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SOME INTEGRAL INEQUALITIES OF HÖLDER

AND MINKOWSKI TYPE

BY

ONDREJ HUTNÍK (Košice)

Abstract. A number of integral inequalities of Hölder and Minkowski type involving
a class of generalized weighted quasi-arithmetic means in integral form is established.
Some well known inequalities and their generalizations are derived as consequences of our
results.

1. Introduction. The celebrated Hölder and Minkowski inequalities
belong to the fundamental and classical inequalities in mathematics. They
can be found in many books on real functions, analysis, functional analysis
or Lp-spaces. Their integral analogues are as follows (cf. [6]):

Proposition 1.1. Let γ and δ be conjugate exponents, i.e. γ−1 + δ−1

= 1, with 1 < γ < ∞. Let (X,M, µ) be a measure space and f, g :
X → [0,∞] be measurable functions. Then

(Hölder)
\
X

fg dµ ≤
( \

X

fγ dµ
)1/γ( \

X

gδ dµ
)1/δ

and

(Minkowski)
( \

X

(f + g)γ dµ
)1/γ

≤
( \

X

fγ dµ
)1/γ

+
( \

X

gγ dµ
)1/γ

.

Because of their usefulness in analysis and its applications, these inequal-
ities have received a considerable attention in the past decades and a number
of papers have appeared which deal with their various generalizations, ex-
tensions and applications. In connection with the theory of special means
we can find some extensions and applications of the Hölder and Minkowski
inequalities e.g. in [8], [9], [11], [12], and [17].

The main purpose of this paper is to establish some integral inequalities
for a class of generalized weighted quasi-arithmetic means in integral form,
mainly connected with the classical Hölder and Minkowski inequalities.
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The structure of this article is as follows. In Section 2 we recall the def-
inition of the generalized weighted quasi-arithmetic mean M[a,b],g(p, f) and
state some preliminary results. In Section 3 we give a number of weighted
integral inequalities of Hölder type involving M[a,b],g(p, f) and state a few
sufficient conditions for their validity. In the fourth section we give analogous
results for Minkowski-type inequalities. These results are natural general-
izations of results from [1]. Some applications and generalizations of well
known inequalities are given in the last section.

2. Preliminaries. Let L1([a, b]) be the vector space of all real Lebesgue
integrable functions defined on the interval [a, b] ⊂ R, a < b, with respect
to the usual Lebesgue measure. Denote by L+

1 ([a, b]) the positive cone of
L1([a, b]), consisting of the non-negative functions. In what follows ‖p‖[a,b]

denotes the L1-norm of p ∈ L+
1 ([a, b]). For the definition below, cf. [4].

Definition 2.1. Let p ∈ L+
1 ([a, b]), f : [a, b] → [α, β] be measurable

and g : [α, β] → R be continuous and strictly monotone, where −∞ < α <
β < ∞. The generalized weighted quasi-arithmetic mean of f with respect
to the weight function p is the real number

(1) M[a,b], g(p, f) = g−1

(

1

‖p‖[a,b]

b\
a

p(x)g(f(x)) dx

)

,

where g−1 denotes the inverse function to g.

The means M[a,b], g(p, f) include many commonly used two-variable in-
tegral means as particular cases (cf. [5]). In particular, for g(x) = x we
obtain the classical weighted arithmetic means A[a,b](p, f).

Note that a further possible extension of M[a,b], g(p, f) could be consid-
ered in the case of analytic functions. Indeed, let f be of the form f(θ) =
|h(reıθ)|, where 0 < r < 1 and h is an analytic function in the open unit
disk D = {z : |z| < 1} of the complex plane. In that case choosing a = 0,
b = 2π, g(x) = xq for 0 < q < ∞ and p(x) ≡ 1 on [0, 2π] yields the integral
mean of order q,

Mq(r, h) =

(

1

2π

2π\
0

|h(reıθ)|q dθ

)1/q

.

Much research has been devoted to the dependence of the operator
of means on the behavior of the input functions p, f and g. The follow-
ing lemma gives a generalization of the well known Jensen inequality to the
class of means of Definition 2.1. This enables us to derive various inequali-
ties for the means M[a,b],g(p, f) depending on the convexity properties of f
and g.
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Lemma 2.2 (Jensen inequality). Let p ∈ L+
1 ([a, b]) and f : [a, b] → [α, β]

be measurable, where −∞ < α < β < ∞. If g : [α, β] → R is convex (resp.
concave), then

g
(

A[a,b](p, f)
)

≤ (resp. ≥) A[a,b](p, g ◦ f).

