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ON THE COMPOSITION OFTHE EULER FUNCTION AND THE SUM OF DIVISORS FUNCTIONBYJEAN-MARIE DE KONINCK (Québe) and FLORIAN LUCA (Morelia)Abstrat. Let H(n) = σ(φ(n))/φ(σ(n)), where φ(n) is Euler's funtion and σ(n)stands for the sum of the positive divisors of n. We obtain the maximal and minimalorders of H(n) as well as its average order, and we also prove two density theorems. Inpartiular, we answer a question raised by Golomb.1. Introdution. Let φ be Euler's funtion and let σ be the sum ofdivisors funtion. The omposition of the funtions σ and φ has been theobjet of several studies; see for instane M¡kowski and Shinzel [9℄, Pomer-ane [11℄, Sándor [12℄, Ford [2℄, Lua and Pomerane [8℄. In 1993, Golomb [3℄investigated the di�erene σ(φ(n))−φ(σ(n)) showing that it is both positiveand negative in�nitely often, and asked what is the proportion of eah.In this paper, we answer this question of Golomb and more, by studyingthe behavior of the quotient
H(n) :=

σ(φ(n))

φ(σ(n))
.In partiular, we obtain the maximal and minimal orders of H(n), its averageorder, and we also prove two density theorems.Given any positive real number x we write log x for the maximum betweenthe natural logarithm of x and 1. If k is a positive integer, we write logk xfor the kth iteration of the funtion log x. Throughout this paper, p, q and

r stand for prime numbers, while γ stands for Euler's onstant. We also use
π(x) for the number of primes up to x and ω(n) for the number of distintprime fators of n.Aknowledgments. The �rst author was supported in part by a grantfrom NSERC. The seond author was supported in part by Grants SEP-CONACyT 46755, PAPIIT IN104505 and a Guggenheim Fellowship. Theauthors wish to thank the referee for helpful remarks and suggestions whihimproved the quality of this paper.2000 Mathematis Subjet Classi�ation: 11A25, 11N37, 11N56.Key words and phrases: sum-of-divisors funtion, Euler's funtion.[31℄ © Instytut Matematyzny PAN, 2007
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2. Main resultsTheorem 1. The maximal order of H(n) is e2γ log2

2 n, that is,
lim sup

n→∞

H(n)

log2
2 n

= e2γ .Theorem 2. There exists a positive onstant δ suh that the minimalorder of H(n) is δ/log2 n, that is,
lim inf
n→∞

H(n) log2 n = δ.Moreover δ ∈ [(1/40)e−γ, 2e−γ ].Theorem 3. As x → ∞,
1

x

∑

n≤x

H(n) = c0 e2γ log2
3 x + O(log

3/2
3 x),where

c0 = lim
x→∞

1

x

∑

n≤x

φ(n)

σ(n)

=
∏

p

(

1 − 3

p(p + 1)
+

1

p2(p + 1)
+

(p − 1)3

p2

∞
∑

i=3

1

pi − 1

)

≈ 0.4578.

Theorem 4. For eah number u, 0 ≤ u ≤ 1, the asymptoti density ofthe set of numbers n with
H(n) > ue2γ log2

3 nexists, and this density funtion is stritly dereasing , varies ontinuouslywith u, and is 0 when u = 1.In partiular, Theorem 4 shows that σ(φ(n)) − φ(σ(n)) is positive formost n, thus providing an answer to Golomb's question.Theorem 5. The set {H(1), H(2), H(3), . . .} is dense in [0,∞).3. Preliminary results
Theorem A (Heath-Brown [6℄). Let k and a be oprime positive in-tegers. Then there exists a prime number p ≡ a (modk) whih satis�es

p = O(k11/2).
Remark. It has been shown by Alford, Granville and Pomerane [1℄that for most values of k, one an replae the onstant 11/2 by 12/5 + ε forany �xed ε > 0. It an also be shown that if GRH holds, then the onstant

11/2 an be replaed by 2 + ε for any �xed ε > 0.



EULER FUNCTION AND SUM OF DIVISORS FUNCTION 33

Theorem B (Pomerane [11℄). There exists a onstant κ > 0 suh that ,for all positive integers n,
σ(φ(n))

n
> κ.

Remark. This statement relates to a long standing onjeture of M¡ko-wski and Shinzel [9℄, whih asserts that σ(φ(n))/n ≥ 1/2. Reently, Ford[2℄ has shown that κ ≥ 1/39.4. Note also that the onjetured minimum 1/2is attained when n is twie the produt of the �rst Fermat primes, suh as
n = 2, 6, 30, 510, 131070 and 8589934590.Lemma 1 (Mertens' theorem [11℄). The estimate

∏

p≤x

(

1 − 1

p

)

=
e−γ

log x

(

1 + O

(

1

log x

))

holds for large values of x.Lemma 2. lim inf
n→∞

φ(n) log2 n

n
= e−γ.Proof. This result, whih follows essentially from Mertens' theorem, was�rst obtained by Landau [7℄.Lemma 3. lim sup

n→∞

σ(n)

n log2 n
= eγ.Proof. This result also follows from Mertens' theorem and was �rst ob-tained by Gronwall [4℄.Lemma 4. There exists a positive onstant c1 suh that for large realnumbers x, both φ(n) and σ(n) are divisible by all prime powers pa <

c1 log2 x/log3 x for all positive integers n < x with O(x/log2
3 x) exeptions.Proof. The above result for the ase of the funtion φ(n) is Lemma 2in [8℄. To prove the result for the funtion σ(n), let m be an arbitrary positiveinteger and write

S(x, m) =
∑

log2 x≤q≤x
m|(q+1)

1

q
.

