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ON ALMOST KÄHLER TYPE (2G3) 4-MANIFOLDSBYW�ODZIMIERZ JELONEK (Kraków)Abstrat. We study four-dimensional almost Kähler manifolds (M, g, J) whih sat-isfy A. Gray's ondition (G3).0. Introdution. In [J℄ we have proved that every stritly almost Kählermanifold (M, g, J) (i.e. with |∇J | 6= 0) satisfying ondition (G3) admits anopposite almost Kähler struture J . In the present paper we prove thatevery ompat strongly non-Kähler almost Kähler 4-manifold (M, g, J) oftype (2G3) (i.e. of type (G3) aording to A. Gray's notation and suh that
J is also of type (G3)) admits a global opposite Kähler struture if the salarurvature τ satis�es the ondition {0}∩τ(M0) = ∅ where M0 = {x : ∇Jx = 0}.In partiular we prove that there does not exist a ompat strongly non-Kähler almost Kähler type (2G3) 4-manifold with negative salar urvature.We also prove that for a ompat four-dimensional almost Kähler manifold
(M, g, J) the opposite almost Kähler struture J de�ned on the set dom J =
{x : ∇Jx 6= 0} is Kähler. Our results are onneted with the question of Blairand Ianu³ (see [B-I℄, [D-1℄): �Is it true that every four-dimensional almostKähler ompat manifold with Hermitian Rii tensor is Kähler?� and withthe Goldberg onjeture (see [S-1℄, [S-2℄).1. Preliminaries. Let (M, g, J) be an almost Hermitian manifold. Wesay that (M, g, J) is an almost Kähler manifold if its Kähler form Ω(X, Y ) =
g(JX, Y ) is losed (dΩ = 0). In what follows we shall onsider four-dimen-sional almost Kähler manifolds (M, g, J). Suh manifolds are always orientedand we hoose an orientation in suh a way that Ω is a self-dual form (i.e.
Ω ∈

∧+ M). The vetor bundle of self-dual forms admits a deomposition
∧+M = RΩ ⊕ LMwhere LM denotes the bundle of real J-skew-invariant 2-forms (i.e. LM =

{Φ ∈
∧

M : Φ(JX, JY ) = −Φ(X, Y )}). The bundle LM is a omplex line2000 Mathematis Subjet Classi�ation: 53C15, 53B20.Key words and phrases: almost Kähler manifold, almost Kähler struture.The Editorial Committee apologizes to the author and readers for the unusually longdelay in the publiation of this paper. [19℄ © Instytut Matematyzny PAN, 2007



20 W. JELONEK
bundle over M with the omplex struture J de�ned by (JΦ)(X, Y ) =
−Φ(JX, Y ).The urvature tensor R of a four-dimensional manifold (M, g) determinesan endomorphism R of the bundle ∧

M de�ned by g(R(X ∧ Y ), Z ∧ W ) =
R(X ∧ Y, Z ∧ W ) = −R(X, Y, Z, W ) = −g(R(X, Y )Z, W ).The Rii tensor ̺ of an almost Hermitian manifold (M, g, J) is said tobe Hermitian (or J-invariant) if ̺(X, Y ) = ̺(JX, JY ) for all X, Y ∈ X(M).In the following we shall assume that (M, g, J) has Hermitian Rii tensor.This ondition is equivalent to R(LM) ⊂

∧+ M .For any loal frame {E1, E2, E3, E4} we shall write ∇Ei
Ej =

∑
k Γ k

ijEk.From [O-S℄ and [J℄ we get (f. also [O-S-Y℄)
Lemma A. Assume that (M, g, J) is an almost Kähler (G3) 4-manifoldand |∇J | 6= 0 on M . Let {E1, E2} be any loal orthonormal basis of D⊥.Then there exists a unique orthonormal basis {E3, E4} of D suh that

(Ω) ∇Ω = α(θ1 ⊗ Φ − θ2 ⊗ Ψ)where Φ = θ1 ∧ θ3 − θ2 ∧ θ4, Ψ = θ1 ∧ θ4 + θ2 ∧ θ3 and α = − 1
2
√

