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PRIMITIVE LUCAS d-PSEUDOPRIMES AND

CARMICHAEL–LUCAS NUMBERS

BY
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Abstract. Let d be a fixed positive integer. A Lucas d-pseudoprime is a Lucas pseu-
doprime N for which there exists a Lucas sequence U(P, Q) such that the rank of appear-
ance of N in U(P, Q) is exactly (N − ε(N))/d, where the signature ε(N) = ( D

N
) is given

by the Jacobi symbol with respect to the discriminant D of U . A Lucas d-pseudoprime
N is a primitive Lucas d-pseudoprime if (N − ε(N))/d is the maximal rank of N among
Lucas sequences U(P, Q) that exhibit N as a Lucas pseudoprime.

We derive new criteria to bound the number of d-pseudoprimes. In a previous paper,
it was shown that if 4 ∤ d, then there exist only finitely many Lucas d-pseudoprimes. Using
our new criteria, we show here that if d = 4m, then there exist only finitely many primitive
Lucas d-pseudoprimes when m is odd and not a square.

We also present two algorithms that produce almost every primitive Lucas d-pseudo-
prime with three distinct prime divisors when 4 | d and show that every number produced
by these two algorithms is a Carmichael–Lucas number. We offer numerical evidence to
support conjectures that there exist infinitely many Lucas d-pseudoprimes of this type
when d is a square and infinitely many Carmichael–Lucas numbers with exactly three
distinct prime divisors.

1. Introduction. Let d be a fixed, positive integer. In [15], the second
author defined a type of Lucas pseudoprime called a Lucas d-pseudoprime
and showed that if 4 ∤ d, then there exist only finitely many Lucas d-pseudo-
primes. This was extended in [3] to show that if 2r exactly divides d then
there are at most finitely many Lucas d-pseudoprimes that have at least r+2
distinct prime divisors. In this paper we offer some useful tools for bounding
d-pseudoprimes and examine in more detail the situation when 4 ‖ d.

In order to generalize the results of [3] and [15] we introduce the con-
cept of a primitive Lucas d-pseudoprime. A Lucas d-pseudoprime N is a
primitive Lucas d-pseudoprime if (N − ε(N))/d is the maximal rank of N
among Lucas sequences U(P,Q) that exhibit N as a Lucas pseudoprime,
or equivalently, if N is a Lucas d-pseudoprime, but fails to be a Lucas
d′-pseudoprime for all proper divisors d′ of d. We provide a nice charac-
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terization of primitive d-pseudoprimes and show that if d = 4m, then there
exist only finitely many primitive Lucas d-pseudoprimes when m is odd
and not a square. The proof relies on a more general result that all but a
finite number of Lucas d-pseudoprimes, for fixed d, are standard Lucas d-
pseudoprimes. Standard Lucas d-pseudoprimes are odd composite integers
that satisfy N − ε(N) =

∏

(p − ε(p)), where ε is a signature function that
supports N and the product is taken over prime divisors p of N . Integers of
this form are interesting in their own right.

On the other hand, if 4 | d and d is a square, then primitive Lucas d-
pseudoprimes appear to be plentiful. We present two algorithms for gener-
ating square-free primitive Lucas d-pseudoprimes that have exactly three
distinct odd prime divisors when 4 | d and d is a square. We prove that
every number produced by both algorithms is, indeed, a square-free primi-
tive Lucas d-pseudoprime with three distinct odd prime divisors and, con-
versely, that all but a finite number of primitive Lucas d-pseudoprimes of this
form can be constructed by these algorithms. Moreover, each of the Lucas
d-pseudoprimes generated by these algorithms is also a Carmichael–Lucas
number.

We conjecture that there are an infinite number of primitive Lucas d-
pseudoprimes with three distinct prime divisors when d = 4m and m is a
square, and provide computational evidence supporting our conjecture by
finding large numbers of them with our two algorithms. This contrasts with
the case that d = 2m, with m odd, wherein there are only a finite number of
d-pseudoprimes with three distinct divisors (see [3]), and with the cases that
d = 1, 2, 3, 5, or 6, wherein there exist at most four Lucas d-pseudoprimes
(see [15]). Since each of the Lucas d-pseudoprimes generated by our algo-
rithms is also a Carmichael–Lucas number, our algorithms also suggest that
there are infinitely many Carmichael–Lucas numbers with exactly three dis-
tinct prime divisors.

A good account of Lucas pseudoprimes may be found in [1] and pri-
mality tests involving Lucas pseudoprimes are presented in [1] and [2].
A discussion of Lucas d-pseudoprimes appears in [11, pp. 131–132] and also
in [12]. Carmichael–Lucas numbers are discussed in [16] and in [4], which
also introduces the concept of standard Lucas d-pseudoprimes. An algo-
rithm for generating many Carmichael numbers analogous to our algorithm
for Carmichael–Lucas numbers was described by J. Chernick in [6].

2. Basic properties of Lucas pseudoprimes. Throughout this paper
N denotes a positive odd composite integer with prime decomposition

(1) N =
t

∏

i=1

pki

i ,
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where p1 < · · · < pt. The Lucas sequence of the first kind with parameters
P and Q is the second order recurrence sequence U(P,Q) = {Ui} defined
by U0 = 0, U1 = 1, and, for all n ≥ 0,

(2) Un+2 = PUn+1 −QUn.

The integer D = P 2 − 4Q is the discriminant of U(P,Q) and the function
ε : N → {−1, 0, 1} given by the Jacobi function ε(n) =

(

D
n

)

is called the
signature of U(P,Q).

In general, we refer to any semigroup homomorphism from the natural
numbers N to the multiplicative semigroup {−1, 0, 1} as a signature func-
tion. If N is an integer with decomposition (1), δ(N) = {p1, . . . , pt}, the set
of prime divisors of N , and ε a given signature function, then the restriction
ε : δ(N) → {−1, 0, 1} is called the signature of N . We say that N is sup-

ported by ε if ε(N) 6= 0. Occasionally we need to identify the value of the
signature on each prime in the decomposition of an integer N , in which case
we sometimes write ε(p1, . . . , pt) to denote the t-tuple (ε(p1), . . . , ε(pt)).

The rank of appearance (or simply the rank) of an integer N in the
sequence U(P,Q) is the least positive integer n such that N divides Un; it is
denoted by ̺(N). It is well known that ̺(N) always exists when (N,Q) = 1
and, in this case, Un ≡ 0 (modN) if and only if ̺(N) divides n. Édouard
Lucas [9] proved that if (p,QD) = 1 for an odd prime p, then Up−ε(p) ≡ 0
(modp), and therefore ̺(p) divides p − ε(p). Composite integers that have
a property typical of primes are often known as pseudoprimes, and Lucas’
property motivates the definition of Lucas pseudoprimes.

