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BIMINIMAL LEGENDRIAN SURFACES IN

5-DIMENSIONAL SASAKIAN SPACE FORMS

BY

TORU SASAHARA (Oita)

Abstract. We classify nonminimal biminimal Legendrian surfaces in 5-dimensional
Sasakian space forms.

1. Introduction. The study of Legendrian submanifolds in contact
manifolds from the Riemannian geometric point of view was initiated in
the 1970’s. In particular, the class of minimal Legendrian submanifolds is
one of the most interesting objects of study from both the geometric and
physical point of views. Needless to say, introducing classes which include
such submanifolds is important.

A natural extension of the class of minimal submanifolds is the class of
ones with parallel mean curvature vector. During the last three decades,
many interesting results on nonminimal submanifolds with parallel mean
curvature vector have been obtained by many geometers.

On the other hand, there exist no Legendrian submanifolds with parallel
mean curvature vector in Sasakian manifolds apart from the minimal ones
(see [11]). Thus, in case the ambient space is a Sasakian manifold, we need
to consider some other extensions of minimal Legendrian submanifolds. In
this paper, we consider an extension from a variational point of view.

In [7], Loubeau and Montaldo introduced the notion of biminimal sub-

manifolds, which are critical points of the bienergy functional with respect
to all normal variations. Minimal submanifolds are biminimal, but the con-
verse is not true in general. Recently, in [5] Inoguchi classified nongeodesic
biminimal Legendrian curves in 3-dimensional Sasakian space forms. As a
next step, it is natural and interesting to classify nonminimal biminimal
Legendrian surfaces in 5-dimensional Sasakian space forms. The main result
of this paper is the following:

Theorem 1. Let M2 be a nonminimal biminimal Legendrian surface in

a 5-dimensional Sasakian space form N5(ǫ) of constant φ-sectional curva-
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ture ǫ. Then ǫ ≥ (−11 + 32
√

2)/41 and for each point p ∈ M2 there exists

a local coordinate system {x, y} on a neighborhood of p such that the metric

tensor g and the second fundamental form h take the following forms:

(1) g = dx2 + dy2,

(2)

h(∂x, ∂x) =
ǫ − 1

α
φ∂x,

h(∂y, ∂y) =

(
α − ǫ − 1

α

)
φ∂x,

h(∂x, ∂y) =

(
α − ǫ − 1

α

)
φ∂y,

where ∂x = ∂/∂x, ∂y = ∂/∂y and

α =





√
13ǫ − 9 ±

√
41ǫ2 + 22ǫ − 47

8
(ǫ 6= 1),

1 (ǫ = 1).

Conversely , suppose that ǫ is a constant satisfying ǫ ≥ (−11 + 32
√

2)/41
and let g be the metric tensor on a simply connected domain V ⊂ R

2 defined

by (1). Then, up to rigid motions of N5(ǫ), there exists a unique Legendrian

immersion of (V, g) into N5(ǫ) whose second fundamental form is given

by (2). Moreover such an immersion is nonminimal and biminimal.

Corollary 2. Let f : M2 → S5(1) ⊂ C
3 be a nonminimal bimini-

mal Legendrian immersion into the unit 5-sphere. Then the position vector

f(x, y) of M2 in C
3 is given by

f(x, y) =
1√
2

(eix, ie−ixsin
√

2y, ie−ixcos
√

2y).(1.1)

2. Biminimal submanifolds. Let f : (M, g) → (N, g̃) be a smooth
map between two Riemannian manifolds. The bienergy E2(f) of f over a
compact domain Ω ⊂ M is defined by

(2.1) E2(f) =
\
Ω

g̃(τ(f), τ(f)) dvg,

where τ(f) is the tension field of f and dvg is the volume form of M (see [3]).

