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ON ALMOST KÄHLER TYPE (2G3) 4-MANIFOLDSBYW�ODZIMIERZ JELONEK (Kraków)Abstra
t. We study four-dimensional almost Kähler manifolds (M, g, J) whi
h sat-isfy A. Gray's 
ondition (G3).0. Introdu
tion. In [J℄ we have proved that every stri
tly almost Kählermanifold (M, g, J) (i.e. with |∇J | 6= 0) satisfying 
ondition (G3) admits anopposite almost Kähler stru
ture J . In the present paper we prove thatevery 
ompa
t strongly non-Kähler almost Kähler 4-manifold (M, g, J) oftype (2G3) (i.e. of type (G3) a

ording to A. Gray's notation and su
h that
J is also of type (G3)) admits a global opposite Kähler stru
ture if the s
alar
urvature τ satis�es the 
ondition {0}∩τ(M0) = ∅ where M0 = {x : ∇Jx = 0}.In parti
ular we prove that there does not exist a 
ompa
t strongly non-Kähler almost Kähler type (2G3) 4-manifold with negative s
alar 
urvature.We also prove that for a 
ompa
t four-dimensional almost Kähler manifold
(M, g, J) the opposite almost Kähler stru
ture J de�ned on the set dom J =
{x : ∇Jx 6= 0} is Kähler. Our results are 
onne
ted with the question of Blairand Ianu³ (see [B-I℄, [D-1℄): �Is it true that every four-dimensional almostKähler 
ompa
t manifold with Hermitian Ri

i tensor is Kähler?� and withthe Goldberg 
onje
ture (see [S-1℄, [S-2℄).1. Preliminaries. Let (M, g, J) be an almost Hermitian manifold. Wesay that (M, g, J) is an almost Kähler manifold if its Kähler form Ω(X, Y ) =
g(JX, Y ) is 
losed (dΩ = 0). In what follows we shall 
onsider four-dimen-sional almost Kähler manifolds (M, g, J). Su
h manifolds are always orientedand we 
hoose an orientation in su
h a way that Ω is a self-dual form (i.e.
Ω ∈

∧+ M). The ve
tor bundle of self-dual forms admits a de
omposition
∧+M = RΩ ⊕ LMwhere LM denotes the bundle of real J-skew-invariant 2-forms (i.e. LM =

{Φ ∈
∧

M : Φ(JX, JY ) = −Φ(X, Y )}). The bundle LM is a 
omplex line2000 Mathemati
s Subje
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ation: 53C15, 53B20.Key words and phrases: almost Kähler manifold, almost Kähler stru
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20 W. JELONEK
bundle over M with the 
omplex stru
ture J de�ned by (JΦ)(X, Y ) =
−Φ(JX, Y ).The 
urvature tensor R of a four-dimensional manifold (M, g) determinesan endomorphism R of the bundle ∧

M de�ned by g(R(X ∧ Y ), Z ∧ W ) =
R(X ∧ Y, Z ∧ W ) = −R(X, Y, Z, W ) = −g(R(X, Y )Z, W ).The Ri

i tensor ̺ of an almost Hermitian manifold (M, g, J) is said tobe Hermitian (or J-invariant) if ̺(X, Y ) = ̺(JX, JY ) for all X, Y ∈ X(M).In the following we shall assume that (M, g, J) has Hermitian Ri

i tensor.This 
ondition is equivalent to R(LM) ⊂

∧+ M .For any lo
al frame {E1, E2, E3, E4} we shall write ∇Ei
Ej =

∑
k Γ k

ijEk.From [O-S℄ and [J℄ we get (
f. also [O-S-Y℄)
Lemma A. Assume that (M, g, J) is an almost Kähler (G3) 4-manifoldand |∇J | 6= 0 on M . Let {E1, E2} be any lo
al orthonormal basis of D⊥.Then there exists a unique orthonormal basis {E3, E4} of D su
h that

(Ω) ∇Ω = α(θ1 ⊗ Φ − θ2 ⊗ Ψ)where Φ = θ1 ∧ θ3 − θ2 ∧ θ4, Ψ = θ1 ∧ θ4 + θ2 ∧ θ3 and α = − 1
2
√