Definition 2.1. An odd composite integer N is a Lucas pseudoprime

with respect to the Lucas sequence U(P,Q), with discriminant D and sig-
nature ε, if (N,QD) = 1 and UN−ε(N) ≡ 0 (modN).

If there exists a Lucas sequence U(P,Q) such that N is a Lucas pseudo-
prime with respect to U(P,Q) and ̺(N) = (N − ε(N))/d, then N is said to
be a Lucas d-pseudoprime.

Note that if N is a Lucas pseudoprime with signature ε(n) =
(

D
n

)

, then
the requirement that (N,D) = 1 implies that ε supports N . Thus every
Lucas pseudoprime is supported by its own signature.

We require several number-theoretic functions in our study of pseudo-
primes. If N an odd integer with decomposition (1) that is supported by
signature ε, define

λ(N, ε) = lcm{pki−1
i (pi − ε(pi)) | 1 ≤ i ≤ t},(3)

λ′(N, ε) = lcm{pi − ε(pi) | 1 ≤ i ≤ t},(4)

ψ(N, ε) =

∏t
i=1(pi − ε(pi))

2t−1
,(5)
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ξ(N, ε) =

∏t
i=1(pi − ε(pi))

N
=

t
∏

i=1

(

pi − ε(pi)

pki

i

)

,(6)

T (N, ε) =

∏t
i=1(pi − ε(pi))

lcm{pi − ε(pi) | 1 ≤ i ≤ t}
=
Nξ(N, ε)

λ′(N, ε)
.(7)

Note that each of these functions depends only on the value of ε on the
primes that divide N . When N is a Lucas pseudoprime, we always have
in mind a corresponding Lucas sequence U(P,Q) with signature function ε,
and it is this signature that appears in the evaluation of the functions defined
above.

We require several known results on Lucas d-pseudoprimes. The first is
a useful characterization of Lucas d-pseudoprimes.

Theorem 2.2. An integer N with prime decomposition (1) is a Lucas

d-pseudoprime with signature ε if and only if

N − ε(N)

d

∣

∣

∣

∣

λ′(N, ε) and

(

N − ε(N)

d
, pi − ε(pi)

)

> 1

for all i.

Proof. This is Theorem 2.6 of [4].

The final three lemmas in this section describe basic properties of Lucas
d-pseudoprimes and appear in [3].

Lemma 2.3 (Lemma 4.1 of [3]). If N is a Lucas d-pseudoprime, then

(N, d) = 1 and there exist integers b and c such that

(8)
λ′(N, ε)

N − ε(N)
=
b

d
≤

ψ(N)

N − ε(N)
=
c

d
< 2

(

2

3

)t

.

Lemma 2.4 (Lemma 4.2 of [3]). If N is a Lucas d-pseudoprime with

prime decomposition (1), then t < log3/2(2d).

Lemma 2.5 (Lemma 4.3 of [3]). If N is a Lucas d-pseudoprime with

prime decomposition (1) and ki ≥ 2, then

(9) pki−1
i < 2(2/3)t(d+ 1).

In particular , N is square free when t is sufficiently large.

3. Carmichael–Lucas numbers. Carmichael–Lucas numbers are in-
teresting and oft studied objects (see, e.g., [16], [8], [10], [11], and [4]). For
future reference, we define Carmichael–Lucas numbers and present some of
their well-known properties.

Definition 3.1. An odd composite integer N is a Carmichael–Lucas

number with respect to a fixed signature ε that supports N if UN−ε(N) ≡ 0
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(modN) for every Lucas sequence U(P,Q) whose signature restricts to ε on
δ(N) and satisfies (N,Q) = 1.

The following two theorems follow immediately from Williams’ work
in [16].

Theorem 3.2. If N is a Carmichael–Lucas number with signature ε,
then N is square free and λ′(N, ε) |N − ε(N).

Theorem 3.3. If N is square free and ε is a signature function that

supports N and for which λ′(N, ε) |N−ε(N), then N is a Carmichael–Lucas

number.

4. Primitive pseudoprimes. The primitive Lucas d-pseudoprimes
compose a subset of the Lucas d-pseudoprimes characterized by two extremal
conditions. We define primitive d-pseudoprimes with a maximal condition
as follows.

Definition 4.1. Suppose that N is a Lucas pseudoprime with signa-
ture ε and Ω is the set of all Lucas sequences U(P,Q) with respect to which
N is a Lucas pseudoprime with signature ε. Then N is a primitive Lucas
d-pseudoprime with signature ε if (N − ε(N))/d is the maximal rank of N
among the sequences in Ω.

Primitive Lucas d-pseudoprimes can be characterized by the following
theorem.

Theorem 4.2. If N is an odd composite integer and ε a signature that

supports N , then N is a primitive Lucas d-pseudoprime with signature ε if

and only if (N − ε(N), λ(N, ε)) = (N − ε(N))/d.

Proof. Suppose that Ω is the set of Lucas sequences that exhibit N
as a Lucas pseudoprime with signature ε, and let (N − ε(N))/d = (N −
ε(N), λ(N, ε)). Clearly ̺U (N) |N − ε(N) for each U ∈ Ω and, by a well-
known theorem of Carmichael [5], ̺U (N) |λ(N, ε) as well. It follows that
̺U (N) | (N − ε(N), λ(N, ε)) for each U ∈ Ω, and it suffices to show that
̺U (N) = (N − ε(N))/d for some U ∈ Ω. However, N − ε(N) is relatively
prime to N , so (N − ε(N), λ(N, ε)) |λ′(N, ε), and obviously (N − ε(N), pi−
ε(pi)) > 1 while pi − ε(pi) |λ(N, ε). It follows from Theorem 2.2 that N is
a Lucas d-pseudoprime, and therefore (N − ε(N))/d occurs as ̺U (N) for
some U ∈ Ω.

If N is a primitive d-pseudoprime with signature ε, then (N − ε(N))/d
is the largest rank of N among sequences U that exhibit N as a Lucas
pseudoprime and have signature coinciding with ε on the prime factors of N .
We note, however, that N may occur with higher rank in Lucas sequences
that do not exhibit N as a Lucas pseudoprime, and hence this rank is not
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the largest rank of N among all Lucas sequences. This is because the ranks
̺U (N) with respect to sequences U that exhibit N as a Lucas pseudoprime
all divide N−ε(N), while in general the rank of N divides λ(N, ε). All ranks
higher than (N − ε(N))/d divide λ(N, ε), but fail to divide N − ε(N). The
following examples from the literature (see, e.g., [14] and [15]) clarify this
situation.

