VOL. 109

2007

NO. 1

ON THE k-CONVEXITY OF THE BESICOVITCH-ORLICZ SPACE OF ALMOST PERIODIC FUNCTIONS WITH THE ORLICZ NORM

BҮ

FAZIA BEDOUHENE and MOHAMED MORSLI (Tizi-Ouzou)

Abstract. Boulahia and the present authors introduced the Orlicz norm in the class B^{ϕ} -a.p. of Besicovitch–Orlicz almost periodic functions and gave several formulas for it; they also characterized the reflexivity of this space [Comment. Math. Univ. Carolin. 43 (2002)]. In the present paper, we consider the problem of k-convexity of B^{ϕ} -a.p. with respect to the Orlicz norm; we give necessary and sufficient conditions in terms of strict convexity and reflexivity.

1. Introduction and preliminaries

1.1. Orlicz functions. In the following, the notation ϕ is used for an Orlicz function, i.e. a function $\phi : \mathbb{R} \to \mathbb{R}$ which is even, convex, satisfies $\phi(u) = 0$ iff u = 0, and $\lim_{u\to\infty} \phi(u)/u = \infty$, $\lim_{u\to0} \phi(u)/u = 0$.

This function is said to be of Δ_2 -type when there exist constants K > 2and $u_0 \ge 0$ such that

$$\phi(2u) \le K\phi(u), \quad \forall u \ge u_0.$$

The function $\psi(y) = \sup\{x|y| - \phi(x) : x \ge 0\}$ is called *conjugate* to ϕ . It is an Orlicz function when ϕ is. The pair (ϕ, ψ) satisfies the Young inequality

$$xy \le \phi(x) + \psi(y), \quad x \in \mathbb{R}, \, y \in \mathbb{R}$$

When both ϕ and ψ are of Δ_2 -type we write $\phi \in \Delta_2 \cap \nabla_2$. Note that if ψ is of Δ_2 -type then we have the following property (cf. [1]):

 $\forall \ell \in \left]0,1\right[, \forall u_0 \geq 0, \, \exists \beta = \beta(\ell) \in \left]0,1\right[, \quad \phi(\ell u) \leq \ell(1-\beta)\phi(u), \quad \forall u \geq u_0.$

Let now ϕ be strictly convex. Then (cf. [1]) for every k > 0 and $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\phi\left(\frac{u+v}{2}\right) \le (1-\delta)\left(\frac{\phi(u)+\phi(v)}{2}\right)$$

for all $u, v \in \mathbb{R}$ satisfying $|u|, |v| \leq k$ and $|u - v| \geq \varepsilon$.

2000 Mathematics Subject Classification: 46B20, 42A75.

Key words and phrases: k-convexity, Besicovitch–Orlicz space, almost periodic function.

A normed space X is called *strictly convex* when

 $\forall x,y \in X, \quad \|x\| = \|y\| = 1, \, \|x-y\| > 0 \ \Rightarrow \ \|x+y\| < 2.$

X is called k-convex for $k \in \mathbb{N}$, $k \geq 2$ when, for each $\{x_n\} \subset B(X)$ (the closed unit ball of X), the following implication holds:

$$\begin{aligned} (\|x_{n_1} + \dots + x_{n_k}\| \to k \text{ as } n_1, \dots, n_k \to \infty) \\ \Rightarrow \{x_n\} \text{ is a Cauchy sequence in norm.} \end{aligned}$$

When $(X, \|\cdot\|)$ is a Banach space, the right hand side of this implication means that $\{x_n\}$ is norm convergent to some $x \in X$.

The k-convexity has been introduced for k = 2 in [2]. In [4], it is shown that k-convexity for k = 2 implies approximate compactness, which in turn guarantees the existence of the projection of any element onto any convex and closed subset of the space.

Moreover it is known that if X is k-convex then it is also (k+1)-convex, strictly convex and reflexive (cf. [1]). We can also easily see that uniform convexity implies k-convexity.

Let X be a real linear space. A functional $\varrho: X \to [0, \infty]$ is a (*pseudo*) modular if it satisfies

- (i) $\varrho(x) = 0$ iff x = 0 for a modular, and
- (i)' $\rho(0) = 0$ for a pseudomodular,
- (ii) $\varrho(x) = \varrho(-x), \, \forall x \in X,$

(iii)
$$\varrho(\alpha x + \beta y) \le \varrho(x) + \varrho(y), \, \forall \alpha, \beta \ge 0, \, \alpha + \beta = 1, \, x, y \in X.$$

When, in place of (iii), we have

$$(\mathrm{iii})' \ \varrho(\alpha x + \beta y) \le \alpha \varrho(x) + \beta \varrho(y), \ \forall \alpha, \beta \ge 0, \ \alpha + \beta = 1, \ x, y \in X,$$

the (pseudo) modular ρ is called *convex*.

The linear space $X_{\varrho} = \{x \in X : \lim_{\alpha \to 0} \varrho(\alpha x) = 0\}$ associated to the modular ϱ is called a *modular space*.

When ρ is a convex (pseudo) modular, a (pseudo) norm is defined on X by the formula (cf. [10])

$$||x||_{\varrho} = \inf\{k > 0 : \varrho(x/k) \le 1\}.$$

A sequence $\{x_n\} \subset X$ is called *modular convergent* to some $x \in X$ when $\lim_{n\to\infty} \varrho(x_n - x) = 0$. The definition of a modular Cauchy sequence is similar.