2
|∇J |. Also,

E4 = (2/α)αD⊥(E1, E1), E3 = (2/α)αD⊥(E1, E2),where αD⊥ is the seond fundamental form of D⊥. Moreover Γ 3
11 = Γ 3

22 =
Γ 4

12 = 0 and Γ 4
11 = −Γ 4

22 = Γ 3
12 = 1

2α.Let {E1, E2, E3, E4} be a loal orthonormal frame satisfying (Ω). Then
(1.1) g(∇E1

JX, Y ) = αΦ(X, Y ), g(∇E2
JX, Y ) = −αΨ(X, Y ),

∇E3
J = 0, ∇E4

J = 0.Reall that an almost Hermitian manifold (M, g, J) is said to satisfyondition (G3) of A. Gray if
(G3) R(JX, JY, JZ, JW ) = R(X, Y, Z, W )for all X, Y, Z, W ∈ X(M). Note that for every manifold satisfying (G3) wehave R(LM) ⊂

∧+ M , the Rii tensor ̺ is J-invariant and the ∗-Rii ten-sor is symmetri. Indeed, sine R(j(X ∧ Y ), j(Z ∧ W )) = R(X ∧ Y, Z ∧ W )where j(X ∧ Y ) = JX ∧ JY , we have R(ker(j − id), ker(j + id)) = 0. Sine
ker(j−id) =

∧− M⊕RΩ and ker(j+id) = LM we get g(R(LM),
∧− M⊕RΩ)

= 0. Consequently, R(LM) ⊂ LM ⊂
∧+ M . In fat, R(LM) ⊂

∧+ M ifand only if the Rii tensor ̺ of (M, g) is J-invariant (see [D-2, p. 5(i)℄), andan almost Hermitian 4-manifold (M, g, J) with J-invariant Rii tensor andsymmetri ∗-Rii tensor satis�es (G3).Let us reall that we have proved in [J℄ that an almost Kähler 4-manifold
(M, g, J) with Hermitian Rii tensor, symmetri ∗-Rii tensor (i.e. (M, g, J)satis�es the ondition (G3) of A. Gray) with ∇J 6= 0 on M has integrableboth distributions D = {X ∈ TM : ∇XJ = 0} and D⊥, and they determine
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an opposite almost Kähler struture J . In the following we shall assume that
(M, g, J ) also satis�es ondition (G3) and we shall all suh manifolds (2G3)almost Kähler manifolds.The distribution D⊥ is ontained in the nullity distribution DJ = {X ∈
TM : ∇XJ = 0} of the almost Kähler struture J . For a general almostKähler 4-manifold satisfying ondition (2G3) the opposite almost Kählerstruture J is de�ned only on the set dom J = {x ∈ M : ∇J 6= 0}. Thedistributions D,D⊥ are J-invariant foliations whih are eigendistributionsof the Rii tensor ̺ of (M, g). We shall denote by µ, λ the eigenvaluesorresponding to the distributions D,D⊥ respetively. We shall also write
β = − 1

2
√

2
|∇J |.Assume that β 6= 0 and let {E′

1, E
′
2} be an orthonormal frame of D⊥determined by {E3, E4}, i.e. suh that

∇Ω = β(θ4 ⊗ Φ − θ3 ⊗ Ψ).Then E′
1 = E1 cos φ + E2 sinφ, E′

2 = −E1 sinφ + E2 cos φ and from LemmaA it follows that
E′

1 = 2
β

q(∇E3
E4), E′

2 = 2
β

q(∇E4
E4),where q is the orthogonal projetion q : TM → D⊥. Hene the onne-tion oe�ients Γ i

kj with respet to the orthonormal frame {E1, E2, E3, E4}satisfy
Γ 1

34 = −Γ 2
33 = Γ 2

44 = 1
2 β cosφ, Γ 1

33 = −Γ 1
44 = Γ 2

34 = 1
2 β sinφ.Note that these relations are also valid when β = 0 (in this ase D is atotally geodesi foliation). In [J℄ we have proved that R(E1, E2).J = 0 and

