COLLOQUIUM MATHEMATICUM

BAND COMBINATORICS OF DOMESTIC STRING ALGEBRAS

BY
GENA PUNINSKI (Manchester)

Abstract

We prove that the multiplicity of a simple module as a composition factor in a composition series for a primitive band module over a domestic string algebra is at most two.

1. Introduction. There is a range of results on string and band combinatorics of finite-dimensional algebras. First of all, they played a pivotal role in the classification of finite-dimensional modules over string algebras in Butler and Ringel [1]. They were also used by Geiß [2] to describe certain components in the Auslander-Reiten quiver of a string algebra, and by Ringel [9] to construct new types of generic modules over non-domestic string algebras.

Band combinatorics for string algebras has been developed by Ringel [7, 8] (see also [10]). For instance, he gave a purely combinatorial characterization of domesticity of string algebras. Namely, he proved that a string algebra A is domestic iff for every arrow α, there is at most one band of A with α as a first letter. Another result of Ringel [8, Sect. 11, Cor. 1] says that two primitive cycles of a domestic string algebra with a vertex in a common socle are equivalent.

These results have recently acquired further applications. For instance, Schröer [11] uses the band combinatorics of string algebras to calculate radical series of the category of finite-dimensional modules. Furthermore, some recent progress in the classification of indecomposable pure-injective modules over string algebras (see $[3,4]$) relies on string and band combinatorics, and this combinatorics is essential in Puninski's proof [5] of the existence of superdecomposable pure-injective modules over non-domestic string algebras.

The aim of this paper is to add one new result to this list, which is a crucial ingredient in the forthcoming proof of the finiteness of the KrullGabriel dimension of 1-domestic string algebras (see [6]).

[^0]By Ringel [7, Sect. 11, Cor. 2], the number (up to equivalence) of primitive cycles over a domestic string algebra A does not exceed $\left|Q_{0}\right|$, the number of vertices of the underlying quiver of A. We prove (in Corollary 5.7) that the length of any primitive cycle over A does not exceed $2\left|Q_{0}\right|$. This is a consequence of the theorem (see Theorem 5.6) that every primitive cycle C over A (i.e. a primitive walk in the quiver of A) has at most double selfintersections. From the point of view of representation theory it can be reformulated as saying that the multiplicity of any simple module as a composition factor in a composition series for a primitive band module is at most two.
2. Strings. Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver, that is, a finite oriented graph with vertices Q_{0} and arrows Q_{1}, where both multiple arrows and loops are admitted. If $\alpha \in Q_{1}$ is an arrow, then $s(\alpha)$ will denote the source vertex of α, and $e(\alpha)$ the end vertex of α.

We say that the composition $\alpha \beta$ of arrows α and β is defined if $s(\alpha)=$ $e(\beta)$, that is, if we can go through α after going through β :

A path in Q is a word $u_{1} \ldots u_{n}$ consisting of direct arrows u_{i} such that all compositions $u_{i} u_{i+1}, 1 \leq i \leq n-1$, are defined. For instance, every arrow is a path of length 1.

We will distinguish a finite number of (forbidden) paths in Q of length ≥ 2, which will be called relations. The set of relations should be large enough to guarantee that the number of "allowed" paths in Q, i.e., of paths not containing any relation as a subpath, is finite. Now, if \mathbb{k} is a field, then the path algebra $\mathbb{k} Q$ has the set of all "allowed" paths in Q (including paths of length zero, i.e., vertices) as a \mathbb{k}-basis. In other words, if u is a path, then $u=0$ in $\mathbb{k} Q$ if u belongs to the ideal generated by the relations.

A path algebra $\mathbb{k} Q$ is a string algebra if:

1) For any vertex $S \in Q_{0}$ there are at most two arrows starting at S, and at most two arrows ending at S.
Here is a typical configuration in Q without loops.

2) If α, β, γ are arrows such that $s(\alpha)=e(\beta)=e(\gamma)$, that is, if the compositions $\alpha \beta$ and $\alpha \gamma$ are defined, then either $\alpha \beta$ or $\alpha \gamma$ is a relation in Q. In the following diagram the relation $\alpha \gamma=0$ is shown by a
solid curve:

3) If α, β, γ are arrows such that $e(\alpha)=s(\beta)=s(\gamma)$, that is, if the compositions $\beta \alpha$ and $\gamma \alpha$ are defined, then either $\beta \alpha$ or $\gamma \alpha$ is a relation in Q.