2
|∇J |. Also,

E4 = (2/α)αD⊥(E1, E1), E3 = (2/α)αD⊥(E1, E2),where αD⊥ is the se
ond fundamental form of D⊥. Moreover Γ 3
11 = Γ 3

22 =
Γ 4

12 = 0 and Γ 4
11 = −Γ 4

22 = Γ 3
12 = 1

2α.Let {E1, E2, E3, E4} be a lo
al orthonormal frame satisfying (Ω). Then
(1.1) g(∇E1

JX, Y ) = αΦ(X, Y ), g(∇E2
JX, Y ) = −αΨ(X, Y ),

∇E3
J = 0, ∇E4

J = 0.Re
all that an almost Hermitian manifold (M, g, J) is said to satisfy
ondition (G3) of A. Gray if
(G3) R(JX, JY, JZ, JW ) = R(X, Y, Z, W )for all X, Y, Z, W ∈ X(M). Note that for every manifold satisfying (G3) wehave R(LM) ⊂

∧+ M , the Ri

i tensor ̺ is J-invariant and the ∗-Ri

i ten-sor is symmetri
. Indeed, sin
e R(j(X ∧ Y ), j(Z ∧ W )) = R(X ∧ Y, Z ∧ W )where j(X ∧ Y ) = JX ∧ JY , we have R(ker(j − id), ker(j + id)) = 0. Sin
e
ker(j−id) =

∧− M⊕RΩ and ker(j+id) = LM we get g(R(LM),
∧− M⊕RΩ)

= 0. Consequently, R(LM) ⊂ LM ⊂
∧+ M . In fa
t, R(LM) ⊂

∧+ M ifand only if the Ri

i tensor ̺ of (M, g) is J-invariant (see [D-2, p. 5(i)℄), andan almost Hermitian 4-manifold (M, g, J) with J-invariant Ri

i tensor andsymmetri
 ∗-Ri

i tensor satis�es (G3).Let us re
all that we have proved in [J℄ that an almost Kähler 4-manifold
(M, g, J) with Hermitian Ri

i tensor, symmetri
 ∗-Ri

i tensor (i.e. (M, g, J)satis�es the 
ondition (G3) of A. Gray) with ∇J 6= 0 on M has integrableboth distributions D = {X ∈ TM : ∇XJ = 0} and D⊥, and they determine
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an opposite almost Kähler stru
ture J . In the following we shall assume that
(M, g, J ) also satis�es 
ondition (G3) and we shall 
all su
h manifolds (2G3)almost Kähler manifolds.The distribution D⊥ is 
ontained in the nullity distribution DJ = {X ∈
TM : ∇XJ = 0} of the almost Kähler stru
ture J . For a general almostKähler 4-manifold satisfying 
ondition (2G3) the opposite almost Kählerstru
ture J is de�ned only on the set dom J = {x ∈ M : ∇J 6= 0}. Thedistributions D,D⊥ are J-invariant foliations whi
h are eigendistributionsof the Ri

i tensor ̺ of (M, g). We shall denote by µ, λ the eigenvalues
orresponding to the distributions D,D⊥ respe
tively. We shall also write
β = − 1

2
√

2
|∇J |.Assume that β 6= 0 and let {E′

1, E
′
2} be an orthonormal frame of D⊥determined by {E3, E4}, i.e. su
h that

∇Ω = β(θ4 ⊗ Φ − θ3 ⊗ Ψ).Then E′
1 = E1 cos φ + E2 sinφ, E′

2 = −E1 sinφ + E2 cos φ and from LemmaA it follows that
E′

1 = 2
β

q(∇E3
E4), E′

2 = 2
β

q(∇E4
E4),where q is the orthogonal proje
tion q : TM → D⊥. Hen
e the 
onne
-tion 
oe�
ients Γ i

kj with respe
t to the orthonormal frame {E1, E2, E3, E4}satisfy
Γ 1

34 = −Γ 2
33 = Γ 2

44 = 1
2 β cosφ, Γ 1

33 = −Γ 1
44 = Γ 2

34 = 1
2 β sinφ.Note that these relations are also valid when β = 0 (in this 
ase D is atotally geodesi
 foliation). In [J℄ we have proved that R(E1, E2).J = 0 and

