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THE DETERMINANT OF ORIENTED ROTANTSBYADAM H. PIWOCKI (Warszawa)Abstrat. We study the determinant of pairs of rotants of Anstee, Przytyki andRolfsen. We onsider various notions of rotant orientations.0. Introdution. We reall the de�nition of generalized mutation asgiven in [APR℄. Let D be a diagram of an unoriented link. Assume thatthe boundary of a regular n-gon intersets D transversally in suh a waythat the interior of eah fae of the n-gon ontains exatly two points of D.Denote by R the part of D loated inside the n-gon. If R has n-fold rotationalsymmetry, then it is alled a rotor of order n, or brie�y an n-rotor, whilethe omplement S of R in D is alled a stator. A new diagram D′ may beonstruted in the following manner: we ut out R, �ip it over (π-rotate in3-spae about an axis of symmetry of the n-gon) and glue it bak to S. Thisonstrution does not depend on the hoie of the symmetry axis. Denote the�ipped rotor by R′. If links L and L′ have diagrams D and D′ respetively,then we say L and L′ are a pair of rotants, or that one is a rotant of theother.

Aknowledgements. This paper is based on my Master thesis, writtenat Warsaw University in 2003. I would like to thank my advisor, PaweªTrazyk, for his help and guidane.2000 Mathematis Subjet Classi�ation: Primary 57M27.Key words and phrases: determinant, rotant, rotor, Kau�man braket, Jones polyno-mial, Conway polynomial. [183℄ © Instytut Matematyzny PAN, 2007



184 A. H. PIWOCKI
1. Orientation. We will onsider various versions of orientations of pairsof rotants. Any orientation of a rotant diagram involves an orientation ofthe stator and an orientation of the rotor. Of ourse the two orientationsshould math on the boundary. In our onsiderations we will always keepthe orientation of the stator �xed, while (possibly) hanging the orientationof the �ipped rotor.We will say a rotor is regularly oriented if inputs and outputs appearalternately along the boundary as in Figure 1.1. This is alled an orientation-preserving rotor in [DIPY℄.

Fig. 1.1 Fig. 1.2When R is �ipped to obtain R′ the orientations on the boundary do notmath the (unhanged) orientation of the stator (Figure 1.2). To obtain anoriented diagram we reverse all orientations in R′. A pair of links obtainedin this way are alled regularly oriented rotants. These are known to haveoiniding Conway polynomials (∇) for any order n of rotation ([Tr℄). Re-strited versions of the above are true for the Jones (n ≤ 5), Hom�y (n ≤ 4)and Kau�man (n ≤ 3) polynomials ([APR℄, [JR℄).In this paper we will onsider determinants (∇(−2i)) of pairs of rotants.Obviously the determinants oinide for regularly oriented rotants (beausetheir Conway polynomials oinide). We will study to what extent this prop-erty is preserved when the orientation requirement is relaxed in various ways.In this setion we will look at other possible orientations of rotant pairs. InSetion 2 we �rst show how to de�ne the determinant of a link by an eval-uation of either the Conway polynomial or the Jones polynomial. We thenintrodue the Kau�man braket of an unoriented link and prove that pairsof rotants have the same Kau�man braket evaluation at a ertain point d.In Setion 3 we apply our results to rotors whih do not ontain losed om-ponents. Setion 4 deals with more ompliated rotors. The Appendix givesan example of a pair of nonregularly oriented rotants with di�erent Conwaypolynomials.A biregular orientation of a pair of rotants of even order is any orientationof the rotor suh that the inputs and outputs are grouped in pairs as inFigure 1.3. This rotor is alled orientation-reversing in [DIPY℄. To obtain
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Fig. 1.3 Fig. 1.4an orientation of the modi�ed diagram we either hange all orientations in
R′ or none of them. This depends on the hoie of the rotation axis. It willbe shown that the determinants of a pair of biregularly oriented rotants dooinide. On the other hand, it is known that their Conway polynomials maydi�er ([DIPY℄).This may be further generalized by allowing any orientation of the initialdiagram. It leads to a pair of nonregularly oriented rotors (Figure 1.4). Here,the rules for hanging or preserving the orientations are more ompliated.When R is �ipped, the orientation of an ar in R′ may or may not agree withthe orientation of the stator. We simply hoose the orientation for every arin R′ to math the orientation of S. We will show later that it is alwayspossible.It should be stressed that the orientation of the rotor part of the diagramis not always determined by the orientation on the boundary. This is beausea rotor may ontain losed omponents of the relevant link. However, if thisis not the ase, then for any given orientation of the original diagram D wean onsider the boundary indued orientation on its rotant D′ as desribedabove. We will show that in suh a ase the determinants do oinide.We will disuss ases involving omponents ontained in the rotor later.2. Kau�man braket. To prove the results desribed above we willuse both the Conway polynomial and the Jones polynomial. In [APR℄, skeintheoreti methods were used to prove the results onerning the Kau�man,Hom�y and Jones polynomials for rotants. In [Tr℄, it was the linear alge-brai approah to the Conway polynomial that solved the problem for anyorder of rotation. Here, we will ombine the result onerning the Conwaypolynomial with skein theoreti methods to get the result for the determi-nant. This is possible beause the determinant an be obtained by suitablesubstitutions from both the Conway and the Jones polynomial (see (2.6.1)and (2.6.2)).
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We begin by desribing the Kau�man braket of an unoriented link dia-gram, 〈L〉 ∈ Z[A±1], alulated aording to the reursions:

〈 〉 = A〈≍〉 + A−1〈
)(

〉,(2.1)

〈©〉 = 1,(2.2)

〈© ⊔ L〉 = (−A2 − A−2)〈L〉.(2.3)Let us all rossings of type positive, while those of type negative.The writhe of an oriented link L, w(L), is de�ned as the number ofpositive rossings in a diagram of L minus the number of negative rossings.If the diagram of a link L is oriented, then
(2.4) fL(A) = (−A)−3w(L)〈L〉(A)is an invariant of oriented links. We obtain the Jones polynomial of L bysubstitution
(2.5) VL(t) = fL(t−1/4).The determinant of an oriented link L is a ertain evaluation of the link'sConway polynomial or Jones polynomial:(2.6.1) DL = ∇L(−2i),(2.6.2) DL = VL(−1) (more preisely √

t = −i).Other de�nitions inlude:(2.6.3) DL = ∆(−1), where ∆ is the Alexander polynomial,(2.6.4) determinant of the symmetrized Seifert form,(2.6.5) rank of the �rst homology of the double branhed over,(2.6.6) determinant of the Goeritz matrix.(Note: In [BZ℄ the determinant is de�ned as the absolute value of (2.6.3)�(2.6.6), but in this paper we will need only (2.6.1) and (2.6.2).) From (2.5)and (2.6.2) we get
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.From (2.4) and (2.7) we obtain
(2.8) DL = (−d)−3w(L)〈L〉(d).As an be seen from (2.8) we an study the determinat DL by onsideringthe exponent −3w(L) and the evaluation 〈L〉(d) of the braket polynomialat d quite separately. In this setion we will study 〈L〉(d). Our aim is toprove the following theorem.Theorem 2.9. If L, L′ are a pair of unoriented rotants, then
(2.10) 〈L〉(d) = 〈L′〉(d), where d = ±

√
i.
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Sine the braket polynomial is de�ned for unoriented link diagrams, wemay temporarily forget the orientation.To alulate 〈L〉(d) we will use the substitution A = d in (2.1)�(2.3).This implies that the right side of (2.3) is 0, sine −d2 − d−2 = −i − i−1 =
−i + i = 0.Using these new reursions we open all the rossings in the stator partof the diagram, leaving the rotor R intat. We obtain trivial stators�oneswith no rossings or losed omponents, whih we denote g1, . . . , gk. We let
Ri = R ∪ gi. Then we have
(2.11) 〈L〉(d) =

