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BAND COMBINATORICS OF DOMESTIC STRING ALGEBRAS

BY

GENA PUNINSKI (Manchester)

Abstract. We prove that the multiplicity of a simple module as a composition factor
in a composition series for a primitive band module over a domestic string algebra is at
most two.

1. Introduction. There is a range of results on string and band com-
binatorics of finite-dimensional algebras. First of all, they played a pivotal
role in the classification of finite-dimensional modules over string algebras
in Butler and Ringel [1]. They were also used by Geiß [2] to describe cer-
tain components in the Auslander–Reiten quiver of a string algebra, and
by Ringel [9] to construct new types of generic modules over non-domestic
string algebras.

Band combinatorics for string algebras has been developed by Ringel
[7, 8] (see also [10]). For instance, he gave a purely combinatorial charac-
terization of domesticity of string algebras. Namely, he proved that a string
algebra A is domestic iff for every arrow α, there is at most one band of A

with α as a first letter. Another result of Ringel [8, Sect. 11, Cor. 1] says
that two primitive cycles of a domestic string algebra with a vertex in a
common socle are equivalent.

These results have recently acquired further applications. For instance,
Schröer [11] uses the band combinatorics of string algebras to calculate rad-
ical series of the category of finite-dimensional modules. Furthermore, some
recent progress in the classification of indecomposable pure-injective mod-
ules over string algebras (see [3, 4]) relies on string and band combinatorics,
and this combinatorics is essential in Puninski’s proof [5] of the existence
of superdecomposable pure-injective modules over non-domestic string alge-
bras.

The aim of this paper is to add one new result to this list, which is a
crucial ingredient in the forthcoming proof of the finiteness of the Krull–
Gabriel dimension of 1-domestic string algebras (see [6]).
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By Ringel [7, Sect. 11, Cor. 2], the number (up to equivalence) of primi-
tive cycles over a domestic string algebra A does not exceed |Q0|, the number
of vertices of the underlying quiver of A. We prove (in Corollary 5.7) that the
length of any primitive cycle over A does not exceed 2|Q0|. This is a conse-
quence of the theorem (see Theorem 5.6) that every primitive cycle C over A

(i.e. a primitive walk in the quiver of A) has at most double selfintersections.
From the point of view of representation theory it can be reformulated as
saying that the multiplicity of any simple module as a composition factor in
a composition series for a primitive band module is at most two.

2. Strings. Let Q = (Q0, Q1) be a quiver, that is, a finite oriented graph
with vertices Q0 and arrows Q1, where both multiple arrows and loops are
admitted. If α ∈ Q1 is an arrow, then s(α) will denote the source vertex
of α, and e(α) the end vertex of α.

We say that the composition αβ of arrows α and β is defined if s(α) =
e(β), that is, if we can go through α after going through β:

◦ ◦αoo ◦
β

oo

A path in Q is a word u1 . . . un consisting of direct arrows ui such that
all compositions uiui+1, 1 ≤ i ≤ n−1, are defined. For instance, every arrow
is a path of length 1.

We will distinguish a finite number of (forbidden) paths in Q of length
≥ 2, which will be called relations. The set of relations should be large
enough to guarantee that the number of “allowed” paths in Q, i.e., of paths
not containing any relation as a subpath, is finite. Now, if k is a field, then
the path algebra kQ has the set of all “allowed” paths in Q (including paths
of length zero, i.e., vertices) as a k-basis. In other words, if u is a path, then
u = 0 in kQ if u belongs to the ideal generated by the relations.

A path algebra kQ is a string algebra if:

1) For any vertex S ∈ Q0 there are at most two arrows starting at S,
and at most two arrows ending at S.
Here is a typical configuration in Q without loops.

◦
α ��?

??
? ◦β

����
��

◦

γ����
�� δ

��?
??

?

◦ ◦

2) If α, β, γ are arrows such that s(α) = e(β) = e(γ), that is, if the
compositions αβ and αγ are defined, then either αβ or αγ is a relation
in Q. In the following diagram the relation αγ = 0 is shown by a
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solid curve:
◦β

zzttt
tt

◦ ◦αoo

◦
γddJJJJJ

3) If α, β, γ are arrows such that e(α) = s(β) = s(γ), that is, if the
compositions βα and γα are defined, then either βα or γα is a relation
in Q.