Example 4.3.

(a) Let N = 21 and suppose ε(3) = ε(7) = −1. It follows that ε(N) = 1,
(N−ε(N))/5 = 4, and λ(N, ε) = λ′(N, ε) = 8. Clearly (N−ε(N), λ(N, ε)) =
(20, 8) = 4 = (N − ε(N))/5, so N is a primitive Lucas 5-pseudoprime. On
the other hand, the maximal rank λ(N, ε) = 8 does occur.

(b) Let N = 25 and suppose ε(5) = 1. Then ε(N) = 1, (N−ε(N))/6 = 4,
and λ(N, ε) = 20. Clearly we have (N − ε(N), λ(N, ε)) = (24, 20) = 4 =
(N −ε(N))/6, so N is a primitive Lucas 6-pseudoprime. On the other hand,
the maximal rank λ(N, ε) = 20 does occur.

(c) Let N = 49 and suppose ε(7) = −1. Then ε(N) = 1, (N − ε(N))/6
= 8, and λ(N, ε) = 56. Clearly (N − ε(N), λ(N, ε)) = (48, 56) = 8 =
(N − ε(N))/6, so N is a primitive Lucas 6-pseudoprime. On the other hand,
the maximal rank λ(N, ε) = 56 does occur.

Primitive Lucas d-pseudoprimes can also be described by a minimality
property.

Theorem 4.4. An odd composite integer N is a primitive Lucas d-
pseudoprime with signature ε if and only if N is a Lucas d-pseudoprime

with respect to signature ε, but fails to be a Lucas d′-pseudoprime with re-

spect to signature ε for all proper divisors d′ of d.

Proof. Suppose N is a Lucas d-pseudoprime, but not a Lucas d′-pseudo-
prime for any proper divisor d′ of d. Let (N−ε(N))/k = (N−ε(N), λ(N, ε)).
By [5], (N − ε(N))/d |λ(N, ε) and hence (N − ε(N))/d | (N − ε(N))/k and
k | d. By Theorem 4.2, N is a primitive Lucas k-pseudoprime, and there-
fore certainly a Lucas k-pseudoprime. By hypothesis, k cannot be a proper
divisor of d, so k = d and N is a primitive Lucas d-pseudoprime.

The converse follows immediately from the definition.

Theorem 4.5. Suppose that N is a Lucas d-pseudoprime with signature

ε and that b is given by (8). Then N is a primitive d-pseudoprime if and

only if (b, d) = 1. If N is also square free, then N is a Carmichael–Lucas

number if and only if b = 1.

Proof. The first assertion follows immediately from Theorem 4.2, and
the second from Theorems 3.2 and 3.3.
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The example below illustrates the previous theorems. Note that in gen-
eral each Lucas d-pseudoprime is also a primitive d′-pseudoprime for some
d′ dividing d.

Example 4.6. Let N = 186961 = 31 · 37 · 163 and choose a signature ε
such that ε(31) = 1, ε(37) = −1, and ε(163) = −1.

Then ε(186961) = 1, and (186961−1)/12 = ((186961−1)/4)/3 = 15580,
which divides (186961 − 1)/4 = λ′(N, ε). Moreover, ((N − ε(N))/12, 30) =
(15580, 30) = 10 6= 1, ((N − ε(N))/12, 38) = (15580, 38) = 38 6= 1, and
((N − ε(N))/12, 164) = (15580, 164) = 164 6= 1. By Theorem 2.2, N is
a Lucas 12-pseudoprime with respect to the signature ε. However, since
λ′(N, ε)/(N − ε(N)) = 1/4 = 3/12, N is not a primitive Lucas 12-pseudo-
prime with respect to ε.

On the other hand, λ(N, ε) = λ′(N, ε) = lcm{30, 38, 164} = 46740 =
(186961 − 1)/4 = (N − ε(N))/4. It follows that N is a primitive 4-pseudo-
prime with respect to ε and, since λ′(N, ε)/(N − ε(N)) = 1/4, N is also a
Carmichael–Lucas number with respect to ε.

5. Machinery. We require the following notation and results from [3].
Define δ(N) = {p | p divides N} and, if Ω is a set of natural numbers, define

δ(Ω) =
⋃

N∈Ω

δ(N).

If N has decomposition (1), write

(10) N1 =
t

∏

i=1

pi, N2 =
t

∏

i=1

pki−1
i ,

so that N = N1N2 with N1 square free.

The following theorems are the primary tool and the main theorem of [3].

Theorem 5.1 (Theorem 2.3 of [3]). Suppose that Ω is an infinite set of

positive integers with each N ∈ Ω supported by corresponding signature ε
and for which |δ(N)| = t for all N ∈ Ω. Suppose as well that {N2 | N ∈ Ω}
is bounded. If c and d are integers such that (N, d) = 1 for all N ∈ Ω
and

(11) lim
N∈Ω

ξ(N) = c/d,

then c = d.

Theorem 5.2 (Theorem 4.4 of [3]). Let d be a fixed positive integer and

suppose that 2r exactly divides d. Then there are at most a finite number of

Lucas d-pseudoprimes N such that |δ(N)| ≥ r + 2.
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6. Bounds. In this section we present our main results on d-pseudo-
primes, along with a few useful lemmas. Several of these results concern
bounds on the number of d-pseudoprimes with a fixed number of distinct
prime divisors.

Definition 6.1. Denote by Nd(t) the number of distinct d-pseudo-
primes N with exactly t distinct prime divisors.

Theorem 6.2. Let d be a fixed positive integer. Then only a finite num-

ber of Lucas d-pseudoprimes have exactly one prime divisor. In fact , Nd(1)
< d log(2d).

Proof. It follows immediately from Lemma 2.5 that Nd(1) is finite. More-
over, for a given prime p and positive integer k, for pk to be a d-pseudoprime
it is necessary that

(12) pk−1 <
4(d+ 1)

3
≤ 2d.

Now pk−1 < 2d if and only if k − 1 < log(2d)/log(p) < log(2d). Since
π(2d) ≤ d, there are at most π(2d) log(2d) ≤ d log(2d) prime powers less
than 2d, and it follows that Nd(1) < d log(2d).

Of course d is, in general, a poor estimate of π(2d). By the prime number
theorem, π(2d) ∼ 2d/log(2d), which suggests that 2d is a better upper bound
for Nd(1).

Before we consider d-pseudoprimes divisible by exactly two distinct
primes, we prove a general finiteness criterion for an important class of Lu-
cas d-pseudoprimes, the standard Lucas d-pseudoprimes. We show in Theo-
rem 6.4 that all but a finite number of Lucas d-pseudoprimes are standard.