An elementary proof of Lemma 2.2 is given in [7]. Some basic properties
of M[a,b], g(p, f) derived using the weighted integral analogue of the Jensen
inequality can be found in [4] and [5]. As an easy consequence of the Jensen
inequality we get the following useful result.

Corollary 2.3. Let p ∈ L+
1 ([a, b]) and f : [a, b] → [α, β] be measurable,

where −∞ < α < β < ∞. If g : [α, β] → R is convex increasing or concave

decreasing (resp. convex decreasing or concave increasing), then

A[a,b](p, f) ≤ (resp. ≥) M[a,b], g(p, f).

In the following lemma we summarize some results which will be useful
in the rest of this paper.

Lemma 2.4. Let P ∈ L1([a, b]) and F : [a, b] → R be measurable. Then

the inequality
b\
a

P (t)F (t) dt ≤ 0

holds in each of the following cases:

(a) F is non-negative and non-increasing and
x\
a

P (t) dt ≤ 0, x ∈ [a, b];

(b) F is non-negative and non-decreasing and

b\
x

P (t) dt ≤ 0, x ∈ [a, b];

(c) F ∈L+
1 ([a, b]) is symmetrical on [a, b], non-increasing on [(a+ b)/2, b]

and
b−x\
a+x

P (t) dt ≤ 0, x ∈ [0, (b − a)/2];

(d) F is non-negative and non-increasing on [(a + b)/2, b] such that

F (a + x) ≥ F (b − x) for all x ∈ [0, (b − a)/2], and

P (x) ≤ 0, x ∈ [a, (a + b)/2],

and
b−x\
a+x

P (t) dt ≤ 0, x ∈ [0, (b − a)/2];
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(e) F is non-negative and non-decreasing on [a, (a + b)/2] such that

F (a + x) ≤ F (b − x) for x ∈ [0, (b − a)/2], and

P (x) ≤ 0, x ∈ [(a + b)/2, b],

and
b−x\
a+x

P (t) dt ≤ 0, x ∈ [0, (b − a)/2].

Remark 2.5. Recall that F is symmetrical on [a, b] if

F (a + x) = F (b − x) for all x ∈ [0, (b − a)/2].

The statement of Lemma 2.4 in case (a) was proved in [6] for the interval
[0, 1]. For the proof of the other cases, cf. [1].

3. Hölder-type inequalities. In what follows we always consider
weight functions pi ∈ L+

1 ([a, b]) for i = 1, . . . , n + 1, where n ∈ N (the
set of all natural numbers). Put

Pi(x) =
1

‖pi‖[a,b]

x\
a

pi(t) dt, x ∈ [a, b],

for i = 1, . . . , n + 1. We establish a few integral inequalities of Hölder and
Minkowski type for the means M[a,b], g(p, f) involving Pi, i = 1, . . . , n + 1,
and give some sufficient conditions for their validity.

Theorem 3.1. Let pi ∈ L+
1 ([a, b]) for i = 1, . . . , n + 1 and f :

[a, b] → [α, β] be a non-negative measurable function, where −∞ < α <
β < ∞. Let γi, i = 1, . . . , n, be positive numbers such that

∑n
i=1 1/γi = 1

and g : [α, β] → R be continuous.

(a) If f is non-increasing , g is either a convex increasing or concave

decreasing , and

(2) Pn+1(x) ≤
n

∏

i=1

Pi(x)1/γi, x ∈ [a, b],

then

(3) A[a,b](pn+1, f) ≤
n

∏

i=1

(M[a,b], g(pi, f))1/γi.

(b) If f is non-decreasing , g is either convex decreasing or concave in-

creasing , and (2) is reversed , then (3) is reversed.