◦

◦

βddJJJJJ

γzzttt
tt

◦αoo

◦

In the following we will not refer to the algebraic structure of a string
algebra so often. So the reader may look at a string algebra as just its
underlying quiver.

Note that, in the above definition, each loop at a vertex S counts both
as an entering and as an outgoing arrow. Thus the following is a typical
configuration in Q with one loop:

◦
α

��◦
β

��

γbb

◦

In particular, there exist at most two loops at each vertex S.

For instance, the quiver

◦α << βbb

with the relations αβ = βα = α2 = β3 = 0 is the quiver of the (finite-
dimensional string) Gelfand–Ponomarev algebra G2,3.

Let α be an arrow. We define the source of α−1, s(α−1), as the vertex
e(α); and the end of α−1, e(α−1), as the vertex s(α). If u and v are direct or
inverse arrows, then we say that the composition uv is defined if s(u) = e(v).

For instance, let A be the string algebra

◦
α

$$

β

::◦
γ

//◦

with the relation γβ = 0. Then the composition αβ−1 is defined, but αγ−1

is not.
In what follows we consider words in the alphabet Q1 ∪Q−1

1 , that is, the
letters of this alphabet are (direct) arrows α and inverse arrows α−1. We
say that a word u = u1 . . . un in this alphabet is a string if:
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1) u is a path, i.e., each composition uiui+1, i = 1, . . . , n− 1, is defined.
2) Neither αα−1 nor α−1α is a subword of u (here and throughout, v is

a subword of u if u = u1vu2 for some, maybe empty, words u1, u2).
3) If v = v1 . . . vk is a relation in Q, then neither v nor v−1 = v−1

k
. . . v−1

1

is a subword of u.

For instance, αβ−2αβ−1 is a string over G2,3, but αβα−1 is not a string (since
it contains the relation αβ as a subword). Usually strings are interpreted as
“generalized paths”.

Clearly, if u is a string, then u−1 is also a string. Furthermore, u is not
a cyclic permutation of u−1, in particular u 6= u−1.

3. Bands. Let A be a (finite-dimensional) string algebra. A string C

over A is a cycle if:

1) C contains a direct arrow and an inverse arrow.
2) The composition C2 is a string (in particular, it is defined).

For instance, αβ−1 and αβ−2 are cycles over G2,3, but β is not. Usually
a cycle is interpreted as a closed path, i.e., a path starting and ending at the
same vertex (or just a closed curve on Q, without specifying this vertex).
For instance, in the example above, αβ−1 is just the figure “eight” which
traverses (the unique) vertex twice.

Note that, if C is a cycle, then every cyclic permutation of C is a cycle,
and also Ck is a cycle for every k. Furthermore, C−1 is also a cycle.

We say that cycles C and D are c-equivalent (cyclically equivalent), writ-
ten C ∼c D, if C is a cyclic permutation of D. Clearly ∼c is an equivalence
relation. We will distinguish between ∼c and the broader equivalence rela-
tion ∼, where C ∼ D if D can be obtained from C by a cyclic permutation
and (maybe) taking the inverse. Thus C ∼ D iff C ∼c D or C ∼c D−1.
Furthermore, since C and C−1 are not ∼c-equivalent, each ∼-equivalence
class splits in exactly two (equipotent) ∼c-equivalence classes.

Clearly every cycle C is c-equivalent to a cycle αEβ−1, where α and β

are distinct arrows with a common end; and C is c-equivalent to a cycle
γ−1Fδ, where γ and δ are distinct arrows with a common source.

◦
α ��6

66
66

E
◦

β����
��
�

◦
γ
����
��
� δ

��6
66

66

◦ ◦

F

◦

Note that, if C = αEβ−1 is a string, where α, β are distinct arrows
with a common end, then C2 is also a string, hence C is a cycle. Similarly,
if D = γ−1Fδ is a string, where γ, δ are distinct arrows with a common
source, then D is a cycle.



DOMESTIC STRING ALGEBRAS 289

A cycle C is called primitive if C is not a power of a proper subword, that
is, C = uk for some word u implies k = 1. Clearly any cyclic permutation of
a primitive cycle is a primitive cycle. A primitive cycle of the form αEβ−1

will be called a band. For instance, αβ−1αβ−2 is a band over G2,3.

If B = αEβ−1 is a band, then β and α are distinct arrows with a common
end, hence β is uniquely determined by α and vice versa. Furthermore,
B−1 = βE−1α−1 is also a band.

