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ON ALMOST KAHLER TYPE (2G3) 4-MANIFOLDS

BY

WLODZIMIERZ JELONEK (Krakéow)

Abstract. We study four-dimensional almost Kahler manifolds (M, g, J) which sat-
isfy A. Gray’s condition (G3).

0. Introduction. In [J] we have proved that every strictly almost Ké&hler
manifold (M, g,J) (i.e. with |V.J| # 0) satisfying condition (G3) admits an
opposite almost Kihler structure J. In the present paper we prove that
every compact strongly non-Ké&hler almost Kéhler 4-manifold (M, g, J) of
type (2G3) (i.e. of type (G3) according to A. Gray’s notation and such that
J is also of type (G3)) admits a global opposite Kihler structure if the scalar
curvature 7 satisfies the condition {0}N7(My) =0 where My = {x : V.J, =0}.
In particular we prove that there does not exist a compact strongly non-
Kahler almost Kéahler type (2G3) 4-manifold with negative scalar curvature.
We also prove that for a compact four-dimensional almost Kéhler manifold
(M, g,J) the opposite almost Kihler structure .J defined on the set dom J =
{z : VJ, # 0} is Kéhler. Our results are connected with the question of Blair
and Tanug (see [B-I|, [D-1]): “Is it true that every four-dimensional almost
Kéahler compact manifold with Hermitian Ricci tensor is K&hler?” and with
the Goldberg conjecture (see [S-1], [S-2]).

1. Preliminaries. Let (M, g, J) be an almost Hermitian manifold. We
say that (M, g, J) is an almost Kdhler manifold if its Kéahler form 2(X,Y) =
9(JX,Y) is closed (df2 = 0). In what follows we shall consider four-dimen-
sional almost K&hler manifolds (M, g, J). Such manifolds are always oriented
and we choose an orientation in such a way that (2 is a self-dual form (i.e.
2 € N\t M). The vector bundle of self-dual forms admits a decomposition

ANTM=RQ®LM

where LM denotes the bundle of real J-skew-invariant 2-forms (i.e. LM =
{Pe ANM : P(JX,JY)=—P(X,Y)}). The bundle LM is a complex line
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bundle over M with the complex structure J defined by (J®)(X,Y) =
—P(JX)Y).

The curvature tensor R of a four-dimensional manifold (M, g) determines
an endomorphism R of the bundle A M defined by g(R(X AY),ZAW) =
RIXANY,ZANW)=—-R(X,Y,Z,W)=—g(R(X,Y)Z,W).

The Ricci tensor ¢ of an almost Hermitian manifold (M, g, J) is said to
be Hermitian (or J-invariant) if o(X,Y) = o(JX,JY) for all X, Y € X(M).
In the following we shall assume that (M, g, J) has Hermitian Ricci tensor.
This condition is equivalent to R(LM) c AT M.

For any local frame {FE1, Es, E3, E4} we shall write Vg, E; =), FZ’;Ek
From [O-S] and [J] we get (cf. also [O-S-Y])

LEMMA A. Assume that (M, g,J) is an almost Kdhler (Gg) 4-manifold
and |[VJ| # 0 on M. Let {E1,E>} be any local orthonormal basis of D+.
Then there exists a unique orthonormal basis {Es, E4} of D such that

(12) VR=0a(,@P—-0,0V)
where @ = 0y NO3 — O3 NOy, W =01 NOy+ 605 ANbO3 and o = —2—\1/§|VJ]. Also,
E4 = (Q/Q)QDL(El,El), E3 = (Q/Q)QDL(El,EQ),

where apL is the second fundamental form of D+. Moreover I} = Iy, =
Il =0and Iy = T4, = I'}) = La.
Let {E1, B9, E3, E4} be a local orthonormal frame satisfying ({2). Then
(1.1) 9(VgJX,)Y)=ad(X,)Y), ¢g(VgJX,Y)=—-a¥(X,)Y),
Vg, =0, Vg,J =0.

