor.
Remark. Note that there are examples of Einstein non-Kähler almostKähler 4-manifolds (see [N-P℄). Hene the two ases in the statement ofour proposition are di�erent and really our. Note also that there are ex-amples of almost Kähler four-dimensional A-manifolds with non-HermitianRii tensor (thus non-Kähler; Thurston's example is an almost Kähler A-manifold with non-parallel Rii tensor). Thus the hypothesis of HermitianRii tensor in Proposition 1 is neessary. Oguro and Sekigawa [O-S-1℄ gavean example of a stritly almost Kähler 4-manifold with parallel and non-Hermitian Rii tensor. L. Vanheke informed the author that Proposition 1is also an easy onsequene of [P-S℄ and [J-1℄. The proof we have given inour partiular ase is muh simpler.Let us reall the following well known fat.
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Proposition 2. A Riemannian 4-manifold (M, g) admits two (orthogo-nal) opposite almost Kähler strutures if and only if it admits two orthogonal ,two-dimensional oriented involutive and minimal foliations D1, D2 suh that

TM = D1 ⊕D2. If ω1, ω2 are harateristi forms of the foliations D1, D2then Ω = ω1 + ω2 and Ω = ω1 − ω2 give rise to two opposite almost Kählerstrutures J and J . An almost Kähler manifold (M, g, J) admits an oppositealmost Kähler struture if and only if it admits two orthogonal J-invarianttwo-dimensional foliations, or equivalently , if it admits two J-invariant two-dimensional orthogonal minimal distributions. If (M, g) is omplete and ad-mits two opposite Kähler strutures then its overing spae is a produt oftwo Riemannian surfaes (omplex urves).Reall that an almost Hermitian manifold (M, g, J) is said to satisfyondition (G3) of A. Gray if
(G3) R(JX, JY, JZ, JW ) = R(X,Y, Z,W )for all X,Y, Z,W ∈ X(M). Note that for every manifold satisfying (G3)we have R(LM) ⊂

∧+M , its Rii tensor ̺ is J-invariant and its
∗-Rii tensor is symmetri. Indeed, sine R(j(X ∧ Y ), j(Z ∧ W )) =
R(X ∧ Y, Z ∧ W ) where j(X ∧ Y ) = JX ∧ JY , we have R(ker(j − id),
ker(j + id)) = 0. Sine ker(j − id) =

∧−M ⊕ RΩ and ker(j + id) = LM weget g(R(LM),
∧−M ⊕ RΩ) = 0. Consequently, R(LM) ⊂ LM ⊂

∧+M .In fat, the ondition R(LM) ⊂
∧+M holds if and only if the Rii ten-sor ̺ of (M, g) is J-invariant (see [D-2, p. 5 (i)℄), and an almost Hermitian

4-manifold (M, g, J) with J-invariant Rii tensor and symmetri ∗-Riitensor satis�es (G3). In [O-S-Y℄ it is proved that every Einstein and weakly
∗-Einstein stritly almost Kähler manifold has both distributions D and
D⊥ integrable. We shall show that this also holds in a more general situa-tion.
Proposition 3. Let (M, g, J) be an almost Kähler 4-manifold with Her-mitian Rii tensor. Assume that (M, g, J) has symmetri ∗-Rii tensorand that |∇J | 6= 0 on M . Then both distributions D,D⊥ are minimal folia-tions and (M, g) admits an opposite almost Kähler struture J . Also D⊥ ⊂

ker d(τ∗ − τ) and the funtion |∇J | is onstant if and only if it is onstanton the leaves of the nullity foliation D.Proof. We start with a lemma:
Lemma A. Let (M, g) be a Riemannian 4-manifold and let D1, D2 be twotwo-dimensional orthogonal distributions. Let E1, E2 and E3, E4 be any loaloriented orthonormal bases of D1 and D2 respetively and let {θ1, θ2, θ3, θ4}be the dual o-basis. If there exists a positive funtion f suh that d(fθ3∧θ4)

= 0 then D1 is integrable.
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We shall prove Lemma A later. From (1.3) it follows that ̺∗(X, JY ) =