1.2. The Besicovitch–Orlicz space of almost periodic functions. Let $M(\mathbb{R})$ be the set of real Lebesgue measurable functions on \mathbb{R} . The functional

$$\varrho_{B^{\phi}}: M(\mathbb{R}) \to [0,\infty], \quad \varrho_{B^{\phi}}(f) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \phi(|f(t)|) dt,$$

is a convex pseudomodular (cf. [6]–[8]). The associated modular space

$$\begin{split} B^{\phi}(\mathbb{R}) &= \{ f \in M(\mathbb{R}) : \lim_{\alpha \to 0} \varrho_{B^{\phi}}(\alpha f) = 0 \} \\ &= \{ f \in M(\mathbb{R}) : \varrho_{B^{\phi}}(\lambda f) < \infty \text{ for some } \lambda > \end{split}$$

is called the *Besicovitch–Orlicz space*. This space is endowed with the *Lux-emburg pseudonorm* (cf. [6]-[8])

$$||f||_{B^{\phi}} = \inf\{k > 0 : \varrho_{B^{\phi}}(f/k) \le 1\}, \quad f \in B^{\phi}(\mathbb{R}).$$

Let now \mathcal{A} be the set of generalized trigonometric polynomials, i.e.

$$\mathcal{A} = \Big\{ P(t) = \sum_{j=1}^{n} \alpha_j \exp(i\lambda_j t) : \lambda_j \in \mathbb{R}, \, \alpha_j \in \mathbb{C}, \, n \in \mathbb{N} \Big\}.$$

The Besicovitch–Orlicz space of almost periodic functions, denoted B^{ϕ} -a.p., is the closure of \mathcal{A} in $B^{\phi}(\mathbb{R})$ with respect to the pseudonorm $\|\cdot\|_{B^{\phi}}$:

$$B^{\phi}\text{-a.p.} = \{ f \in B^{\phi}(\mathbb{R}) : \exists \{ p_n \}_{n=1}^{\infty} \subset \mathcal{A}, \lim_{n \to \infty} \| f - p_n \|_{B^{\phi}} = 0 \}.$$

In the case $\phi(x) = |x|$, we use the notation B^1 -a.p. Some structural and topological properties of this space are considered in [6]–[8].

Besides the Luxemburg norm, we may endow this space with the Orlicz pseudonorm (cf. [9])

$$|||f|||_{B^{\phi}} = \sup\{M(|fg|) : g \in B^{\psi}\text{-a.p.}, \, \varrho_{B^{\psi}}(g) \leq 1\}$$

where ψ denotes the conjugate function to ϕ and

$$M(f) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(t) d\mu \quad \text{ for } f \in B^1\text{-a.p.}$$

The Orlicz norm $\|\cdot\| \cdot \|_{B^{\phi}}$ satisfies (cf. [9])

$$|||f|||_{B^{\phi}} = \inf \bigg\{ \frac{1}{k} \left(1 + \varrho_{B^{\phi}}(kf) \right) : k > 0 \bigg\}.$$

More precisely,

(1.1)
$$|||f|||_{B^{\phi}} = \frac{1}{k} (1 + \varrho_{B^{\phi}}(kf)) \text{ for some } k \in]0, \infty[,$$

which means that the set

$$K(f) = \left\{ k > 0 : \|\|f\|\|_{B^{\phi}} = \frac{1}{k} \left(1 + \varrho_{B^{\phi}}(kf) \right) \right\}$$

is not empty. Moreover, these two norms are equivalent (cf. [9]):

 $\|f\|_{B^{\phi}} \le \|\|f\|_{B^{\phi}} \le 2\|f\|_{B^{\phi}}.$

Note also the important fact that when $f \in B^{\phi}$ -a.p., the limit in the expression of $\rho_{B^{\phi}}(f)$ exists (cf. [6]).

0

The following technical result is used in the proof of the necessity conditions of our main theorem.

Let $\{A_i\}_{i\geq 1} \subset \mathbb{R}$ be measurable subsets such that $A_i \cap A_j = \emptyset$ if $i \neq j$ and $\bigcup_{i\geq 1} A_i \subset [0,\alpha], \alpha < 1$. Let $f = \sum_{i\geq 1} a_i \chi_{A_i}$ with $\sum_{i\geq 1} \phi(a_i) \mu(A_i) < \infty$ and let \widetilde{f} be the periodic extension of f to the whole \mathbb{R} (with period 1). Then there exists a sequence $\{P_m\}_{m\geq 1} \subset \mathcal{A}$ such that (cf. [6])

(1.2)
$$\varrho_{B^{\phi}}\left(\frac{\widetilde{f}-P_m}{4}\right) \to 0 \quad \text{as } m \to \infty$$

2. Results. We first give some convergence results which we will use extensively in different proofs.

Let $\Sigma = \Sigma(\mathbb{R})$ be the Σ -algebra of Lebesgue measurable subsets of \mathbb{R} . We define the set function

$$\overline{\mu}(A) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \chi_A(t) \, dt = \lim_{T \to \infty} \frac{1}{2T} \, \mu([-T,T] \cap A), \quad A \in \Sigma,$$

where μ is the Lebesgue measure. Clearly, $\overline{\mu}$ is not σ -additive and $\overline{\mu}(A) = 0$ when $A \in \Sigma$ with $\mu(A) < \infty$. As usual, a sequence $\{f_k\}_{k\geq 1}$ of Σ -measurable functions will be called $\overline{\mu}$ -convergent to a measurable function f when, for all $\varepsilon > 0$,

$$\lim_{k \to \infty} \overline{\mu} \{ t \in \mathbb{R} : |f_k(t) - f(t)| \ge \varepsilon \} = 0.$$

Similarly, we define a $\overline{\mu}$ -Cauchy sequence.

LEMMA 1 ([6]–[8]). Let $\{f_n\}_{n\geq 1} \subset B^{\phi}(\mathbb{R})$. Then:

- (1) If $\{f_n\}_{n\geq 1}$ is modular convergent to some $f \in B^{\phi}(\mathbb{R})$ then it is also $\overline{\mu}$ -convergent to f.
- (2) If $\{f_n\}_{n\geq 1}$ is $\overline{\mu}$ -convergent to some $f \in B^{\phi}(\mathbb{R})$ and there exists $g \in B^{\phi}$ -a.p. such that $\max(|f_k(x)|, |f(x)|) \leq g(x)$ for all $x \in \mathbb{R}$, then $\lim_{n\to\infty} \varrho_{B^{\phi}}(f_n) = \varrho_{B^{\phi}}(f)$.