From the Siegel�Wal�sz theorem (see Theorem 5, Chapter II.8 in Tenenbaum[13℄) and partial summation, it follows that there exist positive numbers c1and x0 suh that the inequality
S(x, m) ≥ c1 log2 x

φ(m)holds for x > x0 and all m ≤ log x. Let g(x) = c1 log2 x/log3 x. Using Brun'ssieve, it follows that the set Nm of numbers n ≤ x whih have no prime
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fator q > log2 x ongruent to −1 modulo m satis�es

#Nm < c2x
∏

log2 x<q<log x
m|(q+1)

(

1 − 1

q

)

≤ c2x exp(−S(x, m)),

for some positive onstant c2. Assuming now that x0 is hosen large enoughso that log x > g(x) for all x > x0, we see that if m = pa < g(x), then
#Npa <

c2x

exp(S(x, pa))
<

c2x

exp(log3 x)
=

c2x

log2 x
.Summing up the above inequalities over all the O(g(x)/log g(x)) prime pow-ers pa < g(x), we get

∑

pa<g(x)

#Npa ≪ xg(x)

log2 x log g(x)
≪ x

log2
3 x

.Finally, let M be the set of all positive integers n ≤ x suh that n is divisibleby the square of a prime q ≥ log2 x. Then
#M ≤

∑

q≥log2 x

x

q2
≪ x

log2 x log3 x
≪ x

log2
3 x

,where we used the fat that
∑

p>z

1

p2
≪ 1

z log z
.(1)Note now that if n ≤ x is suh that pa does not divide σ(n) for some

pa < g(x), then either n is in M or n is in
⋃

pa<g(x)

Npa ,

and by the above estimates both these sets are of ardinality O(x/log2
3 x),thereby ompleting the proof of Lemma 4.Lemma 5. Let x be a positive real number. Set

hφ(n) =
∑

p|φ(n)
p>log2 x

1

p
and hσ(n) =

∑

p|σ(n)
p>log2 x

1

p
.

Then
∑

n≤x

hφ(n) ≪ x

log3 x
and ∑

n≤x

hσ(n) ≪ x

log3 x
.(2) Proof. Clearly we have

∑

n≤x
p|φ(n)

1 ≤ x

p2
+

∑

q≤x
p|(q−1)

x

q
≪ x

p2
+

x log2 x

p
≪ x log2 x

p
.



EULER FUNCTION AND SUM OF DIVISORS FUNCTION 35

It now follows that
∑

n≤x

hφ(n) =
∑

p≤x

1

p

∑

n≤x
p|φ(n)

1 ≪ x log2 x
∑

p>log2 x

1

p2
≪ x

log3 x
,

where we used (1) with z := log2 x, thus establishing the �rst assertion in (2).We use a similar argument to establish the seond assertion in (2). First ofall, note that sine ω(n) < log x for all n ≤ x provided x is large enough, itfollows that
hσ(n) ≤

∑

i≤log x

1

pi
≪ log3 x,

where we used pi to denote the ith prime number. Let N1 be the set ofall positive integers n ≤ x suh that there exists a prime q > log2
3 x whosesquare divides n. Then, by (1),

#N1 ≤
∑

q>log2

3
x

x

q2
≪ x

log2
3 x log4 x

.

Hene,
∑

n∈N1

hσ(n) ≪ #N1 log3 x ≪ x

log3 x log4 x
.(3)Now let N2 be the set of those n ≤ x whih are not in N1 and whih aredivisible by a prime power qa, with a = ⌊c3 log4 x⌋ + 2, where c3 := 2/log 2.For a �xed prime number q, the number of suh numbers n is ≤ x/qa, andtherefore

#N2 ≤
∑

q≥2

x

qa
≤ x

2a
+ x

∞\
2

dt

ta
≪ x

2a
≪ x

log2
3 x

,

whih implies that
∑

n∈N2

hσ(n) ≪ #N2 log3 x ≪ x

log3 x
.(4)Finally, let N3 be the set of positive integers n ≤ x whih do not belong toeither N1 or N2. If n ∈ N3 and qαq ‖ n with αq > 1, then q < log2