R(E3, E4).J = 0. From (1.1) we obtain (see [J℄)
g(R(E1, E3).JX, Y ) = −∇[E1,E3]Ω − E3αΦ − αp(E3)Ψ,(1.2a)

g(R(E1, E4).JX, Y ) = −∇[E1,E4]Ω − E4αΦ − αp(E4)Ψ,(1.2b)

g(R(E2, E3).JX, Y ) = −∇[E2,E3]Ω + E3αΨ − αp(E3)Φ,(1.2c)

g(R(E4, E2).JX, Y ) = −∇[E4,E2]Ω − E4αΨ + αp(E4)Φ,(1.2d)

g(R(E1, E2).JX, Y ) = −∇[E1,E2]Ω − α∇E1
Ψ − α∇E2

Φ,(1.2e)where the loal 1-form p is de�ned by p(X) = 1
2g(∇XΦ, Ψ). Sine R(LM) ⊂

∧+ M it is lear that
g(R(E1, E3).JX, Y ) = g(R(E4, E2).JX, Y ),(1.3a)

g(R(E3, E2).JX, Y ) = g(R(E4, E1).JX, Y ).(1.3b)Note that p(X) = ω2
1(X) + ω4

3(X). Hene
0 = g(R(E1, E2).JE1, E3) = α(p(E1) − θ1([E1, E2]))(1.4a)

= α(2Γ 2
11 + Γ 4

13),
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0 = g(R(E1, E2).JE1, E4) = α(−p(E2) + θ2([E1, E2]))(1.4b)

= α(2Γ 1
22 − Γ 4

23).Note also that
g(R(E1, E4).JE2, E3) = α(−p(E4) + θ2([E1, E4])),(1.5a)

g(R(E2, E3).JE2, E3) = α(θ2([E2, E3]) + E3α).(1.5b)We have Γ 4
12 = Γ 2

33 = 0. Consequently, (1.5a,b) imply
(1.6) E3α = α(−p(E4) + θ2([E1, E4)) = α(2Γ 1

42 + Γ 3
44).Analogously we get

(1.7) E4α = α(2Γ 2
31 + Γ 4

33).2. Almost Kähler (2G3) manifolds. Reall that an almost Hermitian
4-manifold (M, g, J) satis�es ondition (G3) if and only if it has J-invariantRii tensor and symmetri ∗-Rii tensor. We start with
Lemma B. Assume that (M, g, J) is a (2G3) almost Kähler 4-manifoldand |∇J | 6= 0 on M . Then D,D⊥ are eigendistributions of the Rii tensor

̺ of (M, g). The eigenvalue orresponding to the distribution D⊥ is λ =
− 1

32 |∇J |2.Proof. The �rst part of the lemma is proved in [J℄. From (1.4) we obtain,similarly to [O-S, p. 109℄,
(2.1) R1234 = −2R1212 −

3
8(τ∗ − τ).We also have

R(Ω, Ω) = τ∗/2, R(Ω, Ω) = τ∗/2.Hene
R1212 + R3434 + 2R1234 = −τ∗/2,(2.2a)

R1212 + R3434 − 2R1234 = −τ∗/2.(2.2b)From (2.2) we have
R1212 + R3434 = −

τ∗ + τ∗

4
,(2.3)

R1234 =
τ∗ − τ∗

8
.(2.4)Thus from (2.1) it follows that

R1212 =
3τ − 2τ∗ − τ∗

16
,(2.5a)

R3434 =
−3τ − 2τ∗ − 3τ∗

16
.(2.5b)
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Sine τ∗ − τ = 1
2 |∇J |2 we an rewrite (2.4) and (2.5) in the following way:

R1212 = −
2|∇J |2 − |∇J |2

32
,(2.6a)

R1234 =
−|∇J |2 + |∇J |2

16
,(2.6b)

R3434 = −
2|∇J |2 + 3|∇J |2 + 16τ

32
.(2.6c)Note that

λ = ̺(E1, E1) = K(E1 ∧ E2) + K(E1 ∧ E3) + K(E1 ∧ E4),

λ = ̺(E2, E2) = K(E1 ∧ E2) + K(E2 ∧ E3) + K(E2 ∧ E4).Thus
2λ = −2R1212 + 2µ + 2R3434.Consequently, sine τ = 2λ + 2µ,