LEMMA 2. Let $\{f_n\}, \{g_n\} \subset B^{\phi}$ -a.p. with $|||f_n|||_{B^{\phi}} = 1$, $|||g_n|||_{B^{\phi}} = 1$ and $\lim_{n,m\to\infty} |||f_n + g_m||_{B^{\phi}} = 2$. Let $\{k_n\}_{n\geq 1}$ and $\{h_n\}_{n\geq 1}$ be sequences of scalars such that the norms of f_n and g_n are attained in formula (1.1) at the points k_n and h_n respectively. If ϕ is strictly convex and $b = \sup_n \{k_n, h_n\}$ is finite, then $k_n f_n - h_m g_m \to 0$ in $\overline{\mu}$.

Proof. Indeed, in the opposite case, we may assume that $\overline{\mu}(E_{n,m}) > \theta$ where $E_{n,m} = \{t \in \mathbb{R} : |k_n f_n(t) - h_m g_m(t)| \ge r\}$ and r, θ are some fixed positive numbers.

From easy computations we can show the following:

 $\forall \varepsilon > 0, \; \exists \sigma > 0, \; \forall A \in \varSigma, \quad \overline{\mu}(A) \geq \varepsilon \; \Rightarrow \; \|\chi_A\|_{B^\phi} > \sigma.$

Let now k > 1 be such that $\overline{\mu}(A) \ge \theta/4 \Rightarrow \|\chi_A\|_{B^{\phi}} \ge 1/k$ and define

$$A_n = \{t \in \mathbb{R} : |f_n(t)| \ge k\}, \quad B_n = \{t \in \mathbb{R} : |g_n(t)| \ge k\}.$$

We have

$$1 = |||f_n|||_{B^{\phi}} \ge ||f_n||_{B^{\phi}} \ge ||f_n\chi_{A_n}||_{B^{\phi}} \ge k||\chi_{A_n}||_{B^{\phi}},$$

i.e. $\|\chi_{A_n}\|_{B^{\phi}} \leq 1/k$ and so $\overline{\mu}(A_n) \leq \theta/4$. By similar computations we also get $\overline{\mu}(B_n) \leq \theta/4$.

From the strict convexity of ϕ , there exists $\delta > 0$ such that

$$\phi(ru + (1 - r)v) \le (1 - \delta)[r\phi(u) + (1 - r)\phi(v)]$$

for each $r \in [1/(1+b), b/(b+1)]$ and $|u|, |v| \le bk, |u-v| \ge r$ (see [1]).

Since $k_n/(k_n + h_m)$ and $h_m/(k_n + h_m)$ are in [1/(1+b), b/(b+1)], for $t \in E_{n,m} \setminus (A_n \cup B_m)$ we have

(2.1)
$$\phi\left(\frac{k_n h_m}{k_n + h_m} \left(f_n(t) + g_m(t)\right)\right)$$
$$\leq (1 - \delta) \left[\frac{h_m}{k_n + h_m} \phi(k_n f_n(t)) + \frac{k_n}{k_n + h_m} \phi(h_m g_m(t))\right].$$

Then using (1.1) it follows that

$$\begin{split} & 2 - \left\| f_n + g_m \right\|_{B^{\phi}} \\ & \geq \frac{1}{k_n} \left(1 + \varrho_{B^{\phi}}(k_n f_n) \right) + \frac{1}{h_m} \left(1 + \varrho_{B^{\phi}}(h_m g_m) \right) \\ & \quad - \frac{k_n + h_m}{k_n h_m} \left(1 + \varrho_{B^{\phi}} \left(\frac{k_n h_m}{k_n + h_m} \left(f_n(t) + g_m(t) \right) \right) \right) \\ & \geq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \frac{k_n + h_m}{k_n h_m} \left[\frac{h_m}{k_n + h_m} \phi(k_n f_n(t)) + \frac{k_n}{k_n + h_m} \phi(h_m g_m(t)) \right. \\ & \left. - \phi \left(\frac{k_n h_m}{k_n + h_m} \left(f_n(t) + g_m(t) \right) \right) \right] dt \\ & \geq \lim_{T \to \infty} \frac{1}{2T} \int_{(E_{n,m} \setminus (A_n \cup B_m)) \cap [-T,T]} \left[\frac{\delta}{k_n} \phi(k_n f_n(t)) + \frac{\delta}{h_m} \phi(h_m g_m(t)) \right] dt \\ & \geq \frac{2\delta}{b} \lim_{T \to \infty} \frac{1}{2T} \int_{(E_{n,m} \setminus (A_n \cup B_m)) \cap [-T,T]} \left[\phi \left(\frac{|k_n f_n(t) - h_n g_n(t)|}{2} \right) \right] dt \end{split}$$

$$\geq \frac{2\delta}{b} \phi\left(\frac{r}{2}\right) \overline{\mu}(E_{n,m} \setminus (A_n \cup B_m)) \geq \frac{\delta}{b} \phi\left(\frac{r}{2}\right) (\overline{\mu}(E_{n,m}) - \overline{\mu}(A_n) - \overline{\mu}(B_m))$$
$$\geq \frac{2\delta}{b} \phi\left(\frac{r}{2}\right) \frac{\theta}{2} \geq \frac{\delta}{b} \phi\left(\frac{r}{2}\right) \theta.$$

This contradicts the assumption that $|||f_n + g_n||_{B^{\phi}} \to 2$.