3 x and
αq ≪ log4 x, so that qαq ≤ exp(O(log2

4 x)). Hene σ(qαq) < exp(O(log2
4 x)).In partiular, for large x, we have σ(qαq) < log2 x. Hene, if n ∈ N3 and

p > log2 x is a prime dividing σ(n), then there exists a prime fator q ‖ nof n suh that p | (q + 1). Now the same argument used for the funtion hφtells us that if p > log2 x is a �xed prime, then
∑

p|σ(n)
n∈N3

1 ≪
∑

q≤x
p|(q+1)

x

q
≪ x log2 x

p
.
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Therefore

∑

n∈N3

hσ(n) ≤
∑

p>log2 x

1

p

∑

p|σ(n)
n∈N3

1 ≪
∑

p≥log2 x

x log2 x

p2
≪ x

log3 x
.(5)

The seond estimate (2) then follows from estimates (3)�(5), and the proofof Lemma 5 is omplete.Lemma 6. As x → ∞,
∑

n≤x

φ(n)

σ(n)
= c0x + O(x3/4),where c0 is the onstant appearing in the statement of Theorem 3.Proof. Given any number s with ℜ(s) > 1 and letting ζ(s) stand for theRiemann zeta funtion, we have

∞
∑

n=1

φ(n)/σ(n)

ns
=

∏

p

(

1 +

p−1
p+1

ps
+

p(p−1)
p2+p+1

p2s
+

p2(p−1)
p3+p2+p+1

p3s
+ · · ·

)

= ζ(s)
∏

p

(

1 − 1

ps

)

∏

p

(

1 +

p−1
p+1

ps
+

p(p−1)
p2+p+1

p2s
+

p2(p−1)
p3+p2+p+1

p3s
+ · · ·

)

= ζ(s)
∏

p

(

1 +

p−1
p+1 − 1

ps
+

p(p−1)
p2+p+1

− p−1
p+1

p2s
+

p2(p−1)
p3+p2+p+1

− p(p−1)
p2+p+1

p3s
+ · · ·

)

= ζ(s)R(s),say. Expanding the produt R(s) into a Dirihlet series, say
R(s) =

∞
∑

n=1

an

ns
,we �nd that it onverges absolutely in the half-plane ℜ(s) ≥ 3/4. Setting

bn = φ(n)/σ(n), we have bn =
∑

d|n ad, and therefore
∑

n≤x

bn =
∑

n≤x

∑

d|n
ad =

∑

n≤x

ad

[

x

d

]

= x
∑

d≤x

ad

d
+ O

(

∑

d≤x

|ad|
)

= R(1)x + O

(

x
∑

d>x

|ad|
d

)

+ O
(

∑

d≤x

|ad|
)

.Sine
∑

d≤x

|ad| =
∑

d≤x

|ad|
d3/4

d3/4 = O(x3/4)
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and
∑

d>x

|ad|
d

=
∑

d>x

|ad|
d3/4

1

d1/4
≤ x−1/4

∑

d>x

|ad|
d3/4

= O(x−1/4),it follows that
∑

n≤x

φ(n)

σ(n)
= R(1)x + O(x3/4),whih ompletes the proof of Lemma 6, sine R(1) = c0.Lemma 7. There exists a onstant c4 suh that the set of positive integers

n ≤ x with ω(φ(n)) > c4 log2
2 x ontains at most O(x/log2

2 x) elements. Thesame holds when the φ funtion is replaed by the σ funtion.Proof. First let D1 be the set of all n ≤ x suh that k = ω(n) > 3e log2 x.A well-known result of Hardy and Ramanujan (see [5℄) asserts that
#{n ≤ x : ω(n) = k} ≪ x

log x
· 1

(k − 1)!
· (log2 x + O(1))k−1,an inequality whih together with Stirling's formula implies that

#{n ≤ x : ω(n) = k} ≪ x

log x
·
(

e log2 x + O(1)

k − 1

)k−1

<
x

log x
· 1

2k−1sine k − 1 > 3e log log x − 1 and x is assumed to be large. Thus,
#D1 = #{n ≤ x : ω(n) > 3e log2 x} ≪ x

log x

∑

k

1

2k
≪ x

log x
≪ x

log2
2 x

.Assume now that D2 is the set of all n ≤ x whih are divisible by the squareof a prime p > log2
2 x. Then

#D2 ≤
∑

p>log2

2
x

x

p2
≪ x

log2
2 x

.

Let D3 be the set of those n ≤ x whih are divisible by a prime number psuh that ω(p − 1) ≥ b := ⌊e2 log2 x⌋. Then
#D3 ≤

∑

p≤x
ω(p−1)≥b

x

p
≤ x

∑

k≥b

1

k!