Recall that an almost Hermitian manifold (M, g,J) is said to satisfy
condition (G3) of A. Gray if

(Gs) R(JX,JY,JZ,JW) = R(X,Y, Z,W)

for all X,Y,Z, W € X(M). Note that for every manifold satisfying (G3) we
have R(LM) C A" M, the Ricci tensor g is J-invariant and the *-Ricci ten-
sor is symmetric. Indeed, since R(j(X AY),j(ZAW))=R(X ANY,ZAW)
where j(X AY) = JX A JY, we have R(ker(j —id), ker(j +id)) = 0. Since
ker(j—id) = A~ M ®RS?2 and ker(j+id) = LM we get g(R(LM), A\~ M @RS?2)
= 0. Consequently, R(LM) ¢ LM Cc A" M. In fact, R(LM) c A" M if
and only if the Ricci tensor p of (M, g) is J-invariant (see [D-2, p. 5(i)]), and
an almost Hermitian 4-manifold (M, g, J) with J-invariant Ricci tensor and
symmetric *-Ricci tensor satisfies (Gg).

Let us recall that we have proved in [J]| that an almost K&hler 4-manifold
(M, g, J) with Hermitian Ricci tensor, symmetric *-Ricci tensor (i.e. (M, g, J)
satisfies the condition (G3) of A. Gray) with V.J # 0 on M has integrable
both distributions D = {X € TM : VxJ = 0} and D, and they determine
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an opposite almost Kihler structure J. In the following we shall assume that
(M, g, J) also satisfies condition (G3) and we shall call such manifolds (2G'3)
almost Kihler manifolds.

The distribution D+ is contained in the nullity distribution D; ={X e
TM : VxJ = 0} of the almost Kihler structure J. For a general almost
Kéhler 4-manifold satisfying condition (2G3) the opposite almost Kéhler
structure J is defined only on the set domJ = {z € M : VJ # 0}. The
distributions D, D+ are J-invariant foliations which are eigendistributions
of the Ricci tensor o of (M,g). We shall denote by u, A the eigenvalues
corresponding to the distributions D, D' respectively. We shall also write
B=—55IVJl

Assurne that 3 # 0 and let {E], E}} be an orthonormal frame of D+
determined by {E3, E4}, i.e. such that

VR =030,P—032V).
Then E} = Ejcos¢+ Easing, E), = —FE;sin¢ + Ej cos ¢ and from Lemma
A it follows that
E{ = %Q(VE3E4)> Eé = %Q(VE4E4)7

where ¢ is the orthogonal projection ¢ : TM — DL. Hence the connec-
tion coeflicients F,zj with respect to the orthonormal frame {Ey, Eo, E3, E4}
satisfy

F§4:—F§3:F34:%5COS¢7 F§3:—Fi4ng4:%ﬂsln¢
Note that these relations are also valid when 5 = 0 (in this case D is a

totally geodesic foliation). In [J] we have proved that R(E1, Ez).J = 0 and
R(E3, E4).J = 0. From (1.1) we obtain (see [J])

(1.2&) g(R(El, E3).JX, Y) = _V[El E3}“Q Ego@ - ap(Eg)W,

(12b)  g(R(E1, Ex).JX,Y) = —Vig, 5,2 — Esa® — ap(Eq)¥,

(1.2¢c)  g(R(Eq, E3).JX,Y) = =V g, 5,2 + E3a¥ — ap(E3)®,

(1.2d) g(R(E4, EQ).JX, Y) = —V[E4 2}0 Eia¥ + Oép(E4)€P

(1.26) g(R(El,EQ).JX, Y) == _V[El 2}9 OzVEl - OZVE'2
)=

where the local 1-form p is defined by p(X
AT M it is clear that

(1.3a) g(R(F1, E3).JX,Y) = g(R(Ey, F2).JX,Y),

(1.3b) 9(R(Fs3,F5).JX,Y) = g(R(Ey, F1).JX,Y).

Note that p(X) = w?(X) + w3(X). Hence

(1.4a) 0= g(R(E, Fy).JE1, E3) = a(p(E1) — 0*([E1, Es)))
= (20T, + I'),

29(Vx®,¥). Since R(LM) C
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(1.4b) 0 = g(R(E1, E»).JE1, Ey) = a(—p(E2) + 6*([E1, Es]))
= 04(2F212 - F243)-
Note also that

(1.5a) 9(R(E1, E4).JEs, E3) = a(—p(Es) + 0°([E1, E4])),
(1.5b) g(R(Es, F3).JEs, E3) = a(0%([Fa, E3]) + Eza).
We have I'}, = I'Z; = 0. Consequently, (1.5a,b) imply

(L6) Eya = a(—p(Ey) + 6%([Ey, Ex)) = a(2T) + I}).
Analogously we get

(1.7) Esa = a(2T% + T3y).