4. The domestic case. We will not reproduce the general definition of
a finite-dimensional domestic (tame) algebra, but for string algebras there
is a very useful equivalent combinatorial condition.

Fact 4.1 ([7, Sect. 11, Prop. 2]). Let A be a finite-dimensional string

algebra. Then A is domestic if and only if for every arrow α there is at most

one band over A with the first letter α.

For instance, the Gelfand–Ponomarev algebra G2,3 is not domestic, since
it has two distinct bands αβ−1 and αβ−2 with the first letter α.

Let A2 be the Kronecker algebra, that is, the path algebra of the following
quiver without relations:

◦
α

&&

β

88◦

Then C = αβ−1 and C−1 = βα−1 is a complete list of bands of A2, hence
A2 is domestic (even 1-domestic).

A primitive cycle B is said to be a coband if B = γ−1Eδ (hence γ and
δ are different arrows with a common source). The theory of cobands can
be developed parallel to the theory of bands. For instance, a string algebra
A is domestic iff, for every arrow γ, there is at most one coband B over A

starting with γ−1. A more elaborate explanation of this phenomenon is the
following. Applying the duality Hom(−, k) (between the categories of left
and right A-modules), we just invert arrows in the quiver of A, hence bands
go to cobands and vice versa. Furthermore, the definition of string algebra
implies that A is a string algebra iff Aop is.

The following lemma implies that (over a domestic string algebra) there
are no proper inclusions between bands and cobands.

Lemma 4.2. Let C be a primitive cycle of a domestic string algebra.

Then no proper substring of C is a band , and no proper substring of C is a

coband.

Proof. By [4, L. 3.3] (or see a similar proof below) no proper substring
of C is a band.
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Suppose that B = γ−1Eδ is a coband which is a (proper) substring of C.
Then B contains a substring τ−1θ somewhere between γ−1 and δ. Thus
B = B1τ

−1θB2, hence C = C1τ
−1θC2. Then C ∼c C ′ = θC2C1τ

−1 and
B ∼c B′ = θB2B1τ

−1.

Since A is domestic, both C ′ and B′ are powers of a unique band D =
θFτ−1. But B′ is primitive, hence D = B′, and similarly D = C ′. Comparing
the lengths, we obtain |C| = |B|, a contradiction.

5. Main results

Fact 5.1 (see [4, L. 3.4]). Let C be a primitive cycle of a domestic string

algebra. Then no arrow occurs in C twice as a direct arrow , and no arrow

occurs in C twice as an inverse arrow.

If we count direct and inverse occurrences of an arrow α together, then
α can appear in a primitive cycle twice, as the following example shows.

Example 5.2. Let A be the string algebra

◦β << ◦αoo γbb

with the relations β2 = γ2 = βαγ = 0. It is easily seen that B = αγα−1β−1

and B−1 = βαγ−1α−1 is a complete list of bands of A (that is, A is 1-
domestic), and B contains α and α−1.

In the following proposition we show how to “improve” certain primitive
cycles of a domestic string algebra. Recall that, by Fact 4.1, any band of a
domestic string algebra is uniquely determined by its first letter.

Proposition 5.3. Let C be a primitive cycle of a domestic string al-

gebra A. Suppose that C contains α or α−1, and C contains β or β−1,
where α and β are distinct arrows with a common end. Then there is a band

B = αUβ−1 over A such that C is equivalent to B.

Proof. Taking the inverse if necessary, we may assume that α occurs
in C as a direct arrow. Furthermore, applying a cyclic permutation, we can
put α at the beginning of C, hence C = αEβ−1F , or C = αEβF .

Suppose that C = αEβ−1F . If F is empty, then we can take B = C.
Otherwise F 6= ∅. The cycle αEβ−1 is a power of a unique band B =
αUβ−1. Since F is not empty, B is a proper substring of C, which contradicts
Lemma 4.2.

It remains to consider the case C = αEβF .

Case 1: E and F are non-empty. If the last letter of F is an inverse
arrow, it must be β−1, hence C = αV β−1 is a band. Then we can take
B = C.
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Thus we may assume that F = F ′γ, where the composition γα is de-
fined. If the last letter of E is an inverse arrow, it must be α−1. Then
E = E′α−1, hence C = αE′α−1βF . A cyclic permutation of C is the band
B′ = βFαE′α−1. Then B = B′−1 = αE′−1α−1F−1β−1 is a band, and
C ∼ B.