(2.7) λ − µ = R3434 − R1212 = −
|∇J |2

16
− λ − µ.We infer from (2.7) that λ = − 1

32 |∇J |2.
Corollary 1. Assume that (M, g, J) is a (2G3) almost Kähler 4-mani-fold. If an opposite almost Kähler struture J satis�es the ondition ∇J 6= 0on a set U ⊂ M , then on U the salar urvature τ is negative and 16τ =

−(|∇J |2 + |∇J |2). In partiular , if τ ≥ 0 on M then (M, g, J ) is Kähler.Proof. Sine (M, g, J ) also satis�es ondition (G3) the alulations sim-ilar to those in the proof of Lemma B give us µ = − 1
32 |∇J |2. Consequently,

τ = 2λ + 2µ = − 1
16(|∇J |2 + |∇J |2).

Proposition 1. Let (M, g, J) be a ompat (2G3) almost Kähler 4-manifold suh that |∇J | 6= 0 on M . Then (M, g, J ) is Kähler and the Eulerharateristi and signature of M vanish. The Rii tensor ̺ of (M, g)has two eigenvalues λ = 0, µ = 1
2τ . The foliation D is totally geodesi andevery leaf of D is a geodesially omplete submanifold of M . If (M, g) hasnegative total salar urvature then (M, J ) is a minimal lass VI surfae.Proof. Assume that the funtion b(x) = |∇J x| is not identially 0 on M .Then b is positive and ontinuous on M . Its image F = im b is a onnetedsubset of R+. Let c ∈ F be di�erent from 0. The set Fc = {x ∈ M : b(x) = c}is losed, hene ompat. Note that if D is a leaf of the foliation D and

D ∩ Fc 6= ∅ then D ⊂ Fc sine D ⊂ ker db. Let κ = sup{α(x) : x ∈ Fc}.Then there exists a point x0 ∈ Fc suh that α(x0) = κ. Note that sine α isonstant on the leaves of the foliation D⊥, at x0 there is a loal maximum
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of α. On the other hand, we have (f. [O-S-Y, (3.24), (3.25)℄)
(2.8) R3434 = E3Γ

4
43 − E4Γ

4
33 + (Γ 3

34)
2 + (Γ 4

34)
2 − 2H,where H = (Γ 1

33)
2 + (Γ 1

34)
2 = 1

4β2 = 1
32 |∇J |2. Note that

(2.9) R3412 = E3Γ
2
41 − E4Γ

2
31 + 2Γ 1

34Γ
2
44 + 2Γ 1

33Γ
2
43 + Γ 2

31Γ
4
33 − Γ 2

41Γ
3
44.We have Γ 2

41 = 1
2Γ 3

44 − 1
2E3 ln |α| and Γ 2

31 = −1
2Γ 4

33 + 1
2E4 ln |α|. Thus weobtain

R3412 = −1
2R3434 + 1

32 |∇J |2 − 1
2∆ ln |α|,where ∆ ln |α| = E2

3 ln |α|+E2
4 ln |α|−Γ 3

44E3 ln |α|−Γ 4
33E4 ln |α| is the usualLaplaian of the funtion ln |α| on (M, g). Thus it follows from (2.6) that

(2.10) 32∆ ln |α| = 16τ + |∇J |2 + 6|∇J |2.If ∇J x0
6= 0 then 16τ = −|∇J |2 − |∇J |2 and at x0 we get

(2.11) 32∆ ln |α| = 5|∇J |2.But sine at x0 the funtion |α| has a loal maximum we get ∆ ln |α|x0
≤ 0and onsequently |∇J | = 0, a ontradition. Thus b = 0 on M . It follows thatthe Rii tensor ̺ of (M, g) has the form ̺ = 1