Definition 6.3. A Lucas d-pseudoprime N is called standard if

(13) N − ε(N) =
t

∏

i=1

(pi − ε(pi)),

and exceptional otherwise.

Observe that the condition (13) may be reformulated as

(14) bT (N, ε) = d,

where, as usual, b is given by (8).

We make two easy observations about standard Lucas d-pseudoprimes.
First, if N is a square-free standard Lucas d-pseudoprime, then Theorem 3.3
implies that N is a Carmichael–Lucas number. Second, if N is a primitive
standard Lucas d-pseudoprime, then Theorem 4.5 implies that (b, d) = 1,
and therefore b = 1 and T (N, ε) = d.
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Theorem 6.4. Let d be a fixed positive integer. Then there exist at most

finitely many exceptional Lucas d-pseudoprimes.

Proof. For a fixed positive integer d, let Ω∗ be the set of Lucas d-
pseudoprimes that satisfy bT (N, ε) 6= d and, by way of contradiction, sup-
pose that Ω∗ has infinite cardinality.

By Lemma 2.4, the number of distinct primes in the decomposition of
elements of Ω∗ is bounded, so there exists an integer t such that an infi-
nite number of elements of Ω∗ have exactly t distinct prime divisors. By
Lemma 2.3, corresponding to each N ∈ Ω∗ there exist integers b and c sat-
isfying (8), and among those with exactly t distinct prime divisors, there
are only a finite number of possible values of b and c. Consequently, there
exist fixed integers b and c such that the subset Ω ⊆ Ω∗ consisting of those
elements of Ω∗ that have exactly t distinct prime divisors and satisfy (8) for
these fixed values of b and c has infinite cardinality.

By Lemma 2.5, the powers of the primes occurring in decompositions of
elements of Ω are bounded. It follows that δ(Ω) is unbounded, and conse-
quently

lim
N∈Ω

ε(N)

ψ(N)
= 0.

It then follows that

2t−1c

d
= 2t−1 ψ(N)

N − ε(N)
= 2t−1 lim

N∈Ω

ψ(N)

N − ε(N)
= 2t−1 lim

N∈Ω

1
N−ε(N)
ψ(N)

= 2t−1 lim
N∈Ω

1
N

ψ(N) −
ε(N)
ψ(N)

= 2t−1 lim
N∈Ω

ψ(N)

N
= lim

N∈Ω
ξ(N, ε).

By Lemma 2.5, {N2 | N ∈ Ω} is bounded and, by Lemma 2.3, (N, d) = 1
for all N ∈ Ω. Moreover, by definition of Lucas d-pseudoprime, each Lu-
cas d-pseudoprime N ∈ Ω is supported by its own signature. Therefore,
Theorem 5.1 implies that 2t−1c/d = 1.

Now,

d = d
2t−1c

d
= d

2t−1ψ(N)

N − ε(N)
= d

2t−1ψ(N)

λ′(N, ε)

λ′(N, ε)

N − ε(N)

= dT (N, ε)
b

d
= bT (N, ε).

This contradicts our original hypothesis and completes the proof.

This criterion has several interesting consequences. First of these is that
for any fixed integer d, there are only a finite number of d-pseudoprimes
with exactly two distinct prime factors.
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Theorem 6.5. Let d be a fixed positive integer. Then only a finite num-

ber of Lucas d-pseudoprimes have exactly two distinct prime divisors.

Proof. Assume that there are an infinite number of Lucas d-pseudo-
primes with exactly two distinct prime divisors, and let Ω be the set of
those that are standard. By Theorem 6.4, Ω has infinite cardinality.

If N ∈ Ω has decomposition (1), then

(15) (p1 − ε(p1))(p2 − ε(p2)) = N − ε(N) = pk11 p
k2
2 − ε(p1)

k1ε(p2)
k2 .

If either k1 > 1 or k2 > 1, then

1 =
(p1 − ε(p1))(p2 − ε(p2))

N − ε(N)
=

(p1 − ε(p1))(p2 − ε(p2))

pk11 p
k2
2 − ε(N)

≤
(p1 + 1)(p2 + 1)

p2
1p2 − 1

≤
(3 + 1)(5 + 1)

9 · 5 − 1
=

24

44
< 1,

a contradiction.

Therefore k1 = k2 = 1 and (15) yields

(16) p1ε(p2) + p2ε(p1) = 2ε(p1)ε(p2).

If ε(p1) = ε(p2), then p1 + p2 = ±2, which is impossible. Since p2 > p1, it
follows that ε(p1) = −1, ε(p2) = 1, and p2 − p1 = 2. In particular, p1 and p2

are twin primes. Now (15) implies that

(17)
d

b
=

N − ε(N)

lcm{p1 − ε(p1), p2 − ε(p2)}
=

p1(p1 + 2) + 1

lcm{p1 + 1, p1 + 2 − 1}
= p1 + 1,

and therefore d = b(p1+1). Clearly, there are only finitely many prime twins
p1 and p1 + 2 such that p1 + 1 divides d, and hence Ω has finite cardinality,
a contradiction.

Next, we consider the consequences of Theorem 6.4 to primitive Lucas
d-pseudoprimes.

Theorem 6.6. Let d be a fixed positive integer. Then there exist at most

finitely many primitive Lucas d-pseudoprimes N such that T (N, ε) 6= d.

Proof. By Theorem 6.4 all but a finite number of the primitive Lu-
cas d-pseudoprimes are standard and, as previously noted, these satisfy
T (N, ε) = d.

Our final result of this section applies the main theorem of [3]. To simplify
the exposition, we begin with a useful lemma.

Lemma 6.7. If N = p1p2p3 is a product of three distinct primes, ε is a

signature function that supports N and

(18) (p1 − ε(p1))(p2 − ε(p2))(p3 − ε(p3)) = p1p2p3 − ε(p1p2p3),
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then the integer

(19) d =
(p1 − ε(p1))(p2 − ε(p2))(p3 − ε(p3))

lcm{(p1 − ε(p1)), (p2 − ε(p2)), (p3 − ε(p3)}
= T (N, ε)

is a perfect square.

Proof. Suppose that p is a prime and pk ‖ lcm{p1 − ε(p1), p2 − ε(p2),
p3 − ε(p3)} and pk1 ‖ p1 − ε(p1), p

k2 ‖ p2 − ε(p2), and pk3 ‖ p3 − ε(p3). Then
k = max{k1, k2, k3}. Since we have made no assumptions about the ordering
of the primes, we may assume, without loss of generality, that k = k1. Then
(18) implies that

p1p2p3 − ε(p1p2p3) ≡ (p1 − ε(p1))(p2 − ε(p2))(p3 − ε(p3)) ≡ 0 (modpk2),

and therefore

ε(p1)ε(p2)(p3 − ε(p3)) ≡ p2p3(p1 − ε(p1)) + ε(p1)ε(p2)(p3 − ε(p3))

≡ p1p2p3 − ε(p1)ε(p2)ε(p3) − ε(p1)p3(p2 − ε(p2))

≡ 0 (mod pk2).