R(E3, E4).J = 0. From (1.1) we obtain (see [J℄)
g(R(E1, E3).JX, Y ) = −∇[E1,E3]Ω − E3αΦ − αp(E3)Ψ,(1.2a)

g(R(E1, E4).JX, Y ) = −∇[E1,E4]Ω − E4αΦ − αp(E4)Ψ,(1.2b)

g(R(E2, E3).JX, Y ) = −∇[E2,E3]Ω + E3αΨ − αp(E3)Φ,(1.2c)

g(R(E4, E2).JX, Y ) = −∇[E4,E2]Ω − E4αΨ + αp(E4)Φ,(1.2d)

g(R(E1, E2).JX, Y ) = −∇[E1,E2]Ω − α∇E1
Ψ − α∇E2

Φ,(1.2e)where the lo
al 1-form p is de�ned by p(X) = 1
2g(∇XΦ, Ψ). Sin
e R(LM) ⊂

∧+ M it is 
lear that
g(R(E1, E3).JX, Y ) = g(R(E4, E2).JX, Y ),(1.3a)

g(R(E3, E2).JX, Y ) = g(R(E4, E1).JX, Y ).(1.3b)Note that p(X) = ω2
1(X) + ω4

3(X). Hen
e
0 = g(R(E1, E2).JE1, E3) = α(p(E1) − θ1([E1, E2]))(1.4a)

= α(2Γ 2
11 + Γ 4

13),
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0 = g(R(E1, E2).JE1, E4) = α(−p(E2) + θ2([E1, E2]))(1.4b)

= α(2Γ 1
22 − Γ 4

23).Note also that
g(R(E1, E4).JE2, E3) = α(−p(E4) + θ2([E1, E4])),(1.5a)

g(R(E2, E3).JE2, E3) = α(θ2([E2, E3]) + E3α).(1.5b)We have Γ 4
12 = Γ 2

33 = 0. Consequently, (1.5a,b) imply
(1.6) E3α = α(−p(E4) + θ2([E1, E4)) = α(2Γ 1

42 + Γ 3
44).Analogously we get

(1.7) E4α = α(2Γ 2
31 + Γ 4

33).2. Almost Kähler (2G3) manifolds. Re
all that an almost Hermitian
4-manifold (M, g, J) satis�es 
ondition (G3) if and only if it has J-invariantRi

i tensor and symmetri
 ∗-Ri

i tensor. We start with
Lemma B. Assume that (M, g, J) is a (2G3) almost Kähler 4-manifoldand |∇J | 6= 0 on M . Then D,D⊥ are eigendistributions of the Ri

i tensor

̺ of (M, g). The eigenvalue 
orresponding to the distribution D⊥ is λ =
− 1

32 |∇J |2.Proof. The �rst part of the lemma is proved in [J℄. From (1.4) we obtain,similarly to [O-S, p. 109℄,
(2.1) R1234 = −2R1212 −

3
8(τ∗ − τ).We also have

R(Ω, Ω) = τ∗/2, R(Ω, Ω) = τ∗/2.Hen
e
R1212 + R3434 + 2R1234 = −τ∗/2,(2.2a)

R1212 + R3434 − 2R1234 = −τ∗/2.(2.2b)From (2.2) we have
R1212 + R3434 = −

τ∗ + τ∗

4
,(2.3)

R1234 =
τ∗ − τ∗

8
.(2.4)Thus from (2.1) it follows that

R1212 =
3τ − 2τ∗ − τ∗

16
,(2.5a)

R3434 =
−3τ − 2τ∗ − 3τ∗

16
.(2.5b)
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Sin
e τ∗ − τ = 1
2 |∇J |2 we 
an rewrite (2.4) and (2.5) in the following way:

R1212 = −
2|∇J |2 − |∇J |2

32
,(2.6a)

R1234 =
−|∇J |2 + |∇J |2

16
,(2.6b)

R3434 = −
2|∇J |2 + 3|∇J |2 + 16τ

32
.(2.6c)Note that

λ = ̺(E1, E1) = K(E1 ∧ E2) + K(E1 ∧ E3) + K(E1 ∧ E4),

λ = ̺(E2, E2) = K(E1 ∧ E2) + K(E2 ∧ E3) + K(E2 ∧ E4).Thus
2λ = −2R1212 + 2µ + 2R3434.Consequently, sin
e τ = 2λ + 2µ,