Proof. We will prove (a). From Corollary 2.3 we have M[a,b], g(pi, f)
≥ A[a,b](pi, f) for all i = 1, . . . , n. Then

n
∏

i=1

(M[a,b], g(pi, f))1/γi ≥
n

∏

i=1

(A[a,b](pi, f))1/γi.
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Using integration by parts, we have

n
∏

i=1

(

1

‖pi‖[a,b]

b\
a

pi(x)f(x) dx

)1/γi

=
n

∏

i=1

(

f(b) +

b\
a

Pi(x) df (x)
)1/γi

,

where f (x) = −f(x). From the discrete and integral Hölder inequalities, we
obtain

n
∏

i=1

(

f(b) +

b\
a

Pi(x) df (x)
)1/γi

≥ f(b) +
n

∏

i=1

(

b\
a

Pi(x) df (x)
)1/γi

≥ f(b) +

b\
a

n
∏

i=1

Pi(x)1/γi df (x),

and by the use of inequality (2), we get

n
∏

i=1

(M[a,b], g(pi, f))1/γi ≥ f(b) +

b\
a

Pn+1(x) df (x) =

b\
a

P ′

n+1(x)f(x) dx

=
1

‖pn+1‖[a,b]

b\
a

pn+1(x)f(x) dx = A[a,b](pn+1, f).

The proof of (b) is similar, with the so called Popoviciu inequality
from [10] used instead of the discrete Hölder inequality.

Remark 3.2. Observe that the term
∏n

i=1 Pi(x)1/γi in condition (2)
is the weighted (discrete) geometric mean G(n)(P1(x), . . . , Pn(x)) of non-
negative terms Pi(x) with weights γi, i = 1, . . . , n. Therefore, (2) may be
rewritten as

A(n)(Pn+1(x), . . . , Pn+1(x)) ≤ G(n)(P1(x), . . . , Pn(x)),

where A(n)(P1(x), . . . , Pn(x)) stands for the (discrete) arithmetic mean.

As a kind of dual to Theorem 3.1 we directly have

Theorem 3.3. Let pi, γi and f, g be as in Theorem 3.1.

(a) If f is non-increasing , g is either convex decreasing or concave in-

creasing , and the inequality (2) is valid , then

(4) M[a,b], g(pn+1, f) ≤
n

∏

i=1

(A[a,b](pi, f))1/γi.

(b) If f is non-decreasing , g is either convex increasing or concave de-

creasing , and (2) is reversed , then (4) is reversed.
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Proof. From the proof of Theorem 3.1, we have

n
∏

i=1

(A[a,b](pi, f))1/γi ≥ A[a,b](pn+1, f).

If g is either convex decreasing or concave increasing, then A[a,b](pn+1, f) ≥
M[a,b], g(pn+1, f), which completes the proof.

Note that Theorems 3.1 and 3.3 seem to be closely related to the com-
parison problem between means (cf. [5, Theorem 3.1]).

Our purpose now is to weaken the assumption (2) using Lemma 2.4.
Therefore, the following theorem involves the derivatives of the weight func-
tions Pi, i = 1, . . . , n + 1.

Theorem 3.4. Let pi, γi, and f, g be as in Theorem 3.1.

(a) If f is non-increasing , g is either convex increasing or concave de-

creasing ,

P ′

n+1(x) ≤
(

n
∏

i=1

P
1/γi

i

)

′

(x), x ∈ [a, (a + b)/2],

and

(5) Pn+1(b − x) − Pn+1(a + x) ≤
n

∏

i=1

Pi(b − x)1/γi −
n

∏

i=1

Pi(a + x)1/γi

for x ∈ [0, (b − a)/2], then the inequality (3) holds.

(b) If f is non-decreasing , g is either convex decreasing or concave in-

creasing ,

P ′

n+1(x) ≥
(

n
∏

i=1

P
1/γi

i

)

′

(x), x ∈ [(a + b)/2, b],

and (5) is reversed , then (3) is reversed.

Proof. (a) Setting

F = f, P = P ′

n+1 −
(

n
∏

i=1

P
1/γi

i

)

′

,

and applying Lemma 2.4(d), we get

b\
a

(

n
∏

i=1

P
1/γi

i

)

′

(x)f(x) dx ≥
b\
a

P ′

n+1(x)f(x) dx = A[a,b](pn+1, f).

Since g is either convex increasing or concave decreasing, using the proof of
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Theorem 3.1 we have

n
∏

i=1

(M[a,b], g(pi, f))1/γi ≥
n

∏

i=1

(A[a,b](pi, f))1/γi ≥ f(b) +

b\
a

n
∏

i=1

Pi(x)1/γi df (x)

=

b\
a

(

n
∏

i=1

P
1/γi

i

)

′

(x)f(x) dx ≥ A[a,b](pn+1, f).

Item (b) may be proved similarly, by applying Lemma 2.4(e) to F = f

and P = (
∏n

i=1 P
1/γi

i )′ − P ′

n+1.