Since ε(p1)ε(p2) = ±1, it follows that pk2 | p3 − ε(p3), i.e., k2 ≤ k3.
Similarly,

p1p2p3 − ε(p1p2p3) ≡ (p1 − ε(p1))(p2 − ε(p2))(p3 − ε(p3)) ≡ 0 (modpk3),

and therefore

ε(p1)ε(p3)(p2 − ε(p2)) ≡ p2p3(p1 − ε(p1)) + ε(p1)ε(p3)(p2 − ε(p2))

≡ p1p2p3 − ε(p1)ε(p2)ε(p3) − ε(p1)p2(p3 − ε(p3))

≡ 0 (mod pk3).

Now ε(p1)ε(p3) = ±1, and therefore pk3 | p2 − ε(p2), i.e., k3 ≤ k2.
We now see that k2 = k3 ≤ k1, and hence pk1 ‖λ′(N, ε), while pk1+2k2 ‖

(p1 − ε(p1))(p2 − ε(p2))(p3 − ε(p3)). Thus, p2k2 ‖ d, and it follows that every
prime in the factorization of d occurs to an even power. Therefore d is a
perfect square.

Theorem 6.8. If d = 4m, with m odd and not a square, then there exist

only finitely many primitive Lucas d-pseudoprimes.

Proof. Assume that d = 4m, with m odd and not a square. By Theorems
6.4, 6.2, 6.5, and 5.2, we need only show that there are at most finitely many
primitive standard Lucas d-pseudoprimes with exactly three distinct prime
divisors. In fact, we will show that there are none.

Suppose that N is a primitive standard Lucas d-pseudoprime with ex-
actly three distinct prime divisors. Then b = 1 and

(20)
3

∏

i=1

(pi − ε(pi)) = dλ′(N, ε) = N − ε(N).
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Now if p2 |N for some prime p, then (20) implies that

1 =

∏3
i=1(pi − ε(pi))

N − ε(N)
≤

∏t
i=3(pi − ε(pi))

p2
1p2p3 − 1

(21)

≤
(3 + 1)(5 + 1)(7 + 1)

9 · 5 · 7 − 1
=

192

314
< 1,

a contradiction. Thus N is square free, and

(p1 − ε(p1))(p2 − ε(p2))(p3 − ε(p3)) = p1p2p3 − ε(p1p2p3).

By Lemma 6.7, d is a perfect square, contrary to the hypotheses.

7. Numerical results. In this final section we present some compu-
tational results. We describe two algorithms that produce Lucas d-pseudo-
primes with three distinct prime factors. The integer d is a byproduct of
the algorithms and is always an even perfect square. We prove that these
algorithms always produce primitive Lucas d-pseudoprimes that are also
Carmichael–Lucas numbers and show that the two algorithms together gen-
erate all but a finite number of the primitive d-pseudoprimes of this form.

We have implemented the algorithms in Java, C++, and GAP [7], and
present computational evidence that the algorithms can be used to pro-
duce many primitive Lucas d-pseudoprimes (for many values of d) and
many Carmichael–Lucas numbers. Unfortunately, although it seems likely
that these algorithms can produce an infinite number of primitive Lucas
d-pseudoprimes for any fixed d, a proof of this conjecture seems intractable.

Algorithm 7.1.

1. Choose an odd positive integer k > 1 such that −3 is a square modulo k
and find α such that α2 ≡ −3 (modk).

2. Choose an odd prime p1 such that p1 ≡ (1 + α)/2 (modk) and both

p2 = p1 − 1 + k and p3 = (p1(p2 + 1) − p2)/k are primes.

3. Set m = lcm{p1 − 1, p2 + 1, p3 + 1}.
4. Set N = p1p2p3 and d = (N − 1)/m.

We prove below that each N generated by Algorithm 7.1 is a prim-
itive Lucas d-pseudoprime. For each value of k chosen in Algorithm 7.1,
construction of a primitive d-pseudoprime N requires finding values of x
such that the three functions f1(x) = x, f2(x) = x − 1 + k, and f3(x) =
(x(x+ k) − x+ 1 − k)/k = (1/k)(x2 + (k − 1)x− (k − 1)) are prime. Thus,
Algorithm 7.1 will produce an infinite number of primitive d-pseudoprimes
(for a possibly infinite number of values for d) if Schinzel and Sierpiński’s
Hypothesis H (see [13]) is valid.

Remark. Although no ordering of the primes p1, p2, and p3 is assumed
in Algorithm 7.1, it is easy to see that p1 < p2. Moreover, by Step 2 of
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Algorithm 7.1,

(22) p3 =
p1(p1 + k) − p1 + 1 − k

k
=
p2
1 − p1 + 1

k
+ p1 − 1.

Since Step 2 of Algorithm 7.1 implies that k | p2
1 − p1 + 1, it follows that p3

is automatically an integer, and p1 ≤ p3. If p1 = p3, then k = p2
1 − p1 + 1,

which implies that p2 = p2
1, impossible since p2 is prime. Thus p1 < p3. Now,

if p2 = p3, then kp2 = p1(p2 + 1) − p2, and it follows that p2 | p1, which is
impossible. Thus, the primes p1, p2, and p3 are necessarily distinct. Finally,
we note that if p2

1 −p1 +1 > k2, then (22) implies that p3 > p2. In this case,
we obtain the usual ordering p1 < p2 < p3.

Algorithm 7.2.

1. Choose an odd positive integer k such that −3 is a square modulo k
and find α such that α2 ≡ −3 (modk).

2. Choose an odd prime p1 such that p1 ≡ (−1 + α)/2 (modk) and both

p2 = p1 + 1 + k and p3 = (p1(p2 − 1) + p2)/k are primes.

3. Compute m = lcm{p1 + 1, p2 − 1, p3 − 1}.
4. Set N = p1p2p3 and d = (N + 1)/m.

As with the previous algorithm, Algorithm 7.2 will produce an infinite
number of primitive d-pseudoprimes (again, for a potentially infinite number
of values for d) if Schinzel and Sierpiński’s Hypothesis H is valid, in this
case, applied to the polynomials g1(x) = x, g2(x) = x+ 1 + k, and g3(x) =
(x(x+ k) + x+ 1 + k)/k = (1/k)(x2 + (k + 1)x+ (k + 1)).