(2.7) λ − µ = R3434 − R1212 = −
|∇J |2

16
− λ − µ.We infer from (2.7) that λ = − 1

32 |∇J |2.
Corollary 1. Assume that (M, g, J) is a (2G3) almost Kähler 4-mani-fold. If an opposite almost Kähler stru
ture J satis�es the 
ondition ∇J 6= 0on a set U ⊂ M , then on U the s
alar 
urvature τ is negative and 16τ =

−(|∇J |2 + |∇J |2). In parti
ular , if τ ≥ 0 on M then (M, g, J ) is Kähler.Proof. Sin
e (M, g, J ) also satis�es 
ondition (G3) the 
al
ulations sim-ilar to those in the proof of Lemma B give us µ = − 1
32 |∇J |2. Consequently,

τ = 2λ + 2µ = − 1
16(|∇J |2 + |∇J |2).

Proposition 1. Let (M, g, J) be a 
ompa
t (2G3) almost Kähler 4-manifold su
h that |∇J | 6= 0 on M . Then (M, g, J ) is Kähler and the Euler
hara
teristi
 and signature of M vanish. The Ri

i tensor ̺ of (M, g)has two eigenvalues λ = 0, µ = 1
2τ . The foliation D is totally geodesi
 andevery leaf of D is a geodesi
ally 
omplete submanifold of M . If (M, g) hasnegative total s
alar 
urvature then (M, J ) is a minimal 
lass VI surfa
e.Proof. Assume that the fun
tion b(x) = |∇J x| is not identi
ally 0 on M .Then b is positive and 
ontinuous on M . Its image F = im b is a 
onne
tedsubset of R+. Let c ∈ F be di�erent from 0. The set Fc = {x ∈ M : b(x) = c}is 
losed, hen
e 
ompa
t. Note that if D is a leaf of the foliation D and

D ∩ Fc 6= ∅ then D ⊂ Fc sin
e D ⊂ ker db. Let κ = sup{α(x) : x ∈ Fc}.Then there exists a point x0 ∈ Fc su
h that α(x0) = κ. Note that sin
e α is
onstant on the leaves of the foliation D⊥, at x0 there is a lo
al maximum



24 W. JELONEK
of α. On the other hand, we have (
f. [O-S-Y, (3.24), (3.25)℄)
(2.8) R3434 = E3Γ

4
43 − E4Γ

4
33 + (Γ 3

34)
2 + (Γ 4

34)
2 − 2H,where H = (Γ 1

33)
2 + (Γ 1

34)
2 = 1

4β2 = 1
32 |∇J |2. Note that

(2.9) R3412 = E3Γ
2
41 − E4Γ

2
31 + 2Γ 1

34Γ
2
44 + 2Γ 1

33Γ
2
43 + Γ 2

31Γ
4
33 − Γ 2

41Γ
3
44.We have Γ 2

41 = 1
2Γ 3

44 − 1
2E3 ln |α| and Γ 2

31 = −1
2Γ 4

33 + 1
2E4 ln |α|. Thus weobtain

R3412 = −1
2R3434 + 1

32 |∇J |2 − 1
2∆ ln |α|,where ∆ ln |α| = E2

3 ln |α|+E2
4 ln |α|−Γ 3

44E3 ln |α|−Γ 4
33E4 ln |α| is the usualLapla
ian of the fun
tion ln |α| on (M, g). Thus it follows from (2.6) that

(2.10) 32∆ ln |α| = 16τ + |∇J |2 + 6|∇J |2.If ∇J x0
6= 0 then 16τ = −|∇J |2 − |∇J |2 and at x0 we get

(2.11) 32∆ ln |α| = 5|∇J |2.But sin
e at x0 the fun
tion |α| has a lo
al maximum we get ∆ ln |α|x0
≤ 0and 
onsequently |∇J | = 0, a 
ontradi
tion. Thus b = 0 on M . It follows thatthe Ri

i tensor ̺ of (M, g) has the form ̺ = 1

2τg|D. Note that 8πγJ(X, Y ) =
1
2 |∇J |2θ3 ∧ θ4 −4̺(X, JY ) and 8πγJ (X, Y ) = −4̺(X,JY ) where γJ , γJ arethe 2-forms representing the �rst Chern 
lasses of (M, J) and (M, J ) re-spe
tively and {θ1, θ2, θ3, θ4} is the 
oframe dual to {E1, E2, E3, E4}. Con-sequently, γ2

