COLLOQUIUM MATHEMATICUM

ON THE k-CONVEXITY OF THE BESICOVITCH-ORLICZ SPACE OF ALMOST PERIODIC FUNCTIONS

WITH THE ORLICZ NORM

BY

FAZIA BEDOUHENE and MOHAMED MORSLI (Tizi-Ouzou)

Abstract

Boulahia and the present authors introduced the Orlicz norm in the class B^{ϕ}-a.p. of Besicovitch-Orlicz almost periodic functions and gave several formulas for it; they also characterized the reflexivity of this space [Comment. Math. Univ. Carolin. 43 (2002)]. In the present paper, we consider the problem of k-convexity of B^{ϕ}-a.p. with respect to the Orlicz norm; we give necessary and sufficient conditions in terms of strict convexity and reflexivity.

1. Introduction and preliminaries

1.1. Orlicz functions. In the following, the notation ϕ is used for an Orlicz function, i.e. a function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ which is even, convex, satisfies $\phi(u)=0$ iff $u=0$, and $\lim _{u \rightarrow \infty} \phi(u) / u=\infty, \lim _{u \rightarrow 0} \phi(u) / u=0$.

This function is said to be of Δ_{2}-type when there exist constants $K>2$ and $u_{0} \geq 0$ such that

$$
\phi(2 u) \leq K \phi(u), \quad \forall u \geq u_{0}
$$

The function $\psi(y)=\sup \{x|y|-\phi(x): x \geq 0\}$ is called conjugate to ϕ. It is an Orlicz function when ϕ is. The pair (ϕ, ψ) satisfies the Young inequality

$$
x y \leq \phi(x)+\psi(y), \quad x \in \mathbb{R}, y \in \mathbb{R}
$$

When both ϕ and ψ are of Δ_{2}-type we write $\phi \in \Delta_{2} \cap \nabla_{2}$. Note that if ψ is of Δ_{2}-type then we have the following property (cf. [1]):
$\forall \ell \in] 0,1\left[, \forall u_{0} \geq 0, \exists \beta=\beta(\ell) \in\right] 0,1\left[, \quad \phi(\ell u) \leq \ell(1-\beta) \phi(u), \quad \forall u \geq u_{0}\right.$.
Let now ϕ be strictly convex. Then (cf. [1]) for every $k>0$ and $\varepsilon>0$, there exists $\delta>0$ such that

$$
\phi\left(\frac{u+v}{2}\right) \leq(1-\delta)\left(\frac{\phi(u)+\phi(v)}{2}\right)
$$

for all $u, v \in \mathbb{R}$ satisfying $|u|,|v| \leq k$ and $|u-v| \geq \varepsilon$.

[^0]A normed space X is called strictly convex when

$$
\forall x, y \in X, \quad\|x\|=\|y\|=1,\|x-y\|>0 \Rightarrow\|x+y\|<2
$$

X is called k-convex for $k \in \mathbb{N}, k \geq 2$ when, for each $\left\{x_{n}\right\} \subset B(X)$ (the closed unit ball of X), the following implication holds:

$$
\begin{aligned}
\left(\left\|x_{n_{1}}+\cdots+x_{n_{k}}\right\| \rightarrow k \text { as } n_{1}\right. & \left., \ldots, n_{k} \rightarrow \infty\right) \\
& \Rightarrow\left\{x_{n}\right\} \text { is a Cauchy sequence in norm. }
\end{aligned}
$$

When $(X,\|\cdot\|)$ is a Banach space, the right hand side of this implication means that $\left\{x_{n}\right\}$ is norm convergent to some $x \in X$.

The k-convexity has been introduced for $k=2$ in [2]. In [4], it is shown that k-convexity for $k=2$ implies approximate compactness, which in turn guarantees the existence of the projection of any element onto any convex and closed subset of the space.

Moreover it is known that if X is k-convex then it is also $(k+1)$-convex, strictly convex and reflexive (cf. [1]). We can also easily see that uniform convexity implies k-convexity.

Let X be a real linear space. A functional $\varrho: X \rightarrow[0, \infty]$ is a (pseudo) modular if it satisfies
(i) $\varrho(x)=0$ iff $x=0$ for a modular, and
(i) $\varrho(0)=0$ for a pseudomodular,
(ii) $\varrho(x)=\varrho(-x), \forall x \in X$,
(iii) $\varrho(\alpha x+\beta y) \leq \varrho(x)+\varrho(y), \forall \alpha, \beta \geq 0, \alpha+\beta=1, x, y \in X$.

When, in place of (iii), we have
$(\text { iii })^{\prime} \varrho(\alpha x+\beta y) \leq \alpha \varrho(x)+\beta \varrho(y), \forall \alpha, \beta \geq 0, \alpha+\beta=1, x, y \in X$,
the (pseudo) modular ϱ is called convex.
The linear space $X_{\varrho}=\left\{x \in X: \lim _{\alpha \rightarrow 0} \varrho(\alpha x)=0\right\}$ associated to the modular ϱ is called a modular space.

When ϱ is a convex (pseudo) modular, a (pseudo) norm is defined on X by the formula (cf. [10])

$$
\|x\|_{\varrho}=\inf \{k>0: \varrho(x / k) \leq 1\}
$$

A sequence $\left\{x_{n}\right\} \subset X$ is called modular convergent to some $x \in X$ when $\lim _{n \rightarrow \infty} \varrho\left(x_{n}-x\right)=0$. The definition of a modular Cauchy sequence is similar.
1.2. The Besicovitch-Orlicz space of almost periodic functions. Let $M(\mathbb{R})$ be the set of real Lebesgue measurable functions on \mathbb{R}. The functional

$$
\varrho_{B^{\phi}}: M(\mathbb{R}) \rightarrow[0, \infty], \quad \varrho_{B^{\phi}}(f)=\varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \phi(|f(t)|) d t
$$

is a convex pseudomodular (cf. [6]-[8]). The associated modular space

$$
\begin{aligned}
B^{\phi}(\mathbb{R}) & =\left\{f \in M(\mathbb{R}): \lim _{\alpha \rightarrow 0} \varrho_{B^{\phi}}(\alpha f)=0\right\} \\
& =\left\{f \in M(\mathbb{R}): \varrho_{B^{\phi}}(\lambda f)<\infty \text { for some } \lambda>0\right\}
\end{aligned}
$$

is called the Besicovitch-Orlicz space. This space is endowed with the Luxemburg pseudonorm (cf. [6]-[8])

$$
\|f\|_{B^{\phi}}=\inf \left\{k>0: \varrho_{B^{\phi}}(f / k) \leq 1\right\}, \quad f \in B^{\phi}(\mathbb{R})
$$

