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ON COMMUTATIVITY AND OVALS FOR A PAIR OFSYMMETRIES OF A RIEMANN SURFACEBYEWA KOZ�OWSKA-WALANIA (Gda«sk)Abstrat. We study the upper bounds for the total number of ovals of two sym-metries of a Riemann surfae of genus g, whose produt has order n. We show that thenatural bound oming from Bujalane, Costa, Singerman and Natanzon's original resultsis attained for arbitrary even n, and in ase of n odd, there is a sharper bound, whih isattained. We also prove that two (M − q)- and (M − q′)-symmetries of a Riemann surfae
X of genus g ommute for g ≥ q+q′+1 (by (M−q)-symmetry we understand a symmetryhaving g + 1 − q ovals) and we show that atually, with just one exeption for any g > 2,
q + q′ + 1 is the minimal lower bound for g whih guarantees the ommutativity of twosuh symmetries.1. Introdution. Let X be a ompat Riemann surfae of genus g > 1.By a symmetry of X we mean an antiholomorphi involution a of X whihhas �xed points. By the lassial result of Harnak the set of �xed pointsof a onsists of at most g + 1 disjoint simple losed urves, whih are alledovals. If a has g + 1 − q ovals then we shall all it an (M − q)-symmetry.In [4℄ we observed (see also Corollary 3 in [1℄) that for g ≥ q + q′

+ 1, arbitrary (M − q)- and (M − q′)-symmetries of a Riemann surfae
X ommute. Here, using a method developed in [2℄, we show that with justone exeption for any g > 2, q+q′+1 is the minimal lower bound for g whihguarantees the ommutativity of arbitrary (M−q)- and (M−q′)-symmetries.We show (Theorems 4.1 and 4.2) that for 2 ≤ g ≤ q + q′ there exists a on-�guration of two non-ommuting (M − q)- and (M − q′)-symmetries, unless
g > 2 and {q, q′} = {1, g}, as in that ase suh symmetries always ommute.It is worth realling here that in [6℄ Natanzon gives a topologial lassi�a-tion of pairs of ommuting symmetries.In [1℄ and [5℄ it was shown that two symmetries of a Riemann surfae ofgenus g, whose produt has order n, have at most 4g/n+2 or 2(g−1)/n+4ovals in total for n even and odd respetively. Also it was shown that these2000 Mathematis Subjet Classi�ation: Primary 30F50; Seondary 14H37.Key words and phrases: Riemann surfae, symmetry of Riemann surfae, oval of asymmetry of a Riemann surfae.Supported by BW 5100-5-0198-6. [61℄ © Instytut Matematyzny PAN, 2007
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bounds are attained for arbitrary n suh that n divides 4g or g−1, dependingon the parity of n. We reall Bujalane, Costa and Singerman's result from[1℄ and we study natural bounds following from it, i.e. [4g/n] + 2 for n evenand [2(g − 1)/n] + 4 for n odd. We show (Theorem 3.3) that for n oddthis new bound is not attained for n not dividing g − 1, we �nd a sharperbound and show its attainment for given n for in�nitely many values of g. Inontrast, for n even, the bound [4g/n] + 2 is attained for a wider range of gand n than in [1℄, as we show in Theorem 3.4. Similar problems, onerningthe numbers of ovals of two symmetries, were also studied in [3℄.The author would like to express her gratitude to Prof. G. Gromadzkifor his attention to this work, disussion of the results and all help, whihmade it possible for this paper to ome up.The author is also grateful to the referee and Prof. S. M. Natanzon fortheir omments and suggestions.2. Preliminaries. We shall prove our results using the theory of non-eulidean rystallographi groups (NEC groups for short), by whih we meandisrete and oompat subgroups of the group G of all isometries of thehyperboli plane H. The algebrai struture of suh a group Λ is determinedby its signature

s(Λ) = (g;±; [m1, . . . , mr]; {(n11, . . . , n1s1
), . . . , (nk1, . . . , nksk

)}),(1)where the brakets (ni1, . . . , nisi
) are alled the period yles, the integers