J = 0 = γ2
J
. Thus c1(M, J)2 = 0 = c1(M, J )2. Sin
e c1(M, J)2 =

2χ(M) + 3σ(M) and c1(M,J )2 = 2χ(M) − 3σ(M) we obtain χ(M)
= 0 = σ(M). It is well known (see [B-P-V℄) that a 
ompa
t Kähler surfa
eof negative total s
alar 
urvature is either a ruled surfa
e with base of genusat least 2, or its Kodaira dimension is at least 1. Sin
e σ(M) = 0 = χ(M) we
on
lude (see [A-D℄, [B-P-V℄) that (M, J ) belongs to 
lass VI of the Kodaira
lassi�
ation and it is a minimal surfa
e. From (2.16) in [J℄ we �nd that
a′ = b′ = 0 and the 
onne
tion forms satisfy

ω3
2 = ω4

1 = 1
2αθ1, ω1

3 = ω2
4 = −1

2αθ2.Hen
e ω4
1(E3) = −Γ 1

34 = 0 and ω4
1(E4) = −Γ 1

44 = 0. Consequently, these
ond fundamental form of D vanishes and D is totally geodesi
. Now it iseasy to see that every leaf D of D must be geodesi
ally 
omplete.From the proof of Proposition 1 we obtain:
Corollary 2. Let (M, g, J) be a (G3) almost Kähler 4-manifold su
hthat |∇J | 6= 0 on M . Then on M we have

32∆ ln |α| = 16τ + |∇J |2 + 6|∇J |2.What is more, if (M, g, J ) is Kähler then the nullity foliation D is totallygeodesi
.
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We say that an almost Hermitian manifold (M, g, J) satis�es the se
ond
ondition (G2) of A. Gray if its 
urvature tensor R satis�es the 
ondition
(G2) R(X, Y, Z, W ) − R(JX, JY, Z, W )

= R(JX, Y, JZ, W ) + R(JX, Y, Z, JW )for all X, Y, Z, W ∈ X(M). It is known that an almost Kähler manifold
(M, g, J) satis�es (G2) if and only if it satis�es (G3) and the fun
tion |∇J |is 
onstant on M . In [A-D℄ it is proved that every (G2) manifold is a (2G3)manifold. Our next result whi
h follows dire
tly from Corollary 2 was �rstproved in [A-D℄ under the additional assumption that M is 
ompa
t.
Proposition 2. Let (M, g, J) be a stri
tly almost Kähler 4-manifoldsatisfying 
ondition (G2). Then the opposite almost Kähler stru
ture J de-termined by the minimal foliations D,D⊥ is Kähler , the s
alar 
urvature τis 
onstant and τ = −3

8 |∇J |2. Every leaf of D is totally geodesi
 and has
onstant negative Gauss 
urvature K = −1
8 |∇J |2.Proof. Re
all that (M, g, J) satis�es (G2) if and only if |∇J | (hen
e |α|)is 
onstant on M . From Corollary 2 we obtain

(2.12) 16τ = −6|∇J |2 − |∇J |2.Assume that |∇J | 6= 0 at a point x0 ∈ M . Then at x0 we have
(2.13) 16τ = −|∇J |2 − |∇J |2.From (2.12) and (2.13) it follows that |∇J |x0

= 0, a 
ontradi
tion. Thus
|∇J | = 0 on M and from (2.12) we derive τ = −3

8 |∇J |2. Sin
e every leafof D is totally geodesi
 it follows from (2.6) that it has 
onstant Gauss
urvature K = τ
2 + 1

16 |∇J |2 = −1
8 |∇J |2.