Let now \mathcal{A} be the set of generalized trigonometric polynomials, i.e.

$$
\mathcal{A}=\left\{P(t)=\sum_{j=1}^{n} \alpha_{j} \exp \left(i \lambda_{j} t\right): \lambda_{j} \in \mathbb{R}, \alpha_{j} \in \mathbb{C}, n \in \mathbb{N}\right\}
$$

The Besicovitch-Orlicz space of almost periodic functions, denoted B^{ϕ}-a.p., is the closure of \mathcal{A} in $B^{\phi}(\mathbb{R})$ with respect to the pseudonorm $\|\cdot\|_{B^{\phi}}$:

$$
B^{\phi} \text {-a.p. }=\left\{f \in B^{\phi}(\mathbb{R}): \exists\left\{p_{n}\right\}_{n=1}^{\infty} \subset \mathcal{A}, \lim _{n \rightarrow \infty}\left\|f-p_{n}\right\|_{B^{\phi}}=0\right\}
$$

In the case $\phi(x)=|x|$, we use the notation B^{1}-a.p. Some structural and topological properties of this space are considered in [6]-[8].

Besides the Luxemburg norm, we may endow this space with the Orlicz pseudonorm (cf. [9])

$$
\|f\|_{B^{\phi}}=\sup \left\{M(|f g|): g \in B^{\psi} \text {-a.p., } \varrho_{B^{\psi}}(g) \leq 1\right\}
$$

where ψ denotes the conjugate function to ϕ and

$$
M(f)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} f(t) d \mu \quad \text { for } f \in B^{1} \text {-a.p. }
$$

The Orlicz norm $\|\cdot\|_{B^{\phi}}$ satisfies (cf. [9])

$$
\|f\|_{B^{\phi}}=\inf \left\{\frac{1}{k}\left(1+\varrho_{B^{\phi}}(k f)\right): k>0\right\}
$$

More precisely,

$$
\begin{equation*}
\left.\|f\|_{B^{\phi}}=\frac{1}{k}\left(1+\varrho_{B^{\phi}}(k f)\right) \quad \text { for some } k \in\right] 0, \infty[\tag{1.1}
\end{equation*}
$$

which means that the set

$$
K(f)=\left\{k>0:\|f\|_{B^{\phi}}=\frac{1}{k}\left(1+\varrho_{B^{\phi}}(k f)\right)\right\}
$$

is not empty. Moreover, these two norms are equivalent (cf. [9]):

$$
\|f\|_{B^{\phi}} \leq\|f\|_{B^{\phi}} \leq 2\|f\|_{B^{\phi}} .
$$

Note also the important fact that when $f \in B^{\phi}$-a.p., the limit in the expression of $\varrho_{B^{\phi}}(f)$ exists (cf. [6]).

The following technical result is used in the proof of the necessity conditions of our main theorem.

Let $\left\{A_{i}\right\}_{i \geq 1} \subset \mathbb{R}$ be measurable subsets such that $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$ and $\bigcup_{i \geq 1} A_{i} \subset[0, \alpha], \alpha<1$. Let $f=\sum_{i \geq 1} a_{i} \chi_{A_{i}}$ with $\sum_{i \geq 1} \phi\left(a_{i}\right) \mu\left(A_{i}\right)<\infty$ and let \widetilde{f} be the periodic extension of f to the whole \mathbb{R} (with period 1). Then there exists a sequence $\left\{P_{m}\right\}_{m \geq 1} \subset \mathcal{A}$ such that (cf. [6])

$$
\begin{equation*}
\varrho_{B^{\phi}}\left(\frac{\tilde{f}-P_{m}}{4}\right) \rightarrow 0 \quad \text { as } m \rightarrow \infty \tag{1.2}
\end{equation*}
$$

2. Results. We first give some convergence results which we will use extensively in different proofs.

Let $\Sigma=\Sigma(\mathbb{R})$ be the Σ-algebra of Lebesgue measurable subsets of \mathbb{R}. We define the set function

$$
\bar{\mu}(A)=\varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \chi_{A}(t) d t=\varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \mu([-T, T] \cap A), \quad A \in \Sigma
$$

where μ is the Lebesgue measure. Clearly, $\bar{\mu}$ is not σ-additive and $\bar{\mu}(A)=0$ when $A \in \Sigma$ with $\mu(A)<\infty$. As usual, a sequence $\left\{f_{k}\right\}_{k \geq 1}$ of Σ-measurable functions will be called $\bar{\mu}$-convergent to a measurable function f when, for all $\varepsilon>0$,

$$
\lim _{k \rightarrow \infty} \bar{\mu}\left\{t \in \mathbb{R}:\left|f_{k}(t)-f(t)\right| \geq \varepsilon\right\}=0
$$

Similarly, we define a $\bar{\mu}$-Cauchy sequence.
Lemma 1 ([6]-[8]). Let $\left\{f_{n}\right\}_{n \geq 1} \subset B^{\phi}(\mathbb{R})$. Then:
(1) If $\left\{f_{n}\right\}_{n \geq 1}$ is modular convergent to some $f \in B^{\phi}(\mathbb{R})$ then it is also $\bar{\mu}$-convergent to f.
(2) If $\left\{f_{n}\right\}_{n \geq 1}$ is $\bar{\mu}$-convergent to some $f \in B^{\phi}(\mathbb{R})$ and there exists $g \in B^{\phi}$-a.p. such that $\max \left(\left|f_{k}(x)\right|,|f(x)|\right) \leq g(x)$ for all $x \in \mathbb{R}$, then $\lim _{n \rightarrow \infty} \varrho_{B^{\phi}}\left(f_{n}\right)=\varrho_{B^{\phi}}(f)$.

