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Abstract. Let M̃ be an (m+ r)-dimensional locally conformal Kähler (l.c.K.) mani-

fold and let M be an m-dimensional l.c.K. submanifold of M̃ (i.e., a complex submanifold

with the induced l.c.K. structure). Assume that both M̃ and M are pseudo-Bochner-flat.

We prove that if r < m, then M is totally geodesic (in the Hermitian sense) in M̃ . This
is the l.c.K. version of Iwatani’s result for Bochner-flat Kähler submanifolds.

1. Introduction. Let M̃ be an (m + r)-dimensional Kähler manifold

and let M be an m-dimensional Kähler submanifold of M̃ . If both mani-
folds are of constant holomorphic sectional curvature, then by Theorem 3

of O’Neill [6], M is totally geodesic in M̃ if r < m(m + 1)/2. Kon [4]
proved, under the weaker assumption that both manifolds are Bochner-flat,

that M is totally geodesic in M̃ if r < (m + 1)(m + 2)/(4m + 2). In the
case of r = 1, this is due to Yamaguchi–Sato [8] provided that m ≥ 6 (see
also [9]). On the other hand, by estimating the dimension of the nullity space
of normal curvature vectors at a point of M under the same assumption,

Iwatani [2] has proved that M is totally geodesic in M̃ if r < m. Since
m > (m+ 1)(m+ 2)/(4m+ 2) for m > 2, Iwatani’s result contains Kon’s.

In [5] the author introduced the notion of the pseudo-Bochner curvature
tensor on a Hermitian manifold which is constructed out of the curvature
tensor of the Hermitian (or Chern) connection and is conformally invariant.
In the Kähler case, this tensor coincides with the original Bochner curvature
tensor.

We wish to study Hermitian submanifolds making use of Hermitian con-
nections. In this paper, the ambient manifolds are assumed to be locally
conformally Kähler (l.c.K.) manifolds. Then their complex submanifolds in-
herit the l.c.K. structure. By an l.c.K. submanifold , we mean a complex
submanifold with the induced l.c.K. structure.
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Our purpose is to prove the following theorem corresponding to Iwatani’s
result mentioned above.

Theorem 1.1. Let M̃ be an (m + r)-dimensional l.c.K. manifold and

let M be an m-dimensional l.c.K. submanifold of M̃ . Assume that both M̃
and M are pseudo-Bochner-flat. Then {X ∈ TxM : σ(X,X) = 0} is a

J-invariant subspace of TxM . If the complex dimension of this subspace is

equal to ℓ, then r ≥ 1
2(m − ℓ)(m + ℓ + 1). Therefore, if r < m, then M is

totally geodesic (in the Hermitian sense) in M̃ .

Corollary 1.1. Every pseudo-Bochner-flat l.c.K. hypersurface of a

pseudo-Bochner-flat l.c.K. manifold is totally geodesic (in the Hermitian

sense).

Throughout this paper, we work in the C∞-category and deal with con-
nected complex manifolds of (complex) dimension ≥ 2 without boundary
only.

Acknowledgements. The author would like to thank Professor Iwa-
tani and the referee for their kind advice and useful comments.

2. Preliminaries. Let M be a Hermitian manifold with complex struc-
ture J and compatible Riemannian metric g. The algebra of all C∞ vector
fields on M will be denoted by XM . The Kähler form Ω on M is defined
by Ω(X,Y ) = g(X, JY ) for all X,Y ∈ XM . The Hermitian connection (or
Chern connection) of M is a unique affine connection D on M such that
DJ = 0, Dg = 0, and the torsion tensor T satisfies T (JX, Y ) = JT (X,Y )
for all X,Y ∈ XM . The Hermitian connection D and the Levi-Civita con-
nection ∇ are related by

g(DXY, Z) = g(∇XY, Z) + 3
2dΩ(JX, Y, Z)(2.1)

for all X,Y, Z ∈ XM . Let H be the Hermitian curvature tensor (the curva-
ture tensor of the Hermitian connection D) on M , i.e.,

H(X,Y ) = [DX , DY ] −D[X,Y ]

for all X,Y ∈ XM . Then H has the following properties.