Obviously, the integral and differential calculus plays a fundamental role
when establishing conditions for the inequality (3) to be valid. Thus, it is
natural to give the following sufficient conditions.

Theorem 3.5. Let pi, γi, f and g be as in Theorem 3.1 and f be dif-

ferentiable. Then the inequality (3) holds in each of the following cases:

(a) f ′ ≤ 0, f is convex (or f ′ ≥ 0, f is concave), g is either convex

increasing or concave decreasing , and

(6)

x\
a

Pn+1(t) dt ≤
x\
a

n
∏

i=1

Pi(t)
1/γi dt, x ∈ [a, b];

(b) f ′ ≤ 0, f is concave (or f ′ ≥ 0, f is convex ), g is either convex

increasing or concave decreasing , and

(7)

b\
x

Pn+1(t) dt ≤
b\
x

n
∏

i=1

Pi(t)
1/γi dt, x ∈ [a, b];

(c) f ′ is non-positive and symmetrical on [a, b], non-decreasing on

[(a + b)/2, b] (or f ′ is non-negative and symmetrical on [a, b], non-

increasing on [(a + b)/2, b]), g is either convex increasing or concave

decreasing , and

(8)

b−x\
a+x

Pn+1(t) dt ≤
b−x\
a+x

n
∏

i=1

Pi(t)
1/γi dt

for all x ∈ [0, (b − a)/2].

Proof. Let us prove (a). Suppose that f ′ ≤ 0. Put

F = −f ′ and P = Pn+1 −
n

∏

i=1

P
1/γi

i .

Since f is convex, f ′ is non-decreasing, and since f ′ ≤ 0, it follows that F



254 O. HUTNÍK

is a non-negative and non-increasing function on [a, b]. Then

x\
a

P (t) dt =

x\
a

Pn+1(t) dt −
x\
a

n
∏

i=1

Pi(t)
1/γi dt ≤ 0

for all x ∈ [a, b], and using Lemma 2.4(a) we have

(9)

b\
a

Pn+1(x)F (x) dx ≤
b\
a

n
∏

i=1

Pi(x)1/γiF (x) dx.

Replacing −f(x) by f (x) and adding f(b) to both sides of (9), we get

(10) f(b) +

b\
a

Pn+1(x) df (x) ≤ f(b) +

b\
a

n
∏

i=1

Pi(x)1/γi df (x).

For the left-hand side of (10) we have

(11) f(b) +

b\
a

Pn+1(x) df (x) =

b\
a

P ′

n+1(x)f(x) dx = A[a,b](pn+1, f).

For the right-hand side of (10) we use the Hölder inequality to get

f(b)+

b\
a

n
∏

i=1

Pi(x)1/γi df (x) ≤ f(b) +

n
∏

i=1

(

b\
a

Pi(x) df (x)
)1/γi

≤
n

∏

i=1

(

f(b) +

b\
a

Pi(x) df (x)
)1/γi

=
n

∏

i=1

(

b\
a

P ′

i (x)f(x) dt
)1/γi

=
n

∏

i=1

(A[a,b](pi, f))1/γi.

Since g is either convex increasing or concave decreasing, we have A[a,b](pi, f)
≤ M[a,b](pi, f) for i = 1, . . . , n, and therefore

(12)

n
∏

i=1

(A[a,b](pi, f))1/γi ≤
n

∏

i=1

(M[a,b], g(pi, f))1/γi.

Substituting (11) and (12) into (10) we obtain the desired inequality. If
f ′ ≥ 0, we replace f ′ by F and use the same method.

Similarly we may prove items (b) and (c) by the use of items (b) and (c)
of Lemma 2.4, respectively.

The same method yields a kind of dual to Theorem 3.5:

Theorem 3.6. Let pi, γi and f, g be as in Theorem 3.5. Then the in-

equality (4) holds in each of the following cases:
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(a) f ′ ≤ 0, f is convex (or f ′ ≥ 0, f is concave), g is either convex

decreasing or concave increasing , and (6) is valid ;
(b) f ′ ≤ 0, f is concave (or f ′ ≥ 0, f is convex ), g is either convex

decreasing or concave increasing , and (7) is valid ;
(c) f ′ is non-positive and symmetrical on [a, b], non-decreasing on

[(a + b)/2, b] (or f ′ is non-negative and symmetrical on [a, b], non-

increasing on [(a + b)/2, b]), g is either convex decreasing or concave

increasing , and (8) is valid.