Remark. Although no ordering of the primes p1, p2, and p3 is assumed
in Algorithm 7.2, it is easy to see that p1 < p2. Moreover, by Step 2 of
Algorithm 7.2,

(23) p3 =
p1(p1 + k) + p1 + 1 + k

k
=
p2
1 + p1 + 1

k
+ p1 + 1.

Since Step 2 of Algorithm 7.2 implies that k | p2
1 + p1 + 1, it follows that

p3 is automatically an integer, and p1 < p3. In addition, if p2 = p3, then
kp2 = p1(p2 − 1) + p2, and it follows that p2 | p1, which is impossible. Thus,
the primes p1, p2, and p3 are necessarily distinct. Finally, we note that if
p2
1 + p1 + 1 > k2, then (23) implies that p3 > p2. In this case, we obtain the

usual ordering p1 < p2 < p3.

The next two theorems verify that Algorithms 7.1 and 7.2 do, indeed,
produce primitive d-pseudoprimes.

Theorem 7.3. Each integer N = p1p2p3 produced by Algorithm 7.1
is a Carmichael–Lucas number and a primitive Lucas d-pseudoprime with

signature ε satisfying ε(p1, p2, p3) = (1,−1,−1). Furthermore 4 | d, 3 ∤ d, and

d is a square.
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Proof. It is immediate from the construction of N that

λ(N, ε) = λ′(N, ε) =
N − ε(N)

d
(24)

=
(p1 − ε(p1))(p2 − ε(p2))(p3 − ε(p3))

d
,

for ε(p1, p2, p3) = (1,−1,−1). Thus Theorem 4.2 implies that N is a primi-
tive d-pseudoprime and b = 1. Since b = 1 andN is square free and primitive,
Theorem 4.5 implies that N is a Carmichael–Lucas number.

The fact that 4 | d follows immediately from (24), and the fact that d is
a square follows from Lemma 6.7. Thus it remains only to prove that 3 ∤ d.

Since
(

−3
k

)

= 1 and −3 is not a quadratic residue modulo 9, quadratic
reciprocity and the Chinese remainder theorem imply that k has prime de-
composition

(25) k = 3r
s

∏

i=1

qi,

where r = 0 or r = 1 and each prime qi satisfies qi ≡ 1 (mod6). The primes
qi in (25) need not be distinct.

It follows from (25) that either k ≡ 1 (mod6) or k ≡ 3 (mod9).

First suppose that k ≡ 1 (mod6). If p1 = 3, then p2 = p1 − 1 + k ≡ 0
(mod3), which is a contradiction, since p2 > p1. Therefore p1 ≡ 1 (mod3)
or p1 ≡ 2 (mod3). In either case, p2 ≡ p1 − 1 + k ≡ p1 (mod3) and
p3 ≡ kp3 ≡ p1(p2 + 1) − p2 ≡ p2

1 ≡ 1 (mod3). In this case, exactly one
of p1 − 1, p2 + 1, and p3 + 1 is divisible by 3, and, by (24), d is not divisible
by 3.

Now suppose instead that k ≡ 3 (mod9). Then p2 = p1 − 1 + k ≡ p1 + 2
(mod9) and 3p3 ≡ kp3 ≡ p1(p2 + 1) − p2 ≡ p2

1 + 2p1 − 2 (mod9). Thus, if
p1 − 1 is divisible by 3, then p1 ≡ 1, 4, or 7 (mod9) and 3p3 ≡ 1, 4, or 7
(mod9). None of these is possible, so p1−1 is not divisible by 3. On the other
hand, 3p3 ≡ kp3 ≡ p1(p2 + 1)− p2 ≡ (p2 + 1− k)(p2 + 1)− p2 ≡ p2

2 − 2p2 − 2
(mod9). If p2 + 1 is divisible by 3, then p2 ≡ 2, 5, or 8 (mod9), and again
3p3 ≡ 1, 4, or 7 (mod9). None of these is possible, so p2 + 1 is not divisible
by 3. It now follows that at most one of p1 −1, p2 +1, and p3 +1 is divisible
by 3, and, by (24), d is not divisible by 3.

Thus, in all cases 3 ∤ d, as desired.

Theorem 7.4. Each integer N = p1p2p3 produced by Algorithm 7.2 is

a Carmichael–Lucas number and a primitive Lucas d-pseudoprime with sig-

nature ε satisfying ε(p1, p2, p3) = (−1, 1, 1). Furthermore 4 | d, d is a square

and , with the sole exception of the 16-pseudoprime 255, 9 | d.
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Proof. As before, it is immediate from the construction of N that

λ(N, ε) = λ′(N, ε) =
N − ε(N)

d
(26)

=
(p1 − ε(p1))(p2 − ε(p2))(p3 − ε(p3))

d
,

for ε(p1, p2, p3) = (−1, 1, 1). Thus Theorem 4.2 implies that N is a primitive
d-pseudoprime and b = 1. Since b = 1 and N is square free and primitive,
Theorem 4.5 implies that N is a Carmichael–Lucas number.

The fact that 4 | d again follows from (26), and the fact that d is a
square follows from Lemma 6.7. Thus it remains only to prove that 9 | d
when N 6= 255.

As in Theorem 7.3, the fact that −3 is a quadratic residue modulo k
forces (25) to hold, and again, either k ≡ 1 (mod6) or k ≡ 3 (mod9).

First suppose that p1 = 3. Since p1 is a root of x2 + x + 1 modulo k,
we see that k | 13. Therefore k = 1 or k = 13. In the former case, we obtain
p1 = 3, p2 = 5, and p3 = 17; in the latter case, we obtain p1 = 3, p2 = 17,
and p3 = 5. In both cases, N is the primitive 16-pseudoprime 255.

Now assume that p1 > 3 and k ≡ 1 (mod6). Then p1 ≡ 1 (mod3) or
p1 ≡ 2 (mod3). It follows that p2 = p1 + 1 + k ≡ p1 + 2 (mod3). If p1 ≡ 1
(mod3), then this implies that p2 ≡ 0 (mod3), which is impossible, since
p2 > p1 > 3. Therefore p1 ≡ 2 (mod3), p2 ≡ 1 (mod3), and p3 ≡ kp3 ≡
p1(p2 − 1) + p2 ≡ 1 (mod3). It follows that all three of p1 + 1, p2 − 1, and
p3 − 1 are divisible by 3 and, by (26), d is divisible by 9.