In the following we will not refer to the algebraic structure of a string algebra so often. So the reader may look at a string algebra as just its underlying quiver.

Note that, in the above definition, each loop at a vertex S counts both as an entering and as an outgoing arrow. Thus the following is a typical configuration in Q with one loop:

In particular, there exist at most two loops at each vertex S.
For instance, the quiver

with the relations $\alpha \beta=\beta \alpha=\alpha^{2}=\beta^{3}=0$ is the quiver of the (finitedimensional string) Gelfand-Ponomarev algebra $G_{2,3}$.

Let α be an arrow. We define the source of $\alpha^{-1}, s\left(\alpha^{-1}\right)$, as the vertex $e(\alpha)$; and the end of $\alpha^{-1}, e\left(\alpha^{-1}\right)$, as the vertex $s(\alpha)$. If u and v are direct or inverse arrows, then we say that the composition $u v$ is defined if $s(u)=e(v)$.

For instance, let A be the string algebra

with the relation $\gamma \beta=0$. Then the composition $\alpha \beta^{-1}$ is defined, but $\alpha \gamma^{-1}$ is not.

In what follows we consider words in the alphabet $Q_{1} \cup Q_{1}^{-1}$, that is, the letters of this alphabet are (direct) arrows α and inverse arrows α^{-1}. We say that a word $u=u_{1} \ldots u_{n}$ in this alphabet is a string if:

1) u is a path, i.e., each composition $u_{i} u_{i+1}, i=1, \ldots, n-1$, is defined.
2) Neither $\alpha \alpha^{-1}$ nor $\alpha^{-1} \alpha$ is a subword of u (here and throughout, v is a subword of u if $u=u_{1} v u_{2}$ for some, maybe empty, words u_{1}, u_{2}).
3) If $v=v_{1} \ldots v_{k}$ is a relation in Q, then neither v nor $v^{-1}=v_{k}^{-1} \ldots v_{1}^{-1}$ is a subword of u.
For instance, $\alpha \beta^{-2} \alpha \beta^{-1}$ is a string over $G_{2,3}$, but $\alpha \beta \alpha^{-1}$ is not a string (since it contains the relation $\alpha \beta$ as a subword). Usually strings are interpreted as "generalized paths".

Clearly, if u is a string, then u^{-1} is also a string. Furthermore, u is not a cyclic permutation of u^{-1}, in particular $u \neq u^{-1}$.
3. Bands. Let A be a (finite-dimensional) string algebra. A string C over A is a cycle if:

1) C contains a direct arrow and an inverse arrow.
2) The composition C^{2} is a string (in particular, it is defined).

For instance, $\alpha \beta^{-1}$ and $\alpha \beta^{-2}$ are cycles over $G_{2,3}$, but β is not. Usually a cycle is interpreted as a closed path, i.e., a path starting and ending at the same vertex (or just a closed curve on Q, without specifying this vertex). For instance, in the example above, $\alpha \beta^{-1}$ is just the figure "eight" which traverses (the unique) vertex twice.

Note that, if C is a cycle, then every cyclic permutation of C is a cycle, and also C^{k} is a cycle for every k. Furthermore, C^{-1} is also a cycle.

We say that cycles C and D are c-equivalent (cyclically equivalent), written $C \sim_{c} D$, if C is a cyclic permutation of D. Clearly \sim_{c} is an equivalence relation. We will distinguish between \sim_{c} and the broader equivalence relation \sim, where $C \sim D$ if D can be obtained from C by a cyclic permutation and (maybe) taking the inverse. Thus $C \sim D$ iff $C \sim_{c} D$ or $C \sim_{c} D^{-1}$. Furthermore, since C and C^{-1} are not \sim_{c}-equivalent, each \sim-equivalence class splits in exactly two (equipotent) \sim_{c}-equivalence classes.

Clearly every cycle C is c-equivalent to a cycle $\alpha E \beta^{-1}$, where α and β are distinct arrows with a common end; and C is c-equivalent to a cycle $\gamma^{-1} F \delta$, where γ and δ are distinct arrows with a common source.