E2 provides a measure for the extent to which f fails to be harmonic. If
f is a critical point of (2.1) over every compact domain, then f is called a
biharmonic map (or 2-harmonic map). In [6], Jiang proved that f is bihar-
monic if and only if

(2.2) Jf (τ(f)) = 0,
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where the operator Jf is the Jacobi operator defined by

Jf (V ) := ∆fV −Rf (V ), V ∈ Γ (f∗TN),

∆f := −
m∑

i=1

(∇f
ei
∇f

ei
−∇f

∇ei
ei

),(2.3)

Rf (V ) :=
m∑

i=1

RN (V, df(ei))df(ei),

where ∇f is the connection induced by f and RN is the curvature tensor
of N . We call (2.2) the biharmonic equation.

If f is an isometric immersion, (2.2) can be rewritten as

(2.4) ∆fH = RfH,

where H is the mean curvature vector field.

Recently, Loubeau and Montaldo introduced the notion of biminimal
immersions.

Definition 3 ([7]). An isometric immersion f : (Mm, g) → (Nn, h)
is called biminimal if it is a critical point of the bienergy functional E2

with respect to all normal variations with compact support. Here, a normal

variation means a variation ft of f = f0 such that the variational vector
field V = dft/dt|t=0 is normal to M .

f is biminimal if and only if

(2.5) {∆fH}⊥ = {Rf (H)}⊥.

We call (2.5) the biminimal equation. Clearly, biharmonic submanifolds
are biminimal. There exist many nonbiharmonic biminimal submanifolds
(see [7]).

3. Legendrian submanifolds in Sasakian space forms. A (2n+1)-
dimensional differentiable manifold N2n+1 is called a contact manifold if
there exists a globally defined 1-form η such that η ∧ (dη)n 6= 0. On a
contact manifold there exists a unique global vector field ξ satisfying

(3.1) dη(ξ, X) = 0, η(ξ) = 1,

for all X ∈ TN2n+1.

Moreover it is well known that there exist a tensor field φ of type (1, 1)
and a Riemannian metric g which satisfy

φ2 = −I + η ⊗ ξ, g(φX, φY ) = g(X, Y ) − η(X)η(Y ),

g(ξ, X) = η(X), dη(X, Y ) = g(X, φY ),
(3.2)

for all X, Y ∈ TN2n+1 (see, for instance, [1]).
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The structure (φ, ξ, η, g) is called a contact metric structure and the
manifold N2n+1 with a contact metric structure is said to be a contact metric

manifold. A contact metric manifold is said to be a Sasakian manifold if it
satisfies [φ, φ] + 2dη ⊗ ξ = 0 on N2n+1, where [φ, φ] is the Nijenhuis torsion
of φ. On Sasakian manifolds, we have

(∇Xφ)Y = g(X, Y )ξ − η(Y )X,(3.3)

∇Xξ = −φX,(3.4)

for any vector fields X and Y , where ∇ is the Levi-Civita connection of
N2n+1. In some respects, Sasakian manifolds may be viewed as odd-dimen-
sional analogues of Kähler manifolds.

A tangent plane in TpN
2n+1 which is invariant under φ is called a

φ-section (see [1]). The sectional curvature of a φ-section is called the
φ-sectional curvature. If the φ-sectional curvature is constant on N2n+1,
then N2n+1 is said to be of constant φ-sectional curvature. Complete and
connected Sasakian manifolds of constant φ-sectional curvature are called
Sasakian space forms. Denote Sasakian space forms of constant φ-sectional
curvature ǫ by N2n+1(ǫ). The curvature tensor R of N2n+1(ǫ) is given by ([8])

R(X, Y )Z =
ǫ + 3

4
{g(Y, Z)X − g(Z, X)Y } +

ǫ − 1

4
{η(X)η(Z)Y(3.5)

− η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ

+ g(Z, φY )φX − g(Z, φX)φY + 2g(X, φY )φZ}.
Sasakian space forms were classified by Tanno (see [10]).