Corollary 3. Let (M, g, J) be a stri
tly almost Kähler (2G3) 4-mani-fold. Assume that the s
alar 
urvature τ of (M, g) is 
onstant. Then
(M, g, J ) is Kähler and either (M, g, J) is Einstein with zero s
alar 
ur-vature (hen
e self-dual) or the Ri

i tensor ̺ of (M, g) has two 
onstanteigenvalues λ = 0, µ = 1

2τ .Proof. From our assumption |∇J | 6= 0 on M . Thus the opposite almostKähler stru
ture J is de�ned on the whole of M . Let V := {x ∈ M :
|∇J | 6= 0}. Let λ, µ be the eigenvalues of the Ri

i tensor ̺ 
orrespond-ing respe
tively to the eigendistributions D⊥,D. Then on V we have λ =

− 1
32 |∇J |2, µ = − 1

32 |∇J |2. Sin
e τ is 
onstant it follows from Proposition 6of [J℄ that both λ and µ are 
onstant. Hen
e (M, g, J ) satis�es (G2). Conse-quently, ∇J = 0 on V , a 
ontradi
tion. Thus ∇J = 0 and λ = 0, µ = 1
2τ . Itis also known (see [De℄) that a Kähler surfa
e with zero s
alar 
urvature isanti-selfdual with respe
t to the natural orientation.
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Remark. In [O-S-Y℄ it is proved that every Einstein and weakly Einsteinstri
tly almost Kähler manifolds is self-dual and has zero s
alar 
urvature.The 
lassi�
ation of su
h manifolds was also given by J. Armstrong.
Proposition 3. Let (M, g, J) be a 
ompa
t (2G3) almost Kähler 4-manifold. Then the opposite almost Kähler stru
ture J de�ned on dom J =

{x : |∇J |x 6= 0} is Kähler.Proof. Note that domJ =
⋃

c>0 Fc where Fc = {x : |α(x)| = c}.Note that the fun
tion β is well de�ned and 
ontinuous on any Fc with
c ∈ im |α|, c > 0. Let κ = sup{|β(x)| : x ∈ Fc}. Every set Fc is 
ompa
t.Let a point x0 ∈ Fc satisfy |β(x0)| = κ. Sin
e β is 
onstant on the leaves ofthe foliation D it follows that at x0 the fun
tion |β| has a lo
al maximum.On the other hand, sin
e (domJ , g, J ) also satis�es 
ondition (G3) we haveat x0, if κ > 0,
(2.14) 32∆ ln |β| = 16τ + 6|∇J |2 + |∇J |2.If κ 6= 0 then ∇J x0

6= 0 and hen
e 16τ = −|∇J |2 − |∇J |2 at x0. Conse-quently, 32∆ ln |β|x0
= 5|∇J |2x0

> 0, whi
h is a 
ontradi
tion. It follows that
∇J = 0 wherever J is de�ned.
Proposition 4. Let (M, g, J) be a 
ompa
t (2G3) almost Kähler 4-manifold su
h that |∇J | 6= 0 on M . Then the s
alar 
urvature τ of (M, g)attains positive and negative values on M . In parti
ular , τ 
annot be 
onstantor nonpositive.Proof. From [D-2℄ it follows that τ 
annot be nonnegative on M . Assumethat τ ≤ 0 on M . It is 
lear that the set M− = {x ∈ M : τ(x) < 0} isnonempty and open. It follows that the Ri

i tensor ̺ = 1

2τg|D is nonpositivede�nite on M and nonzero on M−. Now we 
an follow [A-D℄, [A-D-K℄. Sin
e
(M,J ) is a minimal properly ellipti
 surfa
e of Kodaira dimension 1 it is 
lear([B-P-V℄, [A-D-K℄) that (M, J ) is an ellipti
 �bration over a smooth 
urvesu
h that all smooth �bers are isomorphi
 and the singular �bers are mul-tiples of smooth ellipti
 
urves (note that (6) of [A-D-K℄ is 
learly satis�ed).Taking a �nite 
overing of (M, J ) we 
an assume that (M,J ) is a logarithmi
transform of a total spa
e of a prin
ipal ellipti
 �bre bundle, whi
h meansthat it admits a nonvanishing holomorphi
 ve
tor �eld X. The Ri