̺(X, JY ) + 1
4(τ − τ∗)Ω. Note (see [S-1℄) that the form φ is equal to φ =

1
2 |∇J |

2θ1 ∧ θ2 where θ1, θ2 is a o-frame dual to any orthonormal orientedbasis {E1, E2} of D⊥. Sine ψ(X,Y ) = 2̺∗(X, JY ) and τ − τ∗ = −1
2 |∇J |

2,we have
8πγ = −1

2 |∇J |
2θ1 ∧ θ2 − 4̺∗(X, JY ) = 1

2 |∇J |
2θ3 ∧ θ4 − 4̺(X, JY )where {E3, E4} is an oriented basis of D, and {θ3, θ4} its dual o-basis. Sinethe Rii form ̺(X, JY ) is losed (see Prop. 4, p. 165 of [D-1℄ and its proof)it follows from dγ = 0 that d(1

2 |∇J |
2θ3 ∧ θ4) = 0. From Lemma A andProposition 2 we infer that D⊥ is a minimal foliation.Next we prove

Lemma B. Let (M, g, J) be an almost Kähler four-dimensional manifoldwhose urvature tensor R satis�es the ondition R(LM) ⊂
∧+M . Then theKähler form Ω of (M, g, J) is an eigenform of the positive Weyl tensor W+,i.e. W+Ω = λΩ for λ ∈ C∞(M) (or equivalently (M, g, J) has symmetri

∗-Rii tensor) if and only if the nullity distribution D is integrable.Proof. Note that it is enough to prove the lemma for (M0, g, J). Thuswe an assume that D is a two-dimensional J-invariant distribution. Let
{E3, E4} be a loal orthonormal basis in D suh that E4 = JE3. Hene

∇E3
J = 0,(2.5a)

∇E4
J = 0.(2.5b)Consequently,

∇2
E4E3

J + ∇∇E4
E3
J = 0,(2.6a)

∇2
E3E4

J + ∇∇E3
E4
J = 0.(2.6b)Thus ∇2

E3E4
J −∇2

E4E3
J + ∇[E3,E4]J = 0. Hene

(2.7) R(E3, E4).J = −∇[E3,E4]J.Choose a loal orthonormal basis (for the details see [O-S-2℄) {E1, E2} of
D⊥ suh that JE1 = E2 and
(Ω) ∇Ω = α(θ1 ⊗ Φ− θ2 ⊗ Ψ)where Φ = θ1 ∧ θ3 − θ2 ∧ θ4, Ψ = θ1 ∧ θ4 + θ2 ∧ θ3 and α equals − 1

2
√

2
|∇J |.From (2.7) we obtain

(2.8) R(E3, E4, JX, Y ) +R(E3, E4, X, JY ) = −∇[E3,E4]Ω(X,Y ).Consequently,
(2.9.a) R(E3 ∧E4, E2 ∧E3 + E1 ∧E4) = R(E3 ∧E4, Ψ) = αθ1([E3, E4]),

(2.9.b) R(E3 ∧E4, E1 ∧E3 − E2 ∧E4) = R(E3 ∧E4, Φ) = αθ2([E3, E4]).
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Write a = R(E3 ∧ E4, Ψ), b = R(E3 ∧ E4, Φ), c = R(E1 ∧ E2, Ψ), and
d = R(E1 ∧ E2, Φ). Note that the form Ω = E1 ∧ E2 − E3 ∧ E4 is anti-self-dual (Ω ∈

∧−M). Thus c − a = 0 = d − b. We also have R(Ω,Φ) = b + dand R(Ω,Ψ) = a+ c. Consequently,
(2.10) R(Ω,Φ) = 2b = 2αθ2([E3, E4]), R(Ω,Ψ) = 2a = 2αθ1([E3, E4]).It is lear that Ω is an eigenform of W+ if and only if R(Ω,Φ) = 0 =
R(Ω,Ψ). The last two equations are equivalent to the symmetry of the ∗-Rii tensor (they also mean that the omponent W+