Note that, if $C=\alpha E \beta^{-1}$ is a string, where α, β are distinct arrows with a common end, then C^{2} is also a string, hence C is a cycle. Similarly, if $D=\gamma^{-1} F \delta$ is a string, where γ, δ are distinct arrows with a common source, then D is a cycle.

A cycle C is called primitive if C is not a power of a proper subword, that is, $C=u^{k}$ for some word u implies $k=1$. Clearly any cyclic permutation of a primitive cycle is a primitive cycle. A primitive cycle of the form $\alpha E \beta^{-1}$ will be called a band. For instance, $\alpha \beta^{-1} \alpha \beta^{-2}$ is a band over $G_{2,3}$.

If $B=\alpha E \beta^{-1}$ is a band, then β and α are distinct arrows with a common end, hence β is uniquely determined by α and vice versa. Furthermore, $B^{-1}=\beta E^{-1} \alpha^{-1}$ is also a band.
4. The domestic case. We will not reproduce the general definition of a finite-dimensional domestic (tame) algebra, but for string algebras there is a very useful equivalent combinatorial condition.

FACt 4.1 ([7, Sect. 11, Prop. 2]). Let A be a finite-dimensional string algebra. Then A is domestic if and only if for every arrow α there is at most one band over A with the first letter α.

For instance, the Gelfand-Ponomarev algebra $G_{2,3}$ is not domestic, since it has two distinct bands $\alpha \beta^{-1}$ and $\alpha \beta^{-2}$ with the first letter α.

Let A_{2} be the Kronecker algebra, that is, the path algebra of the following quiver without relations:

Then $C=\alpha \beta^{-1}$ and $C^{-1}=\beta \alpha^{-1}$ is a complete list of bands of A_{2}, hence A_{2} is domestic (even 1-domestic).

A primitive cycle B is said to be a coband if $B=\gamma^{-1} E \delta$ (hence γ and δ are different arrows with a common source). The theory of cobands can be developed parallel to the theory of bands. For instance, a string algebra A is domestic iff, for every arrow γ, there is at most one coband B over A starting with γ^{-1}. A more elaborate explanation of this phenomenon is the following. Applying the duality $\operatorname{Hom}(-, \mathbb{k})$ (between the categories of left and right A-modules), we just invert arrows in the quiver of A, hence bands go to cobands and vice versa. Furthermore, the definition of string algebra implies that A is a string algebra iff A^{op} is.

The following lemma implies that (over a domestic string algebra) there are no proper inclusions between bands and cobands.

Lemma 4.2. Let C be a primitive cycle of a domestic string algebra. Then no proper substring of C is a band, and no proper substring of C is a coband.

Proof. By [4, L. 3.3] (or see a similar proof below) no proper substring of C is a band.

Suppose that $B=\gamma^{-1} E \delta$ is a coband which is a (proper) substring of C. Then B contains a substring $\tau^{-1} \theta$ somewhere between γ^{-1} and δ. Thus $B=B_{1} \tau^{-1} \theta B_{2}$, hence $C=C_{1} \tau^{-1} \theta C_{2}$. Then $C \sim_{c} C^{\prime}=\theta C_{2} C_{1} \tau^{-1}$ and $B \sim_{c} B^{\prime}=\theta B_{2} B_{1} \tau^{-1}$.

Since A is domestic, both C^{\prime} and B^{\prime} are powers of a unique band $D=$ $\theta F \tau^{-1}$. But B^{\prime} is primitive, hence $D=B^{\prime}$, and similarly $D=C^{\prime}$. Comparing the lengths, we obtain $|C|=|B|$, a contradiction.

5. Main results

FACT 5.1 (see [4, L. 3.4]). Let C be a primitive cycle of a domestic string algebra. Then no arrow occurs in C twice as a direct arrow, and no arrow occurs in C twice as an inverse arrow.

If we count direct and inverse occurrences of an arrow α together, then α can appear in a primitive cycle twice, as the following example shows.

Example 5.2. Let A be the string algebra

with the relations $\beta^{2}=\gamma^{2}=\beta \alpha \gamma=0$. It is easily seen that $B=\alpha \gamma \alpha^{-1} \beta^{-1}$ and $B^{-1}=\beta \alpha \gamma^{-1} \alpha^{-1}$ is a complete list of bands of A (that is, A is 1 domestic), and B contains α and α^{-1}.