2τg|D. Note that 8πγJ(X, Y ) =
1
2 |∇J |2θ3 ∧ θ4 −4̺(X, JY ) and 8πγJ (X, Y ) = −4̺(X,JY ) where γJ , γJ arethe 2-forms representing the �rst Chern lasses of (M, J) and (M, J ) re-spetively and {θ1, θ2, θ3, θ4} is the oframe dual to {E1, E2, E3, E4}. Con-sequently, γ2

J = 0 = γ2
J
. Thus c1(M, J)2 = 0 = c1(M, J )2. Sine c1(M, J)2 =

2χ(M) + 3σ(M) and c1(M,J )2 = 2χ(M) − 3σ(M) we obtain χ(M)
= 0 = σ(M). It is well known (see [B-P-V℄) that a ompat Kähler surfaeof negative total salar urvature is either a ruled surfae with base of genusat least 2, or its Kodaira dimension is at least 1. Sine σ(M) = 0 = χ(M) weonlude (see [A-D℄, [B-P-V℄) that (M, J ) belongs to lass VI of the Kodairalassi�ation and it is a minimal surfae. From (2.16) in [J℄ we �nd that
a′ = b′ = 0 and the onnetion forms satisfy

ω3
2 = ω4

1 = 1
2αθ1, ω1

3 = ω2
4 = −1

2αθ2.Hene ω4
1(E3) = −Γ 1

34 = 0 and ω4
1(E4) = −Γ 1

44 = 0. Consequently, theseond fundamental form of D vanishes and D is totally geodesi. Now it iseasy to see that every leaf D of D must be geodesially omplete.From the proof of Proposition 1 we obtain:
Corollary 2. Let (M, g, J) be a (G3) almost Kähler 4-manifold suhthat |∇J | 6= 0 on M . Then on M we have

32∆ ln |α| = 16τ + |∇J |2 + 6|∇J |2.What is more, if (M, g, J ) is Kähler then the nullity foliation D is totallygeodesi.
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We say that an almost Hermitian manifold (M, g, J) satis�es the seondondition (G2) of A. Gray if its urvature tensor R satis�es the ondition
(G2) R(X, Y, Z, W ) − R(JX, JY, Z, W )

= R(JX, Y, JZ, W ) + R(JX, Y, Z, JW )for all X, Y, Z, W ∈ X(M). It is known that an almost Kähler manifold
(M, g, J) satis�es (G2) if and only if it satis�es (G3) and the funtion |∇J |is onstant on M . In [A-D℄ it is proved that every (G2) manifold is a (2G3)manifold. Our next result whih follows diretly from Corollary 2 was �rstproved in [A-D℄ under the additional assumption that M is ompat.
Proposition 2. Let (M, g, J) be a stritly almost Kähler 4-manifoldsatisfying ondition (G2). Then the opposite almost Kähler struture J de-termined by the minimal foliations D,D⊥ is Kähler , the salar urvature τis onstant and τ = −3

8 |∇J |2. Every leaf of D is totally geodesi and hasonstant negative Gauss urvature K = −1
8 |∇J |2.Proof. Reall that (M, g, J) satis�es (G2) if and only if |∇J | (hene |α|)is onstant on M . From Corollary 2 we obtain

(2.12) 16τ = −6|∇J |2 − |∇J |2.Assume that |∇J | 6= 0 at a point x0 ∈ M . Then at x0 we have
(2.13) 16τ = −|∇J |2 − |∇J |2.From (2.12) and (2.13) it follows that |∇J |x0

= 0, a ontradition. Thus
|∇J | = 0 on M and from (2.12) we derive τ = −3

8 |∇J |2. Sine every leafof D is totally geodesi it follows from (2.6) that it has onstant Gaussurvature K = τ
2 + 1

16 |∇J |2 = −1
8 |∇J |2.