2 of the positive Weyltensor vanishes).Consequently, both D and D⊥ are minimal foliations. The form Ω =
θ1 ∧ θ2 + θ3 ∧ θ4 is the Kähler form of the almost Kähler struture J . Theform Ω = θ1∧θ2−θ3∧θ4 gives the opposite almost Kähler struture J . Sineboth D and D⊥ are foliations it follows that d(θ3 ∧ θ4) = 0 and onsequently
d(|∇J |2) ∧ θ3 ∧ θ4 = 0. Sine df =

∑
Eifθi we have E1|∇J |

2 = E2|∇J |
2 = 0.Sine D⊥ ⊂ ker d|∇J |2 it follows that |∇J | is onstant if and only if D ⊂

ker d(|∇J |2), whih means that |∇J | is onstant on the leaves of the folia-tion D.Proof of Lemma A. We have
(2.11) df ∧ θ3 ∧ θ4 + fd(θ3 ∧ θ4) = 0.Write df =

∑
aiθi. Thus

(2.12) a1θ1 ∧ θ3 ∧ θ4 + a2θ2 ∧ θ3 ∧ θ4 = −f(dθ3 ∧ θ4 − θ3 ∧ dθ4).From (2.12) we infer that the di�erential ideal generated by θ3, θ4 is losedand onsequently the distribution D1 is integrable.We say that an almost Hermitian manifold (M, g, J) satis�es the seondondition (G2) of A. Gray if its urvature tensor R satis�es
(G2) R(X,Y, Z,W ) −R(JX, JY, Z,W )

= R(JX, Y, JZ,W ) +R(JX, Y, Z, JW )for all X,Y, Z,W ∈ X(M). It is known that an almost Kähler manifold
(M, g, J) satis�es (G2) if and only if its Rii tensor is J-invariant, the ∗-Rii tensor is symmetri and the omponentW+

3 of the positive Weyl tensorvanishes (i.e. RLM = a idLM where RLM = pLM ◦ R|LM and pLM is theorthogonal projetion pLM :
∧
M → LM). It is well known that any almostKähler manifold satisfying (G2) also satis�es (G3). On the other hand, wehave the following as an appliation of our previous results. The impliation�if (G2) then |∇J | is onstant� is proved in [A-D℄.

Proposition 4. Let (M, g, J) be an almost Kähler manifold with J-invariant Rii tensor and symmetri ∗-Rii tensor. Then (M, g, J) satis�esondition (G2) if and only if |∇J | is onstant on M .
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Proof. From the assumptions we have W+
2 = 0. We shall show that theondition W+

3 = 0 is equivalent to |∇J | being onstant. We an assume that
|∇J | 6= 0 on M . From Proposition 3 it follows that both distributions D,D⊥are minimal foliations. Let {E1, E2, E3, E4} be a loal orthonormal framesuh that (Ω) holds. Then
(2.12) g(∇E1

JX, Y ) = αΦ(X,Y ), g(∇E2
JX, Y ) = −αΨ(X,Y ),

∇E3
J = 0, ∇E4

J = 0.Consequently,
g(R(E1, E3).JX, Y ) = −∇[E1,E3]Ω −E3αΦ− αp(E3)Ψ,(2.13a)

g(R(E1, E4).JX, Y ) = −∇[E1,E4]Ω −E4αΦ− αp(E4)Ψ,(2.13b)

g(R(E2, E3).JX, Y ) = −∇[E2,E3]Ω +E3αΨ − αp(E3)Φ,(2.13c)

g(R(E4, E2).JX, Y ) = −∇[E4,E2]Ω −E4αΨ + αp(E4)Φ,(2.13d)where the loal 1-form p is de�ned by p(X) = 1
2g(∇XΦ, Ψ). Sine R(LM)

⊂
∧+M it is lear that

g(R(E1, E3).JX, Y ) = g(R(E4, E2).JX, Y ),(2.14a)

g(R(E3, E2).JX, Y ) = g(R(E4, E1).JX, Y ).(2.14b)Consequently, from (2.13) and (2.14) we get
R(Φ, Ψ) = −2g(R(E1, E3).JE1, E3) = 2(E3α+ αθ1([E1, E3])),(2.15a)