nij are the link periods, mi the proper periods and �nally g the orbit genusof Λ.A group Λ with signature (1) has the presentation with the followinggenerators, alled anonial generators:
x1, . . . , xr, ei, cij, 1 ≤ i ≤ k, 0 ≤ j ≤ si,

a1, b1, . . . , ag, bg if the sign is +,

d1, . . . , dg otherwise,and relators
xmi

i , i = 1, . . . , r,

c2
i,j−1, c

2
ij , (ci,j−1cij)

nij , ci0e
−1
i cisi

ei, i = 1, . . . , k, j = 1, . . . , si,and
x1 · · ·xre1 · · · eka1b1a

−1
1 b−1

1 · · · agbga
−1
g b−1

g or x1 · · ·xre1 · · · ekd
2
1 · · · d

2
gaording as the sign is + or −. The elements xi are ellipti transforma-tions, ai, bi hyperboli translations, di glide re�etions and cij hyperbolire�etions. The re�etions ci,j−1, cij are said to be onseutive. Every ele-ment of �nite order in Λ is onjugate to a anonial re�etion, a power of



SYMMETRIES OF A RIEMANN SURFACE 63

some anonial ellipti element, or a power of the produt of two onseutiveanonial re�etions.Now an abstrat group with the above presentation an be realized as anNEC group Λ if and only if the value
2π

(

εg + k − 2 +
r∑

i=1

(

1 −
1

mi

)

+
1

2

k∑

i=1

si∑

j=1

(

1 −
1

nij

))

is positive where ε = 2 or 1 aording as the sign is + or −. This value turnsout to be the hyperboli area µ(Λ) of an arbitrary fundamental region forthe group, and we have the Hurwitz�Riemann formula
[Λ : Λ′] = µ(Λ′)/µ(Λ)for any subgroup Λ′ of �nite index in an NEC group Λ.Now NEC groups having no orientation-reversing elements are lassialFuhsian groups. They have signatures (g; +; [m1, . . . , mr]; {−}), whih willbe abbreviated as (g; m1, . . . , mr). Given an NEC group Λ, the subgroup Λ+of Λ onsisting of the orientation-preserving elements is alled the anonialFuhsian subgroup of Λ and for a group with signature (1) it has, by [7℄, thesignature

(εg + k − 1; m1, m1, . . . , mr, mr, n11, . . . , nksk
).(2) A torsion free Fuhsian group Γ is alled a surfae group and it hassignature (g;−). In that ase H/Γ is a ompat Riemann surfae of genus g,and onversely, eah ompat Riemann surfae an be represented as suh anorbit spae for some Γ . Furthermore, given a Riemann surfae so represented,a �nite group G is a group of automorphisms of X if and only if G = Λ/Γfor some NEC group Λ. The following result from [2℄ is ruial for the paper.Proposition 2.1. Let X = H/Γ be a Riemann surfae and G the groupof all automorphisms of X. Let G = Λ/Γ for some NEC group Λ and let

θ : Λ → G be the anonial epimorphism. Then the number of ovals of asymmetry a of X equals
∑