Corollary 3. Let (M, g, J) be a stritly almost Kähler (2G3) 4-mani-fold. Assume that the salar urvature τ of (M, g) is onstant. Then
(M, g, J ) is Kähler and either (M, g, J) is Einstein with zero salar ur-vature (hene self-dual) or the Rii tensor ̺ of (M, g) has two onstanteigenvalues λ = 0, µ = 1

2τ .Proof. From our assumption |∇J | 6= 0 on M . Thus the opposite almostKähler struture J is de�ned on the whole of M . Let V := {x ∈ M :
|∇J | 6= 0}. Let λ, µ be the eigenvalues of the Rii tensor ̺ orrespond-ing respetively to the eigendistributions D⊥,D. Then on V we have λ =

− 1
32 |∇J |2, µ = − 1

32 |∇J |2. Sine τ is onstant it follows from Proposition 6of [J℄ that both λ and µ are onstant. Hene (M, g, J ) satis�es (G2). Conse-quently, ∇J = 0 on V , a ontradition. Thus ∇J = 0 and λ = 0, µ = 1
2τ . Itis also known (see [De℄) that a Kähler surfae with zero salar urvature isanti-selfdual with respet to the natural orientation.
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Remark. In [O-S-Y℄ it is proved that every Einstein and weakly Einsteinstritly almost Kähler manifolds is self-dual and has zero salar urvature.The lassi�ation of suh manifolds was also given by J. Armstrong.
Proposition 3. Let (M, g, J) be a ompat (2G3) almost Kähler 4-manifold. Then the opposite almost Kähler struture J de�ned on dom J =

{x : |∇J |x 6= 0} is Kähler.Proof. Note that domJ =
⋃

c>0 Fc where Fc = {x : |α(x)| = c}.Note that the funtion β is well de�ned and ontinuous on any Fc with
c ∈ im |α|, c > 0. Let κ = sup{|β(x)| : x ∈ Fc}. Every set Fc is ompat.Let a point x0 ∈ Fc satisfy |β(x0)| = κ. Sine β is onstant on the leaves ofthe foliation D it follows that at x0 the funtion |β| has a loal maximum.On the other hand, sine (domJ , g, J ) also satis�es ondition (G3) we haveat x0, if κ > 0,
(2.14) 32∆ ln |β| = 16τ + 6|∇J |2 + |∇J |2.If κ 6= 0 then ∇J x0

6= 0 and hene 16τ = −|∇J |2 − |∇J |2 at x0. Conse-quently, 32∆ ln |β|x0
= 5|∇J |2x0

> 0, whih is a ontradition. It follows that
∇J = 0 wherever J is de�ned.
Proposition 4. Let (M, g, J) be a ompat (2G3) almost Kähler 4-manifold suh that |∇J | 6= 0 on M . Then the salar urvature τ of (M, g)attains positive and negative values on M . In partiular , τ annot be onstantor nonpositive.Proof. From [D-2℄ it follows that τ annot be nonnegative on M . Assumethat τ ≤ 0 on M . It is lear that the set M− = {x ∈ M : τ(x) < 0} isnonempty and open. It follows that the Rii tensor ̺ = 1

2τg|D is nonpositivede�nite on M and nonzero on M−. Now we an follow [A-D℄, [A-D-K℄. Sine
(M,J ) is a minimal properly ellipti surfae of Kodaira dimension 1 it is lear([B-P-V℄, [A-D-K℄) that (M, J ) is an ellipti �bration over a smooth urvesuh that all smooth �bers are isomorphi and the singular �bers are mul-tiples of smooth ellipti urves (note that (6) of [A-D-K℄ is learly satis�ed).Taking a �nite overing of (M, J ) we an assume that (M,J ) is a logarithmitransform of a total spae of a prinipal ellipti �bre bundle, whih meansthat it admits a nonvanishing holomorphi vetor �eld X. The Rii tensor
̺ is nonpositive de�nite on M . Then a Bohner type argument (this ideaomes from the �rst version of [A-D℄) shows that the �eld X is parallel andon M− its real and imaginary parts belong to D⊥, thus the distribution D⊥is parallel on M−. Thus D is also parallel on M− and onsequently ∇J = 0on M−, whih is a ontradition.As an appliation of Proposition 4 we get a result of Draghii and Apos-tolov [A-D℄:
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Corollary 4. Every ompat almost Kähler 4-manifold satisfying on-dition (G2) is Kähler.
Definition. We shall say that an almost Kähler manifold (M, g, J) isstrongly non-Kähler if the set M ′ = {x : ∇Jx 6= 0} is dense in M . Thismeans that the set M0 = {x : ∇Jx = 0} is nowhere dense.Note that if the manifold (M, g, J) is almost Kähler non-Kähler suhthat the funtion φ(x) = g(∇Jx,∇Jx) is real-analyti on M then (M, g, J)is strongly non-Kähler.
Proposition 5. Let (M, g, J) be strongly non-Kähler almost Kählerompat 4-manifold satisfying ondition (2G3). Assume that 0 ∈ τ(M0).Then the opposite Kähler struture J de�ned on M ′ extends to a globalKähler struture J de�ned on M . Moreover , σ(M) = 0 = χ(M). If (M, g)has a negative total salar urvature then the Kähler surfae (M, g, J ) is aminimal lass VI surfae.Proof. Sine the eigenvalues of the Rii tensor ̺ are ontinuous fun-tions on M it follows that ̺ has two eigenvalues λ = 0, µ = 1