R(Φ, Ψ) = −2g(R(E2, E3).JE3, E2) = 2(E3α+ αθ2([E2, E3])),(2.15b)

R(Φ,Φ) = −2g(R(E4, E2).JE3, E2) = −2(E4α− αθ2([E4, E2])),(2.15c)

R(Ψ, Ψ) = −2g(R(E1, E4).JE1, E3) = −2(−E4α−αθ1([E1, E4])).(2.15d)Sine D⊥ is a minimal foliation we have θ1([E1, E3]) + θ2([E2, E3]) = 0 and
θ1([E1, E4]) − θ2([E4, E2]) = 0. Thus from (2.15) we get R(Φ, Ψ) = 2E3αand R(Φ,Φ) −R(Ψ, Ψ) = −4E4α. Sine from Proposition 3 we have E1α =
E2α = 0 it follows that |∇J | is onstant if and only if R(Φ, Ψ) = 0 and
R(Φ,Φ) = R(Ψ, Ψ). The last two equalities are equivalent to the vanishingof the omponent W+

3 of the positive Weyl tensor W+.
Proposition 5. Let (M, g, J) be an almost Kähler manifold with Her-mitian Rii tensor and symmetri ∗-Rii tensor. Assume that |∇J | 6= 0on M . Then the opposite almost Hermitian struture J determined by theminimal foliations D,D⊥ is almost Kähler. The distribution D⊥ is ontainedin the nullity distribution of J .Proof. The �rst part of the proposition is an immediate onsequene ofPropositions 2 and 3. We show that ∇XΩ = 0 for any X ∈ D⊥. Choose aloal orthonormal frame {E1, . . . , E4} suh that (Ω) holds. Note that (we
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write ∇Xθi = ωj

i (X)θj , Φ = θ1 ∧ θ3 + θ2 ∧ θ4, Ψ = θ1 ∧ θ4 − θ2 ∧ θ3)
∇(θ1 ∧ θ2) = 1

2{Φ(ω4
1 + ω3

2) + Ψ(ω1
3 + ω4

2) + Φ(−ω4
1 + ω3

2) + Ψ(−ω1
3 + ω4

2)}.Analogously
∇(θ3 ∧ θ4) = 1

2{Φ(ω4
1 + ω3

2) + Ψ(ω1
3 + ω4

2) − Φ(−ω4
1 + ω3

2) − Ψ(−ω1
3 + ω4

2)}.Note that ∇Ω = a ⊗ Φ + b ⊗ Ψ and ∇Ω = a′ ⊗ Φ + b′ ⊗ Ψ where withour assumptions a = αθ1 and b = −αθ2. On the other hand, a = ω4
1 + ω3

2,
b = ω1

3 + ω4
2 and

(2.16a) αθ1 = ω4
1 + ω3

2 , −αθ2 = ω1
3 + ω4

2 ,

(2.16b) a′ = −ω4
1 + ω3

2 , b′ = −ω1
3 + ω4

2.It is lear that D⊥ is in the nullity distribution of J if a′(E1) = a′(E2) = 0.Write Γ i
jk = ωi

j(Ek). Then a′(E1) = Γ 3
21 − Γ 4

11 and a′(E2) = Γ 3
22 − Γ 4

12. Notethat from (2.15a,b) we have
(2.17) Γ 3

11 = Γ 3
22 = 0and sine trR∧

+ M = τ/4 we have R(Φ,Φ) + R(Ψ, Ψ) = τ/2 − R(Ω,Ω) =

(τ − τ∗)/2 = −2α2, so that from (2.15,d) we obtain
(2.18) Γ 4

11 = −Γ 4
22 = α/2.From (2.16a) we have

(2.19) Γ 4
11 + Γ 3

21 = α, Γ 3
22 + Γ 4

12 = 0.We infer from (2.18), (2.19) that Γ 4
11 = Γ 3

21 = α/2 and Γ 3
22 = Γ 4

12 = 0.Consequently, a′(E1) = a′(E2) = 0 and D⊥ is ontained in the nullity dis-tribution of J . It follows that in the set M ′
0 = {x : |∇J | 6= 0} the nullitydistribution of J is D⊥. From (2.7) we also get

(2.20) R(E3, E4).J = 0, R(E1, E2).J = 0.