(

∑

qa≤x

1

qa

)k

≪ x
∑

k≥b

(

e log2 x + O(1)

k

)k

≪ x
∑

k≥b

1

2k
≪ x

2b
≪ x

log x
≪ x

log2
2 x

,

where we used the fats that e > 2 and 2e2

> e. Let D4 be the set of those
n ≤ x whih are divisible by a prime number p suh that ω(p + 1) ≥ b. Thesame argument as above shows that

#D4 ≪ x

log2
2 x

.
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Let D5 be the set of those n ≤ x whih do not belong to D1 ∪D2 ∪D3 ∪D4and suh that there exists a prime power pa |n, where a = ⌊c3 log3 x⌋, where
c3 = 2/log 2. By an argument similar to the one used in the proof of Lemma 5,we get

#D5 ≤ x
∑

p≥2

1

pa
≪ x

2a
+ x

∞\
2

dt

ta
≪ x

2a
≪ x

log2
2 x

.Put D = D1 ∪D2 ∪D3 ∪D4 ∪D5. Assume that n 6∈ D. Writing m for thelargest square-full divisor of n, we note that
φ(m)≤m≤ σ(m)≤m2 ≤

(

∏

p≤log2

2
x

p
)c3 log3 x

< exp(2c3 log2
2 x log3 x) =: T (x)for large x by the prime number theorem. Hene,

max{ω(φ(m)), ω(σ(m))} ≪ log T (x)

log2 T (x)
≪ log2

2 x.Sine learly
max{ω(φ(n/m)), ω(σ(n/m))} ≤ 3eb log2 x < 3e3 log2

2 x,it follows that
max{ω(φ(n)), ω(σ(n))} ≪ log2

2 x,where we also used the obvious fat that m and n/m are oprime. Let c4 bethe onstant implied in the last Vinogradov symbol above. Notiing that Dontains O(x/(log2 x)2) elements, the onlusion of Lemma 7 follows.4. The maximal order of H(n). We will show that for n su�ientlylarge,
H(n) ≤ (1 + o(1)) e2γ log2

2 n.(6)Then learly the proof of Theorem 1 will follow if we an also show thefollowing result.
Claim. There exists an in�nite sequene of integers n for whih H(n) isbounded below by (1 + o(1)) e2γ log2

2 n.To prove (6), �rst observe that it follows from Lemma 2 that
σ(φ(n)) ≤ (1 + o(1))eγφ(n) log2 φ(n) ≤ (1 + o(1))eγ n log2 n.(7)On the other hand, it follows from Lemma 1 that

φ(n) ≥ (1 + o(1))
e−γn

log2 n
,so that

φ(σ(n)) ≥ (1 + o(1))
e−γσ(n)

log2 σ(n)
≥ (1 + o(1))e−γ n

log2 n
.(8)Combining (7) and (8), we obtain (6).
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Hene, in order to omplete the proof of Theorem 1, it remains to proveour Claim. So let x be a large integer, and let P and Q be the smallestprimes suh that
P ≡ 1 (modM(x)) and Q ≡ −1 (modM(x)),where M(x) = LCM[1, 2, . . . , x], and set

n = P Q.From the prime number theorem, it is lear that
M(x) = e(1+o(1))x < e2x,say. Hene, from Theorem A, it follows that

P ≪ e11x, Q ≪ e11x, so that n = PQ ≪ e22x.Thus, n < e23x for large x. For this partiular integer n, we have, sine
φ(n) = (P − 1)(Q − 1),

σ(φ(n))

φ(n)
=

∏

pαp‖(P−1)(Q−1)

(

1 +
1

p
+

1

p2
+ · · · + 1

pαp

)

≥
∏

pαp‖(P−1)

(

1 +
1

p
+

1

p2
+ · · · + 1

pαp

)

≥
∏

pβp≤x

(

1 +
1

p
+

1

p2
+ · · · + 1

pβp

)

,

where eah exponent βp is the unique positive integer satisfying pβp ≤ x
< pβp+1. Therefore,

σ(φ(n))

φ(n)
≥

∏

p≤x

(

1 +
1

p − 1

)

∏

pβp≤x

(

1 + O

(

1

pβp+1

))

.(9)
However,

∏

pβp≤x

(

1 + O

(

1

pβp+1

))

= exp

{

O

(

∑

pβp≤x

1

pβp+1

)}

= exp

{

O

(

π(x)

x

)}

= 1 + O

(

1

log x

)

.Using this in (9), we dedue that, by Lemma 1,
σ(φ(n))

φ(n)
≥ (1 + o(1))

∏

p≤x

p

p − 1
= (1 + o(1))eγ log x.(10)
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On the other hand, σ(n) = (P + 1)(Q + 1), so that

φ(σ(n))

σ(n)
=

∏

p|(P+1)(Q+1)

(

1 − 1

p

)

≤
∏

p|(P+1)

(

1 − 1

p

)(11)
≤

∏

p|M(x)

(

1 − 1

p

)

=
∏

p≤x

(

1 − 1

p

)

= (1 + o(1))
e−γ

log x
,

where we used Lemma 1.Gathering (10) and (11), we get
H(n) · σ(n)

φ(n)
≥ (1 + o(1))e2γ log2 x.(12)Sine by our hoie of n, we have exp{(1 + o(1))x} < n < exp{23x}, itfollows that (1 + o(1))x < log n < 23x and therefore log2 n = log x + O(1),whih means that (12) an be replaed by

H(n) · σ(n)

φ(n)
≥ (1 + o(1))e2γ log2

2 n.(13)Observing now that, for large x (that is, large P and Q),
σ(n)

