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ON THE UNIFORM BEHAVIOUR OF THE
FROBENIUS CLOSURES OF IDEALS

BY

K. KHASHYARMANESH (Mashhad)

Abstract. Let a be a proper ideal of a commutative Noetherian ring R of prime
characteristic p and let Q(a) be the smallest positive integer m such that (a¥)P"] = aP™],
where af is the Frobenius closure of a. This paper is concerned with the question whether
the set {Q(a”™1) : m € Ny} is bounded. We give an affirmative answer in the case that
the ideal a is generated by an u.s.d-sequence ci,...,c, for R such that

(i) the map R/>°7 | Re; — R/, Rc? induced by multiplication by ci...c, is
an R-monomorphism;

(ii) for all p € ass(c],...,cl), ¢1/1,...,ca/1 is a pRy-filter regular sequence for Ry

for j € {1,2}.

1. Introduction. Let R be a commutative Noetherian ring of prime
characteristic p. The theory of tight closure was introduced by M. Hochster
and C. Huneke [3]|, and many applications of it have been found (see [5]).
For a proper ideal a of R, the Frobenius closure a¥ of a, defined as

al' .= {r € R : there exists n € Ny such that rP" e a@n]},

is an ideal relative to the theory of tight closure, where the nth Frobenius
power alP’"! of a is the ideal of R generated by the p™th powers of elements
of a (we use Ny (respectively N) to denote the set of non-negative (respec-
tively positive) integers). Since a is finitely generated, (aF)lP") = alP™] for
some ng € Ny. Let Q(a) be the smallest power of p with this property. An
interesting question is whether the set {Q(b) : b is a proper ideal of R} of
powers of p is bounded. A simpler question is whether, for a given proper
ideal b of R, the set {Q(blP"]) : n € Ny} is bounded.

In [6], M. Katzman and R. Y. Sharp gave an affirmative answer to the
latter question in case b is generated by a regular sequence. To do this they
used the theory of modules of generalized fractions introduced by R. Y. Sharp
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and H. Zakeri in [11]. In fact they constructed a certain module of generalized
fractions to which they applied the Hartshorne—Speiser-Lyubeznik theorem
(Theorem 2.1). Following some ideas of [6], we are able to establish the
following theorem:.

THEOREM 1.1. Suppose that the ideal a of R is generated by an u.s.d-
sequence ci, . .., cy for R such that

(i) the map
R/ Rcj—R/Y Rcl
j=1 j=1

induced by multiplication by c1 .. .cp is an R-monomorphism;
(ii) for all p € ass(c],...,ch), c1/1,...,¢cn/1 is a pRy-filter regular se-
quence for Ry for j € {1,2}.

Then there exists e € Ny such that ((alP")F)PT = (alP"1) P for all n € Ny.

The proof employs the Hartshorne—Speiser—Lyubeznik theorem. The new
point of view is the use of Koszul homology with respect to a generalized
regular sequence.

Throughout the paper, A will denote a general commutative Noetherian
ring and R will denote a commutative Noetherian ring of prime characteris-
tic p. We shall always denote by f : R — R the Frobenius homomorphism,
for which f(r) = r? for all » € R. Our terminology follows the textbook [1]
on local cohomology.

2. An ideal generated by an u.s.d-sequence. In this paper, we shall
work with the skew polynomial ring R[z, f] associated to R and f in the
indeterminate x over R. Recall that R[x, f] is, as a left R-module, freely
generated by (z%);en,, and so consists of all polynomials > i, r;z’, where
n € Ng and rg,...,r, € R; however, its multiplication is subject to the rule

xr = f(r)x =rPx for allr € R.

Now, let Z be a left R[z, f]-module. Then it is easy to see that the
x-torsion submodule I',(Z) of Z, defined as

I (Z):={2¢€ Z:272=0 for some j € N},

is an R[z, f]-submodule of Z (cf. [6, Lemma and Definition 1.2]).

Crucial to this paper is the following extension, due to G. Lyubeznik, of
a result of R. Hartshorne and R. Speiser. It shows that, when R is local,
an z-torsion left R[z, f]-module which is Artinian (that is, “cofinite” in the
terminology of Hartshorne and Speiser) as an R-module exhibits a certain
uniformity of behaviour.



FROBENIUS CLOSURES OF IDEALS 3

THEOREM 2.1 (]9, Proposition 4.4|; cf. [2, Proposition 1.11]). Suppose
that (R, m) is local, and let G be a left R[x, f]-module which is Artinian as
an R-module. Then there exists e € Ng such that x°I,(G) = 0.

Hartshorne and Speiser first proved this result in the case where R is local
and contains its residue field which is perfect. Lyubeznik applied his theory
of F-modules to obtain the result for any local ring R of characteristic p.

DEFINITION 2.2 (see [6, Definition 1.5]). Suppose that (R, m) is local,
and let G be a left R[z, f]-module which is Artinian as an R-module. By the
Hartshorne—Speiser—Lyubeznik Theorem 2.1, there exists e € Ny such that
2Tz (G) = 0; we call the smallest such e the Hartshorne-Speiser—Lyubeznik
number, or HSL-number for short, of G.