Thus we may assume that E = E′δ, where the composition δβ is defined.
Then C = αE′δβF ′γ.

◦
α ��?

??
? ◦β

����
��

◦

γ����
�� δ

��?
??

?

◦ ◦

From γα 6= 0 and δβ 6= 0 we conclude that γ 6= δ (but we have not
excluded the possibility, say, that γ = α, i.e., α is a loop).

Since γ and δ have a common source, D = αE′δγ−1F ′−1β−1 is a string,
hence D is a cycle. Since A is domestic, D = Bk for a unique band B =
αUβ−1. Because C2 = αE′δβF ′γαE′δβF ′γ is a string,

CD = αE′δβF ′γαE′δγ−1F ′−1β−1

is a string. Since CD starts with α and ends with β−1, CD is a cycle, hence
CD = Bl for some l. Then D = Bk yields C = Bl−k.

Comparing the last letters of C and Bl−k, we obtain γ = β−1, a contra-
diction.

Case 2: F is empty. Then C = αEβ, hence β is a loop. Since C contains
an inverse arrow, E is not empty.

If E ends with an inverse arrow, it must be α−1. Then C = αE′α−1β is
c-equivalent to the cycle B′ = βαE′α−1. Since C is primitive, B′ is a band,
and C ∼ B′−1 = αE′−1α−1β−1.

Thus we may assume that E = E′γ, hence C = αE′γβ. Since βα is
defined, we must have β2 = 0. Then γβ 6= 0 implies γ 6= β.

◦
α

��◦
γ

��

βbb

◦

Thus D = αE′γβ−1 is a cycle. Considering the string CD, we obtain a
contradiction (β = β−1) as in Case 1.

Case 3: E is empty, but F is non-empty. Then C = αβF , hence α is a
loop. If F ends with an inverse arrow, it must be β−1, hence C = αβF ′β−1

is a band.

Otherwise F = F ′γ and C = αβF ′γ. Note that αβ 6= 0 implies α2 = 0,
and then from γα 6= 0 we conclude that γ 6= α.
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Thus, considering the cycles D = βF ′γα−1 and βF ′γαD, we obtain
α = α−1, a contradiction.

By Fact 5.1, a primitive cycle of a domestic string algebra may contain at
most four (direct or inverse) occurrences of a pair of arrows with a common
end. In the following proposition we improve this result.

Proposition 5.4. Let C be a primitive cycle of a domestic string alge-

bra A. If α and β are distinct arrows with a common end , then C contains

at most three occurrences of α and β (as direct or inverse arrows).

Proof. By Fact 5.1, α may occur in C at most once as a direct arrow,
and at most once as an inverse arrow; and the same is true for β. Hence
the total number of occurrences of α and β in C does not exceed 4. Thus,
looking for a contradiction, we may assume that this number is equal to 4,
that is, C contains α, α−1 and β, β−1.

By Proposition 5.3, there is a band B = αUβ−1 such that C is equivalent
to B. Thus we may assume that C = B, hence B contains α−1 and β.

Suppose that β occurs in B before α−1, i.e. B = αEβFα−1Gβ−1. Then
βFα−1 is a cycle, hence a power of B−1. But the length of βFα−1 is less
than the length of B, a contradiction (to Lemma 4.2).

Thus we may assume that α−1 occurs in B before β: B = αEα−1FβGβ−1

(in particular, E and G are non-empty). If B′ = αEα−1FβG−1β−1 is a
string, it is a power of B. From |B| = |B′| we conclude that B = B′, hence
G = G−1, a contradiction.

Thus B′ is not a string. It follows that F is non-empty and the last
letter of F is a direct arrow δ (such that FβG−1 contains a relation of A as
a subword).

Similarly, considering the word αE−1α−1FβGβ−1, we conclude that the
first letter of F is an inverse arrow γ−1 (such that E−1α−1F contains the
inverse of a relation of A).

Thus F = γ−1F ′δ and B = αEα−1γ−1F ′δβGβ−1. If S is the common
end of α and β, then S is the common source of γ and δ. Since the compo-
sitions γα and δβ are defined, we conclude that γ 6= δ.

Then γ−1F ′δ is a cycle, hence a power of a unique coband γ−1Hδ.
The length of this coband is less than the length of B, a contradiction
(to Lemma 4.2).