[C(G, θ(ci)) : θ(C(Λ, ci))],where the sum is taken over a set of representatives of all onjugay lassesof anonial re�etions whose images under θ are onjugate to a.For a symmetry a we shall denote by ‖a‖ the number of its ovals. Theindex wi = [C(G, θ(ci)) : θ(C(Λ, ci))] will be alled the ontribution of cito ‖a‖.Lemma 2.2 (see also Theorem 2 in [1℄). Let Dn = Λ/Γ be the groupof automorphisms of a Riemann surfae X = H/Γ generated by two non-entral symmetries a and b and let C = (n1, . . . , ns) be a period yle of Λ.If n is odd then the re�etions orresponding to C ontribute to ‖a‖ and ‖b‖
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at most two ovals in total. If n is even then the re�etions orresponding to
C ontribute to ‖a‖ and ‖b‖ at most t ovals in total , where t is the numberof even link periods if s ≥ 1 and some ni is even, and at most two ovals intotal in the remaining ases.Proof. Let θ : Λ → Dn be the anonial epimorphism. The ase of nodd is trivial; here all anonial re�etions belonging to C are onjugate,
C(Dn, θ(c)) has order 2 and c ∈ C(Λ, c).Now for n even the entralizer of any non-entral element of Dn hasorder 4. Sine ci ∈ C(Λ, ci), we have wi ≤ 2, and sine a and b are notonjugate, we an assume that either s ≥ 2, or s = 1 and n1 is even. If
c belongs to two odd link periods then we an assume that c ontributesto neither ‖a‖ nor ‖b‖, while if c belongs to an even link period n′ and cc′has order n′ then (cc′)n′/2 ∈ C(Λ, c). Now θ((cc′)n′/2c) 6= 1 sine ker θ is aFuhsian group and therefore we see that θ(C(Λ, c)) has order 4.3. Bounds for the total number of ovals of two symmetries ofa Riemann surfae. The starting point for this paper is the result ofBujalane, Costa and Singerman from [1℄ (see also Natanzon [5℄), whihwe reall below. In this work we show that the natural bound for n notsatisfying the divisibility onditions from [1℄ is attained for arbitrary even n.In ontrast, for odd n there is a sharper bound, whih is attained for arbitrary
n not dividing g − 1 for in�nitely many values of g.Theorem 3.1 (Bujalane, Costa, Singerman, Natanzon). Let a and bbe two symmetries of a Riemann surfae X of genus g, whose produt hasorder n. Then a and b have at most 2(g − 1)/n + 4 and 4g/n + 2 ovals intotal for n odd and even respetively.Corollary 3.2. Any (M − q)- and (M − q′)-symmetries of a Riemannsurfae of genus g ommute for g ≥ q + q′ + 1.Proof. Observe that for the total number t of ovals of both symmetries,
t = 2g + 2 − q − q′ ≥ g + 3. Let n denote the order of the produt ofour symmetries and assume to the ontrary that n 6= 2. By Theorem 3.1for n even we get g + 3 ≤ 4g/n + 2 ≤ g + 2, a ontradition. For n odd,
g+3 ≤ 2(g−1)/n+4 ≤ 2(g−1)/3+4 and so g ≤ 1, whih is not the ase.The bounds given in the previous theorem were shown in [1℄ to be at-tained for arbitrary n and g for whih n divides g − 1 and 4g respetively.Theorem 3.1 gives in partiular the bounds [2(g − 1)/n] + 4 and [4g/n] + 2(where [·] denotes the integer part), whih we shall study now. In partiular,the �rst bound turns out to be attained only for n dividing g − 1.Theorem 3.3. Let a and b be two symmetries of a Riemann surfae Xof genus g, whose produt has order n. If n is odd and n does not divide
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g − 1, then a and b have at most [2(g − 1)/n] + 3 ovals in total , and thisbound is attained for arbitrary n for in�nitely many values of g.Proof. Let t denote the total number of ovals of a and b, and let G =
〈a, b〉 = Dn. Now G = Λ/Γ for some surfae Fuhsian group Γ and an NECgroup Λ with signature

(h;±; [m1, . . . , mr]; {C1, . . . , Ck, (n1), . . . , (nl), (−), m. . ., (−)}),where Ci = (ni1, . . . , nisi
) with si ≥ 2. Now as µ(Λ) = 2π(g − 1)/n and ndoes not divide g − 1, we see that the signature of Λ has link periods orproper periods. If there is a proper period or at least two link periods, then

2π(g − 1)/n = µ(Λ) > 2π(k + l + m − 2 + 1/2)

≥ π(2(k + l + m) − 3) ≥ π(t − 3)and so t ≤ [2(g − 1)/n] + 3 as t is an integer. Obviously the number oflink periods annot be 1 if r = 0 as otherwise Λ+ = (h′; n0) by (2) for theunique link period n0 in the signature of Λ. As Λ+/Γ = Zn, the relation
x′