2. Almost Kihler (2G3) manifolds. Recall that an almost Hermitian
4-manifold (M, g, J) satisfies condition (G3) if and only if it has J-invariant
Ricci tensor and symmetric *-Ricci tensor. We start with

LEMMA B. Assume that (M,g,J) is a (2G3) almost Kdhler 4-manifold
and |VJ| #0 on M. Then D, D+ are eigendistributions of the Ricci tensor
o of (]\_4, g). The eigenvalue corresponding to the distribution D+ is X =
— 55 VJ|2

Proof. The first part of the lemma is proved in [J]. From (1.4) we obtain,
similarly to [O-S, p. 109],

(21) R1234 = —2R1212 — %(T* — 7').
We also have
R(£2,02)=7%/2, R(02,02)=7"/2.

Hence
(2.2a) Ri212 + R3434 + 2R1234 = —77/2,
(2.2b) Ri212 + R3a34 — 2R1234 = —T" /2.
From (2.2) we have
T4+ 7*

(2.3) Ri912 + R3azq = — TR

?* _ 7_*
(2.4) Ri934 = 3

Thus from (2.1) it follows that

3r—21* —7T*
2. -2 =«
(2.5a) Ri212 6 ;
—37 —27* — 37*

16

(2.5b) R334 =



ALMOST KAHLER 4-MANIFOLDS 23

Since 7% — 7 = 1|VJ|? we can rewrite (2.4) and (2.5) in the following way:

2IVJ|2 — |VJ|?
2. = —
(2.6a) Ri212 3 )
—|VJP2+ |VJ|?
(2.6})) R1234 = | ’16 | | s
2|V J|? +3|VJ|? + 167
(2.6¢) R334 = — V] ?|,2 | )
Note that

A= Q(El,El) = K(El /\Ez) + K(E1 A Eg) +K(E1 A E4),
A= Q(EQ,EQ) = K(El /\EQ) + K(E2 VAN E3) +K(E2 VAN E4)

Thus
2X\ = —2R1212 + 21 + 2R3434.

Consequently, since 7 = 2\ + 2y,
VJIP

(2.7) A — = R334 — Ri212 = — 16

A— .
We infer from (2.7) that A = —55|V.J[%. u

COROLLARY 1. Assume that (M, g,J) is a (2G3) almost Kdhler 4-mani-
fold. If an opposite almost Kihler structure J satisfies the condition V.J # 0
on a set U C M, then on U the scalar curvature T is negative and 167 =
—(IVJ]2 +|VJ|?). In particular, if T>0 on M then (M,g,J) is Kéhler.

Proof. Since (M, g,J) also satisfies condition (G3) the calculations sim-
ilar to those in the proof of Lemma B give us u = —%]Vﬂ?. Consequently,
T=2\+2p= —%(\VJ!Q +|VJ?). =

PROPOSITION 1. Let (M,g,J) be a compact (2G3) almost Kdihler 4-
manifold such that |V.J| #0 on M. Then (M, g,J) is Kihler and the Euler
characteristic and signature of M wvanish. The Ricci tensor o of (M,g)
has two eigenvalues A = 0, u = %7‘. The foliation D 1is totally geodesic and
every leaf of D is a geodesically complete submanifold of M. If (M,g) has
negative total scalar curvature then (M, J) is a minimal class VI surface.