LEMMA 3. Let $f \in B^{\phi}$ -a.p. and $E \in \Sigma$. Then the function

$$F:]0, \infty[\to \mathbb{R}, \quad F(\lambda) = \varrho_{B^{\phi}}(f\chi_E/\lambda),$$

is continuous on $]0,\infty[$.

Proof. Let $\lambda_0 \in [0, \infty[$ and $\{\lambda_n\}$ be a sequence of scalars such that $\lim_{n\to\infty} \lambda_n = \lambda_0$. We have

$$\varrho_{B^{\phi}}\left[\left(\frac{1}{\lambda_{n}} - \frac{1}{\lambda_{0}}\right)f\chi_{E}\right] \leq \left|\frac{1}{\lambda_{n}} - \frac{1}{\lambda_{0}}\right|\varrho_{B^{\phi}}(f\chi_{E}) \to 0 \quad \text{as } n \to \infty,$$

so $\{(1/\lambda_n)f\chi_E\}$ is modular convergent to $(1/\lambda_0)f\chi_E$. Moreover, we have

$$\max\left(\frac{1}{|\lambda_n|}|f|\chi_E, \frac{1}{|\lambda_0|}|f|\chi_E\right) \le M|f| \in B^{\phi}a.p.$$

for some constant M. Now, using Lemma 1, we get

$$\lim_{n \to \infty} \varrho_{B^{\phi}} \left(\frac{f \chi_E}{\lambda_n} \right) = \varrho_{B^{\phi}} \left(\frac{f \chi_E}{\lambda_0} \right),$$

which means that F is continuous at λ_0 .

REMARK 1. We already know that (cf. [6])

$$\varrho_{B^{\phi}}(f) \leq 1 \iff \|f\|_{B^{\phi}} \leq 1 \quad \text{for any } f \in B^{\phi}\text{-a.p.}$$

From Lemma 3 it follows that also

$$\varrho_{B^{\phi}}(f\chi_E) \leq 1 \iff \|f\chi_E\|_{B^{\phi}} \leq 1 \quad \text{for any } f \in B^{\phi}\text{-a.p. and } E \in \Sigma.$$

REMARK 2. In the same way, we know from [6] that

$$\forall \varepsilon > 0, \exists \delta > 0, \forall f \in B^{\phi}\text{-a.p.}, \quad \varrho_{B^{\phi}}(f) \leq \delta \; \Rightarrow \; \|f\|_{B^{\phi}} \leq \varepsilon.$$

From Lemma 3 it follows that the same holds for $f\chi_E$ instead of f.

LEMMA 4. Assume $\phi \in \Delta_2$. Then for all L > 0 and $\varepsilon > 0$ there exists a $\delta > 0$ such that if $f, g \in B^{\phi}$ -a.p. and $E \in \Sigma$, then

$$\varrho_{B^{\phi}}(f\chi_E) \leq L, \ \varrho_{B^{\phi}}(g\chi_E) \leq \delta \ \Rightarrow \ |\varrho_{B^{\phi}}((f+g)\chi_E) - \varrho_{B^{\phi}}(f\chi_E)| < \varepsilon.$$

Proof. Using Lemma 3, the arguments are the same as those for the Orlicz space case (see [1, Lemma 1.40]), so we omit the proof.

Lemma 5.

(1) If ϕ is of Δ_2 -type, then

$$\inf\{k \in K(f) : |||f|||_{B^{\phi}} = 1, \ f \in B^{\phi} \text{-}a.p.\} = d > 1.$$

(2) If the conjugate ψ to ϕ is of Δ_2 -type, then, for each a, b > 0, the set $Q = \{K(f) : a \leq |||f||_{B^{\phi}} \leq b, f \in B^{\phi}\text{-}a.p.\}$ is bounded.

Proof. The arguments are exactly the same as those used in the Orlicz space case (see [1]), so we omit the proof. \blacksquare

LEMMA 6. Suppose $\phi \in \Delta_2 \cap \nabla_2$ and let $\{f_n\}, \{g_n\} \subset B^{\phi}$ -a.p. be such that $\|\|f_n\|\|_{B^{\phi}}, \|\|g_n\|\|_{B^{\phi}} \leq 1, n = 1, 2, \ldots, and \lim_{n,m\to\infty} \|\|f_n + g_m\|\|_{B^{\phi}} = 2.$ Then for every $\varepsilon \in (0,1)$ there are $\delta > 0$ and $n_0 \in \mathbb{N}$ such that for all $n, m \geq n_0$ and all $E \in \Sigma$ we have $\varrho_{B^{\phi}}(g_m \chi_E) \leq \delta \Rightarrow \varrho_{B^{\phi}}(f_n \chi_E) \leq \varepsilon.$

Proof. Let u' > 0 be such that $\phi(u') < \varepsilon/2$, and put $E_n = \{t \in \mathbb{R} : |f_n(t)| < u'\}$. Then

$$\varrho_{B^{\phi}}(f_n\chi_{E\cap E_n}) \le \phi(u')\overline{\mu}(E\cap E_n) \le \varepsilon$$

for any $E \in \Sigma$. Hence we may assume that $|f_n(t)| \ge u'$ for all $t \in \mathbb{R}$. Let $k_n \in K(f_n)$ and $h_n \in K(g_n)$. Then

$$\frac{h_n}{k_n+h_n} \in \left[\frac{1}{1+b}, \frac{b}{1+b}\right] \subset \left]0, 1\right[,$$

where $b = \sup_n \{k_n, h_n\} < \infty$. We may suppose that $\inf_n \{k_n, h_n\} \ge a > 0$. Since $\phi \in \nabla_2$ there exists $\beta > 0$ such that (cf. [1])

(2.2)
$$\phi\left(\frac{bu}{1+b}\right) \le \frac{b(1-\beta)}{1+b}\phi(u), \quad \forall |u| \ge u',$$

and using the fact that the function $\ell \mapsto \phi(\ell u)/\ell u$ is increasing, we obtain

$$\phi(\ell u) \le \ell(1-\beta)\phi(u), \quad \forall \ell \in \left[\frac{1}{1+b}, \frac{b}{1+b}\right], \, \forall |u| \ge u'.$$