Lemma 2. Let $\left\{f_{n}\right\},\left\{g_{n}\right\} \subset B^{\phi}$-a.p. with $\left\|f_{n}\right\|_{B^{\phi}}=1,\left\|g_{n}\right\|_{B^{\phi}}=1$ and $\lim _{n, m \rightarrow \infty}\left\|f_{n}+g_{m}\right\|_{B^{\phi}}=2$. Let $\left\{k_{n}\right\}_{n \geq 1}$ and $\left\{h_{n}\right\}_{n \geq 1}$ be sequences of scalars such that the norms of f_{n} and g_{n} are attained in formula (1.1) at the points k_{n} and h_{n} respectively. If ϕ is strictly convex and $b=\sup _{n}\left\{k_{n}, h_{n}\right\}$ is finite, then $k_{n} f_{n}-h_{m} g_{m} \rightarrow 0$ in $\bar{\mu}$.

Proof. Indeed, in the opposite case, we may assume that $\bar{\mu}\left(E_{n, m}\right)>\theta$ where $E_{n, m}=\left\{t \in \mathbb{R}:\left|k_{n} f_{n}(t)-h_{m} g_{m}(t)\right| \geq r\right\}$ and r, θ are some fixed positive numbers.

From easy computations we can show the following:

$$
\forall \varepsilon>0, \exists \sigma>0, \forall A \in \Sigma, \quad \bar{\mu}(A) \geq \varepsilon \Rightarrow\left\|\chi_{A}\right\|_{B^{\phi}}>\sigma .
$$

Let now $k>1$ be such that $\bar{\mu}(A) \geq \theta / 4 \Rightarrow\left\|\chi_{A}\right\|_{B^{\phi}} \geq 1 / k$ and define

$$
A_{n}=\left\{t \in \mathbb{R}:\left|f_{n}(t)\right| \geq k\right\}, \quad B_{n}=\left\{t \in \mathbb{R}:\left|g_{n}(t)\right| \geq k\right\} .
$$

We have

$$
1=\left\|f_{n}\right\|_{B^{\phi}} \geq\left\|f_{n}\right\|_{B^{\phi}} \geq\left\|f_{n} \chi_{A_{n}}\right\|_{B^{\phi}} \geq k\left\|\chi_{A_{n}}\right\|_{B^{\phi}},
$$

i.e. $\left\|\chi_{A_{n}}\right\|_{B^{\phi}} \leq 1 / k$ and so $\bar{\mu}\left(A_{n}\right) \leq \theta / 4$. By similar computations we also get $\bar{\mu}\left(B_{n}\right) \leq \theta / 4$.

From the strict convexity of ϕ, there exists $\delta>0$ such that

$$
\phi(r u+(1-r) v) \leq(1-\delta)[r \phi(u)+(1-r) \phi(v)]
$$

for each $r \in[1 /(1+b), b /(b+1)]$ and $|u|,|v| \leq b k,|u-v| \geq r$ (see [1]).
Since $k_{n} /\left(k_{n}+h_{m}\right)$ and $h_{m} /\left(k_{n}+h_{m}\right)$ are in $[1 /(1+b), b /(b+1)]$, for $t \in E_{n, m} \backslash\left(A_{n} \cup B_{m}\right)$ we have

$$
\begin{align*}
& \phi\left(\frac{k_{n} h_{m}}{k_{n}+h_{m}}\left(f_{n}(t)+g_{m}(t)\right)\right) \tag{2.1}\\
& \quad \leq(1-\delta)\left[\frac{h_{m}}{k_{n}+h_{m}} \phi\left(k_{n} f_{n}(t)\right)+\frac{k_{n}}{k_{n}+h_{m}} \phi\left(h_{m} g_{m}(t)\right)\right] .
\end{align*}
$$

Then using (1.1) it follows that
$2-\left\|f_{n}+g_{m}\right\|_{B^{\phi}}$

$$
\begin{aligned}
\geq & \frac{1}{k_{n}}\left(1+\varrho_{B^{\phi}}\left(k_{n} f_{n}\right)\right)+\frac{1}{h_{m}}\left(1+\varrho_{B^{\phi}}\left(h_{m} g_{m}\right)\right) \\
& -\frac{k_{n}+h_{m}}{k_{n} h_{m}}\left(1+\varrho_{B^{\phi}}\left(\frac{k_{n} h_{m}}{k_{n}+h_{m}}\left(f_{n}(t)+g_{m}(t)\right)\right)\right) \\
\geq & \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \frac{k_{n}+h_{m}}{k_{n} h_{m}}\left[\frac{h_{m}}{k_{n}+h_{m}} \phi\left(k_{n} f_{n}(t)\right)+\frac{k_{n}}{k_{n}+h_{m}} \phi\left(h_{m} g_{m}(t)\right)\right. \\
& \left.-\phi\left(\frac{k_{n} h_{m}}{k_{n}+h_{m}}\left(f_{n}(t)+g_{m}(t)\right)\right)\right] d t \\
\geq & \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{\left(E_{n, m} \backslash\left(A_{n} \cup B_{m}\right)\right) \cap[-T, T]}\left[\frac{\delta}{k_{n}} \phi\left(k_{n} f_{n}(t)\right)+\frac{\delta}{h_{m}} \phi\left(h_{m} g_{m}(t)\right)\right] d t \\
\geq & \frac{2 \delta}{b} \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{\left(E_{n, m} \backslash\left(A_{n} \cup B_{m}\right)\right) \cap[-T, T]}\left[\phi\left(\frac{\left|k_{n} f_{n}(t)-h_{n} g_{n}(t)\right|}{2}\right)\right] d t
\end{aligned}
$$

$$
\begin{aligned}
& \geq \frac{2 \delta}{b} \phi\left(\frac{r}{2}\right) \bar{\mu}\left(E_{n, m} \backslash\left(A_{n} \cup B_{m}\right)\right) \geq \frac{\delta}{b} \phi\left(\frac{r}{2}\right)\left(\bar{\mu}\left(E_{n, m}\right)-\bar{\mu}\left(A_{n}\right)-\bar{\mu}\left(B_{m}\right)\right) \\
& \geq \frac{2 \delta}{b} \phi\left(\frac{r}{2}\right) \frac{\theta}{2} \geq \frac{\delta}{b} \phi\left(\frac{r}{2}\right) \theta .
\end{aligned}
$$