1[a
′

1, b
′

1] . . . [a
′

h′ , b′h′ ] = 1 in Λ+ would give θ(x′

1) = 1 for the anonialepimorphism θ : Λ → G, whih is impossible.We now show that for arbitrary m there exist two symmetries a and bon a Riemann surfae X of genus g = n(m + 1), whose produt has order nand whih have [2(g − 1)/n] + 3 ovals in ommon. Indeed, onsider an NECgroup with signature
(0; +; [−]; {(−), m+1. . . , (−), (n, n)})and let θ : Λ → Dn be an epimorphism de�ned by θ(ei) = 1 for i = 1, . . . ,

m + 2, θ(ci0) = a for i = 1, . . . , m + 1 and θ(cm+2,0) = θ(cm+2,2) = a,
θ(cm+2,1) = b. Then by the Hurwitz�Riemann formula for Γ = ker θ, X =
H/Γ is a Riemann surfae of genus g, and by Proposition 2.1 eah of thesymmetries a and b has m + 2 ovals.In ontrast to the previous theorem, the bound [4g/n] + 2 for n, g notsatisfying the divisibility onditions from [1℄ annot be improved for n even.Theorem 3.4. For arbitrary even n > 4 there are in�nitely many valuesof g for whih n does not divide 4g and there exists a Riemann surfae ofgenus g having two symmetries whose produt has order n, with [4g/n] + 2ovals in total.Proof. Let Λ be an NEC group with signature

(0; +; [−]; {(−), (2, 2m. . . , 2)})and onsider an epimorphism θ : Λ → Dn = 〈a, b | a2 , b2, (ab)n〉 de�ned by
θ(e1) = θ(e2) = 1, θ(c10) = a and whih sends the re�etions orrespondingto the unique non-empty period yle alternately to b and (ab)n/2−1a. As
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before θ de�nes the on�guration of two symmetries of a Riemann surfae ofgenus g = mn/2+1, whih have, by Proposition 2.1, 2m+2 ovals in total.4. Commutativity of a pair of (M − q)- and (M − q′)-symmetries.By Corollary 3.2, a pair of (M − q)- and (M − q′)-symmetries of a Riemannsurfae X of genus g ommutes for g ≥ q + q′ + 1. Now, using the methodintrodued in Proposition 2.1, we shall show that q + q′ + 1 is in fat theminimal lower bound for g whih guarantees ommutativity of a pair of
(M − q)- and (M − q′)-symmetries of a Riemann surfae X of genus g. Theonly exeption is the ase of (M − 1)- and (M − g)-symmetries for g > 2.Reall that we only onsider symmetries with �xed points.Theorem 4.1. For 2 ≤ g ≤ q + q′ but g > 2 and {q, q′} = {1, g},there exists a Riemann surfae of genus g, having a pair of non-ommuting
(M − q)- and (M − q′)-symmetries.Proof. Let q ≤ q′ and observe that g ≥ q′ as both symmetries have ovals.For q + q′ − g ≡ 0 mod 4 onsider an NEC group Λ with signature

(h;−; [−]; {(2, s. . . , 2, 4, 2, s′. . . , 2, 4)}),where h = (q + q′ − g)/4, s = g − q, s′ = g − q′, and an epimorphism
θ : Λ → G = D4 for whih θ(e) = 1, θ(di) = a and the onseutive anonialre�etions orresponding to the non-empty period yle are mapped to

a bab a bab . . . a(ab)2s

︸ ︷︷ ︸

s+1

b aba b aba . . . b(ab)2s′

︸ ︷︷ ︸

s′+1

a.