∑

i

fi(d)〈Ri〉(d),for ertain fi ∈ Z[A±1]. If we do the same for L′, we get
(2.12) 〈L′〉(d) =

∑

i

fi(d)〈R′

i〉(d),where R′
i = R′∪gi. The oe�ients fi are idential in both (2.11) and (2.12),sine L and L′ have the same stators.To prove Theorem 2.9 it is su�ient to prove that 〈Ri〉(d) = 〈R′

i〉(d).We will obtain this diretly from Trazyk's theorem [Tr℄ about the Conwaypolynomial of oriented rotants. In order to do this we will now onsider Riendowed with regular orientation.Lemma 2.13. Trivial (rossing-free) stators may be given a regular bound-ary orientation.Proof. Suppose the diagram has regular orientation and number theboundary points onseutively. The numbers of all inputs are obviously ofthe same parity, and similarly for the outputs. Now, onsider a stator di-agram with no rossings. It onsists of several ars, and it is obvious thatall of them onnet even points to odd points (otherwise an odd number ofinputs/outputs would be trapped in a single area).Using the rotor's n-fold rotational symmetry it an be shown that:Lemma 2.14. The rotor R an be given a regular boundary orientation.The above two lemmas imply that any pair of rotants with trivial statorsmay be viewed as a regularly oriented pair. In partiular we an onsider
Ri and R′

i to be a pair of regularly oriented rotants. By Trazyk's theoremthey have the same Conway polynomial and (more spei�ally) the samedeterminant
(2.15) DRi

= ∇Ri
(−2i) = ∇R′

i
(−2i) = DR′

i
.This ompletes the proof of Theorem 2.9 beause regularly oriented pairsof rotors have the same writhe and beause (2.8) holds.
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3. Determinant. Throughout this setion we will assume that the ro-tors have no losed omponents. We shall prove the following theorem.Theorem 3.1. If L, L′ are a pair of nonregularly oriented rotants andtheir rotors have no losed omponents , then DL = DL′.The determinant of a link L an be alulated from (2.8). In the previoussetion we showed that rotant pairs with no orientation have the same Kau�-man braket evaluation (2.10). Now we will look at the oe�ient (−d)−3w(L)in (2.8). For this we will need our links' orientation again.Sine a rotant L is the union R∪S of the rotor and stator, both of whihhave disjoint sets of rossings, the writhe may be written as the sum

(3.2) w(L) = w(R ∪ S) = w(R) + w(S).Of ourse w(S) is the same for both L and L′ = R′ ∪ S, so we need onlyinvestigate w(R) and w(R′).It is easy to see that if there is an ar in R onneting two points, say
p and q, then there is also an ar onneting their images p′ and q′ under�ipping. Of ourse, the same is true for R′. So we have two ars whih tradeends in the transition R ↔ R′, unless p = q′ (and so q = p′), in whih asethere is one ar. The former pair of ars will be alled symmetri partnersor m-ars (m for moving), while the latter ar is alled an s-ar (for stable).
Example. Figure 3.1 shows three ars in a 6-rotor. The respetive endsof the ars p1q1 and p2q2 are symmetri, so they are m-ars. The ar r1r2 isan s-ar.