Let ay,...,a, be a sequence of elements of R. Set a := Raj + --- + Ray,.
Then the nth local cohomology module H}(R) can be interpreted as the
direct limit of Koszul homology modules (cf. [1, Theorem 5.2.9]), and in the
present situation we have

H}(R) ~lim R/ > " Rdj
keN  j=1

with the map
n n
k k+1
RS- ik 5y S Rl
j=1 j=1
induced by multiplication by a ...a,. For each t € N, let

n n
O : R/ZRa§ — h_r)nR/ZRa?
j=1 keN  j=1
be the canonical homomorphism. We will show that the above direct limit
has a structure of a left R[z, f]-module. To do this we recall the following
lemma.

LEMMA 2.3 (|6, Lemma 1.3]). Let M be an R-module and T : M — M
be a Z-endomorphism of M such that T(rm) = rPr(m) for all r € R and
m € M. Then the R-module structure on G can be extended to a structure
of a left R[z, f]-module in such a way that xm = 7(m) for allm € M.

"REMARK 2.4. In view of the above lemma, it is routine to check that
Hy(R) (and hence limgen R/ D77, Ra?) has a natural structure of a left
R[z, f]-module (see [6, Reminder 2.1]). In the following lemma we determine
precisely this structure.

LEMMA 2.5. Let a1,...,a, be a sequence of elements of R. Then the
module limgen R/ Z?:l Raf has a structure of a left R[z, f]-module with
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o(61(r+ 3" Bat)) = 0,0(r7 + " Rt
j=1

j=1
forallr € R and t € N.
Proof. Suppose that r,u € R and t,s € N are such that

Or(r+ im;) =0, (u+ zn:Raj) in li_n}R/zn:Raf.
j=1 j=1 keN  j=1

Hence 7(ay...an)" " —u(ay...a,)?"% € >_j—1 Ra} for some v € N with
v > t and v > s. Application of the Frobenius homomorphism yields
P(ay . ..an)PVY —wuP(ay ... a,)PV ) € > j—1 RaZ". 1t follows that Op(r? +
> i Ra?t) = Ops(uP+3°7_| Ra’’) and that there is a Z-endomorphism 7 of
limpen R/ D20 Raé‘? such that T(@t(r +>00 Rab)) = Op(rP + 377, Ra?t)
for all r € R and t € N. Now the claim follows from Lemma 2.3.

Now we recall a certain generalization of the notion of regular sequence.
Let M be an A-module. A sequence by, ..., b, of elements of an ideal b of A
is said to be a b-filter regular sequence for M if

(bl, e, bi_l)M v i
C
SuppA( (bl,...,bi_l)M - V<b)

for all i = 1,...,n, where V(b) denotes the set of prime ideals of A contain-
ing b. The concept of a b-filter regular sequence for M is a generalization
of that of a filter regular sequence which has been studied in [10], [12], [7]
and has led to some interesting results. Note that both concepts coincide if
b is the maximal ideal in a local ring. Also note that by,...,b, is a weak
M-sequence if and only if it is an A-filter regular sequence for M. It is
easy to see that the analogue of [12, Appendix 2(ii)] holds true whenever
A is Noetherian, M is finitely generated and m is replaced by a; so that,
if b1,...,b, is a b-filter regular sequence for M, then there is an element
bn+1 € b such that by, ..., by, by is a b-filter regular sequence for M. Thus,
for a positive integer n, there exists a b-filter regular sequence for M of
length n.

PROPOSITION 2.6 (see |7, Proposition 1.2]). Let by,...,b, (n > 1) be a
b-filter regular sequence for M. Then
Hébl,...,bn)(M) for 0 <i<n,

Hy(M) = {HE_H(H&I,“-,bn)(M)) for n <.

PROPOSITION 2.7. Suppose that (R,m) is a local ring and t € N. Then
HL(R) is an R[z, f]-submodule of Hfrl (R) for every m-filter regular
sequence 11, ..., € m for R.

7-"7Tt)
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Proof. Let rq,...,7+ € m be an m-filter regular sequence for R. If o €
6"1 ) (R) is annihilated by m” for a positive integer h, then (m")Plza = 0,
t ~

and so, in view of Lemma 2.3 and Proposition 2.6, Fm(H(r1 mn)(R)) =
H!(R) is an R[z, f]-submodule of H! (R).

(rlv"'zrt)
The theory of d-sequences was introduced by Huneke in [4]. Let M be an
A-module. The sequence aq,...,a, in A is called a d-sequence for M if, for
each i =1,...,n — 1, the equality

(ZA(Z])M M Q410 = (ZA(Z])M M Qg
7j=1 7j=1

holds for all £ > i + 1 (this is actually a slight weakening of Huneke’s def-
inition); it is an unconditioned strong d-sequence (u.s.d-sequence) for M if
af',...,af" is a d-sequence in any order for all positive integers i, ..., ay,.
d-sequences are closely related to filter regular sequences. It is easy to see
that if ai,...,an is a d-sequence on M, then it is a ) . ; Aa;-filter regular
sequence for M.