Proposition 6. Let (M, g, J) be a four-dimensional almost Kähler man-ifold. Assume that (M, g, J) has Hermitian Rii tensor with onstant eigen-values. Then either (M, g) is Einstein, or (M, g, J) admits an opposite al-most Kähler struture J suh that (M, g, J ) has Hermitian Rii tensor. Onthe other hand , a 4-manifold with onstant salar urvature whih admitstwo opposite almost Kähler strutures with Hermitian Rii tensor is eitherEinstein or its Rii tensor has two onstant eigenvalues.Proof. We an assume that (M, g) has Rii tensor with exatly twoonstant eigenvalues λ, µ sine in the other ase it is Einstein. Let {E1, E2}be an orthonormal loal basis in Dλ suh that JE1 = E2 and let {E3, E4} bean orthonormal loal basis in Dµ suh that JE3 = E4; let {θ1, θ2, θ3, θ4} bea dual oframe. Reall that every four-dimensional almost Kähler manifoldwith Hermitian Rii tensor has losed Rii form α(X,Y ) := ̺(JX, Y ) (see
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Prop. 4, p. 165 of [D-1℄ and its proof). Sine α = λθ1 ∧ θ2 + µθ3 ∧ θ4 weobtain
(2.21) λd(θ1 ∧ θ2) + µd(θ3 ∧ θ4) = 0.On the other hand, d(θ1∧θ2)+d(θ3∧θ4) = 0. Thus we infer from (2.21) that
d(θ1 ∧ θ2) = 0 = d(θ3 ∧ θ4), i.e. the harateristi forms of the distributions
Dλ, Dµ are both losed. The tensor ̺ is learly invariant with respet to thealmost Kähler struture given by the form Ω = θ1 ∧ θ2 − θ3 ∧ θ4.Now assume that (M, g, J) is an almost Kähler manifold with Hermi-tian Rii tensor and onstant salar urvature whih admits an oppositealmost Kähler struture J suh that ̺ is also J -invariant. Let U = {x ∈M :
̺x has two eigenvalues}. Then U is an open set. Let λ, µ ∈ C∞(U) be eigen-funtions of ̺ in U . Choose a loal orthonormal frame {E1, E2, E3, E4}just as above. It is lear that J and J are given in U respetively by
Ω = θ1 ∧ θ2 + θ3 ∧ θ4 and Ω = θ1 ∧ θ2 − θ3 ∧ θ4. Thus both forms θ1 ∧ θ2 and
θ3 ∧ θ4 are losed. Sine α = λθ1 ∧ θ2 + µθ3 ∧ θ4 we obtain
(2.24) dλ ∧ θ1 ∧ θ2 + dµ ∧ θ3 ∧ θ4 = 0.Note that dλ =

∑4
i=1 aiθi and dµ =

∑4
i=1 biθi where ai = Eiλ and bi = Eiµ.From (2.12) we infer that

(2.25) a3θ3 ∧ θ1 ∧ θ2 + a4θ4 ∧ θ1 ∧ θ2 + b1θ1 ∧ θ3 ∧ θ4 + b2θ2 ∧ θ3 ∧ θ4 = 0.Thus a3 = a4 = b1 = b2 = 0. It follows that ∇λ ∈ Γ (Dλ) and ∇µ ∈ Γ (Dµ).Sine∇λ+∇µ = 0 it follows that λ and µ are onstant in U . Hene U = M .
Corollary. Assume that (M, g, J) is a Kähler 4-manifold whose Riitensor ̺ has two onstant eigenvalues. Then (M, g, J) admits an oppositealmost Kähler struture J , and ̺ is J -invariant. The struture J is Kählerif and only if (M, g) is loally a produt of two Riemannian surfaes ofonstant urvatures.Aknowledgments. The author is grateful to V. Apostolov, T. C. Dra-ghii and K. Sekigawa for sending him the preprints of their papers. Theauthor thanks T. Draghii for pointing out a mistake in the �rst version ofthe paper.The work was supported by KBN grant 2 P0 3A 01615.
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