This contradicts the assumption that $\left\|f_{n}+g_{n}\right\|_{B^{\phi}} \rightarrow 2$.
Lemma 3. Let $f \in B^{\phi}$-a.p. and $E \in \Sigma$. Then the function

$$
F:] 0, \infty\left[\rightarrow \mathbb{R}, \quad F(\lambda)=\varrho_{B^{\phi}}\left(f \chi_{E} / \lambda\right)\right.
$$

is continuous on $] 0, \infty[$.
Proof. Let $\left.\lambda_{0} \in\right] 0, \infty\left[\right.$ and $\left\{\lambda_{n}\right\}$ be a sequence of scalars such that $\lim _{n \rightarrow \infty} \lambda_{n}=\lambda_{0}$. We have

$$
\varrho_{B^{\phi}}\left[\left(\frac{1}{\lambda_{n}}-\frac{1}{\lambda_{0}}\right) f \chi_{E}\right] \leq\left|\frac{1}{\lambda_{n}}-\frac{1}{\lambda_{0}}\right| \varrho_{B^{\phi}}\left(f \chi_{E}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

so $\left\{\left(1 / \lambda_{n}\right) f \chi_{E}\right\}$ is modular convergent to $\left(1 / \lambda_{0}\right) f \chi_{E}$. Moreover, we have

$$
\max \left(\frac{1}{\left|\lambda_{n}\right|}|f| \chi_{E}, \frac{1}{\left|\lambda_{0}\right|}|f| \chi_{E}\right) \leq M|f| \in B^{\phi} a . p .
$$

for some constant M. Now, using Lemma 1, we get

$$
\lim _{n \rightarrow \infty} \varrho_{B^{\phi}}\left(\frac{f \chi_{E}}{\lambda_{n}}\right)=\varrho_{B^{\phi}}\left(\frac{f \chi_{E}}{\lambda_{0}}\right)
$$

which means that F is continuous at λ_{0}.
Remark 1. We already know that (cf. [6])

$$
\varrho_{B^{\phi}}(f) \leq 1 \Leftrightarrow\|f\|_{B^{\phi}} \leq 1 \quad \text { for any } f \in B^{\phi} \text {-a.p. }
$$

From Lemma 3 it follows that also

$$
\varrho_{B^{\phi}}\left(f \chi_{E}\right) \leq 1 \Leftrightarrow\left\|f \chi_{E}\right\|_{B^{\phi}} \leq 1 \quad \text { for any } f \in B^{\phi} \text {-a.p. and } E \in \Sigma
$$

REmARK 2. In the same way, we know from [6] that

$$
\forall \varepsilon>0, \exists \delta>0, \forall f \in B^{\phi} \text {-a.p., } \quad \varrho_{B^{\phi}}(f) \leq \delta \Rightarrow\|f\|_{B^{\phi}} \leq \varepsilon
$$

From Lemma 3 it follows that the same holds for $f \chi_{E}$ instead of f.
Lemma 4. Assume $\phi \in \Delta_{2}$. Then for all $L>0$ and $\varepsilon>0$ there exists a $\delta>0$ such that if $f, g \in B^{\phi}$-a.p. and $E \in \Sigma$, then

$$
\varrho_{B^{\phi}}\left(f \chi_{E}\right) \leq L, \varrho_{B^{\phi}}\left(g \chi_{E}\right) \leq \delta \Rightarrow\left|\varrho_{B^{\phi}}\left((f+g) \chi_{E}\right)-\varrho_{B^{\phi}}\left(f \chi_{E}\right)\right|<\varepsilon
$$

Proof. Using Lemma 3, the arguments are the same as those for the Orlicz space case (see [1, Lemma 1.40]), so we omit the proof.

Lemma 5.
(1) If ϕ is of Δ_{2}-type, then

$$
\inf \left\{k \in K(f):\|f\|_{B^{\phi}}=1, f \in B^{\phi}-a . p .\right\}=d>1
$$

(2) If the conjugate ψ to ϕ is of Δ_{2}-type, then, for each $a, b>0$, the set $Q=\left\{K(f): a \leq\|f\|_{B^{\phi}} \leq b, f \in B^{\phi}-a . p.\right\}$ is bounded.
Proof. The arguments are exactly the same as those used in the Orlicz space case (see [1]), so we omit the proof.

Lemma 6. Suppose $\phi \in \Delta_{2} \cap \nabla_{2}$ and let $\left\{f_{n}\right\},\left\{g_{n}\right\} \subset B^{\phi}{ }_{-}$a.p. be such that $\left\|f_{n}\right\|_{B^{\phi}},\left\|g_{n}\right\|_{B^{\phi}} \leq 1, n=1,2, \ldots$, and $\lim _{n, m \rightarrow \infty}\left\|f_{n}+g_{m}\right\|_{B^{\phi}}=2$. Then for every $\varepsilon \in(0,1)$ there are $\delta>0$ and $n_{0} \in \mathbb{N}$ such that for all $n, m \geq n_{0}$ and all $E \in \Sigma$ we have $\varrho_{B^{\phi}}\left(g_{m} \chi_{E}\right) \leq \delta \Rightarrow \varrho_{B^{\phi}}\left(f_{n} \chi_{E}\right) \leq \varepsilon$.