Given any $\alpha > 0$, from Lemma 4, there exists $\delta' > 0$ such that

(2.3)
$$\varrho_{B^{\phi}}(f) \leq 1, \ \varrho_{B^{\phi}}(g) \leq \delta' \Rightarrow |\varrho_{B^{\phi}}(f+g) - \varrho_{B^{\phi}}(f)| < \alpha.$$

Since ϕ is of Δ_2 -type, we may choose $\delta > 0$ such that $\varrho_{B^{\phi}}(g) \leq \delta \Rightarrow \varrho_{B^{\phi}}(\frac{b^2}{2a}g) \leq \delta'$ and hence

$$\varrho_{B^{\phi}}(g_m\chi_E) \leq \delta \implies \varrho_{B^{\phi}}\left(\frac{k_nh_n}{k_n+h_n}g_m\chi_E\right) \leq \varrho_{B^{\phi}}\left(\frac{b^2}{2a}g_m\chi_E\right) \leq \delta'.$$

Now, from (2.3), we get

$$\varrho_{B^{\phi}}\left(\frac{k_{n}h_{m}}{k_{n}+h_{m}}\left(f_{n}+g_{m}\right)\chi_{E}\right) \leq \varrho_{B^{\phi}}\left(\frac{k_{n}h_{m}}{k_{n}+h_{m}}f_{n}\chi_{E}\right) + \alpha$$
$$\leq \frac{h_{m}}{k_{n}+h_{m}}\left(1-\beta\right)\varrho_{B^{\phi}}(k_{n}f_{n}\chi_{E}) + \alpha.$$

Take an integer n' such that

$$n, m \ge n' \implies 2 - |||f_n + g_m|||_{B^{\phi}} < \alpha.$$

Using the convexity of
$$\phi$$
, for $n, m \ge n'$ we have

$$\begin{aligned} \alpha \ge 2 - \|\|f_n + g_m\|\|_{B^{\phi}} \\ \ge \frac{1}{k_n} \varrho_{B^{\phi}}(k_n f_n) + \frac{1}{h_m} \varrho_{B^{\phi}}(h_m g_m) - \frac{k_n + h_m}{k_n h_m} \varrho_{B^{\phi}}\left(\frac{k_n h_m}{k_n + h_m} \left(f_n + g_m\right)\right) \end{aligned}$$

$$\ge \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left[\frac{1}{k_n} \phi(k_n f_n) + \frac{1}{h_m} \phi(h_m g_m) - \frac{k_n + h_m}{k_n h_m} \phi\left(\frac{k_n h_m}{k_n + h_m} \left(f_n + g_m\right)\right)\right] d\mu \end{aligned}$$

$$\ge \lim_{T \to \infty} \frac{1}{2T} \int_{E \cap [-T,T]} \left[\frac{1}{k_n} \phi(k_n f_n) + \frac{1}{h_m} \phi(h_m g_m) - \frac{k_n + h_m}{k_n h_m} \phi\left(\frac{k_n h_m}{k_n + h_m} \left(f_n + g_m\right)\right)\right] d\mu \end{aligned}$$

$$\ge \lim_{T \to \infty} \frac{1}{2T} \int_{E \cap [-T,T]} \left[\frac{1}{k_n} \phi(k_n f_n) + \frac{1}{h_m} \phi(h_m g_m)\right] d\mu$$

$$\ge \lim_{T \to \infty} \frac{1}{2T} \int_{E \cap [-T,T]} \left[\frac{1}{k_n} \phi(k_n f_n) + \frac{1}{h_m} \phi(h_m g_m)\right] d\mu$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{E \cap [-T,T]} \left[\frac{1}{k_n} \phi(k_n f_n) + \frac{1}{h_m} \phi(h_m g_m)\right] d\mu$$

$$\ge \lim_{T \to \infty} \frac{1}{2T} \int_{E \cap [-T,T]} \left[\frac{1}{k_n} \phi(k_n f_n) + \frac{1}{h_m} \phi(h_m g_m)\right] d\mu$$

$$\ge \lim_{T \to \infty} \frac{1}{2T} \int_{T \cap [-T,T]} \left[\frac{1}{k_n} \phi(k_n f_n) + \frac{1}{h_m} \phi(h_m g_m)\right] d\mu$$

$$\ge \lim_{T \to \infty} \frac{1}{2T} \int_{T \cap [-T,T]} \left[\frac{1}{k_n} \phi(k_n f_n) + \frac{1}{h_m} \phi(h_m g_m)\right] d\mu$$

$$\ge \lim_{T \to \infty} \frac{1}{2T} \int_{T \cap [-T,T]} \left[\frac{1}{k_n} \phi(k_n f_n) + \frac{1}{h_m} \phi(h_m g_m)\right] d\mu$$

$$\ge \lim_{T \to \infty} \frac{1}{2T} \sum_{T \cap [-T,T]} \left[\frac{1}{k_n} \phi(k_n f_n) + \frac{1}{k_m} \phi(h_m g_m)\right] d\mu$$

Now, since $\alpha > 0$ is arbitrary and ϕ is of Δ_2 -type, we get the desired result.

LEMMA 7. Let $\{f_n\}_n \subset B^{\phi}$ -a.p. be such that $\sup_n \varrho_{B^{\phi}}(f_n) < \infty$. Then for every $\theta > 0$ there exists A > 0 such that $\sup_n \overline{\mu}(\{t \in \mathbb{R} : |f_n(t)| \ge A\}) < \theta$.