Then by the Hurwitz�Riemann formula for Γ = ker θ, X = H/Γ has genus g,and by Proposition 2.1 the symmetries a and b have g + 1− q and g + 1− q′ovals respetively.For q′ + q − g ≡ 2 mod 4 onsider an NEC group with signature
(h;−; [2]; {(2, s. . . , 2, 4, 2, s′. . . , 2, 4)}),where h = (q′+q−2−g)/4, s, s′ are as above, and the epimorphism de�nedas in the previous ase with θ(x) = θ(e) = (ab)2. As before θ de�nes adesired on�guration of non-ommuting (M − q)- and (M − q′)-symmetriesof a Riemann surfae of genus g.Now let q′ + q − g ≡ 3 mod 4. Consider an NEC group with signature
(h;−; [4]; {(2, s. . . , 2, 4, 2, s′. . . , 2, 4)}),where h = (q′ + q − 3 − g)/4, s, s′ are as above, and an epimorphismde�ned as follows for the onseutive anonial re�etions orresponding tothe non-empty period yle:

a bab a bab . . . a(ab)2s

︸ ︷︷ ︸

s+1

b aba b aba . . . b(ab)2s′

︸ ︷︷ ︸

s′+1

bab
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and θ(x) = ab, θ(e) = ba. Also here θ gives rise to the on�guration ofsymmetries we looked for.Now if q + q′ − g ≡ 1 mod 4 and g < q + q′ − 1 onsider an NEC groupwith signature
(h;−; [2, 4]; {(2, s. . . , 2, 4, 2, s′. . . , 2, 4)}),where h = (q′+q−5−g)/4, s, s′ are as above, and an epimorphism de�ned forthe onseutive anonial re�etions orresponding to the non-empty periodyle as follows:

a bab a bab . . . a(ab)2s

︸ ︷︷ ︸

s+1

b aba b aba . . . b(ab)2s′

︸ ︷︷ ︸

s′+1

bab

and θ(x1) = (ab)2, θ(x2) = θ(e) = ab. As before for Γ = ker θ, X = H/Γis a Riemann surfae of genus g having two non-ommuting (M − q)- and
(M − q′)-symmetries.Finally, for g = q + q′ − 1 assume �rst that q ≥ 2 and let Λ be an NECgroup with signature

(0;±; [−]; {(2, q−2. . . , 2, 4, 2, q′−2. . . , 2, 4, 4, 4)})and an epimorphism θ : Λ → G = D4 for whih θ(e) = 1 and the re�etionsorresponding to the non-empty period yle are mapped onto
a bab a bab . . . a(ab)2(q−1)

︸ ︷︷ ︸

q−1

b aba b aba . . . b(ab)2(q′−1)

︸ ︷︷ ︸

q′−1

a b a.

Here again we get a on�guration of two non-ommuting symmetries a and b,whih have q and q′ ovals respetively. For g = 2, {q, q′} = {1, 2}, we antake n = 8; in this ase the bound 4g/n + 2 is attained by Theorem 4 in [1℄,and one of our symmetries has two ovals and the other has one oval byTheorem 6 from [1℄.Theorem 4.2. For g > 2 any (M − 1)- and (M − g)-symmetries of aRiemann surfae of genus g ommute.Proof. Assume to the ontrary that there exists pair a, b of non-ommu-ting (M − 1)- and (M − g)-symmetries, and let n > 2 denote the order oftheir produt. Observe that the total number t of ovals of both symmetriesis g + 1.Obviously n annot be odd, as in this ase the symmetries would beonjugate and so they would have the same number of ovals, whih is learlynot the ase. So let n be even. By Theorem 3.1 we see that in this ase thetwo symmetries have at most 4g/n+2 ovals in total. In partiular for n ≥ 8,
4g/n + 2 ≤ g/2 + 2 and so g + 1 ≤ g/2 + 2 would be neessary for suhsymmetries to exist. But then we have g ≤ 2, whih is not the ase again.
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Assume now that suh a pair of symmetries a, b exists for n = 4, and let

a and b have g ovals and 1 oval respetively. Let Λ be an NEC group withsignature
(h;±; [m1, . . . , mr]; {C1, . . . , Ck, (−), m. . . , (−)}),where Ci = (ni1, . . . , nisi