Proof. Let $u^{\prime}>0$ be such that $\phi\left(u^{\prime}\right)<\varepsilon / 2$, and put $E_{n}=\{t \in \mathbb{R}$: $\left.\left|f_{n}(t)\right|<u^{\prime}\right\}$. Then

$$
\varrho_{B^{\phi}}\left(f_{n} \chi_{E \cap E_{n}}\right) \leq \phi\left(u^{\prime}\right) \bar{\mu}\left(E \cap E_{n}\right) \leq \varepsilon
$$

for any $E \in \Sigma$. Hence we may assume that $\left|f_{n}(t)\right| \geq u^{\prime}$ for all $t \in \mathbb{R}$.
Let $k_{n} \in K\left(f_{n}\right)$ and $h_{n} \in K\left(g_{n}\right)$. Then

$$
\left.\frac{h_{n}}{k_{n}+h_{n}} \in\left[\frac{1}{1+b}, \frac{b}{1+b}\right] \subset\right] 0,1[,
$$

where $b=\sup _{n}\left\{k_{n}, h_{n}\right\}<\infty$. We may suppose that $\inf _{n}\left\{k_{n}, h_{n}\right\} \geq a>0$.
Since $\phi \in \nabla_{2}$ there exists $\beta>0$ such that (cf. [1])

$$
\begin{equation*}
\phi\left(\frac{b u}{1+b}\right) \leq \frac{b(1-\beta)}{1+b} \phi(u), \quad \forall|u| \geq u^{\prime} \tag{2.2}
\end{equation*}
$$

and using the fact that the function $\ell \mapsto \phi(\ell u) / \ell u$ is increasing, we obtain

$$
\phi(\ell u) \leq \ell(1-\beta) \phi(u), \quad \forall \ell \in\left[\frac{1}{1+b}, \frac{b}{1+b}\right], \forall|u| \geq u^{\prime}
$$

Given any $\alpha>0$, from Lemma 4 , there exists $\delta^{\prime}>0$ such that

$$
\begin{equation*}
\varrho_{B^{\phi}}(f) \leq 1, \varrho_{B^{\phi}}(g) \leq \delta^{\prime} \Rightarrow\left|\varrho_{B^{\phi}}(f+g)-\varrho_{B^{\phi}}(f)\right|<\alpha \tag{2.3}
\end{equation*}
$$

Since ϕ is of Δ_{2}-type, we may choose $\delta>0$ such that $\varrho_{B^{\phi}}(g) \leq \delta \Rightarrow$ $\varrho_{B^{\phi}}\left(\frac{b^{2}}{2 a} g\right) \leq \delta^{\prime}$ and hence

$$
\varrho_{B^{\phi}}\left(g_{m} \chi_{E}\right) \leq \delta \Rightarrow \varrho_{B^{\phi}}\left(\frac{k_{n} h_{n}}{k_{n}+h_{n}} g_{m} \chi_{E}\right) \leq \varrho_{B^{\phi}}\left(\frac{b^{2}}{2 a} g_{m} \chi_{E}\right) \leq \delta^{\prime}
$$

Now, from (2.3), we get

$$
\begin{aligned}
\varrho_{B^{\phi}}\left(\frac{k_{n} h_{m}}{k_{n}+h_{m}}\left(f_{n}+g_{m}\right) \chi_{E}\right) & \leq \varrho_{B^{\phi}}\left(\frac{k_{n} h_{m}}{k_{n}+h_{m}} f_{n} \chi_{E}\right)+\alpha \\
& \leq \frac{h_{m}}{k_{n}+h_{m}}(1-\beta) \varrho_{B^{\phi}}\left(k_{n} f_{n} \chi_{E}\right)+\alpha
\end{aligned}
$$

Take an integer n^{\prime} such that

$$
n, m \geq n^{\prime} \Rightarrow 2-\left\|f_{n}+g_{m}\right\|_{B^{\phi}}<\alpha
$$

Using the convexity of ϕ, for $n, m \geq n^{\prime}$ we have

$$
\begin{aligned}
& \alpha \geq 2-\left\|f_{n}+g_{m}\right\|_{B^{\phi}} \\
& \geq \frac{1}{k_{n}} \varrho_{B^{\phi}}\left(k_{n} f_{n}\right)+\frac{1}{h_{m}} \varrho_{B^{\phi}}\left(h_{m} g_{m}\right)-\frac{k_{n}+h_{m}}{k_{n} h_{m}} \varrho_{B^{\phi}}\left(\frac{k_{n} h_{m}}{k_{n}+h_{m}}\left(f_{n}+g_{m}\right)\right) \\
& \geq \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left[\frac{1}{k_{n}} \phi\left(k_{n} f_{n}\right)+\frac{1}{h_{m}} \phi\left(h_{m} g_{m}\right)\right. \\
& \left.-\frac{k_{n}+h_{m}}{k_{n} h_{m}} \phi\left(\frac{k_{n} h_{m}}{k_{n}+h_{m}}\left(f_{n}+g_{m}\right)\right)\right] d \mu \\
& \geq \varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \int_{E \cap[-T, T]}\left[\frac{1}{k_{n}} \phi\left(k_{n} f_{n}\right)+\frac{1}{h_{m}} \phi\left(h_{m} g_{m}\right)\right. \\
& \left.-\frac{k_{n}+h_{m}}{k_{n} h_{m}} \phi\left(\frac{k_{n} h_{m}}{k_{n}+h_{m}}\left(f_{n}+g_{m}\right)\right)\right] d \mu \\
& \geq \varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \int_{E \cap[-T, T]}\left[\frac{1}{k_{n}} \phi\left(k_{n} f_{n}\right)+\frac{1}{h_{m}} \phi\left(h_{m} g_{m}\right)\right] d \mu \\
& -\varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \int_{E \cap[-T, T]} \frac{k_{n}+h_{m}}{k_{n} h_{m}} \phi\left(\frac{k_{n} h_{m}}{k_{n}+h_{m}}\left(f_{n}+g_{m}\right)\right) d \mu \\
& \geq \varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \int_{E \cap[-T, T]}\left[\frac{1}{k_{n}} \phi\left(k_{n} f_{n}\right)+\frac{1}{h_{m}} \phi\left(h_{m} g_{m}\right)\right] d \mu \\
& -\frac{1}{k_{n}}(1-\beta) \varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \int_{E \cap[-T, T]} \phi\left(k_{n} f_{n}\right) d \mu-\frac{k_{n}+h_{m}}{k_{n} h_{m}} \alpha \\
& \geq \frac{\beta}{k_{n}} \varrho_{B^{\phi}}\left(k_{n} f_{n} \chi_{E}\right)-\frac{2 b}{a^{2}} \alpha \geq \frac{\beta}{b} \varrho_{B^{\phi}}\left(a f_{n} \chi_{E}\right)-\frac{2 b}{a^{2}} \alpha .
\end{aligned}
$$