2τ . From ourassumptions it follows that the form ω1(X, Y ) = (2/τ)̺(X, JY ) is well de-�ned and smooth on an open set U ⊃ M0 (note that M0 is ompat and
τ 6= 0 on M0). Note that ω2

1 = 0 and g(ω1, ω1) = 1 on U . Hene the form ω1is a smooth extension of the harateristi form ωD of the foliation D. Con-sequently, the form ω2 = Ω − ω1 is a smooth extension of the harateristiform ωD⊥ of the foliation D⊥. Thus the form Ω = ω2 − ω1 = Ω − 2ω1 is asmooth extension of the Kähler form Ω1 of (M ′, g, J ). In partiular, ∇Ω = 0and thus Ω gives a global Kähler struture whih is an extension of J . It fol-lows that the Rii tensor ̺ of (M, g) has the form ̺ = 1
2τg|D. Consequently,

γ2
J = 0 = γ2

J
where γJ , γJ are the 2-forms representing the �rst Chern lassesof (M, J) and (M, J ) respetively. Thus c1(M, J)2 = 0 = c1(M,J )2. Sine

c1(M, J)2 = 2χ(M) + 3σ(M) and c1(M,J )2 = 2χ(M) − 3σ(M) we obtain
χ(M) = 0 = σ(M). The rest of the proof is exatly the same as in the proofof Proposition 1.
Proposition 6. Let (M, g, J) be an almost Kähler ompat 4-manifoldsatisfying ondition (2G3). Assume that the funtion φ = g(∇J,∇J) is real-analyti on M and the salar urvature τ of (M, g) is negative. Then (M, g, J)is Kähler.Proof. From our assumptions it follows that if (M, g, J) is not Kählerthen it is a strongly non-Kähler almost Kähler surfae. Thus from Propo-sition 5 it follows that the opposite Kähler struture extends to a globalopposite Kähler struture J suh that (M, g, J ) is a properly ellipti surfaeof Kodaira dimension 1 with vanishing Euler number. Now the onsidera-
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tions analogous to those in the proof of Proposition 4 show that (M, g, J)has to be Kähler, whih is a ontradition.In fat, we have proved
Corollary 5. There does not exist a strongly non-Kähler almost Kählerompat 4-manifold of type (2G3) with negative salar urvature. In par-tiular , there does not exist a strongly non-Kähler almost Kähler ompat

4-manifold of type (2G3) with onstant salar urvature.Proof. The proof of the frist part of the orollary is just the same as theproof of Proposition 6. Note that Draghii has proved in [D-2℄ that a ompatalmost Kähler manifold with J-invariant Rii tensor and nonnegative salarurvature is Kähler. Thus if the salar urvature is onstant it is enough toonsider the ase when it is negative. From the �rst part of the proof itfollows that suh manifolds do not exist.Aknowledgments. The author is grateful to V. Apostolov, T. C. Dra-ghii and K. Sekigawa for sending him the preprints of their papers. The workwas supported by KBN grant 2 P0 3A 01615.
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