Finally, assume that p1 > 3 and k ≡ 3 (mod9). Again, either p1 ≡ 1
(mod3) or p1 ≡ 2 (mod3). But p1 is a root of x2+x+1 modulo 3, and hence
p1 ≡ 1 (mod3). It follows that p1 ≡ 1, 4, or 7 (mod9), and p2 = p1 +1+k ≡
5, 8, or 2 (mod9). But then, in every case, 3p3 ≡ kp3 ≡ p1(p2 − 1) + p2 ≡
0 (mod9). It follows that 3 | p3, a contradiction, since p3 > p1 > 3. Thus
this final case never occurs.

Theorem 7.5. Let d = 4m for some integer m. Then all but a finite

number of primitive Lucas d-pseudoprimes with exactly three distinct prime

factors can be generated by Algorithm 7.1 or Algorithm 7.2.

Proof. Fix d = 4m and let Ω be the set of standard primitive Lu-
cas d-pseudoprimes N that have exactly three distinct prime factors. By
Theorem 6.4, Ω contains all but a finite number of the primitive Lucas
d-pseudoprimes with exactly three distinct prime factors. By (21) and the
argument given in the proof of Theorem 6.8, each N ∈ Ω is square free, and
we write N = p1p2p3 with the usual ordering p1 < p2 < p3. Moreover, as in
the proof of Theorem 6.8, each N ∈ Ω satisfies (20).

Clearly (20) cannot hold if either ε(p1, p2, p3) = (1, 1, 1) or ε(p1, p2, p3) =
(−1,−1,−1). In fact, it is easy to show that (20) also fails if ε(p1, p2, p3) is
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one of (1,−1, 1), (1, 1,−1), (−1, 1,−1), or (−1,−1, 1). Thus, for example, if
ε(p1, p2, p3) = (−1, 1,−1), then
3

∏

i=1

(pi − ε(pi)) −N + ε(N) = (p1 + 1)(p2 − 1)(p3 + 1) − p1p2p3 + 1

= p1p2 − p1p3 + p2p3 − p1 + p2 − p3 = p3(p2 − p1 − 1) + p1(p2 − 1) + p2 > 0,

contrary to (20).
It follows that ε(p1, p2, p3) = (1,−1,−1) or ε(p1, p2, p3) = (−1, 1, 1), and

Ω may be partitioned into two subsets Ω(−1,1,1) and Ω(1,−1,−1) containing
those elements of N having each of these two remaining signatures. We claim
that the elements of Ω(1,−1,−1) can be produced by Algorithm 7.1 and those
of Ω(−1,1,1) by Algorithm 7.2.

Case 1. If N ∈ Ω(1,−1,−1), then N may be found by Algorithm 7.1.

Let N ∈ Ω(1,−1,−1). By (20),

(p1 − 1)(p2 + 1)(p3 + 1) − p1p2p3 + 1

= p1p2 + p1p3 − p2p3 + p1 − p2 − p3

= p3(p1 − p2 − 1) + p1p2 + p1 − p2 = 0.

Set k = p2 − p1 + 1. Then

(27) p1 = p2 + 1 − k and p3 =
−p1p2 − p1 + p2

p1 − p2 − 1
=
p1(p2 + 1) − p2

k
.

It follows from (27) that

p1 ≡ p2 + 1 (modk) and p1(p2 + 1) − p2 ≡ p2
1 − p1 + 1 ≡ 0 (modk).

Therefore −3 is a quadratic residue modulo k, and

(28) p1 ≡ (1 + α)/2 (modk)

for some α satisfying α2 ≡ −3 (modk).
Clearly, k will eventually be chosen in Step 1 of Algorithm 7.1, p1 com-

puted in Step 2, and primes p2 and p3 determined by k and p1. Therefore
the primitive Lucas d-pseudoprime N will eventually be constructed by Al-
gorithm 7.1.

Case 2. If N ∈ Ω(−1,1,1), then N may be found by Algorithm 7.2.

Let N ∈ Ω(−1,1,1). By (20),

(p1 + 1)(p2 − 1)(p3 − 1) − p1p2p3 − 1

= −p1p2 − p1p3 + p2p3 + p1 − p2 − p3

= p3(p2 − p1 − 1) − p1p2 + p1 − p2 = 0.

Set k = p2 − p1 − 1. Then

(29) p2 = p1 + 1 + k and p3 =
p1p2 − p1 + p2

p2 − p1 − 1
=
p1(p2 − 1) + p2

k
.

It follows from (29) that
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p2 ≡ p1 + 1 (modk) and p1(p2 − 1) + p2 ≡ p2
1 + p1 + 1 ≡ 0 (modk).

Therefore −3 is a quadratic residue modulo k, and

(30) p1 ≡ (−1 + α)/2 (modk)

for some α satisfying α2 ≡ −3 (modk). Clearly, k will eventually be chosen
in Step 1 of Algorithm 7.2, p1 computed in Step 2, and primes p2 and p3

determined by k and p1. Therefore the primitive Lucas d-pseudoprime N
will eventually be constructed by Algorithm 7.2.

The following corollary follows immediately from the previous results.

Corollary 7.6. If d = 4m, m odd , then all but a finite number of

primitive Lucas d-pseudoprimes are Carmichael–Lucas numbers.

Table 1. Number n of primitive Lucas d-pseudoprimes found with
Algorithm 7.1 using 1 ≤ k ≤ 5000 and p1, p2 ≤ 107 and p3 ≤ 1010

d n d n d n d n d n

4 10177 6400 14 25600 2 68644 1 295936 1

16 2719 6724 4 26896 1 71824 1 313600 1

64 690 7396 3 27556 1 73984 1 357604 1

100 957 7744 7 28900 1 78400 5 440896 1

196 278 8464 15 30976 2 80656 1 470596 2

256 151 8836 5 31684 1 81796 1 550564 1

400 258 9604 4 33124 2 84100 1 605284 1

484 154 10000 11 33856 1 85264 2 792100 1

676 63 11236 4 35344 1 87616 1 1249924 1

784 47 12100 13 36100 3 91204 2 1336336 1

1024 44 12544 5 37636 1 94864 1 1517824 1

1156 35 13456 2 38416 3 96100 4 1779556 1

1444 25 13924 2 40000 5 102400 1 1795600 1

1600 72 14884 2 40804 3 103684 2 1827904 1

1936 30 15376 1 43264 2 115600 1 1926544 1

2116 29 16384 1 45796 1 118336 1 1948816 1

2500 41 16900 12 47524 2 119716 1 2244004 1

2704 11 17956 3 48400 2 122500 1 2637376 1

3136 9 18496 2 50176 1 135424 1 2992900 1

3364 21 19600 6 52900 1 144400 1 4368100 2

3844 5 20164 2 53824 1 158404 1 4443664 1

4096 13 21316 1 55696 1 183184 1 8202496 1

4624 9 21904 3 58564 1 204304 1 10125124 1

4900 26 23104 3 62500 2 220900 1 10640644 1

5476 9 23716 2 64516 2 240100 1 11971600 1

5776 7 24964 2 67600 2 246016 1 13410244 1
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Table 2. Number n of primitive Lucas d-pseudoprimes found with Algorithm 7.2
using 1 ≤ k ≤ 5000 and p1, p2 ≤ 107 and p3 ≤ 1010