φ(n)
=

(P + 1)(Q + 1)

(P − 1)(Q − 1)
= 1 + o(1),we onlude that our Claim follows immediately from (13), sine then byvarying x one obtains in�nitely many suh integers n. The proof of Theorem 1is thus omplete.5. The minimal order of H(n). It follows from Theorem B and Lem-ma 3 that, for n su�iently large,

σ(φ(n))

n
> κ and n

σ(n)
≥ (1 + o(1))e−γ

log2 n
.Combining these with the trivial inequality σ(n)/φ(σ(n)) ≥ 1, we immedi-ately get

H(n) log2 n =
σ(φ(n))

n
· σ(n)

φ(σ(n))
· n

σ(n)
· log2 n ≥ e−γκ.(14)To omplete the proof of Theorem 2, we shall use an argument developedby M¡kowski and Shinzel in [9℄.Let x be large and let N(x) =

∏

p<x p. Moreover let q be the smallestprime number exeeding x log x, and hoose n = N(x)q−1, so that
φ(n) = N(x)q−2φ(N(x)) =

∏

p<x

pαp ,



EULER FUNCTION AND SUM OF DIVISORS FUNCTION 41

where αp = q − 2 + γp and γp ≥ 0 is suh that pγp ‖ φ(N(x)). We then have
σ(φ(n)) =

∏

p<x

σ(pαp) =
∏

p<x

pαp+1 − 1

p − 1and
σ(φ(n))

φ(n)
=

∏

p<x

pαp+1 − 1

pαp(p − 1)
= (1 + o(1))eγ log x,(15)by Lemma 1.On the other hand, again by Lemma 1,

φ(n)

n
=

∏

p<x

(

1 − 1

p

)

= (1 + o(1))
e−γ

log x
.(16)Combining (15) and (16), we obtain

σ(φ(n))

n
=

σ(φ(n))

φ(n)
· φ(n)

n
= 1 + o(1).(17)We now examine the expression

σ(n) =
∏

p<x

pq − 1

p − 1
.(18)Fix a prime p < x and set

pq − 1

p − 1
= rβ1

1 · · · rβt

t ,where, for eah i = 1, . . . , t, ri = ri(p) is a prime and βi = βi(p) a positiveinteger. We then have pq ≡ 1 (mod ri) for eah positive integer i ≤ t, andby Fermat's Little Theorem it follows easily that ri ≡ 1 (mod q) (for if not,then from pq ≡ 1 (mod ri) it would follow that p ≡ 1 (mod ri), whih wouldlead to the onlusion that (pq − 1)/(p− 1) and p− 1 have a ommon fator
ri > 1, whih is impossible beause (pq − 1)/(p − 1) is ongruent modulo
p − 1 to the prime q > p − 1). Hene

xq > pq >
pq − 1

p − 1
> qt,whih, sine q > x log x, implies that

t <
q log x

log q
< q.(19)From this it follows that

φ
(pq−1

p−1

)

pq−1
p−1

=
t

∏

i=1

(

1 − 1

ri

)

≥ exp

{

−2
t

∑

i=1

1

ri

}

,(20)where we used the fat that 1 − z > e−2z for all z in (0, 1/4). Sine itfollows from (19) that there are at most q suh primes ri in the arithmeti
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progression 1 mod q, we have

t
∑

i=1

1

ri
≤ 1

q · 1 +
1

q · 2 + · · · + 1

q · q <
2 log q

q
,whih, ombined with (20), yields

φ
(pq−1

p−1

)

pq−1
p−1

≥ exp

{

−4 log q

q

}

.It follows that
1 ≥ φ(σ(n))

σ(n)
≥

∏

r| pq
−1

p−1

for some p<x

(

1 − 1

r

)

≥ exp

{

−4
π(x) log q

q

}

= 1 + o(1),

sine we have hosen q > x log x and sine π(x) ≪ x/log x. We have thusestablished that
φ(σ(n))

σ(n)
= 1 + o(1).It now follows from Lemma 1 that

(21)
φ(σ(n))

n
=

φ(σ(n))

σ(n)
· σ(n)

n
= (1 + o(1))

∏

p<x

(

1 +
1

p
+ · · · + 1

pq−1

)

= (1 + o(1))
∏

p<x

{(

1 +
1

p − 1

)(

1 + O

(

1

pq

))}

= (1 + o(1))eγ(log x) exp

(

O

(

∑

p<x

1

pq

))

= (1 + o(1))eγ(log x) exp

(

O

(

π(x)

2x log x

))

= (1 + o(1))eγ log x.Combining (17) and (21), we get
H(n) =

σ(φ(n))

n
· n

φ(σ(n))
= (1 + o(1))

e−γ

log x
.(22)It remains to estimate the size of n. Reall that, by our hoie of n and q,we have

n =
(

∏

p<x

p
)q−1

= exp{(1 + o(1))xq} = exp{(1 + o(1))x2 log x},

so that (1 + o(1))x2 log x = log n, from whih we easily obtain
x = (1 + o(1))

√

2 log n

log2 n
,
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whih yields
log x =

1

2
(1 + o(1)) log2 n.Substituting this in (22), we obtain

H(n) = (1 + o(1))
e−γ

1
2 log2 n

,from whih we may onlude that there exist in�nitely many integers n suhthat
H(n) log2 n = (1 + o(1))2e−γ.The proof of Theorem 2 is ompleted by ombining this last result with (14)and taking into aount the remark following the statement of Theorem Bonerning the improved lower bound for κ.