Proposition 2.1 (cf. [5]). For all X,Y, Z,W ∈ XM ,

H(X,Y, Z,W ) = −H(Y,X,Z,W ) = −H(X,Y,W,Z),

H(JX, JY, Z,W ) = H(X,Y, JZ, JW ) = H(X,Y, Z,W ),

S{H(X,Y )Z − T (T (X,Y ), Z) − (DXT )(Y, Z)} = 0,

where H(X,Y, Z,W ) = g(H(Z,W )Y,X), and S denotes the cyclic sum with

respect to X,Y, Z.
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For each unit vector X in TxM , the Hermitian holomorphic sectional

curvature H(X) for the holomorphic plane spanned by X and JX is given
by

H(X) = H(X, JX,X, JX).

In [5] we introduced a unique tensor P , called the Hermitian pseudo-

curvature tensor , on M defined by

P (X,Y, Z,W ) = 1
8{H(X,Z, Y,W ) −H(X,W, Y, Z)

+H(Y,W,X,Z) −H(Y, Z,X,W )

+H(X, JZ, Y, JW ) −H(X, JW, Y, JZ)

+H(Y, JW,X, JZ) −H(Y, JZ,X, JW )

+ 2H(X,Y, Z,W ) + 2H(Z,W,X, Y )}

forX,Y, Z,W ∈ XM . The tensor P has the same symmetries as the Rieman-
nian curvature tensor on a Kähler manifold, and we proved the following.

Theorem 2.1 (cf. [5]). A Hermitian manifold M is of pointwise constant

Hermitian holomorphic sectional curvature k if and only if P = k
8 g △ g.

Here, for any two tensors a, b of type (0, 2), a △ b is defined by

a △ b = a©∧ b+ a©∧ b+ 2a⊗ b+ 2b⊗ a,

where a©∧ b denotes the tensor of type (0, 4) given by

(a©∧ sb)(X,Y, Z,W ) = a(X,Z)b(Y,W ) − a(X,W )b(Y, Z)

+ a(Y,W )b(X,Z) − a(Y, Z)b(X,W ),

and a(X,Y ) = a(X, JY ) for X,Y ∈ XM .
Moreover in [5] we introduced a tensor BH , called the pseudo-Bochner

curvature tensor , on M defined by

BH = P −
1

2(m+ 2)
g △ P1 +

p

8(m+ 1)(m+ 2)
g △ g,(2.2)

where P1(X,Y ) = 1
2 tr[Z → P (X, JY )JZ], p = trP1, and m = dimCM .

The tensor BH is conformally invariant, and coincides with the original
Bochner curvature tensor in the case where M is a Kähler manifold.

Finally, we recall the notion of an l.c.K. manifold. A Hermitian manifold
M is said to be locally conformal Kähler (briefly, l.c.K.) if there is a closed
1-form ω on M , called the Lee form, such that dΩ = ω ∧ Ω (cf. [7]). In
particular, if ω is exact, then M is said to be globally conformal Kähler

(briefly, g.c.K.). If dimCM = m ≥ 3, the closedness of ω follows from the
condition dΩ = ω ∧Ω. From (2.1), we can easily prove the following.

Lemma 2.1.

dΩ = ω ∧Ω ⇔ 2T (X,Y ) = ω(X)Y − ω(Y )X − ω(JX)JY + ω(JY )JX.
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We shall give a typical example of a pseudo-Bochner-flat l.c.K. manifold.

Example 2.1. Let α be any non-zero complex number with |α| 6= 1, and
let Gα be the cyclic group generated by the transformation (z1, . . . , zm) 7→
(αz1, . . . , αzm) of C

m −{0}. Then Gα acts freely on C
m −{0} as a properly

discontinuous group of complex analytic transformations. Thus the quotient
space Hm

α = (Cm − {0})/Gα has the structure of a complex manifold. This
manifold Hm

α is called the Hopf manifold . As is well known (cf. [3]), Hm
α is

diffeomorphic to the product S1×S2m−1 of odd-dimensional spheres. In par-
ticularHm

α is compact, and does not admit any Kähler metric. On C
m − {0},

we consider a Hermitian metric

ds2 =
2

‖z‖2

m∑

i=1

dzidz̄i,

where ‖z‖2 =
∑m

i=1 z
iz̄i. Since this metric is invariant under the action

of Gα, it induces a Hermitian metric, called the Boothby metric, on Hm
α

(cf. [1]). The Hopf manifold Hm
α with the Boothby metric is an l.c.K. man-

ifold whose local Kähler metrics are flat. On such a manifold, the pseudo-
Bochner curvature tensor vanishes everywhere.