Proof. Assume that the function b(z) = |V.J,| is not identically 0 on M.
Then b is positive and continuous on M. Its image F' = im b is a connected
subset of R.. Let ¢ € F' be different from 0. The set F,. = {x € M : b(x) = ¢}
is closed, hence compact. Note that if D is a leaf of the foliation D and
DNF, # 0 then D C F, since D C kerdb. Let k = sup{a(x) : € F.}.
Then there exists a point zg € F. such that a(xzg) = k. Note that since « is
constant on the leaves of the foliation D+, at zg there is a local maximum
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of a. On the other hand, we have (cf. [O-S-Y, (3.24), (3.25)])
(2.8) Rauza = B3lyy — Baly + (I3)° + (I3)* — 28,
where H = (I'j3)? + (I'};)? = 8% = 35|V J|%. Note that
(2.9)  Rsgio = Esljy — Ealg) + 213,13y + 2053055 + T3 Ty — T T3y
We have I'}; = 313, — $E3In|al and '} = —3I%; + $E4In|al. Thus we
obtain

Ryqa = —3Rausa + o |VJ > — 2 Aln|al,
where Aln|a| = EZIn|a|+ E?In|a| — [ EsIn|a| — '3 EqIn |a is the usual
Laplacian of the function In |a| on (M, g). Thus it follows from (2.6) that

(2.10) 32A1n |a| = 167 + |VJ|* + 6|V J|*.
If VJg, # 0 then 167 = —|VJ|? — |[VJ|? and at zo we get
(2.11) 32A1n|a| = 5|V.J%

But since at x the function || has a local maximum we get Aln |aly, <0
and consequently |V.J| = 0, a contradiction. Thus b = 0 on M. It follows that
the Ricci tensor g of (M, g) has the form p = %Tgm. Note that 87y;(X,Y) =
$IVI203 N0t —40(X, JY) and 87y 7(X,Y) = —4o(X, JY) where V757 are
the 2-forms representing the first Chern classes of (M, .J) and (M, J) re-
spectively and {#', 62,63, 6*} is the coframe dual to {Fy, s, E3, E4}. Con-
sequently, 73 =0 = *y? Thus ¢1(M, J)? =0 = ¢1(M, J)?2. Since ¢1(M, J)? =
2X(M) + 30(M) and ¢1(M,J)? = 2x(M) — 30(M) we obtain x(M)
=0 =o0(M). It is well known (see [B-P-V]) that a compact Kéhler surface
of negative total scalar curvature is either a ruled surface with base of genus
at least 2, or its Kodaira dimension is at least 1. Since o(M) = 0 = x(M) we
conclude (see [A-D], [B-P-V]) that (M, J) belongs to class VI of the Kodaira
classification and it is a minimal surface. From (2.16) in [J] we find that
a’ = b = 0 and the connection forms satisfy

Wi = wi = %a@l, wy =ws = —%0492.
Hence wi(E3) = —I'Y, = 0 and w}(E;) = —I}, = 0. Consequently, the

second fundamental form of D vanishes and D is totally geodesic. Now it is
easy to see that every leaf D of D must be geodesically complete. =

From the proof of Proposition 1 we obtain:

COROLLARY 2. Let (M,g,J) be a (G3) almost Kdhler 4-manifold such
that |VJ| # 0 on M. Then on M we have

32A1n |a| = 167 + |VJ|* + 6|V |2

What is more, if (M,g,J) is Kihler then the nullity foliation D is totally
geodesic.
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We say that an almost Hermitian manifold (M, g, J) satisfies the second
condition (G2) of A. Gray if its curvature tensor R satisfies the condition

(Go) R(X,Y,Z,W)— R(JX,JY,Z,W)
= R(JX,Y,JZ,W)+ R(JX,Y, Z, JW)

for all X,Y,Z, W € X(M). It is known that an almost Kéahler manifold
(M, g, J) satisfies (G2) if and only if it satisfies (G3) and the function |V.J|
is constant on M. In [A-D] it is proved that every (G2) manifold is a (2G3)
manifold. Our next result which follows directly from Corollary 2 was first
proved in [A-D] under the additional assumption that M is compact.