Now, since $\alpha>0$ is arbitrary and ϕ is of Δ_{2}-type, we get the desired result.
Lemma 7. Let $\left\{f_{n}\right\}_{n} \subset B^{\phi}{ }_{-}$a.p. be such that $\sup _{n} \varrho_{B^{\phi}}\left(f_{n}\right)<\infty$. Then for every $\theta>0$ there exists $A>0$ such that $\sup _{n} \bar{\mu}\left(\left\{t \in \mathbb{R}:\left|f_{n}(t)\right| \geq A\right\}\right)<\theta$.

Proof. In fact, in the opposite case we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sup _{n} \bar{\mu}\left(\left\{t \in \mathbb{R}:\left|f_{n}(t)\right| \geq N\right\}\right) \neq 0 \tag{2.4}
\end{equation*}
$$

(note that the sequence is decreasing, so its limit exists). Putting $E_{n, N}=$ $\left\{t \in \mathbb{R}:\left|f_{n}(t)\right| \geq N\right\}$, we then get

$$
\varrho_{B^{\phi}}\left(f_{n}\right) \geq \varrho_{B^{\phi}}\left(f_{n} \chi_{E_{n, N}}\right) \geq N \bar{\mu}\left(E_{n, N}\right)
$$

and taking the supremum over n gives

$$
\begin{equation*}
\sup _{n} \varrho_{B^{\phi}}\left(f_{n}\right) \geq \sup _{n} \varrho_{B^{\phi}}\left(f_{n} \chi_{E_{n, N}}\right) \geq \sup _{n} N \bar{\mu}\left(E_{n, N}\right)=N \sup _{n} \bar{\mu}\left(E_{n, N}\right) \tag{2.5}
\end{equation*}
$$

Finally, letting $N \rightarrow \infty$ in (2.5) and using again (2.4), we obtain $\sup _{n} \varrho_{B^{\phi}}\left(f_{n}\right)$ $=\infty$. This contradicts the assumption.

Lemma 8. Let $\left\{f_{n}\right\}_{n}$ be a sequence in B^{ϕ}-a.p. satisfying the $\bar{\mu}$-Cauchy condition and modular equicontinuous, i.e. for every $\varepsilon>0$, there exist $\delta>0$ and $n_{0} \in \mathbb{N}$ such that

$$
\bar{\mu}(E)<\delta \Rightarrow \varrho_{B^{\phi}}\left(f_{n} \chi_{E}\right) \leq \varepsilon, \forall n \geq n_{0}
$$

If $\sup _{n} \varrho_{B^{\phi}}\left(f_{n}\right)<\infty$, then $\left\{\varrho_{B^{\phi}}\left(f_{n}\right)\right\}_{n \geq 1}$ is a Cauchy sequence in \mathbb{R}.
Proof. First, we show the assertion for $\phi(u)=|u|$. Set $E_{n, m}=\{t \in \mathbb{R}$: $\left.\left|f_{n}(t)-f_{m}(t)\right|>\varepsilon / 2\right\}$. The sequence $\left\{f_{n}\right\}$ being equicontinuous, there exist $\delta>0$ and $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ we have

$$
\bar{\mu}(E)<\delta \Rightarrow \varrho_{B^{1}}\left(f_{n} \chi_{E}\right) \leq \varepsilon / 4
$$

Since $\left\{f_{n}\right\}$ is a $\bar{\mu}$-Cauchy sequence, there exists $n_{1} \in \mathbb{N}$ such that $\bar{\mu}\left(E_{n, m}\right)<\delta$ for $n, m \geq n_{1}$. Taking $n, m \geq \max \left(n_{0}, n_{1}\right)$ we get

$$
\begin{aligned}
\left|\varrho_{B^{1}}\left(f_{n}\right)-\varrho_{B^{1}}\left(f_{m}\right)\right|= & \left|\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\right| f_{n}(t)\left|d \mu-\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\right| f_{m}(t)|d \mu| \\
\leq & \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left|f_{n}(t)-f_{m}(t)\right| d \mu \\
\leq & \varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \int_{[-T, T] \cap E_{n, m}}\left|f_{n}(t)-f_{m}(t)\right| d \mu \\
& +\varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \int_{[-T, T] \cap E_{n, m}^{\mathrm{c}}}\left|f_{n}(t)-f_{m}(t)\right| d \mu \\
\leq & \varrho_{B^{1}}\left(f_{n} \chi_{E_{n, m}}\right)+\varrho_{B^{1}}\left(f_{m} \chi_{E_{n, m}}\right)+\frac{\varepsilon}{2} \bar{\mu}\left(E_{n, m}^{\mathrm{c}}\right) \\
\leq & \varepsilon / 4+\varepsilon / 4+\varepsilon / 2=\varepsilon .
\end{aligned}
$$

Now, for an arbitrary Orlicz function ϕ, it is sufficient to show that $\left(\phi\left(f_{n}\right)\right)_{n}$ is a $\bar{\mu}$-Cauchy sequence; the result follows then from the case $\phi(x)=|x|$.

