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RIESZ POTENTIALS DERIVED

BY ONE-MODE INTERACTING FOCK SPACE APPROACH

BY

NOBUHIRO ASAI (Kariya)

Abstract. The main aim of this short paper is to study Riesz potentials on one-
mode interacting Fock spaces equipped with deformed annihilation, creation, and neutral
operators with constants c0,0, c1,1 ∈ R and c0,1 > 0, c1,2 ≥ 0 as in equations (1.4)–(1.6).
First, to emphasize the importance of these constants, we summarize our previous results
on the Hilbert space of analytic L2 functions with respect to a probability measure on C.
Then we consider the Riesz kernels of order 2α, α = c0,1/c1,2, on C if 0 < c0,1 < c1,2,
which can be derived from the Bessel kernels of order 2α, γα,c1,2

, on C. Moreover, we
prove that if c1,2/2 < c0,1 < c1,2, then the Riesz potentials are continuous linear operators
on the Hilbert space of analytic L2 functions with respect to γα,c1,2

.

1. Preliminaries. Let µ be a probability measure on I ⊂ R with finite
moments of all orders such that the linear span of the monomials xn, n ≥ 0, is
dense in L2(I, µ). Then it is known [8] that there exist a complete orthogonal
system {Pn(x)}∞n=0 of polynomials with leading coefficient 1 for L2(I, µ) with
P0 = 1, a sequence {ωn}

∞
n=0 of nonnegative real numbers, and a sequence

{αn}
∞
n=0 of real numbers such that the following recurrence formula holds:

(x − αn)Pn(x) = Pn+1(x) + ωnPn−1(x), n ≥ 0,

where ω0 = 1 and P−1 = 0 by convention. The numbers ωn, αn are called the
Jacobi–Szegö parameters of µ. In this paper, it will be enough to consider
probability measures having the Jacobi–Szegö parameters of the form

ω0 = 1, ωn = n(c0,1 + c1,2(n − 1)), n ≥ 1,(1.1)

αn = c0,0 + c1,1n, n ≥ 0,(1.2)

where c0,1 > 0 and c1,2 ≥ 0 and c0,0, c1,1 ∈ R.

For f ∈ L2(I, µ), the author [3] introduced the Sµ-transform given by

(1.3) (Sµf)(z) = 〈Eλ(·, z), f〉L2(µ) =
\
I

Eλ(x, z)f(x) dµ(x), z ∈ Ωλ,
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where

Eλ(x, z) =
∞

∑

n=0

Pn(x)

λn
zn, λn = ω0ω1 · · ·ωn,

and Ωλ is the set of all z in C such that ‖Eλ(·, z)‖L2(µ) < ∞. The set
{Eλ(·, z) : z ∈ Ωλ} is linearly independent and spans a dense subspace of
L2(I, µ). The Sµ-transform in (1.3) is a non-Gaussian analogue of the well-
known Segal–Bargmann transform. See [6], [10] for µ being the Gaussian
measure. The Sµ-transform maps L2(I, µ) isomorphically onto the Hilbert
space Hλ of all analytic functions F (z) =

∑∞
n=0 anzn on Ωλ with the norm

‖F‖Hλ
:=

(

∞
∑

n=0

λn|an|
2
)1/2

< ∞.

Let b and b∗ be the Bosonic annihilation and creation operators, respec-
tively, defined by

b · 1 = 0, bzn = nzn−1, n ≥ 1,

and

b∗zn = zn+1, n ≥ 0.

Moreover, introduce the operators

B− = c0,1b + c1,2b
∗b2,(1.4)

B+ = b∗,(1.5)

B◦ = c0,0I + c1,1b
∗b.(1.6)

Then the Hilbert space Hλ equipped with {B−, B+, B◦} becomes the one-

mode interacting Fock space discussed in [1], [4]. We call B−, B+ and B◦

the deformed annihilation operator, deformed creation operator, and neutral

(preservation) operator, respectively. The constants c0,0 and c0,1 correspond
to the mean and variance of a classical random variable x, respectively. The
roles of c1,1, c1,2 and c0,1/c1,2 will be seen later on.