4. Minkowski-type inequalities. In this section we establish some
analogous inequalities of Minkowski type.

Theorem 4.1. Let pi, f , g be as in Theorem 3.1.

(a) Let q > 1 or q < 0. If f is non-increasing , g is either convex in-

creasing or concave decreasing, and

(13) Pn+1(x) ≤
(

n
∑

i=1

δiPi(x)1/q
)q

, x ∈ [a, b],

where δi, i = 1, . . . , n, are positive numbers such that
∑n

i=1 δi = 1,
then

(14) A[a,b](pn+1, f) ≤
(

n
∑

i=1

δi(M[a,b], g(pi, f))1/q
)q

.

If f is non-decreasing , g is either convex decreasing or concave in-

creasing , and (13) is valid , then (14) is reversed.

(b) Let 0 < q < 1. If f is non-decreasing , g is either convex increasing

or concave decreasing and (13) is reversed , then (14) holds.

If f is non-increasing , g is either convex decreasing or concave in-

creasing , and (13) is reversed , then (14) is reversed.

Proof. Suppose that q > 1, f is non-increasing and (13) is valid. Since
g is either convex increasing or concave decreasing, according to Corol-
lary 2.3 we have M[a,b], g(pi, f) ≥ A[a,b](pi, f) for all i = 1, . . . , n, and there-
fore

n
∑

i=1

δi(M[a,b], g(pi, f))1/q ≥
n

∑

i=1

δi(A[a,b](pi, f))1/q.

Using integration by parts, we get

n
∑

i=1

δi(A[a,b](pi, f))1/q =
n

∑

i=1

δi

(

f(b) +

b\
a

Pi(t) df (t)
)1/q

,

where f (t) = −f(t). Applying the discrete and integral versions of the Min-
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kowski inequality, we obtain

n
∑

i=1

δi

(

f(b) +

b\
a

Pi(t) df (t)
)1/q

≥
[(

n
∑

i=1

δif(b)1/q
)q

+
(

n
∑

i=1

δi

(

b\
a

Pi(t) df (t)
)1/q)q]1/q

≥
(

f(b) +

b\
a

(

n
∑

i=1

δiP
1/q
i

)q
(t) df (t)

)1/q
.

According to (13), we have

(

f(b) +

b\
a

(

n
∑

i=1

δiP
1/q
i

)q
(t) df (t)

)1/q
≥

(

f(b) +

b\
a

Pn+1(t) df (t)
)1/q

=
(

b\
a

P ′

n+1(t)f(t) dt
)1/q

= (A[a,b](pn+1, f))1/q.

In the case q < 0 the Bellman inequality (cf. [10]) is used instead of the
discrete Minkowski inequality.

Remark 4.2. Note that the term (
∑n

i=1 δiP
1/q
i )q in the previous theo-

rem is, in fact, the weighted (discrete) power mean P [1/q]
(n) (P1(x), . . . , Pn(x))

of order 1/q for the n-tuple (P1(x), . . . , Pn(x)) with weights (δ1, . . . , δn).
Thus, the condition (13) may be equivalently rewritten as

A(n)(Pn+1(x), . . . , Pn+1(x)) ≤ P [1/q]
(n) (P1(x), . . . , Pn(x)).

From the proof of Theorem 4.1(a) and Corollary 2.3 we immediately
have the following result.

Theorem 4.3. Let pi, f , g be as in Theorem 3.1.

(a) Let q > 1 or q < 0. If f is non-increasing , g is either convex de-

creasing or concave increasing , and inequality (13) is valid , then

(15) M[a,b], g(pn+1, f) ≤
(

n
∑

i=1

δi(A[a,b](pi, f))1/q
)q

.

If f is non-decreasing , g is either convex increasing or concave de-

creasing , and (13) is valid , then (15) is reversed.

(b) Let 0 < q < 1. If f is non-decreasing , g is either convex decreasing

or concave increasing , and (13) is reversed , then (15) holds.

If f is non-increasing , g is either convex increasing or concave de-

creasing , and (13) is reversed , then (15) is reversed.
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As in the theorems stated in the previous section, the requirement (13)
could be given in a weaker form. In what follows we will consider only the
case when q > 1 or q < 0. Similar results hold for 0 < q < 1.

Theorem 4.4. Let pi, δi, f and g be as in Theorem 4.1 and f be dif-

ferentiable.