Given a (primitive) cycle C = u1 . . . un and a vertex S, one can count
how many times C goes through S. Thus we assign to C the word u(C) =
S1 . . . Sn, where Si is the source vertex of the letter ui (i.e., the vertex
between ui and ui+1, or between un and u1). Now, the number of occurrences

of S in C is just the number of occurrences of S in u(C). This is obviously
the same as the multiplicity of the simple module corresponding to S as
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a factor in a composition series for a primitive band module corresponding
to C (see [10, S. 1.11] or [1, p. 161] for a definition of band modules). Clearly
this number is an invariant of the ∼-equivalence class of C. For instance,
the unique vertex S occurs three times in the band αβ−2 over G2,3.

Proposition 5.5. Let B = αUβ−1 be a band of a domestic string alge-

bra, and let S be the common end of α and β. Then S cannot occur three

times in B.

Proof. Otherwise B = αE.F.Gβ−1, where the dots denote two (internal)
occurrences of S. In particular, F is not empty.

Case 1: There is no loop in S. Then E, G are non-empty, and |F | ≥ 2.
Thus we need four (direct or inverse) arrows to surround the two dotted
occurrences of S in B. By Fact 5.1, α and β−1 cannot occur in B a second
time (except for α at the beginning of B, and β−1 at the end of B). Fur-
thermore, by Proposition 5.4, α−1 and β cannot occur in B simultaneously.
Thus there are at least three positions around the two dots to be occupied
by arrows starting at S. Therefore (by Fact 5.1 again) there must be two
different arrows γ and δ with a common source at S occurring in B as direct
or inverse arrows.

◦ α
��?

??
?? ◦

β����
��

�

◦
δ
����

��
�

γ ��?
??

??

◦ ◦

We may assume that δα = 0 and γβ = 0. Furthermore (by a dual to
Proposition 5.4) the total number of occurrences of γ and δ in B (as direct
or inverse arrows) does not exceed 3. Thus either α−1 or β occurs in B

around the dots. By symmetry we may assume that α−1 occurs in B (hence
β does not occur).

Clearly α−1 must occur on the left of a dot. Thus there are two cases to
consider: (a) B = αEα−1.F.Gβ−1 and (b) B = αE.Fα−1.Gβ−1.

Subcase (a): B = αEα−1.F.Gβ−1. Since β does not occur in B, the
first letter of F must be an inverse arrow. From δα = 0 it follows that
F = γ−1F ′, hence B = αEα−1.γ−1F ′.Gβ−1, where F ′ is non-empty. To
surround the second dot, we need either γ.δ−1 or δ.γ−1. But γ−1 cannot
occur twice in B (Lemma 5.1), hence F ′ = F ′′γ, G = δ−1G′, and B =
αEα−1.γ−1F ′′γ.δ−1G′β−1.

But then B′ = αEα−1.βG′−1δ.γ−1F ′′γ.δ−1G′β−1 is clearly a cycle, hence
a power of the (unique) band B. Note that there is no α in E, G′ and F ′′.
Comparing letters at the beginning of B′ and B, we obtain β = γ−1, a
contradiction.
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Subcase (b): B = αE.Fα−1.Gβ−1. If the first letter of G is a direct
arrow, then B′ = αF−1.E−1α−1.Gβ−1 is a cycle, hence B′ is a power of B.
Since |B′| = |B|, we have B′ = B, hence EF = (EF )−1, a contradiction.
Thus the first letter of G is an inverse arrow. Since δα = 0, it must be γ−1.

Thus G = γ−1G′, hence B = αE.Fα−1.γ−1G′β−1. The first dot in B is
surrounded by either γ.δ−1 or δ.γ−1. Since γ−1 cannot occur in B twice, it
must be γ.δ−1.

Thus B = αE′γ.δ−1F ′α−1.γ−1G′β−1. Then

B′ = αE′γ.δ−1F ′α−1.βG′−1γ.δ−1F ′α−1.γ−1G′β−1

is a cycle beginning with α, hence B′ is a power of B. Comparing B′ and
B, we obtain β = γ−1, a contradiction.

Case 2: There is exactly one loop at S. Since α and β are the only
arrows ending at S, one of them must be a loop. By symmetry we may
assume that α is a loop, hence β is not a loop. Then there exists at most
one arrow γ 6= α starting at S.

•β

����
��

•α <<

γ ��9
99

9

•

We have B = αE.F.Gβ−1. Since β is not a loop, G is not empty. By
Fact 5.1, there are no additional occurrences of α and β−1 in B. Furthermore
(see Proposition 5.4), α−1 and β can occur in B at most once, and cannot
occur simultaneously.