3. L.c.K. submanifolds. Let ψ : M → M̃ be a holomorphic immersion

of a complex manifold (M,J) into an l.c.K. manifold (M̃, J̃ , g̃). Then the

Riemannian metric g = ψ∗g̃ induced on M is Hermitian. Let Ω̃ and ω̃ be
the Kähler and Lee forms on M̃ respectively. Then dΩ̃ = ω̃ ∧ Ω̃. Putting
Ω = ψ∗Ω̃ and ω = ψ∗ω, it is easy to see that Ω is the Kähler form associated
with g and satisfies dΩ = ω∧Ω. Hence (M,J, g) is an l.c.K. manifold. For all
local formulas we may consider ψ as an imbedding and thus identify x ∈M
with ψ(x) ∈ M̃ . The tangent space TxM is identified with a subspace of the

tangent space TxM̃ . The normal space T⊥
x M is the orthogonal complement

of TxM in TxM̃ with respect to g̃. The tangent bundle of M̃ , restricted toM ,
is the Whitney sum of the tangent bundle TM and the normal bundle T⊥M ;

TM̃ |M = TM ⊕ T⊥M.(3.1)

We denote by D̃ the Hermitian connection of M̃ with respect to g̃. Let
X and Y be any vector fields on M , and ξ any normal vector field on M .
From (3.1) we may then decompose D̃XY and D̃Xξ respectively as follows:

D̃XY = DXY + σ(X,Y ),(3.2)

D̃Xξ = −AξX +D⊥
Xξ,(3.3)

where DXY (resp. −AξX) and σ(X,Y ) (resp. D⊥
Xξ) are the tangential and

normal components respectively of D̃XY (resp. D̃Xξ). We will call (3.2)
(resp. (3.3)) the G-formula (resp. W-formula).
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Proposition 3.1. D defines the Hermitian connection of M with re-

spect to the induced Hermitian metric g = ψ∗g̃.

Proof. Let λ, µ be differentiable functions on M . Then

D̃λX(µY ) = λ{(Xµ)Y + µD̃XY }(3.4)

= {λ(Xµ)Y + λµDXY } + λµσ(X,Y ).

Taking the tangential components of both sides, we find

DλX(µY ) = λ(Xµ)Y + λµDXY.

This equation shows that D is an affine connection of M since additivity
is trivial. To show that D is the Hermitian connection with respect to the
induced Hermitian metric g on M , it is sufficient to show:

(1) Dg = 0,
(2) DJ = 0,
(3) the torsion tensor T of D satisfies T (JX, Y ) = JT (X,Y ) for all

X,Y ∈ XM .

In order to prove (1), we start from D̃g̃ = 0, which implies

Xg̃(Y, Z) = g̃(D̃XY, Z) + g̃(Y, D̃XZ) for all X,Y, Z ∈ XM.

We have, however,

g̃(D̃XY, Z) = g̃(DXY + σ(X,Y ), Z) = g(DXY, Z),

because σ(X,Y ) is normal to M . Similarly,

g̃(Y, D̃XZ) = g(Y,DXZ).

Thus we find
Xg(Y, Z) = g(DXY, Z) + g(Y,DXZ),

which means Dg = 0.

To prove (2), we start from D̃J̃ = 0. This implies

D̃X J̃Y = J̃D̃XY on M.(3.5)

Since J̃ leaves the decomposition (3.1) invariant, we find, taking the tan-
gential components of both sides,

DXJY = JDXY,

which means DJ = 0.

To prove (3), let T̃ be the torsion tensor of D̃. If we extend X and Y to

vector fields X̃ and Ỹ on M̃ (as we may do locally), then the restriction of

[X̃, Ỹ ] to M is tangent to M and coincides with [X,Y ]. Of course, we also
have

D̃
X̃
Ỹ = D̃XY and D̃

Ỹ
X̃ = D̃YX on M.
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Thus we obtain

T̃ (X,Y ) = D̃XY − D̃YX − [X,Y ](3.6)

= DXY + σ(X,Y ) −DYX − σ(Y,X) − [X,Y ]

= T (X,Y ) + σ(X,Y ) − σ(Y,X).