(a) If f is non-increasing , g is either convex increasing or concave de-

creasing ,

P ′

n+1(x) ≤
((

n
∑

i=1

δiPi(x)1/q
)q)′

for x ∈ [a, (a + b)/2],

and

(16) Pn+1(b − x) − Pn+1(a + x)

≤
(

n
∑

i=1

δiP
1/q
i

)q
(b − x) −

(

n
∑

i=1

δiP
1/q
i

)q
(a + x)

for x ∈ [0, (b − a)/2], then (14) holds.

(b) If f is non-decreasing , g is either convex decreasing or concave in-

creasing ,

P ′

n+1(x) ≥
((

n
∑

i=1

δiPi(x)1/q
)q)′

for x ∈ [(a + b)/2, b],

and (16) is reversed , then (14) is reversed.

The proof is analogous to the proof of Theorem 3.4. The following result
may be proved similarly to Theorem 3.5.

Theorem 4.5. Let pi, δi, f and g be as in Theorem 4.1 and f be dif-

ferentiable. Then the inequality (14) holds in each of the following cases:

(a) f ′ ≤ 0, f is convex (or f ′ ≥ 0, f is concave), g is either convex

increasing or concave decreasing , and

(17)

x\
a

Pn+1(t) dt ≤
x\
a

(

n
∑

i=1

δiPi(t)
1/q

)q
dt, x ∈ [a, b];

(b) f ′ ≤ 0, f is concave (or f ′ ≥ 0, f is convex ), g is either convex

increasing or concave decreasing , and

(18)

b\
x

Pn+1(t) dt ≤
b\
x

(

n
∑

i=1

δiPi(t)
1/q

)q
dt, x ∈ [a, b];

(c) f ′ is non-positive and symmetrical on [a, b], non-decreasing on

[(a + b)/2, b] (or f ′ is non-negative and symmetrical on [a, b], non-
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increasing on [(a + b)/2, b]), g is either convex increasing or concave

decreasing , and

(19)

b−x\
a+x

Pn+1(t) dt ≤
b−x\
a+x

(

n
∑

i=1

δiPi(t)
1/q

)q
dt

for all x ∈ [0, (b − a)/2].

5. Applications. In this section we deduce some inequalities from the
integral inequalities stated in Sections 3 and 4. Since the means M[a,b], g(p, f)
cover many known two-variable integral means, the inequalities obtained are
generalizations of some well known ones.

Corollary 5.1. Let f : [a, b] → R be non-negative and non-increasing ,
and hi : [a, b] → R, i = 1, . . . , n, be non-negative non-decreasing functions

with continuous first derivatives and hi(a) = 0 for all i = 1, . . . , n. If γi,
i = 1, . . . , n, are positive numbers such that

∑n
i=1 1/γi = 1, then

(20)

b\
a

(

n
∏

i=1

hi(t)
1/γi

)

′

f(t) dt ≤
n

∏

i=1

(

b\
a

h′

i(t)f(t) dt
)1/γi

.

Proof. Put

pi = h′

i, i = 1, . . . , n, pn+1 =
(

n
∏

i=1

h
1/γi

i

)

′

.

Then

Pi(x) =
hi(x)

hi(b)
, i = 1, . . . , n, Pn+1(x) =

∏n
i=1 hi(x)1/γi

∏n
i=1 hi(b)1/γi

.

Thus Pn+1(x) =
∏n

i=1 Pi(x)1/γi for x ∈ [a, b]. If we now choose g(x) = x,
then the result follows from Theorem 3.1(a).

Remark 5.2. Note that the inequality (20) (cf. [15]) is a generalization
of the so-called Gauss–Pólya inequality (cf. [16]). Namely, for n = 2, a = 0,
γ1 = γ2 = 2, h1(t) = t2u+1, h2(t) = t2v+1 for u, v > −1/2 and f a non-
negative non-increasing function, we have

(

b\
0

tu+vf(t) dt
)2

≤
(

1 −
(

u − v

u + v + 1

)2) b\
0

t2uf(t) dt

b\
0

t2vf(t) dt,

whenever the integrals exist. Putting u = 0, v = 2 and letting b → ∞ we
obtain the result of C. F. Gauss on the second and fourth moments (cf. [6]):

(

∞\
0

t2f(t) dt
)2

≤ 5

9

∞\
0

f(t) dt ·
∞\
0

t4f(t) dt.