In the following proposition we show how to "improve" certain primitive cycles of a domestic string algebra. Recall that, by Fact 4.1, any band of a domestic string algebra is uniquely determined by its first letter.

Proposition 5.3. Let C be a primitive cycle of a domestic string algebra A. Suppose that C contains α or α^{-1}, and C contains β or β^{-1}, where α and β are distinct arrows with a common end. Then there is a band $B=\alpha U \beta^{-1}$ over A such that C is equivalent to B.

Proof. Taking the inverse if necessary, we may assume that α occurs in C as a direct arrow. Furthermore, applying a cyclic permutation, we can put α at the beginning of C, hence $C=\alpha E \beta^{-1} F$, or $C=\alpha E \beta F$.

Suppose that $C=\alpha E \beta^{-1} F$. If F is empty, then we can take $B=C$. Otherwise $F \neq \emptyset$. The cycle $\alpha E \beta^{-1}$ is a power of a unique band $B=$ $\alpha U \beta^{-1}$. Since F is not empty, B is a proper substring of C, which contradicts Lemma 4.2.

It remains to consider the case $C=\alpha E \beta F$.
CASE 1: E and F are non-empty. If the last letter of F is an inverse arrow, it must be β^{-1}, hence $C=\alpha V \beta^{-1}$ is a band. Then we can take $B=C$.

Thus we may assume that $F=F^{\prime} \gamma$, where the composition $\gamma \alpha$ is defined. If the last letter of E is an inverse arrow, it must be α^{-1}. Then $E=E^{\prime} \alpha^{-1}$, hence $C=\alpha E^{\prime} \alpha^{-1} \beta F$. A cyclic permutation of C is the band $B^{\prime}=\beta F \alpha E^{\prime} \alpha^{-1}$. Then $B=B^{\prime-1}=\alpha E^{\prime-1} \alpha^{-1} F^{-1} \beta^{-1}$ is a band, and $C \sim B$.

Thus we may assume that $E=E^{\prime} \delta$, where the composition $\delta \beta$ is defined. Then $C=\alpha E^{\prime} \delta \beta F^{\prime} \gamma$.

From $\gamma \alpha \neq 0$ and $\delta \beta \neq 0$ we conclude that $\gamma \neq \delta$ (but we have not excluded the possibility, say, that $\gamma=\alpha$, i.e., α is a loop).

Since γ and δ have a common source, $D=\alpha E^{\prime} \delta \gamma^{-1} F^{\prime-1} \beta^{-1}$ is a string, hence D is a cycle. Since A is domestic, $D=B^{k}$ for a unique band $B=$ $\alpha U \beta^{-1}$. Because $C^{2}=\alpha E^{\prime} \delta \beta F^{\prime} \gamma \alpha E^{\prime} \delta \beta F^{\prime} \gamma$ is a string,

$$
C D=\alpha E^{\prime} \delta \beta F^{\prime} \gamma \alpha E^{\prime} \delta \gamma^{-1} F^{\prime-1} \beta^{-1}
$$

is a string. Since $C D$ starts with α and ends with $\beta^{-1}, C D$ is a cycle, hence $C D=B^{l}$ for some l. Then $D=B^{k}$ yields $C=B^{l-k}$.

Comparing the last letters of C and B^{l-k}, we obtain $\gamma=\beta^{-1}$, a contradiction.

CASE 2: F is empty. Then $C=\alpha E \beta$, hence β is a loop. Since C contains an inverse arrow, E is not empty.

If E ends with an inverse arrow, it must be α^{-1}. Then $C=\alpha E^{\prime} \alpha^{-1} \beta$ is c-equivalent to the cycle $B^{\prime}=\beta \alpha E^{\prime} \alpha^{-1}$. Since C is primitive, B^{\prime} is a band, and $C \sim B^{\prime-1}=\alpha E^{\prime-1} \alpha^{-1} \beta^{-1}$.

Thus we may assume that $E=E^{\prime} \gamma$, hence $C=\alpha E^{\prime} \gamma \beta$. Since $\beta \alpha$ is defined, we must have $\beta^{2}=0$. Then $\gamma \beta \neq 0$ implies $\gamma \neq \beta$.

Thus $D=\alpha E^{\prime} \gamma \beta^{-1}$ is a cycle. Considering the string $C D$, we obtain a contradiction $\left(\beta=\beta^{-1}\right)$ as in Case 1.