Let Mm be a submanifold in a contact manifold N2n+1. If η restricted
to Mm vanishes, then Mm is called an integral submanifold, in particular if
m = n, it is called a Legendrian submanifold.

Let f : Mm → N2n+1(ǫ) be an isometric immersion. Denote the Levi-
Civita connection of N2n+1(ǫ) (resp. Mm) by ∇ (resp. ∇). The formulas of
Gauss and Weingarten are given respectively by

∇XY = ∇XY + h(X, Y ),

∇XV = −AV X + DXV,
(3.6)

where X, Y ∈ TMm, V ∈ T⊥Mm, h, A and D are the second fundamental
form, the shape operator and the normal connection. The mean curvature
vector H is given by H = (1/m) traceh. Its length ‖H‖ is called the mean

curvature function of Mm. If H = 0 at any point of Mm, then Mm is called
minimal.

For Legendrian submanifolds in Sasakian space forms, we have

(3.7) AφY X = −φh(X, Y ) = AφXY, Aξ = 0

(see Lemmas 8.1 and 8.2 in [1]), and moreover a straightforward computation
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shows that the equations of Gauss, Codazzi and Ricci are equivalent to

〈R(X, Y )Z, W 〉 = 〈[AφZ , AφW ]X, Y 〉 + 〈R(X, Y )Z, W 〉,(3.8)

(∇Xh)(Y, Z) = (∇Y h)(X, Z),(3.9)

where ∇h is defined by (∇Xh)(Y, Z)=DXh(Y, Z)−h(∇XY, Z)−h(Y,∇XZ).

In [5], Inoguchi proved that nongeodesic biminimal Legendrian curves
in 3-dimensional Sasakian space forms N3(ǫ) are biharmonic, that is, Leg-
endrian helices of curvature

√
ǫ − 1 (cf. [4]). In the next section, we prove

that nonminimal biminimal Legendrian surfaces in 5-dimensional Sasakian
space forms N5(ǫ) are biharmonic as in the case of curves. In [9], the author
classified nonminimal biharmonic Legendrian surfaces in N5(ǫ). Applying
that result yields Theorem 1 and Corollary 2.

4. Proof of Theorem 1. Let f : M2 → N5(ǫ) be a biminimal Leg-
endrian surface. We assume that the mean curvature function is nowhere
zero. Let {ei} (i = 1, . . . , 5) be an orthonormal frame along M2 such that
e1, e2 are tangent to M2, φe1 = e3, φe2 = e4, ξ = e5 and H = (α/2)φe1,
with α > 0. It follows from (3.7) that 〈h(e1, e1), φe2〉 = 〈h(e1, e2), φe1〉 and
〈h(e2, e2), φe1〉 = 〈h(e1, e2), φe2〉. Therefore the second fundamental form
takes the form

h(e1, e1) = (α − c)φe1 + bφe2,

h(e1, e2) = bφe1 + cφe2,(4.1)

h(e2, e2) = cφe1 − bφe2,

for some functions b, c.

We put ωj
i (ek) = 〈∇ek

ei, ej〉. By using (3.3) and (4.1) we have

(∇e1
h)(e2, e2) = {e1c + 3bω2

1(e1)}φe1 − {e1b − 3cω2
1(e1)}φe2 + cξ,(4.2)

(∇e2
h)(e1, e2) = {e2b + (α − 3c)ω2

1(e2)}φe1(4.3)

+ {e2c + 3bω2
1(e2)}φe2 + cξ,

(∇e1
h)(e1, e2) = {e1b + (α − 3c)ω2

1(e1)}φe1(4.4)

+ {e1c + 3bω2
1(e1)}φe2 + bξ,

(∇e2
h)(e1, e1) = {e2(α − c) − 3bω2

1(e2)}φe1(4.5)

+ {e2b + (α − 3c)ω2
1(e2)}φe2 + bξ.