REMARK 2.8. Let a be an ideal of R and i € Ny. For any prime ideal p
of R we have

() (aRy)" = (&),

(i) (aRp)”) = (al") Ry, o

(iii) if (a¥)P'] = alP’l) then (aF)P"] = o™ for all j € N.

The proof of the following theorem relies heavily on ideas in M. Katzman
and R. Y. Sharp’s proof of [6, Theorem 4.2].

THEOREM 2.9. Suppose that the ideal a of R is generated by an u.s.d-
sequence ci, .. .,Cn for R such that

(i) the map
R/ Rej—R/Y Rcl
j=1 g=1

induced by multiplication by ci .. .cy is an R-monomorphism;
(ii) for all p € ass(c],...,ch), a1/1,...,cn/1 is a pRy-filter regular se-
quence for Ry for j € {1,2}.

Then there exists e € Ny such that ((alP")F)PT = (alP"1) P for all n € Ny.

Proof. First of all note that we can assume a # 0. Let p € ass(cq,...,c)U
ass(c?,...,c2). It is well known that the local cohomology module Hp, (Rp)

is an Artinian Rp-module (cf. [1, Theorem 7.1.3]). Now, in view of Proposi-
tion 2.7, let ey be the HSL-number of HJp (Ry). Let {htp : p € ass(cy, ..., cn)

Uass(c2,...,c2)} = {h1,...,hy}, where hy < --- < hy,. We define (for each
i=1,...,w)



6 K. KHASHYARMANESH

ei = max{ey : p € ass(c1,...,c,) Uass(cl,...,c2) and htp = h;},

and we claim that e = ). | ¢; has the desired property.

Now, let m be a positive integer such that ((al?"1)F)[Pl £ (alP™1)lP), Then
choose q € Ass((alP"1)F)lPl/(alP™])[P]. Hence by Remark 2.8, ((alP™1 Ry)F)P"]
# (alP"1Ry)IPl. Note that such a q has to be an associated prime of (a?"1)P*l.

Since a can be generated by a u.s.d-sequence ¢y, ..., ¢y, in view of [8, Lem-
ma 3|, we have q € ass(ci, . ..,c,)Uass(c?,. .., c2). By using this observation,

in conjunction with Remark 2.8, in order to establish our claim that e has

the desired property, it is enough to show that, for each p € ass(ci,...,c,)U

ass(c?,...,c2),

((alP" Rg) )P (@I RPTTTT =
for all n € N, where htp = h;. Suppose that this is not the case, and let
p be a minimal counterexample. Set htp = h;; there must exist a positive
integer m such that ((a[pm]Rp)F)[peﬁ“*el]/(a[pm]Rp)[peﬁmﬂl] # 0. Set ¢ :=
Zlv_:ll e~ (interpreted as 0 if [ = 1). By choice of p, each of the Ry,-modules
(P R )P 1/l R P and ((al?™ Ry)F)P )/ (alP™ Ry)P ) has
p Ry, as its only possible associated prime, because a smaller associated prime

would contradict the minimality of p. Therefore, both Ry,-modules in the last
display have finite length.

There exists ¢ € (a”"!R,)¥ such that QPE/HZ & (a[pm]Rp)U’e/Hl]. Consider
the element

Q= @pm(0+ (Czlom/lw . 7C€Lm/1))

€ lim Rp/(cf/1,- - en/1) = HE 11y (Rp)-
keN

By using Lemma 2.5, we have
o= 2" Opm(o+ (& /1,..., " /1))

e/+m

e/ e/+m
:8p6/+m(gp +(czl) /17"'70’]/)1 /1))
Since ¢*° € ((a"R,)")P"] and the R-module
(@1 Ry)")P" 1/ (0l Ry
has finite length, it is routine to check that
2 a € Ipr, (Hg, 11, 1) (Bp))-
Also, by assumption (ii) in conjunction with Proposition 2.6, we have the
isomorphism

Ior, (Hig, 11, en 1y (Bp)) = Hyg, (Rp).

Moreover « € FI(H&/L...,%/l)(RP)) because ¢ € (alP"IR,)F. Now, since by
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assumption (i), the map
R/ Rej —R/Y Rcl
j=1 j=1

induced by multiplication by ¢; ...c, is an R-monomorphism and ¢?° T ¢

(alP™IRy)P" ! in view of Lemma 2.5, it is routine to check that 2% (¢ )
# 0, which is the required contradiction. So the theorem is proved.

COROLLARY 2.10 (|6, Corollary 4.3]). Suppose that the ideal a of R can

be generated by a regular sequence. Then there exists e € Ny such that
((aP"HY"YPT = (alP"1)IP) for all n € Ny.
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