CASE 3: E is empty, but F is non-empty. Then $C=\alpha \beta F$, hence α is a loop. If F ends with an inverse arrow, it must be β^{-1}, hence $C=\alpha \beta F^{\prime} \beta^{-1}$ is a band.

Otherwise $F=F^{\prime} \gamma$ and $C=\alpha \beta F^{\prime} \gamma$. Note that $\alpha \beta \neq 0$ implies $\alpha^{2}=0$, and then from $\gamma \alpha \neq 0$ we conclude that $\gamma \neq \alpha$.

Thus, considering the cycles $D=\beta F^{\prime} \gamma \alpha^{-1}$ and $\beta F^{\prime} \gamma \alpha D$, we obtain $\alpha=\alpha^{-1}$, a contradiction.

By Fact 5.1, a primitive cycle of a domestic string algebra may contain at most four (direct or inverse) occurrences of a pair of arrows with a common end. In the following proposition we improve this result.

Proposition 5.4. Let C be a primitive cycle of a domestic string algebra A. If α and β are distinct arrows with a common end, then C contains at most three occurrences of α and β (as direct or inverse arrows).

Proof. By Fact 5.1, α may occur in C at most once as a direct arrow, and at most once as an inverse arrow; and the same is true for β. Hence the total number of occurrences of α and β in C does not exceed 4. Thus, looking for a contradiction, we may assume that this number is equal to 4 , that is, C contains α, α^{-1} and β, β^{-1}.

By Proposition 5.3, there is a band $B=\alpha U \beta^{-1}$ such that C is equivalent to B. Thus we may assume that $C=B$, hence B contains α^{-1} and β.

Suppose that β occurs in B before α^{-1}, i.e. $B=\alpha E \beta F \alpha^{-1} G \beta^{-1}$. Then $\beta F \alpha^{-1}$ is a cycle, hence a power of B^{-1}. But the length of $\beta F \alpha^{-1}$ is less than the length of B, a contradiction (to Lemma 4.2).

Thus we may assume that α^{-1} occurs in B before β : $B=\alpha E \alpha^{-1} F \beta G \beta^{-1}$ (in particular, E and G are non-empty). If $B^{\prime}=\alpha E \alpha^{-1} F \beta G^{-1} \beta^{-1}$ is a string, it is a power of B. From $|B|=\left|B^{\prime}\right|$ we conclude that $B=B^{\prime}$, hence $G=G^{-1}$, a contradiction.

Thus B^{\prime} is not a string. It follows that F is non-empty and the last letter of F is a direct arrow δ (such that $F \beta G^{-1}$ contains a relation of A as a subword).

Similarly, considering the word $\alpha E^{-1} \alpha^{-1} F \beta G \beta^{-1}$, we conclude that the first letter of F is an inverse arrow γ^{-1} (such that $E^{-1} \alpha^{-1} F$ contains the inverse of a relation of A).

Thus $F=\gamma^{-1} F^{\prime} \delta$ and $B=\alpha E \alpha^{-1} \gamma^{-1} F^{\prime} \delta \beta G \beta^{-1}$. If S is the common end of α and β, then S is the common source of γ and δ. Since the compositions $\gamma \alpha$ and $\delta \beta$ are defined, we conclude that $\gamma \neq \delta$.

Then $\gamma^{-1} F^{\prime} \delta$ is a cycle, hence a power of a unique coband $\gamma^{-1} H \delta$. The length of this coband is less than the length of B, a contradiction (to Lemma 4.2).

Given a (primitive) cycle $C=u_{1} \ldots u_{n}$ and a vertex S, one can count how many times C goes through S. Thus we assign to C the word $u(C)=$ $S_{1} \ldots S_{n}$, where S_{i} is the source vertex of the letter u_{i} (i.e., the vertex between u_{i} and u_{i+1}, or between u_{n} and u_{1}). Now, the number of occurrences of S in C is just the number of occurrences of S in $u(C)$. This is obviously the same as the multiplicity of the simple module corresponding to S as
a factor in a composition series for a primitive band module corresponding to C (see [10, S. 1.11] or [1, p. 161] for a definition of band modules). Clearly this number is an invariant of the \sim-equivalence class of C. For instance, the unique vertex S occurs three times in the band $\alpha \beta^{-2}$ over $G_{2,3}$.