By Lemma 7, we know that if $\sup _{n} \varrho_{B^{\phi}}\left(f_{n}\right)<\infty$ then for every $\theta>0$, there exists $M>0$ such that $\bar{\mu}\left(\left\{t \in \mathbb{R}:\left|f_{n}(t)\right| \geq M\right\}\right)<\theta$ for all n.

Put $G_{n}=\left\{t \in \mathbb{R}:\left|f_{n}(t)\right| \leq M\right\}$ and let $\varepsilon>0$. Since ϕ is uniformly continuous on $[-M, M]$, there exists $\eta>0$ such that

$$
\left|\phi\left(t_{1}\right)-\phi\left(t_{2}\right)\right| \geq \varepsilon \Rightarrow\left|t_{1}-t_{2}\right|>\eta .
$$

Now since for all $t \in G_{n} \cap G_{m}$, we have $f_{n}(t), f_{m}(t) \in[-M, M]$, it follows that

$$
\left|\phi\left(f_{n}(t)\right)-\phi\left(f_{m}(t)\right)\right| \geq \varepsilon \Rightarrow\left|f_{n}(t)-f_{m}(t)\right|>\eta
$$

whence, for any $\varepsilon, \theta>0$,

$$
\begin{aligned}
\bar{\mu}\left\{t \in \mathbb{R}: \mid \phi\left(f_{n}(t)\right)\right. & \left.-\phi\left(f_{m}(t)\right) \mid \geq \varepsilon\right\} \\
\leq & \bar{\mu}\left\{t \in G_{n} \cap G_{m}:\left|\phi\left(f_{n}(t)\right)-\phi\left(f_{m}(t)\right)\right| \geq \varepsilon\right\} \\
& \quad+\bar{\mu}\left\{t \in\left(G_{n} \cap G_{m}\right)^{\mathrm{c}}:\left|\phi\left(f_{n}(t)\right)-\phi\left(f_{m}(t)\right)\right| \geq \varepsilon\right\} \\
\leq & \bar{\mu}\left\{t \in G_{n} \cap G_{m}:\left|f_{n}(t)-f_{m}(t)\right| \geq \eta\right\}+2 \theta .
\end{aligned}
$$

Letting $n, m \rightarrow \infty$, we get

$$
\forall \varepsilon>0, \forall \theta>0, \quad \bar{\mu}\left\{t \in \mathbb{R}:\left|\phi\left(f_{n}(t)\right)-\phi\left(f_{m}(t)\right)\right| \geq \varepsilon\right\} \leq 2 \theta
$$

Finally, since θ is arbitrary, we get the desired result.
Lemma 9. Let $\left\{f_{n}\right\} \subset B^{\phi}$-a.p. be a $\bar{\mu}$-Cauchy sequence equicontinuous in norm. Then $\left\{f_{n}\right\}$ is a modular Cauchy sequence. In particular, if $\phi \in \Delta_{2}$, the sequence $\left\{f_{n}\right\}$ is norm convergent to some $f \in B^{\phi}$-a.p.

Proof. Set $E_{n, m}=\left\{t \in \mathbb{R}:\left|f_{n}(t)-f_{m}(t)\right|>\varepsilon / 2\right\}$. The sequence $\left\{f_{n}\right\}$ being equicontinuous in norm, there exist $\delta>0$ and $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ we have

$$
\bar{\mu}(E)<\delta \Rightarrow \varrho_{B^{\phi}}\left(2 f_{n} \chi_{E}\right) \leq \varepsilon / 2 .
$$

Since $\left\{f_{n}\right\}$ satisfies the $\bar{\mu}$-Cauchy condition, there exists $n_{1} \in \mathbb{N}^{*}$ such that $n, m \geq n_{1} \Rightarrow \bar{\mu}\left(E_{n, m}\right)<\delta$. Taking $n, m \geq \max \left(n_{0}, n_{1}\right)$ we get

$$
\begin{aligned}
\varrho_{B^{\phi}}\left(f_{n}-f_{m}\right) & \leq \varrho_{B^{\phi}}\left(\left(f_{n}-f_{m}\right) \chi_{E_{n, m}}\right)+\varrho_{B^{\phi}}\left(\left(f_{n}-f_{m}\right) \chi_{\left(E_{n, m}\right)^{\mathrm{c}}}\right) \\
& \leq \frac{1}{2}\left[\varrho_{B^{\phi}}\left(2 f_{n} \chi_{E_{n, m}}\right)+\varrho_{B^{\phi}}\left(2 f_{m} \chi_{E_{n, m}}\right)\right]+\frac{\varepsilon}{2} \bar{\mu}\left(\left(E_{n, m}\right)^{\mathrm{c}}\right) \\
& \leq \frac{1}{2}\left(\frac{\varepsilon}{2}+\frac{\varepsilon}{2}\right)+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

Lemma 10. Let $f \in E^{\phi}([0,1])$, where $E^{\phi}([0,1])$ is the Orlicz class

$$
E^{\phi}([0,1])=\left\{f \text { measurable }: \varrho_{\phi}(\lambda f)<\infty, \forall \lambda>0\right\}
$$

and let ϱ_{ϕ} be the usual Orlicz modular. Then:
(1) If \tilde{f} is the 1-periodic extension of f to the whole \mathbb{R}, then $\tilde{f} \in B^{\phi}$-a.p.
(2) The injection $i: E^{\phi}([0,1]) \rightarrow B^{\phi}$-a.p., $i(f)=\widetilde{f}$, is an isometry with respect to the modular and for the respective Orlicz norms.

Proof. (1) Let $f=\sum_{i=1}^{n} a_{i} \chi_{A_{i}}, A_{i} \cap A_{j}=\emptyset$ if $i \neq j$ and $\bigcup_{i=1}^{n} A_{i} \subset[0, \alpha]$, $0<\alpha<1$. Let $m \in \mathbb{N}$. Since $\sum_{i=1}^{n} \phi\left(m a_{i}\right) \mu\left(A_{i}\right)<\infty$, it follows from (1.2) that there exists $P_{m} \in \mathcal{P}$ (the set of generalized trigonometric polynomials) for which

$$
\varrho_{B^{\phi}}\left(\frac{m}{4}\left(\widetilde{f}-P_{m}\right)\right) \leq \frac{1}{m}
$$

where \widetilde{f} is the 1-periodic extension of f.