From this equation, we get

0 = T̃ (JX, Y ) − J̃ T̃ (X,Y )(3.7)

= T (JX, Y ) − JT (X,Y )

+ σ(JX, Y ) − σ(Y, JX) − J̃σ(X,Y ) + J̃σ(Y,X).

Taking the tangential components of both sides, we get

T (JX, Y ) = JT (X,Y ).

Proposition 3.2. σ(X,Y ) is bilinear in X and Y .

Proof. Taking the normal components of both sides of (3.4), we get
σ(λX, µY ) = λµσ(X,Y ). This shows that σ is bilinear in X and Y since
additivity is trivial.

Lemma 3.1. σ(JX, Y ) = σ(X, JY ) = J̃σ(X,Y ).

Proof. Taking the normal components of both sides of (3.5) and (3.7),

we get σ(X, JY ) = J̃σ(X,Y ) and σ(JX, Y ) = J̃σ(X,Y ).

The following is an immediate consequence of Lemma 3.1.

Lemma 3.2. trσ = 0.

This lemma corresponds to the well known fact that every Kähler sub-
manifold is minimal. We call σ the Hermitian second fundamental form of
the l.c.K. submanifold M .

Proposition 3.3. σ is symmetric.

Proof. From (3.6), a necessary and sufficient condition for σ to be sym-

metric is that the restriction of the torsion tensor T̃ to M is tangent to M .
Since M̃ is l.c.K., Lemma 2.1 shows that T̃ satisfies

2T̃ (X,Y ) = ω̃(X)Y − ω̃(Y )X − ω̃(JX)JY + ω̃(JY )JX

for all X,Y ∈ XM . Hence T̃ (X,Y ) is tangent to M , that is, the Hermitian
second fundamental form σ of M is symmetric.

For general affine connections, totally geodesic submanifolds are defined
as follows:

Definition 3.1. A submanifold N of a manifold Ñ is totally geodesic if
geodesics of N are carried into geodesics of Ñ by the immersion.

In our l.c.K. case, we have the following.
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Proposition 3.4. An l.c.K. submanifold M of an l.c.K. manifold M̃
is totally geodesic if and only if σ = 0 identically.

Proof. Assume that the Hermitian second fundamental form σ of M in
M̃ vanishes identically. Then, for all X ∈ XM , we have

D̃XX = DXX.(3.8)

If xt is a geodesic in M , then Dẋt
ẋt ≡ 0, where ẋt is the velocity vector

field of the curve xt. Thus D̃ẋt
ẋt ≡ 0 by (3.8). This shows that xt is also a

geodesic in M̃ . Hence, M is totally geodesic in M̃ .
Conversely, assume that M is totally geodesic in M̃ . Let Xx ∈ TxM be

any unit vector at x ∈ M . Choose a geodesic xt in M such that x0 = x
and ẋ0 = Xx. Then Dẋt

ẋt = D̃ẋt
ẋt = 0. Thus σ(Xx, Xx) = 0. Since σ is

symmetric and bilinear, we conclude that σ = 0 at x.

4. Fundamental equations. Let M be an l.c.K. submanifold of an

l.c.K. manifold M̃ . Let H̃ be the curvature tensor of the Hermitian connec-
tion D̃ of M̃ . Then, for all X,Y, Z ∈ XM , we have

H̃(X,Y )Z = D̃XD̃Y Z − D̃Y D̃XZ − D̃[X,Y ]Z.

Thus, by using the G-formula (3.2) and W-formula (3.3), we obtain

H̃(X,Y )Z = H(X,Y )Z −Aσ(Y,Z)X +Aσ(X,Z)Y

+ σ(X,DY Z) − σ(Y,DXZ) − σ([X,Y ], Z)

+D⊥
Xσ(Y, Z) −D⊥

Y σ(X,Z),

where H is the curvature tensor of the Hermitian connectionD of M . Hence,
for all X,Y, Z,W ∈ XM , we have

H(X,Y, Z,W ) = H̃(X,Y, Z,W )(4.1)

+ g̃(σ(X,Z), σ(Y,W ))− g̃(σ(X,W ), σ(Y, Z)).

Equation (4.1) will be called the G-equation. The following is immediate
from Lemma 3.1 and the G-equation (4.1).