Proposition 5.5. Let $B=\alpha U \beta^{-1}$ be a band of a domestic string algebra, and let S be the common end of α and β. Then S cannot occur three times in B.

Proof. Otherwise $B=\alpha E . F . G \beta^{-1}$, where the dots denote two (internal) occurrences of S. In particular, F is not empty.

Case 1: There is no loop in S. Then E, G are non-empty, and $|F| \geq 2$. Thus we need four (direct or inverse) arrows to surround the two dotted occurrences of S in B. By Fact $5.1, \alpha$ and β^{-1} cannot occur in B a second time (except for α at the beginning of B, and β^{-1} at the end of B). Furthermore, by Proposition 5.4, α^{-1} and β cannot occur in B simultaneously. Thus there are at least three positions around the two dots to be occupied by arrows starting at S. Therefore (by Fact 5.1 again) there must be two different arrows γ and δ with a common source at S occurring in B as direct or inverse arrows.

We may assume that $\delta \alpha=0$ and $\gamma \beta=0$. Furthermore (by a dual to Proposition 5.4) the total number of occurrences of γ and δ in B (as direct or inverse arrows) does not exceed 3. Thus either α^{-1} or β occurs in B around the dots. By symmetry we may assume that α^{-1} occurs in B (hence β does not occur).

Clearly α^{-1} must occur on the left of a dot. Thus there are two cases to consider: (a) $B=\alpha E \alpha^{-1} . F \cdot G \beta^{-1}$ and (b) $B=\alpha E . F \alpha^{-1} . G \beta^{-1}$.

Subcase (a): $B=\alpha E \alpha^{-1} . F . G \beta^{-1}$. Since β does not occur in B, the first letter of F must be an inverse arrow. From $\delta \alpha=0$ it follows that $F=\gamma^{-1} F^{\prime}$, hence $B=\alpha E \alpha^{-1} \cdot \gamma^{-1} F^{\prime} . G \beta^{-1}$, where F^{\prime} is non-empty. To surround the second dot, we need either $\gamma . \delta^{-1}$ or $\delta . \gamma^{-1}$. But γ^{-1} cannot occur twice in B (Lemma 5.1), hence $F^{\prime}=F^{\prime \prime} \gamma, G=\delta^{-1} G^{\prime}$, and $B=$ $\alpha E \alpha^{-1} \cdot \gamma^{-1} F^{\prime \prime} \gamma \cdot \delta^{-1} G^{\prime} \beta^{-1}$.

But then $B^{\prime}=\alpha E \alpha^{-1} \cdot \beta G^{\prime-1} \delta \cdot \gamma^{-1} F^{\prime \prime} \gamma \cdot \delta^{-1} G^{\prime} \beta^{-1}$ is clearly a cycle, hence a power of the (unique) band B. Note that there is no α in E, G^{\prime} and $F^{\prime \prime}$. Comparing letters at the beginning of B^{\prime} and B, we obtain $\beta=\gamma^{-1}$, a contradiction.

Subcase (b): $B=\alpha E \cdot F \alpha^{-1} \cdot G \beta^{-1}$. If the first letter of G is a direct arrow, then $B^{\prime}=\alpha F^{-1} \cdot E^{-1} \alpha^{-1} \cdot G \beta^{-1}$ is a cycle, hence B^{\prime} is a power of B. Since $\left|B^{\prime}\right|=|B|$, we have $B^{\prime}=B$, hence $E F=(E F)^{-1}$, a contradiction. Thus the first letter of G is an inverse arrow. Since $\delta \alpha=0$, it must be γ^{-1}.

Thus $G=\gamma^{-1} G^{\prime}$, hence $B=\alpha E . F \alpha^{-1} \cdot \gamma^{-1} G^{\prime} \beta^{-1}$. The first dot in B is surrounded by either $\gamma \cdot \delta^{-1}$ or $\delta \cdot \gamma^{-1}$. Since γ^{-1} cannot occur in B twice, it must be $\gamma . \delta^{-1}$.