Proof. In fact, in the opposite case we have

(2.4)
$$\lim_{N \to \infty} \sup_{n} \overline{\mu}(\{t \in \mathbb{R} : |f_n(t)| \ge N\}) \neq 0$$

(note that the sequence is decreasing, so its limit exists). Putting $E_{n,N} = \{t \in \mathbb{R} : |f_n(t)| \ge N\}$, we then get

$$\varrho_{B^{\phi}}(f_n) \ge \varrho_{B^{\phi}}(f_n \chi_{E_{n,N}}) \ge N \overline{\mu}(E_{n,N}),$$

and taking the supremum over n gives

(2.5)
$$\sup_{n} \varrho_{B^{\phi}}(f_n) \ge \sup_{n} \varrho_{B^{\phi}}(f_n \chi_{E_{n,N}}) \ge \sup_{n} N\overline{\mu}(E_{n,N}) = N \sup_{n} \overline{\mu}(E_{n,N}).$$

Finally, letting $N \to \infty$ in (2.5) and using again (2.4), we obtain $\sup_n \varrho_{B^{\phi}}(f_n) = \infty$. This contradicts the assumption.

LEMMA 8. Let $\{f_n\}_n$ be a sequence in B^{ϕ} -a.p. satisfying the $\overline{\mu}$ -Cauchy condition and modular equicontinuous, i.e. for every $\varepsilon > 0$, there exist $\delta > 0$ and $n_0 \in \mathbb{N}$ such that

$$\overline{\mu}(E) < \delta \implies \varrho_{B^{\phi}}(f_n \chi_E) \le \varepsilon, \, \forall n \ge n_0.$$

If $\sup_n \varrho_{B^{\phi}}(f_n) < \infty$, then $\{\varrho_{B^{\phi}}(f_n)\}_{n \geq 1}$ is a Cauchy sequence in \mathbb{R} .

Proof. First, we show the assertion for $\phi(u) = |u|$. Set $E_{n,m} = \{t \in \mathbb{R} : |f_n(t) - f_m(t)| > \varepsilon/2\}$. The sequence $\{f_n\}$ being equicontinuous, there exist $\delta > 0$ and $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ we have

$$\overline{\mu}(E) < \delta \Rightarrow \varrho_{B^1}(f_n \chi_E) \le \varepsilon/4.$$

Since $\{f_n\}$ is a $\overline{\mu}$ -Cauchy sequence, there exists $n_1 \in \mathbb{N}$ such that $\overline{\mu}(E_{n,m}) < \delta$ for $n, m \ge n_1$. Taking $n, m \ge \max(n_0, n_1)$ we get

$$\begin{aligned} |\varrho_{B^1}(f_n) - \varrho_{B^1}(f_m)| &= \left| \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |f_n(t)| \, d\mu - \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |f_m(t)| \, d\mu \right| \\ &\leq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |f_n(t) - f_m(t)| \, d\mu \\ &\leq \lim_{T \to \infty} \frac{1}{2T} \int_{[-T,T] \cap E_{n,m}} |f_n(t) - f_m(t)| \, d\mu \\ &+ \lim_{T \to \infty} \frac{1}{2T} \int_{[-T,T] \cap E_{n,m}} |f_n(t) - f_m(t)| \, d\mu \\ &\leq \varrho_{B^1}(f_n \chi_{E_{n,m}}) + \varrho_{B^1}(f_m \chi_{E_{n,m}}) + \frac{\varepsilon}{2} \overline{\mu}(E_{n,m}^c) \\ &\leq \varepsilon/4 + \varepsilon/4 + \varepsilon/2 = \varepsilon. \end{aligned}$$

Now, for an arbitrary Orlicz function ϕ , it is sufficient to show that $(\phi(f_n))_n$ is a $\overline{\mu}$ -Cauchy sequence; the result follows then from the case $\phi(x) = |x|$.

By Lemma 7, we know that if $\sup_n \rho_{B^{\phi}}(f_n) < \infty$ then for every $\theta > 0$, there exists M > 0 such that $\overline{\mu}(\{t \in \mathbb{R} : |f_n(t)| \ge M\}) < \theta$ for all n.

Put $G_n = \{t \in \mathbb{R} : |f_n(t)| \leq M\}$ and let $\varepsilon > 0$. Since ϕ is uniformly continuous on [-M, M], there exists $\eta > 0$ such that

$$|\phi(t_1) - \phi(t_2)| \ge \varepsilon \implies |t_1 - t_2| > \eta.$$

Now since for all $t \in G_n \cap G_m$, we have $f_n(t), f_m(t) \in [-M, M]$, it follows that

$$|\phi(f_n(t)) - \phi(f_m(t))| \ge \varepsilon \implies |f_n(t) - f_m(t)| > \eta,$$

whence, for any $\varepsilon, \theta > 0$,

$$\begin{split} \overline{\mu}\{t \in \mathbb{R} : |\phi(f_n(t)) - \phi(f_m(t))| \ge \varepsilon\} \\ & \le \overline{\mu}\{t \in G_n \cap G_m : |\phi(f_n(t)) - \phi(f_m(t))| \ge \varepsilon\} \\ & + \overline{\mu}\{t \in (G_n \cap G_m)^c : |\phi(f_n(t)) - \phi(f_m(t))| \ge \varepsilon\} \\ & \le \overline{\mu}\{t \in G_n \cap G_m : |f_n(t) - f_m(t)| \ge \eta\} + 2\theta. \end{split}$$

Letting $n, m \to \infty$, we get

$$\forall \varepsilon > 0, \, \forall \theta > 0, \quad \overline{\mu} \{ t \in \mathbb{R} : |\phi(f_n(t)) - \phi(f_m(t))| \ge \varepsilon \} \le 2\theta.$$

Finally, since θ is arbitrary, we get the desired result.