Theorem 4.1. Let M be an l.c.K. submanifold of an l.c.K. manifold M̃ .

Then, for all X ∈ XM ,

H(X, JX,X, JX) = H̃(X, JX,X, JX) − 2g̃(σ(X,X), σ(X,X)).

We see from Theorem 4.1 that the Hermitian holomorphic sectional cur-

vature of M does not exceed that of the ambient space M̃ . In particular, we
have

Theorem 4.2. Let M̃ be an l.c.K. manifold with non-positive Hermitian

holomorphic sectional curvature. Then every l.c.K. submanifold M of M̃
also has non-positive Hermitian holomorphic sectional curvature.
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Between the Hermitian pseudo-curvature tensors P and P̃ , there is a
relation similar to the G-equation (4.1):

P (X,Y, Z,W ) = P̃ (X,Y, Z,W )(4.2)

+ g̃(σ(X,Z), σ(Y,W ))− g̃(σ(X,W ), σ(Y, Z)).

Equation (4.2) will be called the PG-equation.

Remark 4.1. In our l.c.K. case, there also exist equations corresponding
to the Codazzi or Ricci equation. But we do not deal with those equations
in this paper.

5. Proof of Theorem 1.1. LetM be anm-dimensional l.c.K. submani-
fold of an (m+r)-dimensional l.c.K. manifold M̃ . From (4.2) and Lemma 3.1,
we have

P (X,Y,X, Y ) = P̃ (X,Y,X, Y )(5.1)

+ g̃(σ(X,X), σ(Y, Y )) − ‖σ(X,Y )‖2,

P (X, JY,X, JY ) = P̃ (X, JY,X, JY )(5.2)

− g̃(σ(X,X), σ(Y, Y )) − ‖σ(X,Y )‖2

for all X,Y ∈ TxM . Assume that both M and M̃ are pseudo-Bochner-flat.
Then by (2.2) we easily get

P (X,Y,X, Y ) = P (X, JY,X, JY ),(5.3)

P̃ (X,Y,X, Y ) = P̃ (X, JY,X, JY )(5.4)

for any orthonormal vectors X,Y ∈ TxM with g(X, JY ) = 0. Using
(5.1)–(5.4), we obtain

g̃(σ(X,X), σ(Y, Y )) = 0(5.5)

for orthonormal vectors X,Y ∈ TxM with g(X, JY ) = 0. Replacing X and
Y in (5.5) by 1√

2
(X + Y ) and 1√

2
(X − Y ) respectively, we get

4‖σ(X,Y )‖2 = ‖σ(X,X)‖2 + ‖σ(Y, Y )‖2.(5.6)

Since σ is symmetric and bilinear, (5.5) also means

g̃(σ(X,X), σ(Y, Z)) = 0,(5.7)

g̃(σ(X,Y ), σ(Z,W )) = 0(5.8)

for orthonormal vectors X,Y, Z,W, JX, JY, JZ, JW ∈ TxM .
Now we define the function f1 : Sx(1) → R on the unit sphere Sx(1)

of TxM by

f1(X) = ‖σ(X,X)‖2

and choose an orthonormal frame {E1, . . . , Em, JE1, . . . , JEm} such that
Ei is the point at which f1 restricted to Sx(1) ∩ {E1, . . . , Ei−1, JE1,
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. . . , JEi−1}
⊥ attains its maximum, provided that E0 is the zero-vector.

Thus, by the choice of the frame, the function F (θ) = f1(cos θ Ei +sin θ Ej)
for i < j satisfies F ′(0) = 0, so that

g̃(σ(Ei, Ei), σ(Ei, Ej)) = 0 for i < j.(5.9)

For orthonormal vectors {Ei, Ej , X, JEi, JEj , JX} (i < j) we consider the
function f2 : R → R defined by

f2(θ) = 4‖σ(X, cos θ Ei + sin θ Ej)‖
2.

Then by (5.6) we get

f2(θ) = ‖σ(X,X)‖2 + F (θ).