Thus $B=\alpha E^{\prime} \gamma \cdot \delta^{-1} F^{\prime} \alpha^{-1} \cdot \gamma^{-1} G^{\prime} \beta^{-1}$. Then

$$
B^{\prime}=\alpha E^{\prime} \gamma \cdot \delta^{-1} F^{\prime} \alpha^{-1} \cdot \beta G^{\prime-1} \gamma \cdot \delta^{-1} F^{\prime} \alpha^{-1} \cdot \gamma^{-1} G^{\prime} \beta^{-1}
$$

is a cycle beginning with α, hence B^{\prime} is a power of B. Comparing B^{\prime} and B, we obtain $\beta=\gamma^{-1}$, a contradiction.

CASE 2: There is exactly one loop at S. Since α and β are the only arrows ending at S, one of them must be a loop. By symmetry we may assume that α is a loop, hence β is not a loop. Then there exists at most one arrow $\gamma \neq \alpha$ starting at S.

We have $B=\alpha E . F . G \beta^{-1}$. Since β is not a loop, G is not empty. By Fact 5.1, there are no additional occurrences of α and β^{-1} in B. Furthermore (see Proposition 5.4), α^{-1} and β can occur in B at most once, and cannot occur simultaneously.

Suppose first that $|F|=1$, i.e. F is a loop. Then $F=\alpha^{-1}$, hence $B=\alpha E . \alpha^{-1} . G \beta^{-1}$. It follows that β does not occur in B. If E starts with an inverse arrow, then $B^{\prime}=\alpha E^{-1} \cdot \alpha^{-1} \cdot G \beta^{-1}$ is a cycle. Comparing lengths of B and B^{\prime} we obtain $B^{\prime}=B$. But this leads to $E=E^{-1}$, a contradiction. Otherwise the first letter of E is a direct arrow, i.e., β, a contradiction again.

Thus we may assume that $|F| \geq 2$ in $B=\alpha E \cdot F \cdot G \beta^{-1}$. Now the first and the last letters of F and the first letter of G surround S. We have only three candidates to fill in this gap: γ, γ^{-1}, and either α^{-1} or β (at most one of those). Thus all three letters must occur once in these positions. Also E should be empty, i.e., $B=\alpha . F . G \beta^{-1}$.

Since γ cannot occur to the right of a dot, the last letter of F must be γ : $B=\alpha \cdot F^{\prime} \gamma \cdot G \beta^{-1}$. Then G cannot start with γ^{-1}, hence γ^{-1} should be the first letter of F^{\prime}. Thus $B=\alpha \cdot \gamma^{-1} F^{\prime \prime} \gamma \cdot G \beta^{-1}$, where the first letter of G is either β or α^{-1}. If it is α^{-1}, i.e., $B=\alpha \cdot \gamma^{-1} F^{\prime \prime} \gamma \cdot \alpha^{-1} G^{\prime} \beta^{-1}$, we obtain a contradiction (to the domesticity) by considering the cycle $\alpha \cdot \gamma^{-1} F^{\prime \prime-1} \gamma \cdot \alpha^{-1} G^{\prime} \beta^{-1}$.

Thus $B=\alpha \cdot \gamma^{-1} F^{\prime \prime} \gamma \cdot \beta G^{\prime} \beta^{-1}$. Then $B^{\prime}=\alpha \cdot \gamma^{-1} F^{\prime \prime-1} \gamma \cdot \alpha^{-1} \cdot \beta G^{\prime} \beta^{-1}$ is a cycle. By domesticity, B^{\prime} must be a power of B. Comparing B^{\prime} and B, we derive $F^{\prime \prime}=F^{\prime \prime-1}$, a contradiction (since $F^{\prime \prime}$ cannot be empty).

Case 3: There are two loops at S. Then α and β must be loops, hence α and β are the only arrows starting or ending at S. If $B=\alpha U \beta^{-1}$, then U is non-empty (otherwise there is just one internal occurrence of S). Since β^{-1} cannot occur twice (and α cannot occur twice), the first letter of U must be $\beta: B=\alpha \beta U^{\prime} \beta^{-1}$. Now U^{\prime} is not empty, and the first letter of U^{\prime} must be α^{-1}. But then the total number of occurrences of α and β in B is at least 4, a contradiction (to Proposition 5.4).

Now we are in a position to prove the main result of the paper.
Theorem 5.6. Let C be a primitive cycle of a domestic string algebra A. Then no vertex occurs in C three times. Therefore the multiplicity of a simple module as a composition factor in a composition series of a primitive band module over A is at most 2 .