LEMMA 9. Let $\{f_n\} \subset B^{\phi}$ -a.p. be a $\overline{\mu}$ -Cauchy sequence equicontinuous in norm. Then $\{f_n\}$ is a modular Cauchy sequence. In particular, if $\phi \in \Delta_2$, the sequence $\{f_n\}$ is norm convergent to some $f \in B^{\phi}$ -a.p.

Proof. Set $E_{n,m} = \{t \in \mathbb{R} : |f_n(t) - f_m(t)| > \varepsilon/2\}$. The sequence $\{f_n\}$ being equicontinuous in norm, there exist $\delta > 0$ and $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ we have

$$\overline{\mu}(E) < \delta \implies \varrho_{B^{\phi}}(2f_n\chi_E) \le \varepsilon/2.$$

Since $\{f_n\}$ satisfies the $\overline{\mu}$ -Cauchy condition, there exists $n_1 \in \mathbb{N}^*$ such that $n, m \ge n_1 \Rightarrow \overline{\mu}(E_{n,m}) < \delta$. Taking $n, m \ge \max(n_0, n_1)$ we get

$$\begin{split} \varrho_{B^{\phi}}(f_n - f_m) &\leq \varrho_{B^{\phi}}((f_n - f_m)\chi_{E_{n,m}}) + \varrho_{B^{\phi}}((f_n - f_m)\chi_{(E_{n,m})^c}) \\ &\leq \frac{1}{2}\left[\varrho_{B^{\phi}}(2f_n\chi_{E_{n,m}}) + \varrho_{B^{\phi}}(2f_m\chi_{E_{n,m}})\right] + \frac{\varepsilon}{2}\,\overline{\mu}((E_{n,m})^c) \\ &\leq \frac{1}{2}\left(\frac{\varepsilon}{2} + \frac{\varepsilon}{2}\right) + \frac{\varepsilon}{2} = \varepsilon. \quad \blacksquare \end{split}$$

LEMMA 10. Let $f \in E^{\phi}([0,1])$, where $E^{\phi}([0,1])$ is the Orlicz class $E^{\phi}([0,1]) = \{f \text{ measurable} : \varrho_{\phi}(\lambda f) < \infty, \forall \lambda > 0\},$

and let ρ_{ϕ} be the usual Orlicz modular. Then:

- (1) If \tilde{f} is the 1-periodic extension of f to the whole \mathbb{R} , then $\tilde{f} \in B^{\phi}$ -a.p.
- (2) The injection $i: E^{\phi}([0,1]) \to B^{\phi}$ -a.p., $i(f) = \tilde{f}$, is an isometry with respect to the modular and for the respective Orlicz norms.

Proof. (1) Let $f = \sum_{i=1}^{n} a_i \chi_{A_i}$, $A_i \cap A_j = \emptyset$ if $i \neq j$ and $\bigcup_{i=1}^{n} A_i \subset [0, \alpha]$, $0 < \alpha < 1$. Let $m \in \mathbb{N}$. Since $\sum_{i=1}^{n} \phi(ma_i)\mu(A_i) < \infty$, it follows from (1.2) that there exists $P_m \in \mathcal{P}$ (the set of generalized trigonometric polynomials) for which

$$\varrho_{B^{\phi}}\left(\frac{m}{4}\left(\widetilde{f}-P_{m}\right)\right) \leq \frac{1}{m},$$

where \tilde{f} is the 1-periodic extension of f.

Let $\lambda > 0$ and $m_0 \in \mathbb{N}$ be such that $\lambda \leq m_0/4$. Then

$$\varrho_{B^{\phi}}(\lambda(\widetilde{f} - P_m)) \le \varrho_{B^{\phi}}\left(\frac{m}{4}\left(\widetilde{f} - P_m\right)\right) \le \frac{1}{m}, \quad \forall m \ge m_0.$$

This means that $\lim_{m\to\infty} \|\tilde{f} - P_m\|_{B^{\phi}} = 0$, i.e. $\tilde{f} \in B^{\phi}$ -a.p.

Consider now the general case of $f \in E^{\phi}([0,1])$. It is known (see [1]) that the step functions are dense in $E^{\phi}([0,1])$, hence given $\varepsilon > 0$, there is a $g_{\varepsilon} = \sum_{i=1}^{n} a_i \chi_{A_i}$ for which $\|g_{\varepsilon} - f\|_{\phi} \leq \varepsilon/4$. Since f is absolutely continuous, we may choose $\delta > 0$ such that $\mu(A) \leq \delta \Rightarrow \|f\chi_A\|_{\phi} \leq \varepsilon/4$. We take $\alpha > 0$ with $1 - \alpha \leq \delta$ and put $A_i^{\alpha} = A_i \cap [0, \alpha], i = 1, n$. Then the function $g_{\varepsilon}^{\alpha} = \sum_{i=1}^{n} a_i \chi_{A_i^{\alpha}}$ belongs to $E^{\phi}([0,1])$. If \tilde{f} and $\tilde{g}_{\varepsilon}^{\alpha}$ are the respective 1-periodic extensions, then

$$\begin{split} \|f - \widetilde{g}_{\varepsilon}^{\alpha}\|_{B^{\phi}} &= \|f - g_{\varepsilon}^{\alpha}\|_{\phi} \leq \|(f - g_{\varepsilon}^{\alpha})\chi_{[0,\alpha]}\|_{\phi} + \|(f - g_{\varepsilon}^{\alpha})\chi_{[\alpha,1]}\|_{\phi} \\ &\leq \|f - g_{\varepsilon}\|_{\phi} + \|f\chi_{[\alpha,1]}\|_{\phi} \leq \varepsilon/4 + \varepsilon/4 = \varepsilon/2. \end{split}$$

Now, since $\widetilde{g}_{\varepsilon}^{\alpha} \in B^{\phi}$ -a.p., there exists $P_{\varepsilon} \in \mathcal{P}$ for which $\|\widetilde{g}_{\varepsilon}^{\alpha} - P_{\varepsilon}\|_{B^{\phi}} \leq \varepsilon/2$. Finally,

$$\|\widetilde{f} - P_{\varepsilon}\|_{B^{\phi}} \le \|\widetilde{f} - \widetilde{g}_{\varepsilon}^{\alpha}\|_{B^{\phi}} + \|\widetilde{g}_{\varepsilon}^{\alpha} - P_{\varepsilon}\|_{B^{\phi}} \le \varepsilon/2 + \varepsilon/2 = \varepsilon,$$

i.e. $\widetilde{f} \in B^{\phi}$ -a.p.