6. The mean value of H(n). We use the method developed in [8℄. Let
M0(x) be the least ommon multiple of all prime powers pa < g(x), where
g(x) = c1 log2 x/log3 x and c1 is the onstant of Lemma 4. Moreover, let
A = A(x) = {n :

√
x < n ≤ x and M0(n) | gcd(φ(n), σ(n))}. Then

σ(φ(n))

φ(n)
≥ eγ log3 x

(

1 + O

(

1

log3 x

))

(n ∈ A).(23)(This follows from inequality (37) in [8℄.) Using the same method and thenapplying Lemma 1, we get
φ(σ(n))

σ(n)
≤ φ(M0(n))

M0(n)
=

∏

p<g(x)

(

1 − 1

p

)

(24)

≤ e−γ

log3 x

(

1 + O

(

1

log3 x

))

(n ∈ A).Combining (23) and (24) yields
H(n) ≥ φ(n)

σ(n)

eγ log3 x

e−γ/log3 x

(

1 + O

(

1

log3 x

))

(25)

=
φ(n)

σ(n)
e2γ log2

3 x

(

1 + O

(

1

log3 x

))

for n ∈ A. It follows that
∑

n≤x

H(n) ≥
∑

n≤x
n∈A

H(n) ≥ e2γ log2
3 x

(

1 + O

(

1

log3 x

))

∑

n≤x
n∈A

φ(n)

σ(n)
.(26)
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Now using Lemma 4 to estimate the size of [1, x] \A and using the fat that
φ(n) ≤ σ(n) for all n, we get, by Lemma 6,

∑

n≤x
n∈A

φ(n)

σ(n)
≥

∑

n≤x

φ(n)

σ(n)
− (⌊x⌋ − #A) =

∑

n≤x

φ(n)

σ(n)
+ O

(

x

log2
3 x

)

= c0 x + O

(

x

log2
3 x

)

.Combining this with (26) yields
∑

n≤x

H(n) ≥ c0 e2γx log2
3 x + O(x log3 x).(27)

It remains to obtain the orresponding upper bound for ∑

n≤x H(n). Todo so, we �rst observe that we only need to onsider those integers n ∈
[
√

x, x], sine it follows from Theorem 1 that
∑

n≤√
x

H(n) = O(
√

x log2
2 x).(28)

Consider now the set
B = B(x) =

{

n :
√

x < n ≤ x, hφ(n) <
1

√

log3 x
, hσ(n) <

1
√

log3 x

}

,and given a positive integer n ∈ B, write φ(n) = n1 · n2, where
n1 =

∏

pαp‖φ(n)
p≤log2 x

pαp and n2 =
∏

pαp‖φ(n)
p>log2 x

pαp ,

so that, by Lemma 1,
σ(φ(n))

φ(n)
=

∏

p|n1

(

1 +
1

p
+ · · · + 1

pαp

)

·
∏

p|n2

(

1 +
1

p
+ · · · + 1

pαp

)(29)
≤ (eγ log3 x + O(1)) · exp(O(hφ(n)))

= (eγ log3 x + O(1)) · exp

{

O

(

1
√

log3 x

)}

[4pt]

= eγ log3 x + O(
√

log3 x) (n ∈ B).On the other hand, given n ∈ B and writing σ(n) = m1 · m2, where
m1 =

∏

pαp‖σ(n)
p≤log2 x

pαp and m2 =
∏

pαp‖σ(n)
p>log2 x

pαp ,
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we get, by a similar argument,
φ(σ(n))

σ(n)
=

φ(m1)

m1
· φ(m2)

m2
(30)

≥ e−γ

log3 x

(

1 + O

(

1

log3 x

))

·
(

1 + O

(

1
√

log3 x

))

=
e−γ

log3 x

(

1 + O

(

1
√

log3 x

))

(n ∈ B).Gathering (29) and (30), we obtain
H(n) ≤ φ(n)

σ(n)
e2γ log2

3 x

(

1 + O

(

1
√

log3 x

))

(n ∈ B),(31)from whih it follows that
∑

n≤x
n∈B

H(n) ≤ e2γ log2
3 x

(

1 + O

(

1
√

log3 x

))

∑

n≤x
n∈B

φ(n)

σ(n)
(32)

≤ e2γc0x log2
3 x + O(x log

3/2
3 x).It remains to onsider the ontribution of those integers n ∈ [

√
x, x] whihdo not belong to the set B. The set of these numbers is ontained in Cφ ∪Cσ,where, given f ∈ {φ, σ}, we write Cf for the set of those numbers n ∈ [