i tensor
̺ is nonpositive de�nite on M . Then a Bo
hner type argument (this idea
omes from the �rst version of [A-D℄) shows that the �eld X is parallel andon M− its real and imaginary parts belong to D⊥, thus the distribution D⊥is parallel on M−. Thus D is also parallel on M− and 
onsequently ∇J = 0on M−, whi
h is a 
ontradi
tion.As an appli
ation of Proposition 4 we get a result of Draghi
i and Apos-tolov [A-D℄:
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Corollary 4. Every 
ompa
t almost Kähler 4-manifold satisfying 
on-dition (G2) is Kähler.
Definition. We shall say that an almost Kähler manifold (M, g, J) isstrongly non-Kähler if the set M ′ = {x : ∇Jx 6= 0} is dense in M . Thismeans that the set M0 = {x : ∇Jx = 0} is nowhere dense.Note that if the manifold (M, g, J) is almost Kähler non-Kähler su
hthat the fun
tion φ(x) = g(∇Jx,∇Jx) is real-analyti
 on M then (M, g, J)is strongly non-Kähler.
Proposition 5. Let (M, g, J) be strongly non-Kähler almost Kähler
ompa
t 4-manifold satisfying 
ondition (2G3). Assume that 0 ∈ τ(M0).Then the opposite Kähler stru
ture J de�ned on M ′ extends to a globalKähler stru
ture J de�ned on M . Moreover , σ(M) = 0 = χ(M). If (M, g)has a negative total s
alar 
urvature then the Kähler surfa
e (M, g, J ) is aminimal 
lass VI surfa
e.Proof. Sin
e the eigenvalues of the Ri

i tensor ̺ are 
ontinuous fun
-tions on M it follows that ̺ has two eigenvalues λ = 0, µ = 1

2τ . From ourassumptions it follows that the form ω1(X, Y ) = (2/τ)̺(X, JY ) is well de-�ned and smooth on an open set U ⊃ M0 (note that M0 is 
ompa
t and
τ 6= 0 on M0). Note that ω2

1 = 0 and g(ω1, ω1) = 1 on U . Hen
e the form ω1is a smooth extension of the 
hara
teristi
 form ωD of the foliation D. Con-sequently, the form ω2 = Ω − ω1 is a smooth extension of the 
hara
teristi
form ωD⊥ of the foliation D⊥. Thus the form Ω = ω2 − ω1 = Ω − 2ω1 is asmooth extension of the Kähler form Ω1 of (M ′, g, J ). In parti
ular, ∇Ω = 0and thus Ω gives a global Kähler stru
ture whi
h is an extension of J . It fol-lows that the Ri

i tensor ̺ of (M, g) has the form ̺ = 1
2τg|D. Consequently,

γ2
J = 0 = γ2

J
where γJ , γJ are the 2-forms representing the �rst Chern 
lassesof (M, J) and (M, J ) respe
tively. Thus c1(M, J)2 = 0 = c1(M,J )2. Sin
e

c1(M, J)2 = 2χ(M) + 3σ(M) and c1(M,J )2 = 2χ(M) − 3σ(M) we obtain
χ(M) = 0 = σ(M). The rest of the proof is exa
tly the same as in the proofof Proposition 1.
Proposition 6. Let (M, g, J) be an almost Kähler 
ompa
t 4-manifoldsatisfying 
ondition (2G3). Assume that the fun
tion φ = g(∇J,∇J) is real-analyti
 on M and the s
alar 
urvature τ of (M, g) is negative. Then (M, g, J)is Kähler.Proof. From our assumptions it follows that if (M, g, J) is not Kählerthen it is a strongly non-Kähler almost Kähler surfa
e. Thus from Propo-sition 5 it follows that the opposite Kähler stru
ture extends to a globalopposite Kähler stru
ture J su
h that (M, g, J ) is a properly ellipti
 surfa
eof Kodaira dimension 1 with vanishing Euler number. Now the 
onsidera-
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tions analogous to those in the proof of Proposition 4 show that (M, g, J)has to be Kähler, whi
h is a 
ontradi
tion.In fa
t, we have proved
Corollary 5. There does not exist a strongly non-Kähler almost Kähler
ompa
t 4-manifold of type (2G3) with negative s
alar 
urvature. In par-ti
ular , there does not exist a strongly non-Kähler almost Kähler 
ompa
t

4-manifold of type (2G3) with 
onstant s
alar 
urvature.Proof. The proof of the frist part of the 
orollary is just the same as theproof of Proposition 6. Note that Draghi
i has proved in [D-2℄ that a 
ompa
talmost Kähler manifold with J-invariant Ri

i tensor and nonnegative s
alar
urvature is Kähler. Thus if the s
alar 
urvature is 
onstant it is enough to
onsider the 
ase when it is negative. From the �rst part of the proof itfollows that su
h manifolds do not exist.A
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