INEQUALITIES OF HÖLDER AND MINKOWSKI TYPE 259

Remark 5.3. Alzer [2] derived the inequality

b\
a

(G(2)(h1(t), h2(t)))
′f(t) dt ≤ G(2)

(

b\
a

h′

1(t)f(t) dt,

b\
a

h′

2(t)f(t) dt
)

,

which holds for non-negative decreasing functions h1, h2, f : [a, b] → R such
that h1, h2 and

√
h1h2 are continuously differentiable with h1(a) = h2(a)

and h1(b) = h2(b). Obviously, this is a special case of (20) for n = 2.

An analogous result connected with the weighted power mean P [r]
(2) is as

follows (cf. [14]):

Corollary 5.4. Let h1, h2 : [a, b] → R be non-negative non-decreasing

functions with continuous first derivatives and h1(a) = h2(a), h1(b) = h2(b).
Let γ1, γ2 > 0 with γ1 + γ2 = 1.

(a) If f : [a, b] → R is non-negative and non-decreasing , then

(21) P [r]
(2)

(

b\
a

h′

1(t)f(t) dt,

b\
a

h′

2(t)f(t) dt
)

≤
b\
a

(P [s]
(2)(h1(t), h2(t)))

′f(t) dt

for r, s < 1, and for r, s > 1 the inequality is reversed.

(b) If f : [a, b] → R is non-negative and non-increasing , then for r <
1 < s the inequality (21) holds and for r > 1 > s the inequality is

reversed.

For some analogous results related to the Gauss–Pólya inequality in-
volving quasi-arithmetic means and logarithmic means, see [14] and [15].
A generalization of the Pólya inequality for the Stolarsky and Gini means
is given in [13].

Remark 5.5. Similarly, if f : [0, 1] → R is non-negative and non-
decreasing, then

(

1\
0

tu+vf(t) dt
)2

≥
(

1 −
(

u − v

u + v + 1

)2) 1\
0

t2uf(t) dt

1\
0

t2vf(t) dt.

In the following corollary we give a generalization of the above inequal-
ity.

Corollary 5.6. Let f : [0, 1] → R be non-negative and non-decreasing ,
and γi, i = 1, . . . , n, be positive numbers such that

∑n
i=1 1/γi = 1. If

λi > −1/γi for i = 1, . . . , n, then

1\
0

t
∑

n

i=1
λif(t) dt ≥

∏n
i=1(1 + λiγi)

1/γi

1 +
∑n

i=1 λi

n
∏

i=1

(

1\
0

tλiγif(t) dt
)1/γi

.



260 O. HUTNÍK

Proof. Since λi > −1/γi for i = 1, . . . , n, we put

pi(t) = (t1+λiγi)′, i = 1, . . . , n, pn+1(t) =
(

n
∏

i=1

tλi+1/γi

)

′

.

Then for a = 0, b = 1, we have

Pi(x) = x1+λiγi , i = 1, . . . , n, Pn+1(x) = x1+
∑

n

i=1
λi ,

and therefore

Pn+1(x) =
n

∏

i=1

Pi(x)1/γi.

Choosing g to be the identity and applying Theorem 3.1(b), we obtain

A[0,1](pn+1, f) =
(

1 +
n

∑

i=1

λi

)

1\
0

t
∑

n

i=1
λif(t) dt,

and
n

∏

i=1

(M[0,1],g(pi, f))1/γi =
n

∏

i=1

(1 + λiγi)
1/γi ·

n
∏

i=1

(

1\
0

tλiγif(t) dt
)1/γi

.

Hence the result.

The following corollary is a consequence of Theorem 4.1 and may be
found in [17].

Corollary 5.7. Let f : [a, b] → R be non-negative and non-increasing ,
and hi : [a, b] → R, i = 1, . . . , n, be non-negative non-decreasing functions

with continuous first derivatives. If q > 1, then

(22)
(

b\
a

((

n
∑

i=1

hi(t)
)q)′

f(t) dt
)1/q

≤
n

∑

i=1

(

b\
a

(hi(t)
q)′f(t) dt

)1/q
.

Proof. Put

δi =
hi(b)

∑n
i=1 hi(b)

and

pi(x) = (hi(x)1/q)′, i = 1, . . . , n, pn+1(x) =

((∑n
i=1 hi(x)

∑n
i=1 hi(b)

)q)′

.

If g is the identity, then the functions f , g, pi, and numbers δi, i =
1, . . . , n, satisfy the assumptions of Theorem 4.1(a), which yields (22).
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