Proof. Suppose that S occurs in C three times. If one of these occurrences is (up to a cyclic permutation of C) of the form $\beta^{-1} . \alpha$, then C is c-equivalent to a band $B=\alpha E \beta^{-1}$. Thus we may apply Proposition 5.5.

If one of the occurrences of S in C is of the form $\gamma \cdot \delta^{-1}$, then C is c-equivalent to a coband $D=\delta^{-1} F \gamma$, hence we may apply a dual of Proposition 5.5.

Otherwise S occurs in C (up to a cyclic permutation of C again) either of the form $\gamma \cdot \alpha$ or $\alpha^{-1} \cdot \gamma^{-1}$. Since α appears in C at most once, $\gamma \cdot \alpha$ can occur just once, and the same is true for $\alpha^{-1} \cdot \gamma^{-1}$. So using $\gamma \cdot \alpha$ and $\alpha^{-1} \cdot \gamma^{-1}$ we can surround the only two occurrences of S.

Thus we need one more path $\delta . \beta$ or $\beta^{-1} . \delta^{-1}$ to surround the third copy of S. In particular, $\beta \neq \alpha$ ends at S.

Then C contains α or α^{-1}, and β or β^{-1}. By Proposition 5.3, C is equivalent to a band $B=\alpha U \beta^{-1}$. Now we can apply Proposition 5.5.

Corollary 5.7. Let C be a primitive cycle of a domestic string algebra. Then $|C| \leq 2\left|Q_{0}\right|$.

Proof. By Theorem 5.6, each vertex $S \in Q_{0}$ may occur in C at most twice. Thus the length of C does not exceed twice the number of vertices.

Note that the estimate given by Corollary 5.7 is sharp. Indeed, let A be the string algebra from Example 5.2. Then A is domestic, has two vertices, and the length of the unique band $B=\alpha \gamma \alpha^{-1} \beta^{-1}$ over A is 4 .

One may wonder if it is possible to "dualize" Theorem 5.6 by proving that three different bands of a domestic string algebra have no vertices in common. The following example shows that this is not the case.

Let A be the string algebra

with the relations $\gamma \beta \tau=h \gamma \beta=0$ and $u \tau=h u=\delta \beta=\gamma \alpha=0$. It is not difficult to check that A is 3 -domestic with the following bands: $C=$ $\alpha \tau^{-1} \beta^{-1}, D=h \gamma \delta^{-1}$ and $E=u \beta^{-1} \gamma^{-1}$, which have vertex S in common.

REFERENCES

[1] M. Butler and C. M. Ringel, Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), 145-179.
[2] C. Geiß, On components of type $\mathbb{Z} A_{\infty}^{\infty}$ for string algebras, ibid. 26 (1998), 749-758.
[3] M. Prest and G. Puninski, One-directed indecomposable pure injective modules over string algebras, Colloq. Math. 101 (2004), 89-112.
[4] —, 一, Krull-Gabriel dimension of 1-domestic string algebras, Algebr. Repres. Theory 9 (2006), 337-358.
[5] G. Puninski, Super-decomposable pure-injective modules exist over some string algebras, Proc. Amer. Math. Soc. 132 (2004), 1891-1898.
[6] -, Krull-Gabriel dimension of 1-domestic string algebras is finite, in preparation.
[7] C. M. Ringel, Some algebraically compact modules. I, in: Abelian Groups and Modules, A. Facchini and C. Menini (eds.), Kluwer, 1995, 419-439.
[8] -, Infinite length modules. Some examples as introduction, in: Infinite Length Modules, H. Krause and C. M. Ringel (eds.), Trends in Math., Birkhaüser, 2000, 1-73.
[9] -, On generic modules for string algebras, Bol. Soc. Mat. Mexicana (3) 7 (2001), 85-97.
[10] J. Schröer, Hammocks for string algebras, doctoral thesis, Bielefeld, 1997.
[11] -, On the infinite radical of a module category, Proc. London Math. Soc. (3) 81 (2000), 651-674.

School of Mathematics
Manchester University
Lamb Bld., Booth Street East
Manchester, M13 9PL, United Kingdom
E-mail: gpuninski@maths.man.ac.uk

[^0]: 2000 Mathematics Subject Classification: 05C20, 05C38, 16G20.
 Key words and phrases: string algebra, string, cycle, band.
 The research is partially supported by NFS Grant DMS-0612720.