(2) It is clear that $i: E^{\phi}([0,1]) \to B^{\phi}$ -a.p. is a modular isometry. The fact that it is also an isometry for the Orlicz norms follows immediately since

$$|||f|||_{\phi} = \inf_{k>0} \left\{ \frac{1}{k} \left(1 + \varrho_{\phi}(kf) \right) \right\} = \inf_{k>0} \left\{ \frac{1}{k} \left(1 + \varrho_{B^{\phi}}(k\widetilde{f}) \right) \right\} = |||\widetilde{f}|||_{B^{\phi}}.$$

We can now state our main result.

THEOREM 1. The space $(B^{\phi} - a.p., \|\cdot\|_{B^{\phi}})$ is k-convex iff $\phi \in \Delta_2 \cap \nabla_2$ and ϕ is strictly convex.

Proof. Necessity. As known for general Banach spaces, k-convexity implies strict convexity and reflexivity. From [9], reflexivity of B^{ϕ} -a.p. implies that $\phi \in \Delta_2 \cap \nabla_2$. It remains to show that ϕ is strictly convex. Indeed, strict convexity of ϕ is necessary for strict convexity of the Orlicz class $E^{\phi}([0, 1])$ (cf. [1]) and using Proposition 10, we deduce that it is also necessary for strict convexity of B^{ϕ} -a.p.

For the sufficiency, let $\{f_n\} \subset B^{\phi}$ -a.p. with $|||f_n|||_{B^{\phi}} = 1$ and $|||f_n + f_m||_{B^{\phi}} \rightarrow 2$ as $n, m \rightarrow \infty$. Given any $\varepsilon > 0$, take n_0 and δ as in Lemma 6. Since $f_{n_0} \in B^{\phi}$ -a.p. there is a $\delta' > 0$ such that $\overline{\mu}(E) < \delta' \Rightarrow \varrho_{B^{\phi}}(f_{n_0}\chi_E) \leq \delta$ and then by Lemma 6 we obtain $\varrho_{B^{\phi}}(f_m\chi_E) \leq \varepsilon$ for all $m \geq n_0$.

On the other hand, since $|||f_n + f_m|||_{B^{\phi}} \to 2$ as $n, m \to \infty$, from Lemma 2 it follows that $\{k_n f_n\}$ is a $\overline{\mu}$ -Cauchy sequence. Now, we will show that it is also modular equicontinuous.

Given any $\varepsilon > 0$, from Remark 2 there is $\delta > 0$ such that $\varrho_{B^{\phi}}(f_n\chi_E) \leq \delta$ $\Rightarrow ||k_n f_n\chi_E||_{B^{\phi}} \leq \varepsilon$ and then from the arguments presented above we also have the implication $\overline{\mu}(E) < \delta' \Rightarrow ||k_n f_n\chi_E||_{B^{\phi}} \leq \varepsilon, \forall n \geq n_0$ for some δ' . This means that the sequence $\{k_n f_n\}_n$ is norm equicontinuous.

Moreover, from Lemma 8, $\{\varrho_{B^{\phi}}(k_n f_n)\}_{n\geq 1}$ is a Cauchy sequence in \mathbb{R} , whence it converges to some $l \in \mathbb{R}$.

Now, using (1.1), we may write $|||f_n|||_{B^{\phi}} = (1/k_n)(1 + \varrho_{B^{\phi}}(k_n f_n))$ and letting $n \to \infty$ we get $\lim_{n\to\infty} k_n = 1 + l$.

Finally, from Lemma 9, the sequence $(k_n f_n)_n$ is modular Cauchy and again by the Δ_2 -condition it is a norm Cauchy sequence, i.e. it converges in norm to some $g \in B^{\phi}$ -a.p.

Consequently, $\{f_n\}$ is norm convergent to g/(1+l).

REFERENCES

- [1] S. Chen, Geometry of Orlicz spaces, Dissertationes Math. 356 (1996).
- [2] K. Fan and I. Glicksberg, Some geometric properties of the spheres in a normed linear space, Duke Math. J. 25 (1958), 553–568.
- [3] T. R. Hillmann, Besicovitch-Orlicz spaces of almost periodic functions, in: Real and Stochastic Analysis, Wiley, 1986, 119–167.
- H. Hudzik and B. Wang, Approximative compactness in Orlicz spaces, J. Approx. Theory 95 (1998), 82–89.
- [5] M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
- [6] M. Morsli, On some convexity properties of the Besicovitch-Orlicz space of almost periodic functions, Comment. Math. Prace Mat. 34 (1994), 137–152.
- [7] —, Espace de Besicovitch-Orlicz de fonctions presque périodiques. Structure générale et géométrie, Thèse de Doctorat, 1996.
- [8] —, On modular approximation property in the Besicovitch-Orlicz space of almost periodic functions, Comment. Math. Univ. Carolin. 38 (1997), 485–496.
- [9] M. Morsli, F. Bedouhene and F. Boulahia, Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions, ibid. 43 (2002), 103–117.
- [10] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49–65.
- [11] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Dekker, New York, 1991.

Department of Mathematics Faculty of Sciences University of Tizi-Ouzou, Algeria E-mail: fbedouhene@yahoo.fr mdmorsli@yahoo.fr

> Received 16 February 2006; revised 28 December 2006

(4723)