PROPOSITION 2. Let (M,g,J) be a strictly almost Kdhler 4-manifold
satisfying condition (Ga). Then the opposite almost Kdhler structure J de-
termined by the minimal foliations D, D+ is Kdhler, the scalar curvature T
is constant and T = —%|VJ]2. Every leaf of D is totally geodesic and has
constant negative Gauss curvature K = —3|V.J|%,

Proof. Recall that (M, g, J) satisfies (G2) if and only if |[V.J| (hence |a|)
is constant on M. From Corollary 2 we obtain

(2.12) 167 = —6|VJ|> — |V.J|%.
Assume that |V.J| # 0 at a point 29 € M. Then at o we have
(2.13) 167 = —|VJ|? — |[VJ|

From (2.12) and (2.13) it follows that |V.J|,, = 0, a contradiction. Thus
[VJ| =0 on M and from (2.12) we derive T = —3|V.J|. Since every leaf
of D is totally geodesic it follows from (2.6) that it has constant Gauss
curvature K = 2 + &|VJ|2 = -1 |VJ[’. =

COROLLARY 3. Let (M,g,J) be a strictly almost Kihler (2G3) 4-mani-
fold. Assume that the scalar curvature T of (M,g) is constant. Then
(M, g,J) is Kihler and either (M,g,J) is Finstein with zero scalar cur-
vature (hence self-dual) or the Ricci tensor o of (M,g) has two constant

eigenvalues A = 0, p = %7‘.

Proof. From our assumption |V.J| # 0 on M. Thus the opposite almost
Kihler structure J is defined on the whole of M. Let V := {z € M :
|[VJ| # 0}. Let A\, u be the eigenvalues of the Ricci tensor o correspond-
ing respectively to the eigendistributions D+, D. Then on V we have A =
—55|VJ[?, p = —55|VJ|% Since 7 is constant it follows from Proposition 6
of [J] that both A and p are constant. Hence (M, g, J) satisfies (G3). Conse-
quently, VJ = 0 on V, a contradiction. Thus VJ =0 and A = 0, = %T. It
is also known (see [De]) that a Kahler surface with zero scalar curvature is

anti-selfdual with respect to the natural orientation. m
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REMARK. In [O-S-Y] it is proved that every Einstein and weakly Einstein
strictly almost Kéahler manifolds is self-dual and has zero scalar curvature.
The classification of such manifolds was also given by J. Armstrong.

PROPOSITION 3. Let (M,g,J) be a compact (2G3) almost Kéihler 4-
manifold. Then the opposite almost Kdhler structure J defined on dom J =

{z : |VJ|s # 0} is Kdhler.

Proof. Note that domJ = J.,F. where F, = {z : |a(z)| = c}.
Note that the function [ is well defined and continuous on any F, with
¢ € imlal, ¢ > 0. Let k = sup{|G(z)| : x € F.}. Every set F, is compact.
Let a point z¢ € F, satisfy |3(x¢)| = k. Since [ is constant on the leaves of
the foliation D it follows that at zy the function |3| has a local maximum.
On the other hand, since (dom J, g, J) also satisfies condition (G3) we have
at xg, if kK > 0,

(2.14) 32A1n (8] = 167 + 6|V J|> + |V.J|%

If & # 0 then V.J,, # 0 and hence 167 = —|V.J|* — |[VJ|? at 2. Conse-
quently, 32AIn |84, = 5|VJ|2, > 0, which is a contradiction. It follows that

V.J = 0 wherever J is defined. =

PROPOSITION 4. Let (M,g,J) be a compact (2G3) almost Kdihler 4-
manifold such that |VJ| # 0 on M. Then the scalar curvature T of (M, g)
attains positive and negative values on M. In particular, T cannot be constant
or nonpositive.

Proof. From [D-2] it follows that 7 cannot be nonnegative on M. Assume
that 7 < 0 on M. It is clear that the set M_ = {z € M : 7(x) < 0} is
nonempty and open. It follows that the Ricci tensor o = %Tg‘p is nonpositive
definite on M and nonzero on M_. Now we can follow [A-D], [A-D-K]. Since
(M, J) is a minimal properly elliptic surface of Kodaira dimension 1 it is clear
([B-P-V], |A-D-K]) that (M, J) is an elliptic fibration over a smooth curve
such that all smooth fibers are isomorphic and the singular fibers are mul-
tiples of smooth elliptic curves (note that (6) of [A-D-K] is clearly satisfied).
Taking a finite covering of (M, J) we can assume that (M, .J) is a logarithmic
transform of a total space of a principal elliptic fibre bundle, which means
that it admits a nonvanishing holomorphic vector field X. The Ricci tensor
o0 is nonpositive definite on M. Then a Bochner type argument (this idea
comes from the first version of [A-D]) shows that the field X is parallel and
on M_ its real and imaginary parts belong to D+, thus the distribution D+
is parallel on M_. Thus D is also parallel on M_ and consequently V.J =0
on M_, which is a contradiction. =

As an application of Proposition 4 we get a result of Draghici and Apos-
tolov [A-D]:
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COROLLARY 4. FEwvery compact almost Kdahler 4-manifold satisfying con-
dition (G2) is Kdibhler.