), and set s = s1 + · · · + sk. Observe now that if
k = 0, then either m ≥ 3, or m = 2 and h+r ≥ 1. In addition, 2m ≥ t+1 byLemma 2.2, as the symmetry b has exatly one oval. So we have π(g−1)/2 =
µ(Λ) ≥ 2π(m− 2 + h + r/2) ≥ 2π(m/2 + (h + m + r)/2− 2) ≥ π(−1 + t)/2and hene t ≤ g, a ontradition.For k ≥ 2 we have π(g−1)/2 = µ(Λ) ≥ 2π(m+s/4) ≥ 2π(m/2+s/4) andas t ≤ s+2m, by Lemma 2.2, we get t ≤ g−1. So we an assume that k = 1.If m ≥ 2 then π(g − 1)/2 = µ(Λ) ≥ 2π(−2 + k + m + s/4) ≥ 2π(m/2 + s/4)and as before we have t ≤ g − 1, whih is not the ase.Let now k = m = 1. We an assume h = r = 0 as otherwise π(g − 1)/2
= µ(Λ) ≥ 2π(1/2 + s/4) = 2π(m/2 + s/4) and we would have t ≤ g − 1as above. Observe now that s ≥ 2, sine otherwise Λ+ = (h′; n0) by (2) forthe unique link period n0 in the signature of Λ. As Λ+/Γ = Z4, the relation
x′

1[a
′

1, b
′

1] · · · [a
′

h′ , b′h′ ] = 1 in Λ+ would give θ(x′

1) = 1 for the anonialepimorphism θ : Λ → G, whih is impossible. Now if all link periods areequal to 2 then, by Proposition 2.1, the non-empty period yle ontributesovals only to the symmetry a as s ≥ 2 and the order of the produt of anelement onjugate to a and an element onjugate to b is 4. So by Lemma 2.2we have s+2 ≥ t+1, whih gives π(g−1)/2 = µ(Λ) ≥ πs/2 ≥ π(t−1)/2 andso t ≤ g, whih is not the ase. Observe now that if there is a link period 4,then there has to be another link period 4. Indeed, the onjugates of a haveprodut of order 2 and so θ(ci) is onjugate to b for the unique i in the range
0 ≤ i ≤ s− 1. But then for i 6= 0, θ(ci−1), θ(ci+1) are onjugates of a and so
ni = ni+1 = 4. For i = 0, θ(cs) is onjugate to b, while θ(c1) and θ(cs−1) areonjugate to a, so n1 = ns = 4. In both ases all other link periods are equalto 2. Thus π(g−1)/2 = µ(Λ) ≥ 2π((s−2)/4+3/4) = π(s+1)/2 ≥ π(t−1)/2sine s + 2 ≥ t by Lemma 2.2 and so t ≤ g, whih is not the ase.So we an assume that Λ has signature of the form

(h;±; [m1, . . . , mr]; {(n1, . . . , ns)})and by Proposition 2.1 and Lemma 2.2 we see that t = s = g + 1. Sineboth a and b have ovals, it follows, as shown above, that nj = nj+1 = 4 fora unique integer j with 1 ≤ j ≤ s and all other ni are equal to 2.Observe �rst that h = 0 as otherwise π(g − 1)/2 = µ(Λ) ≥ 2π((g − 1)/4
+ 3/4) and so g + 2 ≤ g − 1, a ontradition. Now if r > 0 then we have
π(g − 1)/2 = µ(Λ) ≥ 2π(−1 + (g − 1)/4 + 3/4 + 1/2) = πg/2 and we get
g ≤ g − 1, a ontradition again. So �nally let r = 0. Then π(g − 1)/2 =
µ(Λ) = π(g − 2)/2, and also in this ase we get a ontradition.
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Observe now that for n = 6, g + 1 ≤ 2g/3 + 2 by Theorem 3.1 and so
g ≤ 3. Now for g = 3, 4g/n = 2 is an integer, 4g/n + 2 = g + 1 and byTheorems 4 and 6 from [1℄ eah of our symmetries has two ovals, whih isnot the ase.
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