In our previous papers [4], [5] we have managed to realize the operators
B−, B+, B◦ on HL2(C, γ), a certain Hilbert space of analytic L2 functions
with respect to a probability measure γ on C. To construct such a measure,
it is quite important to see whether or not the structure constant c1,2 is
zero.

2. Hilbert spaces of analytic functions associated with Gaussian

and Bessel kernel measures. In this section, we summarize the key re-
sults from [5] for the case of c1,2 = 0 and [4] for c1,2 6= 0. Then the readers
can recognize that the constant c1,2 plays an important role in our analysis.
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First, let us state the following theorem for the case of c1,2 = 0:

Theorem 2.1 ([5]). Suppose that the Jacobi–Szegö parameters have the

form (1.1), (1.2) with c1,2 = 0. Then:

(1) There exists a unique probability measure hc0,1
on C satisfying

Hλ = HL2(C, hc0,1
).

In fact , hc0,1
is the Gaussian measure on C of the form

dhc0,1
(z) := h(z, c0,1)dz

where

h(z, c0,1) =
1

πc0,1
exp

(

−
|z|2

πc0,1

)

.

(2) The Segal–Bargmann transform Sµ is a unitary operator from

L2(I, µ) onto HL2(C, hc0,1
) satisfying

S−1
µ (c0,0 + c0,1b + b∗ + c1,1b

∗b)Sµ = Qx

where Qx is the multiplication operator by x on L2(I, µ).

Example 2.2. The Gaussian measure on R and the Poisson measure on
N0 := {0} ∪ N have c1,2 = 0. Note that c1,1 = 0 for the Gaussian measure.
See [5] for the details.

Secondly, the case of c1,2 6= 0 is as follows:

Theorem 2.3 ([4]). Assume that the Jacobi–Szegö parameters have the

form (1.1), (1.2) with c1,2 6= 0. Then:

(1) There exists a unique probability measure γα,c1,2
on C satisfying

Hλ = HL2(C, γα,c1,2
).

In fact , γα,c1,2
is the Bessel kernel measure on C of the form

dγα,c1,2
(z) :=

2c
−(1+α)/2
1,2

πΓ (α)
|z|α−1K1−α(2c

−1/2
1,2 |z|) dz, α = c0,1/c1,2.

Note that Kν is the so-called modified Bessel function given by

Kν(x) =
π

2 sin(νπ)
(I−ν(x) − Iν(x))

where

Iν(x) =

(

x

2

)ν ∞
∑

n=0

(x/2)2n

n!Γ (n + ν + 1)
.

(2) The Segal–Bargmann transform Sµ is a unitary operator from

L2(I, µ) onto HL2(C, γα,c1,2
) satisfying

S−1
µ (c0,0 + c0,1b + b∗ + c1,1b

∗b + c1,2b
∗b2)Sµ = Qx
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where α = c0,1/c1,2 and Qx is the multiplication operator by x on

L2(I, µ).
(3) The measure γα,c1,2

has the following integral representation:

dγα,c1,2
(z) =

1

Γ (α)

(

∞\
0

h(z, c1,2t)e
−ttα−1 dt

)

dz

where α = c0,1/c1,2.

Example 2.4. For c1,2 6= 0, we have three examples classified by the
sign of c2

1,1 − 4c1,2:

(1) If µ is the Gamma distribution on R+, then c1,1 6= 0 and c2
1,1 = 4c1,2.

(2) If µ is the negative binomial distribution on N0, then c2
1,1 > 4c1,2.

(3) If µ is the Meixner distribution on R, then c2
1,1 < 4c1,2.

The reader can refer to Appendix of [4] for the details.

So, if c1,2 6= 0, a classical random variable x in L2(I, µ) is realized in a
Hilbert space of analytic L2 functions with respect to γα,c1,2

, different from
HL2(C, hc0,1

) in Theorem 2.1. On the other hand, the constants c0,0, c1,1

do not contribute anything to the construction of hc0,1
and γα,c1,2

. This is
because these two measures on C are derived from the complex moment
problem for the sequence {λn}.