Suppose first that |F | = 1, i.e. F is a loop. Then F = α−1, hence
B = αE.α−1.Gβ−1. It follows that β does not occur in B. If E starts with
an inverse arrow, then B′ = αE−1.α−1.Gβ−1 is a cycle. Comparing lengths
of B and B′ we obtain B′ = B. But this leads to E = E−1, a contradiction.
Otherwise the first letter of E is a direct arrow, i.e., β, a contradiction again.

Thus we may assume that |F | ≥ 2 in B = αE.F.Gβ−1. Now the first
and the last letters of F and the first letter of G surround S. We have only
three candidates to fill in this gap: γ, γ−1, and either α−1 or β (at most one
of those). Thus all three letters must occur once in these positions. Also E

should be empty, i.e., B = α.F.Gβ−1.
Since γ cannot occur to the right of a dot, the last letter of F must be γ:

B = α.F ′γ.Gβ−1. Then G cannot start with γ−1, hence γ−1 should be the
first letter of F ′. Thus B = α.γ−1F ′′γ.Gβ−1, where the first letter of G is ei-
ther β or α−1. If it is α−1, i.e., B = α.γ−1F ′′γ.α−1G′β−1, we obtain a contra-
diction (to the domesticity) by considering the cycle α.γ−1F ′′−1γ.α−1G′β−1.

Thus B = α.γ−1F ′′γ.βG′β−1. Then B′ = α.γ−1F ′′−1γ.α−1.βG′β−1 is a
cycle. By domesticity, B′ must be a power of B. Comparing B′ and B, we
derive F ′′ = F ′′−1, a contradiction (since F ′′ cannot be empty).
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Case 3: There are two loops at S. Then α and β must be loops, hence
α and β are the only arrows starting or ending at S. If B = αUβ−1, then
U is non-empty (otherwise there is just one internal occurrence of S). Since
β−1 cannot occur twice (and α cannot occur twice), the first letter of U

must be β: B = αβU ′β−1. Now U ′ is not empty, and the first letter of U ′

must be α−1. But then the total number of occurrences of α and β in B is
at least 4, a contradiction (to Proposition 5.4).

Now we are in a position to prove the main result of the paper.

Theorem 5.6. Let C be a primitive cycle of a domestic string algebra A.

Then no vertex occurs in C three times. Therefore the multiplicity of a simple

module as a composition factor in a composition series of a primitive band

module over A is at most 2.

Proof. Suppose that S occurs in C three times. If one of these occur-
rences is (up to a cyclic permutation of C) of the form β−1.α, then C is
c-equivalent to a band B = αEβ−1. Thus we may apply Proposition 5.5.

If one of the occurrences of S in C is of the form γ.δ−1, then C is
c-equivalent to a coband D = δ−1Fγ, hence we may apply a dual of Propo-
sition 5.5.

Otherwise S occurs in C (up to a cyclic permutation of C again) either
of the form γ.α or α−1.γ−1. Since α appears in C at most once, γ.α can
occur just once, and the same is true for α−1.γ−1. So using γ.α and α−1.γ−1

we can surround the only two occurrences of S.

Thus we need one more path δ.β or β−1.δ−1 to surround the third copy
of S. In particular, β 6= α ends at S.

Then C contains α or α−1, and β or β−1. By Proposition 5.3, C is
equivalent to a band B = αUβ−1. Now we can apply Proposition 5.5.

Corollary 5.7. Let C be a primitive cycle of a domestic string algebra.

Then |C| ≤ 2|Q0|.

Proof. By Theorem 5.6, each vertex S ∈ Q0 may occur in C at most
twice. Thus the length of C does not exceed twice the number of vertices.

Note that the estimate given by Corollary 5.7 is sharp. Indeed, let A be
the string algebra from Example 5.2. Then A is domestic, has two vertices,
and the length of the unique band B = αγα−1β−1 over A is 4.

One may wonder if it is possible to “dualize” Theorem 5.6 by proving
that three different bands of a domestic string algebra have no vertices in
common. The following example shows that this is not the case.
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Let A be the string algebra
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with the relations γβτ = hγβ = 0 and uτ = hu = δβ = γα = 0. It is
not difficult to check that A is 3-domestic with the following bands: C =
ατ−1β−1, D = hγδ−1 and E = uβ−1γ−1, which have vertex S in common.
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