DEFINITION. We shall say that an almost K&hler manifold (M, g, J) is
strongly non-Kdahler if the set M’ = {x : V.J, # 0} is dense in M. This
means that the set My = {z : V.J, = 0} is nowhere dense.

Note that if the manifold (M,g,J) is almost Kdhler non-K&hler such
that the function ¢(z) = g(VJ;, VJ;) is real-analytic on M then (M,g,J)
is strongly non-Kéhler.

PROPOSITION 5. Let (M,g,J) be strongly non-Kdhler almost Kdhler
compact 4-manifold satisfying condition (2G3). Assume that 0 € 7(My).
Then the opposite Kdihler structure J defined on M’ extends to a global
Kdhler structure J defined on M. Moreover, o(M) = 0 = x(M). If (M,g)
has a negative total scalar curvature then the Kahler surface (M,g,.J) is a
minimal class VI surface.

Proof. Since the eigenvalues of the Ricci tensor g are continuous func-
tions on M it follows that p has two eigenvalues A = 0, u = %T. From our
assumptions it follows that the form wi(X,Y) = (2/7)0(X, JY) is well de-
fined and smooth on an open set U D M, (note that My is compact and
7 # 0 on My). Note that w? = 0 and g(w;,w;) = 1 on U. Hence the form w;
is a smooth extension of the characteristic form wp of the foliation D. Con-
sequently, the form wo = 2 — wq is a smooth extension of the characteristic
form wpi of the foliation D-+. Thus the form 2 = wy —w; = 2 — 2w is a
smooth extension of the Kihler form (21 of (M’, g,.J). In particular, V{2 = 0
and thus 2 gives a global Kihler structure which is an extension of J. It fol-
lows that the Ricci tensor g of (M, g) has the form o = %Tg‘p. Consequently,
'y?] =0= 'yi- where 77,77 are the 2-forms representing the first Chern classes
of (M,J) and (M, J) respectively. Thus ¢1(M, J)? = 0 = ¢;(M, J)?. Since
c1(M,J)? = 2x(M) + 30(M) and c;(M,J)? = 2x(M) — 30(M) we obtain
X(M) =0 =o(M). The rest of the proof is exactly the same as in the proof
of Proposition 1. u

PROPOSITION 6. Let (M,g,J) be an almost Kihler compact 4-manifold
satisfying condition (2G3). Assume that the function ¢ = g(VJ,VJ) is real-
analytic on M and the scalar curvature T of (M, g) is negative. Then (M, g, J)
1s Kdhler.

Proof. From our assumptions it follows that if (M, g,J) is not Kéhler
then it is a strongly non-Kéahler almost Kéhler surface. Thus from Propo-
sition 5 it follows that the opposite Kéahler structure extends to a global
opposite Kihler structure J such that (M, g, .J) is a properly elliptic surface
of Kodaira dimension 1 with vanishing Euler number. Now the considera-
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tions analogous to those in the proof of Proposition 4 show that (M, g, J)
has to be Kéahler, which is a contradiction. =

In fact, we have proved

COROLLARY 5. There does not exist a strongly non-Kdhler almost Kdhler
compact 4-manifold of type (2G3) with negative scalar curvature. In par-
ticular, there does not exist a strongly non-Kdhler almost Kéahler compact
4-manifold of type (2G3) with constant scalar curvature.

Proof. The proof of the frist part of the corollary is just the same as the
proof of Proposition 6. Note that Draghici has proved in [D-2| that a compact
almost Kéhler manifold with J-invariant Ricci tensor and nonnegative scalar
curvature is Kéahler. Thus if the scalar curvature is constant it is enough to
consider the case when it is negative. From the first part of the proof it
follows that such manifolds do not exist. =
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