3. Riesz potentials. There are some natural relationships between
HL2(C, γα,c1,2

) in Theorem 2.3 and the Riesz potentials on it. To see them,
let us discuss the case c1,2 6= 0 as |z| → 0, which was not considered in our
previous papers [4], [5].

It is known [2], [11] that the asymptotic behavior of the Bessel kernels
γα,c1,2

as |z| → 0 is given by

(3.1) γα,c1,2
(z) ∼

Γ (1 − α)

cα
1,2πΓ (α)

1

|z|2(1−α)
=: Rα,c1,2

(z) α = c0,1/c1,2,

if 0 < c0,1 < c1,2. In this paper, the right hand side of (3.1) is called the
Riesz kernel of order 2α.

Note that the order 2α of the kernel depends on two constants c0,1 and
c1,2. To see the roles of these constants in our analysis, let us consider the
Laplace operator ∆c = 4∂2/∂z∂z̄ and its fractional power

(

−
c1,2

4
∆c

)−α

, α = c0,1/c1,2.

This is the so-called Riesz potential. By using the Gamma function, one can
formally give the integral representation
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(3.2)

(

−
c1,2

4
∆c

)−α

F =
1

Γ (α)

\
R+

(e(c1,2/4)t∆cF )tα−1 dt

for F ∈ HL2(C, γα,c1,2
). We shall prove that the Riesz potentials as defined

by (3.2) make sense as continuous linear operators on HL2(C, γα,c1,2
) due

to the following.

Theorem 3.1. Let F ∈ HL2(C, γα,c1,2
) and c1,2/2 < c0,1 < c1,2. Then

∥

∥

∥

∥

(

−
c1,2

4
∆c

)−α

F

∥

∥

∥

∥

HL2

≤ C‖F‖HL2 , α = c0,1/c1,2,

for some C > 0.

Proof. It is easy to see that

(3.3)

(

−
c1,2

4
∆c

)−α

F (z)

=
1

Γ (α)

\
R+

{\
C

h(z − w, c1,2t)F (w) dw
}

tα−1 dt

=
1

Γ (α)

\
C

{ \
R+

se−s

π|z − w|2

(

|z − w|2

c1,2s

)α−1( |z − w|2

c1,2s2

)

ds

}

F (w) dw

=
1

cα
1,2πΓ (α)

( \
R+

e−ss−α ds
)(\

C

|z − w|2(α−1)F (w) dw
)

=
\
C

Rα,c1,2
(z − w)F (w) dw =: Rα,c1,2

∗ F (z).

By using Young’s inequality for convolution, we get

‖Rα,c1,2
∗ F‖HL2 ≤ ‖Rα,c1,2

‖HL1‖F‖HL2 .

With the help of Hölder’s inequality, we obtain

‖Rα,c1,2
‖HL1 =

\
C

Rα,c1,2
(z)γα,c1,2

(z) dz

=
\

|z|<1

Rα,c1,2
(z)γα,c1,2

(z) dz +
\

|z|≥1

Rα,c1,2
(z)γα,c1,2

(z) dz

≤
( \
|z|<1

Rα,c1,2
(z)2 dz

)1/2( \
|z|<1

γα,c1,2
(z)2 dz

)1/2
+

Γ (1 − α)

cα
1,2πΓ (α)

< ∞

due to c1,2/2 < c0,1 < c1,2. Therefore,

‖Rα,c1,2
∗ F‖HL2 ≤ C‖F‖HL2 for some C > 0.
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Since the Riesz potentials are closely related to fractional calculus, our
approach from the point of view of deformed creation and annihilation oper-
ators on one-mode interacting Fock spaces and the Hilbert space of analytic
L2 functions could be useful to study (complex) fractional Brownian motions
(fBm’s) and fractional white noises. Our parameter α = c0,1/c1,2 is related
to the Hurst parameter H in (0, 1). See [7], [9] and papers cited therein for
fBm’s and related applications.
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