From (3.9) we get

e1c + 3bω2
1(e1) = e2b + (α − 3c)ω2

1(e2),(4.6)

−e1b + 3cω2
1(e1) = e2c + 3bω2

1(e2),(4.7)

e2(α − c) − 3bω2
1(e2) = e1b + (α − 3c)ω2

1(e1).(4.8)



302 T. SASAHARA

Combining (4.7) and (4.8) yields

(4.9) e2α = αω2
1(e1).

By the Gauss and Weingarten formulae we have Chen’s well-known for-
mula (see p. 273 in [2])

∆fH = tr(∇AH) + ∆DH + (trA2
φe1

)H + a(H),

where

tr(∇AH) =
2∑

i=1

(ADei
Hei + (∇ei

AH)ei),

a(H) =
5∑

r=4

(traceAHAer
)er,

∆D = −
2∑

i=1

(Dei
Dei

− D∇ei
ei

)

and {ei} is a local orthonormal frame of M2.

Also, by (3.5) we can easily get

Rf (H) =
5ǫ + 3

4
.

Thus by comparing the components of φe1, φe2 and ξ of the biminimal
equation (2.5), we obtain

(4.10) ∆α + α

(
1 − 5ǫ

4
+ (α − c)2 + c2 + 2b2

+(ω2
1(e1))

2 + (ω2
1(e2))

2

)
= 0,

(4.11) 2(e1α)ω2
1(e1) + 2(e2α)ω2

1(e2)

+α{e1(ω
2
1(e1)) + e2(ω

2
1(e2))} + α2b = 0,

(4.12) e1α + αω2
1(e2) = 0.

Using (4.9) and (4.12), we obtain

(4.13)

[
1

α
e1,

1

α
e2

]
= 0.

Consequently, there exist local coordinates x, y such that

(4.14) e1 = α∂x, e2 = α∂y.

It follows from (4.14) that the metric tensor is given by

(4.15) g =
1

α2
(dx2 + dy2).



BIMINIMAL LEGENDRIAN SURFACES 303

Thus we have

(4.16) ω2
1(e1) = αy, ω2

1(e2) = −αx,

where fx = ∂xf and fy = ∂yf .

By substituting (4.14) and (4.16) to (4.11), we get b = 0. Therefore it
follows from (4.6), (4.7) and (4.10) that

αcx = −(α − 3c)αx,(4.17)

3cαy = αcy,(4.18)

−ααyy − ααxx +
1 − 5ǫ

4
+ α2 + 2c2 − 2αc + (αx)2 + (αy)

2 = 0.(4.19)

On the other hand, (3.8) yields

αc−2c2+
ǫ + 3

4
= −(ω2

1(e1))
2−(ω2

1(e2))
2+e2(ω

2
1(e1))−e1(ω

2
1(e2))(4.20)

= −(αy)
2 − (αx)2 + ααyy + ααxx.

Combining (4.19) and (4.20), we obtain

(4.21) α2 − 3αc + 4c2 − 3ǫ + 1

2
= 0.

Differentiating (4.21), we have

(4.22) (2α − 3c)αi + (8c − 3α)ci = 0,

where i = x, y.

Rewriting (4.17), (4.18) and (4.22), we obtain

(
α − 3c α

2α − 3c 8c − 3α

)(
αx

cx

)
=

(
0

0

)
,(4.23)

(
3c −α

2α − 3c 8c − 3α

)(
αy

cy

)
=

(
0

0

)
.(4.24)

The determinants of the systems (4.23) and (4.24) are

−5(α − 2c)2 − 4c2,(4.25)

2(α − 3c)2 + 6c2,(4.26)

respectively. Since α 6= 0, from (4.23)–(4.26) we infer that α is constant.
Hence ω1

2 = 0 by (4.16) and we easily see that M2 satisfies the biharmonic
equation (2.4). Theorem 1 and Corollary 2 are obtained from the classifi-
cation results for nonminimal biharmonic Legendrian surfaces (see p. 300
in [9]).
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