Since f ′2(0) = F ′(0) = 0, we obtain

g̃(σ(X,Ei), σ(X,Ej)) = 0.(5.10)

On the other hand, since the Hermitian pseudo-curvature tensor P has
the Riemannian curvature symmetries, for orthonormal vectors {Ei, Ej}
(i < j), we have

P (cos θ Ei +sin θ Ej , sin θ Ei − cos θ Ej , cos θ Ei +sin θ Ej , sin θ Ei − cos θ Ej)

= cos4 θ P (Ei, Ej , Ei, Ej) − cos2 θ sin2 θ P (Ei, Ej , Ej , Ei)

− sin2 θ cos2 θ P (Ej , Ei, Ei, Ej) + sin4 θ P (Ej , Ei, Ej , Ei)

= (cos2 θ + sin2 θ)2P (Ei, Ej , Ei, Ej) = P (Ei, Ej , Ei, Ej).

Similarly, we have

P̃ (cos θ Ei +sin θ Ej , sin θ Ei − cos θ Ej , cos θ Ei +sin θ Ej , sin θ Ei − cos θ Ej)

= P̃ (Ei, Ej , Ei, Ej).

Thus, by (5.1) and (5.5), we get

‖σ(cos θ Ei + sin θ Ej , sin θ Ei − cos θ Ej)‖
2 = ‖σ(Ei, Ej)‖

2.

We define the function f3 : R → R by the left hand side of the above
equation. Then f3 is a constant function, so that f ′3(0) = 0. Therefore

g̃(σ(Ei, Ej), σ(Ej, Ej)) = 0.(5.11)

Hence, by (5.5) and (5.7)–(5.11), we see that the m(m+ 1) normal vectors

σ(E1, E1), σ(E1, JE1), σ(E1, E2), σ(E1, JE2), . . . , σ(E1, Em), σ(E1, JEm),

σ(E2, E2), σ(E2, JE2), . . . , σ(E2, Em), σ(E2, JEm),

. . .
...

...

σ(Em, Em), σ(Em, JEm)

are mutually orthogonal.
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Assume that the complex dimension of {X ∈ TxM : σ(X,X) = 0}
is equal to ℓ. Then, by the choice of the frame, we see that this space
is spanned by {Em−ℓ+1, . . . , Em, JEm−ℓ+1, . . . , JEm}, that is, σ(Ei, Ei) 6= 0
for i ≤ m−ℓ and σ(Ei, Ei) = 0 for i > m−ℓ. Moreover, by (5.6), we also see
that σ(Ei, Ej) 6= 0 for i ≤ m−ℓ and any j. Hence we obtain (m−ℓ)(m+ℓ+1)
linearly independent normal vectors, i.e., r ≥ 1

2(m−ℓ)(m+ℓ+1). This means
that if r < m, then ℓ > m− 1. Thus, since ℓ ≤ m, we conclude that ℓ = m,
i.e., σ = 0 at x ∈M . This completes the proof of the theorem.

Remark 5.1. Let ι : C
m → C

m+r be the natural injection, i.e.,
(z1, . . . , zm) 7→ (z1, . . . , zm, 0, . . . , 0). It induces a holomorphic imbedding
ψ : Hm

α → Hm+r
α . Moreover the metric on Hm

α induced by the Boothby
metric of Hm+r coincides with the Boothby metric of Hm

α . By Theorem 1.1,
Hm

α is a totally geodesic submanifold (in the Hermitian sense) of Hm+r
α if

r < m. On the other hand, it is known (cf. [1]) that Hm
α is a totally umbilical

submanifold (in the usual Riemannian sense) of Hm+r
α . Indeed, on an l.c.K.

submanifold M of M̃ , by (2.1) we have

D̃XY = ∇̃XY − 1
2ω(X)Y − 1

2ω(JX)JY + 1
2g(X,Y )B̃,

DXY = ∇XY − 1
2ω(X)Y − 1

2ω(JX)JY + 1
2g(X,Y )B

for all X,Y ∈ XM , where B̃ = ω̃# and B = ω# are the Lee vector fields of
M̃ and M , respectively. From these equations, we get

σ(X,Y ) = h(X,Y ) + 1
2g(X,Y )B̃⊥,

where h denotes the (Riemannian) second fundamental form and B̃⊥ the

normal component of B̃, i.e., B̃⊥ = B̃ −B. Therefore σ = 0 means that for
any normal vector field ξ on M , we have

g(A∇
ξ (X), Y ) = g̃(h(X,Y ), ξ) = −1

2 ω̃(ξ)g(X,Y ),

that is, M is totally umbilical in M̃ .
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