Fig. 3.1It an be shown that:Lemma 3.4. (i) If n is odd , then the rotor has exatly one s-ar.(ii) If n is even, then the rotor either has two s-ars, or none at all.Generally, an m-ar keeps or hanges its orientation in R′ i� the same istrue for the orientation of the ar's symmetri partner, so the orientations ofm-ars are hanged in pairs. S-ars always have their orientation hanged.
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Now we return to the writhe. In the rotor we will look at six types of arrossings:(1) two s-ars,(2) two m-ars whih do not hange orientation,(3) two m-ars whih both hange orientation,(4) an s-ar and an m-ar whih hanges orientation,(5) two m-ars, only one of whih hanges orientation,(6) an s-ar and an m-ar whih does not hange orientation.Sine s-ars always hange their orientation, rossings of type (1)�(4) havethe same signs in both links of a rotant pair, and so do not hange thewrithe. In ase (5) the sum of the signs of the rossings involved does hange.However, this hange is obviously ompensated by the hange for symmetripartners of the relevant ars. Case (6) is similar. This provesLemma 3.5. If L, L′ are a pair of oriented rotants and their rotors haveno losed omponents , then w(L) = w(L′).Proof of Theorem 3.1. Using formula (2.8), Theorem 2.9 and Lemma 3.4we obtain
DL = (−d)−3w(L)〈L〉(d) = (−d)−3w(L′)〈L′〉(d) = DL′ .4. Closed omponents. In this setion we will look at the determinantsof rotant pairs whih have losed omponents in their rotors. The followingexample shows that the assumption about losed omponents in Theorem 3.1is neessary.

Fig. 4.1
Example 4.1. Figure 4.1 shows diagrams of a pair of rotants. If un-oriented, they would represent the same link, so 〈L〉 = 〈L′〉. But with ori-entation the rotor ontains one pair of m-ars, one s-ar, and one losedomponent, whih after �ipping looks as if it had hanged its orientation.
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Sine the stator ontrols only the orientations of the rotor ars, and not thoseof the losed omponents, the latter retain their orientations after �ipping.Below we alulate the determinants of the two links:

w(L) = 4 − 4 = 0 ⇒ DL = (−d)0〈L〉(d) = −30i,

w(L′) = 2 − 6 = −4 ⇒ DL′ = (−d)−12〈 L′ 〉(d) = 30i.We see that DL′ = −DL 6= DL.As was shown in Example 4.1, pairs of oriented rotants do not alwayshave idential determinants. Looking at (2.8) and (2.10) we see that theproblem must be in the writhe of the rotors with losed omponents. With
d = ±

√
i we have

(−d)4 = −1,(4.2)

(−d)8 = 1,(4.3)so we look at w(R) and w(R′) mod 8.It an be shown that the determinants of pairs of rotants of even orderoinide, while this is not neessarily so for rotants of odd order. This is aonsequene of Lemma 3.3. All is not lost, though. It turns out that if thedeterminants do not oinide, then they only di�er in sign. If w(
⋃

Oi, l1)is the sum of all rossings between the rotor's single s-ar l1 and losedomponents Oi, then
(4.4)

DL′

DL
=

{−1 if w(
⋃

Oi, l1) ≡ 4 (mod8),

+1 if w(
⋃

Oi, l1) ≡ 0 (mod8).This gives usTheorem 4.5. If L, L′ are a pair of oriented rotants of order n then:(i) if 2 |n then DL = DL′ ,(ii) if 2 ∤ n and the rotors have no losed omponents then DL = DL′ ,(iii) if 2 ∤ n and w(
⋃

Oi, l1) ≡ 0 (mod8) then DL = DL′ ,(iv) if 2 ∤ n and w(
⋃

Oi, l1) ≡ 4 (mod8) then DL = −DL′ .5. Appendix. In this paper we relied on Trazyk's theorem [Tr℄, whihstates that pairs of regularly oriented rotants have the same Conway poly-nomial. This brings up a natural question: an Trazyk's theorem be gener-alized to over nonregularly oriented rotants? The following example gives anegative answer.
Example 5.1. The following �gures show a pair of nonregularly ori-ented 6-rotants. The �rst �ve nonzero oe�ients (mod 256) of the Conwaypolynomial for L are as follows:

−3z − 2z3 + 13z5 + 3z7 − 24z9,
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while the oe�ients for L′ are
−3z − 14z3 − 14z5 − 31z7 − 71z9.This proves that nonregularly oriented rotant pairs may have di�erent Con-way polynomials.Reently D¡bkowski, Ishiwata, Przytyki and Yasuhara disovered a pairof biregularly oriented rotants with di�erent Conway polynomials (see[DIPY℄), whih further proves that Trazyk's theorem annot be improved.
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