√
x, x]suh that hf (n) ≥ 1/

√

log3 x. Lemma 5 shows that
x

log3 x
≫

∑

n∈Cf

hf (n) ≥ #Cf
√

log3 x
,

so that
#Cf ≪ x/

√

log3 x for f = φ and f = σ.(33)We now all upon Lemma 7. Let D be the exeptional set mentioned inthat lemma. Sine by Theorem 1, H(n) ≪ log2
2 n, it follows that

∑

n∈D
H(n) = O(x).(34)

We now let E be the set of those n ≤ x whih are not inD. Thus, by Lemma 7,if n ∈ E , then ω(φ(n)) and ω(σ(n)) are both O(log2
2 x). In partiular, forlarge x, we have

max{hφ(n), hσ(n)} ≤
∑

log2 x<p<log3

2
x

1

p
≪ 1.

Hene, writing φ(n) = n1 · n2 and σ(m) = m1 · m2 as previously, we �nd
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that for n ∈ E ,

σ(φ(n))

φ(n)
=

∏

pαp‖n1

(

1 +
1

p
+ · · · + 1

pαp

)

∏

pαp‖n2

(

1 +
1

p
+ · · · + 1

pαp

)

≤
∏

p≤log2 x

(

1 +
1

p − 1

)

exp(O(hφ(n)) ≪ log3 xand
φ(σ(n))

σ(n)
=

∏

p‖m1

(

1 − 1

p

)

∏

p‖m2

(

1 − 1

p

)

≥
∏

p≤log2 x

(

1 − 1

p

)

exp(−hσ(n)) ≫ log3 x,

from whih we may onlude that H(n) ≪ log2
3 x for all n ∈ E . Finally,reall that by (33), the set of those n ∈ Cφ ∪ Cσ is of ardinality at most

O(x/
√

log3 x), and therefore that
∑

n∈(Cφ∪Cσ)∩E
H(n) ≤ max

n∈E
{H(n)} · #(Cφ ∪ Cσ) ≪ x log

3/2
3 x,

whih together with (28), (32) and (34) shows that
∑

n≤x

H(n) ≤ e2γc0x log2
3 x + O(x log

3/2
3 x).(35)Combining (27) and (35) ompletes the proof of Theorem 3.7. The �rst density theorem for H(n). Here, we follow essentiallyan argument used in [8℄. In view of (25) and (31), both inequalities

H(n) ≥ (1 + o(1))
φ(n)

σ(n)
e2γ log2

3 n,

H(n) ≤ (1 + o(1))
φ(n)

σ(n)
e2γ log2

3 nhold on a set of density 1. Therefore, on a set of density 1,
H(n) = (1 + o(1))e2γ log2

3 n
φ(n)

σ(n)
.Sine φ(n)/σ(n) has a ontinuous distribution funtion (see Exerises 2and 3 of Chapter III.2 in Tenenbaum [13℄), the proof of Theorem 4 is om-plete.8. The seond density theorem for H(n). Fix δ ∈ (0,∞) and let xbe a very large positive real number. We shall now onstrut a �nite set R
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of primes larger than xx2 with
∏

r∈R

(

1 +
1

r

)

∈
(

eγδ log x

2
− 1,

eγδ log x

2
+ 1

)

.

To onstrut R, let r1 < r2 < · · · be all the primes > xx2 and let k be thelargest positive integer suh that
k

∏

i=1

(

1 +
1

ri

)

≤ eγδ log x

2
.Observe that by the maximality of k and the fat that

rk+1 ≥ r1 > xx2

>
eγδ log x

2for all x su�iently large, we get
k+1
∏

i=1

(

1 +
1

ri

)

∈
(

eγδ log x

2
,
eγδ log x

2
+ 1

)

.Hene, we an take R = {ri : i = 1, . . . , k + 1}. Note that sine
k+1
∏

i=1

(

1 +
1

ri

)

= exp(log2 rk+1 − log2 r1 + o(1)) > exp(log2 rk+1 − 3 log x),it follows that rk+1 < ex4 for large x, for if not, then rk ≥ ex4

/2, in whihase
k

∏

i=1

(

1+
1

ri

)

> exp(log2 rk − log2 r1 +o(1)) > exp(log x) = x >
eγδ log x

2
+1,whih ontradits the de�nition of k.We now let y be a parameter that depends on x with z := log2 y > rk+1.This inequality is ful�lled if we hoose log2 y > ex4 , whih in turn holds if

log3 y > x4. Then let P be the set of all primes p ≤ y suh that p ≡ 13
(mod72), p ≡ 1 + ri (mod r2

i ) for all i = 1, . . . , k + 1, and both p − 1 and
p + 1 are oprime to all primes r ≤ z whih are ≥ 5 and do not belongto R. Observe that the above onditions ertainly put p in an arithmetiprogression a (mod b), where

b = 72
k+1
∏

i=1

r2
i ,and a ≡ 13 (mod72) and a ≡ 1 + ri (mod r2
i ) for i = 1, . . . , k + 1.Now let