d n d n d n d n d n

16 1 63504 1 419904 1 34222500 1 2120602500 1

36 3116 66564 2 435600 1 34574400 1 2170628100 1

144 744 69696 1 443556 1 40449600 1 2315534400 1

324 357 72900 4 459684 1 45968400 1 2379488400 1

576 165 76176 1 476100 2 81000000 1 2453220900 1

900 319 79524 1 518400 1 85377600 1 2555302500 1

1296 91 82944 1 571536 1 92736900 1 2607123600 1

1764 77 86436 2 589824 1 110880900 1 2794179600 1

2304 47 90000 4 617796 1 118592100 1 2838758400 1

2916 27 97344 1 705600 1 143280900 1 2984436900 1

3600 65 108900 4 736164 1 187142400 1 3286728900 1

4356 30 116964 2 756900 1 191268900 1 3778560900 1

5184 22 121104 1 876096 1 196280100 1 4292870400 1

6084 16 138384 1 1052676 2 211702500 1 4320432900 1

7056 18 142884 2 1115136 1 263412900 1 4662158400 1

8100 42 147456 1 1166400 1 277222500 1 4781722500 1

9216 11 152100 1 1382976 1 326163600 1 5033902500 1

10404 8 156816 1 1397124 1 328334400 1 5119402500 1

11664 10 161604 3 1512900 1 343731600 1 5875222500 1

12996 4 171396 1 1572516 1 366339600 1 6168531600 1

14400 17 176400 3 1602756 1 375584400 1 6206288400 1

15876 8 181476 1 1664100 1 466560000 1 6801300900 1

17424 8 186624 1 1742400 1 476985600 1 6870752100 1

19044 6 191844 1 1988100 1 546156900 1 6995649600 1

20736 2 197136 1 2090916 1 560268900 1 7066083600 1

22500 11 202500 2 2340900 1 714492900 1 7121672100 1

24336 9 207936 1 4161600 1 722534400 1 7459776900 1

26244 5 213444 2 5089536 1 766736100 1 8040708900 1

32400 10 224676 1 5336100 2 864360000 1 8306499600 1

34596 3 230400 1 5531904 1 916272900 1 8504528400 1

36864 2 236196 1 6502500 1 1087020900 1 8548851600 1

39204 5 242064 1 6594624 1 1098922500 1 8582169600 1

41616 1 248004 1 7452900 1 1190250000 1 8738510400 1

44100 5 260100 2 7952400 1 1244678400 1 9175724100 1

46656 8 272484 1 11289600 1 1370480400 1 9250592400 1

49284 2 324900 2 11492100 1 1413008100 1 9576579600 1

51984 5 331776 1 18147600 1 1490732100 1

54756 3 345744 2 19713600 1 1743897600 1

57600 6 360000 2 21622500 1 1853302500 1

60516 2 367236 1 24206400 1 1998090000 1
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We implemented Algorithms 7.1 and 7.2 in Java, C++, and GAP, and
were able to construct many primitive Lucas d-pseudoprimes for many values
of d when d is an even perfect square. Thus, beginning with k = 1549,
Algorithm 7.1 produced the primitive d-pseudoprime 5155460949210001 =
52391·53939·1824349, with d = 96100 = (2·5·31)2. Beginning with k = 3823,
Algorithm 7.2 produced the primitive d-pseudoprime 249540023224799 =
29399 · 33223 · 255487, with d = 86436 = (2 · 3 · 49)2. We applied Algorithms
7.1 and 7.2 for all values of k such that 1 ≤ k ≤ 5000, with the restriction
that p1, p2 < 107 and p3 < 1010, and found a total of 16118 d-pseudoprimes
with Algorithm 7.1 and 5471 d-pseudoprimes with Algorithm 7.2.

As mentioned above, Schinzel and Sierpiński’s Hypothesis H (see [13])
implies that Algorithms 7.1 and 7.2 each generate an infinite number of prim-
itive d-pseudoprimes (with d ranging over a possibly infinite set of values) for
each choice of k. Even for a fixed even perfect square d, however, primitive
d-pseudoprimes appear to be plentiful. Thus, for example, our experiment
produced 10177 primitive 4-pseudoprimes, 2720 primitive 16-pseudoprimes,
and 957 primitive 100-pseudoprimes in relatively short order. This stands
in stark contrast with the conclusion of Theorem 6.8 that there are only a
finite number of them when d is divisible by four but not a perfect square.

Tables 1 and 2 summarize how many d-pseudoprimes we constructed for
various values of d.

8. Further developments. In this paper we have examined the distri-
bution of primitive Lucas d-pseudoprimes, concentrating our attention on
the case that 4 ‖ d. In this case all but a finite number of the d-pseudoprimes
have exactly three distinct prime divisors. A careful analysis of this situation
shows that a necessary condition for the existence of an infinite number of
primitive d-pseudoprimes is that d be a perfect square. Our algorithms sug-
gest that there may be an infinite number of primitive d-pseudoprimes with
exactly three prime divisors, but a proof of this conjecture remains open.
An analysis of our algorithms may prove useful in providing asymptotic
estimates of the size of primitive d-pseudoprimes with three factors.

A broad range of questions generalizing our study remain open. In [3],
we showed that if 2r ‖ d, then only finitely many Lucas d-pseudoprimes have
more than r+1 prime factors, but if the number t of prime divisors satisfies
3 < t ≤ r + 1, there may be infinitely many primitive d-pseudoprimes. Our
main tool, Theorem 6.4, applies in this case and allows us to restrict our
attention to numbers satisfying (13) and, in a related paper, [4], we show
that almost all Lucas d-pseudoprimes are square free.

Does the existence of infinitely many d-pseudoprimes with t divisors
place any constraints on the structure of d? Are there generalizations of our
algorithms to produce d-pseudoprimes with more than three prime factors?
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In the case that there are infinitely many primitive d-pseudoprimes, can
anything be said about their asymptotic growth? In the case that there
are only finitely many primitive d-pseudoprimes, can an absolute bound be
determined?

We are actively investigating these questions. Our paper [4] includes a
preliminary investigation of numbers that satisfy (13), and we are currently
working on a paper that provides an absolute bound for the number of Lucas
d-pseudoprimes in some cases.
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