T :=
∏

5≤r≤z
r 6∈R

r,
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and, for eah d |T , let

A(d) := {ad (mod bd) : d | a2
d − 1 and ad ≡ a (mod b)},so that #A(d) = 2ω(d).By the priniple of inlusion and exlusion, the ardinality of the set Pof primes is none other than

∑

d|T
µ(d)

∑

ad∈A(d)

π(y; ad, bd),

where, as usual, π(y; s, t) stands for the number of primes p ≤ y satisfying
p ≡ s (mod t). Observing that bT ≪ ∏

r≤z r2 ≤ e2(1+o(1))z < e3z < y1/3, weget, by the Bombieri�Vinogradov theorem,
P =

π(y)

φ(b)

∏

5≤r≤z
r 6∈R

(

1 − 2

r − 1

)

+ O

(

2π(z)y

log10 y

)

.

Sine
2π(z) = exp(O(log2 y/log3 y)) = (log y)o(1),while

φ(b) ≪
∏

r≤z

r2 < exp(3 log2 y) = log3 y,and sine
∏

r≤z

(

1 − 2

r − 1

)

≫ exp

{

−
∑

r≤z

2

r − 1

}

≫ exp{−2 log log z} =
1

log2 z

≥ 1

log y
,it follows that

P =
π(y)

φ(b)

∏

5≤r≤z
r 6∈R

(

1 − 2

r − 1

)

+ O

(

y

log9 y

)

≫ π(y)

log4 y
≫ y

log5 y
.

Finally, let P ′ be the subset of those primes p ∈ P suh that neither ω(p−1)nor ω(p + 1) is larger than e2 log2 y. From the estimates due to Hardy andRamanujan (see [5℄ and the proof of Lemma 7), we know that
#{n ≤ y : ω(n) > e2 log2 y} ≪ y

log y

∑

k>e2 log
2

y

1

(k − 1)!
(log2 y + O(1))k

≪ y

log y

∑

k>e2 log2 y

(

e log2 y + O(1)

k

)k

≪ y

log y
· 1

2e2 log2 y
= o

(

y

log5 y

)

,
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beause e2 log 2 + 1 > 5. Thus,
#P ′ ≫ y

log5 y
.In partiular, P ′ is non-empty for large y. Selet P in P ′ and let n = N(x)P ,where N(x) =

∏

p<x p. Then φ(n) = 12φ(N(x)) · (P − 1)/12, σ(n) =

2σ(N(x)) ·(P +1)/2, and (P −1)/12 is oprime to 4φ(N(x)), while (P +1)/2is oprime to 2σ(N(x)). The arguments from the proof of Theorem 2 nowimmediately show that
σ(φ(n))

φ(n)
=

σ(12N(x))

12N(x)
· σ((P − 1)/12)

(P − 1)/12

= eγ log x

(

1 + O

(

1

log x

))

∏

r∈R

(

1 +
1

r

)

∏

rαr‖P−1
r>z

(

1 +
1

r
+ · · · + 1

rαr

)

= eγ log2 x

(

1 + O

(

1

log x

))

· eγδ log x

2
· exp

(

O

(

∑

r|(P−1)
r>z

1

r

))

.

Noting that P − 1 has no more than e2 log2 y prime fators, it follows easilythat
∑

r|(P−1)
r>z

1

r
≤

∑

log2 y<r<log2 y log2

3
y

1

r
≪ log

(

log3 y + 2 log4 y

log3 y

)

≪ log4 y

log3 y
≪ log x

x4
≪ 1

log x
.This means that

σ(φ(n))

φ(n)
=

eγδ

2
log2 x

(

1 + O

(

1

log x

))

.By similar arguments, we get
φ(n)

n
=

∏

r≤x

(

1 − 1

r

)

· P − 1

P
=

e−γ

log x

(

1 + O

(

1

log x

))

.

It follows that
σ(φ(n))

n
=

eγδ

2
log x

(

1 + O

(

1

log x

))

.(36)As we obtained (17) in the proof of Theorem 2, we also get, handling thease of P + 1 as we did for P − 1,



50 J.-M. DE KONINCK AND F. LUCA
φ(σ(n))

σ(n)
=

1

2

φ(σ(N(x)))

σ(N(x))
· φ((P + 1)/2)

(P + 1)/2
(37)

=
1

2

(

1 + O

(

1

log x

))

·
∏

r|(P+1)
r>z

(

1 − 1

r

)

=
1

2

(

1 + O

(

1

log x

))

.Finally,
σ(n)

n
=

σ(N(x))

N(x)
· P + 1

P
= eγ log x

(

1 + O

(

1

log x

))

.(38)Gathering (37) and (38) yields
φ(σ(n))

n
=

eγ log x

2

(

1 + O

(

1

log x

))

.(39)Combining (36) and (39), we obtain
H(n) =

eγδ log x

2
· 2

eγ log x

(

1 + O

(

1

log x

))

= δ

(

1 + O

(

1

log x

))

.Sine x is arbitrary, we see that δ is a luster point of {H(n)}n≥1, as laimed.
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