Let $\lambda>0$ and $m_{0} \in \mathbb{N}$ be such that $\lambda \leq m_{0} / 4$. Then

$$
\varrho_{B^{\phi}}\left(\lambda\left(\widetilde{f}-P_{m}\right)\right) \leq \varrho_{B^{\phi}}\left(\frac{m}{4}\left(\tilde{f}-P_{m}\right)\right) \leq \frac{1}{m}, \quad \forall m \geq m_{0}
$$

This means that $\lim _{m \rightarrow \infty}\left\|\tilde{f}-P_{m}\right\|_{B^{\phi}}=0$, i.e. $\tilde{f} \in B^{\phi_{-}}$a.p.
Consider now the general case of $f \in E^{\phi}([0,1])$. It is known (see [1]) that the step functions are dense in $E^{\phi}([0,1])$, hence given $\varepsilon>0$, there is a $g_{\varepsilon}=\sum_{i=1}^{n} a_{i} \chi_{A_{i}}$ for which $\left\|g_{\varepsilon}-f\right\|_{\phi} \leq \varepsilon / 4$. Since f is absolutely continuous, we may choose $\delta>0$ such that $\mu(A) \leq \delta \Rightarrow\left\|f \chi_{A}\right\|_{\phi} \leq \varepsilon / 4$. We take $\alpha>0$ with $1-\alpha \leq \delta$ and put $A_{i}^{\alpha}=A_{i} \cap[0, \alpha], i=1, n$. Then the function $g_{\varepsilon}^{\alpha}=\sum_{i=1}^{n} a_{i} \chi_{A_{i}^{\alpha}}$ belongs to $E^{\phi}([0,1])$. If \widetilde{f} and $\widetilde{g}_{\varepsilon}^{\alpha}$ are the respective 1-periodic extensions, then

$$
\begin{aligned}
\left\|\tilde{f}-\widetilde{g}_{\varepsilon}^{\alpha}\right\|_{B^{\phi}} & =\left\|f-g_{\varepsilon}^{\alpha}\right\|_{\phi} \leq\left\|\left(f-g_{\varepsilon}^{\alpha}\right) \chi_{[0, \alpha]}\right\|_{\phi}+\left\|\left(f-g_{\varepsilon}^{\alpha}\right) \chi_{[\alpha, 1]}\right\|_{\phi} \\
& \leq\left\|f-g_{\varepsilon}\right\|_{\phi}+\left\|f \chi_{[\alpha, 1]}\right\|_{\phi} \leq \varepsilon / 4+\varepsilon / 4=\varepsilon / 2
\end{aligned}
$$

Now, since $\widetilde{g}_{\varepsilon}^{\alpha} \in B^{\phi}$-a.p., there exists $P_{\varepsilon} \in \mathcal{P}$ for which $\left\|\widetilde{g}_{\varepsilon}^{\alpha}-P_{\varepsilon}\right\|_{B^{\phi}} \leq \varepsilon / 2$. Finally,

$$
\left\|\widetilde{f}-P_{\varepsilon}\right\|_{B^{\phi}} \leq\left\|\tilde{f}-\widetilde{g}_{\varepsilon}^{\alpha}\right\|_{B^{\phi}}+\left\|\widetilde{g}_{\varepsilon}^{\alpha}-P_{\varepsilon}\right\|_{B^{\phi}} \leq \varepsilon / 2+\varepsilon / 2=\varepsilon
$$

i.e. $\tilde{f} \in B^{\phi_{-}}$-a.p.
(2) It is clear that $i: E^{\phi}([0,1]) \rightarrow B^{\phi}$-a.p. is a modular isometry. The fact that it is also an isometry for the Orlicz norms follows immediately since

$$
\|f\|_{\phi}=\inf _{k>0}\left\{\frac{1}{k}\left(1+\varrho_{\phi}(k f)\right)\right\}=\inf _{k>0}\left\{\frac{1}{k}\left(1+\varrho_{B^{\phi}}(k \widetilde{f})\right)\right\}=\|\widetilde{f}\|_{B^{\phi} .}
$$

We can now state our main result.
Theorem 1. The space ($B^{\phi}{ }_{-}$a.p., $\|\cdot\|_{B^{\phi}}$) is k-convex iff $\phi \in \Delta_{2} \cap \nabla_{2}$ and ϕ is strictly convex.

Proof. Necessity. As known for general Banach spaces, k-convexity implies strict convexity and reflexivity. From [9], reflexivity of B^{ϕ}-a.p. implies that $\phi \in \Delta_{2} \cap \nabla_{2}$. It remains to show that ϕ is strictly convex. Indeed, strict convexity of ϕ is necessary for strict convexity of the Orlicz class $E^{\phi}([0,1])$ (cf. [1]) and using Proposition 10, we deduce that it is also necessary for strict convexity of B^{ϕ}-a.p.

For the sufficiency, let $\left\{f_{n}\right\} \subset B^{\phi}$-a.p. with $\left\|f_{n}\right\|_{B^{\phi}}=1$ and $\left\|f_{n}+f_{m}\right\|_{B^{\phi}}$ $\rightarrow 2$ as $n, m \rightarrow \infty$. Given any $\varepsilon>0$, take n_{0} and δ as in Lemma 6. Since $f_{n_{0}} \in B^{\phi}$-a.p. there is a $\delta^{\prime}>0$ such that $\bar{\mu}(E)<\delta^{\prime} \Rightarrow \varrho_{B^{\phi}}\left(f_{n_{0}} \chi_{E}\right) \leq \delta$ and then by Lemma 6 we obtain $\varrho_{B^{\phi}}\left(f_{m} \chi_{E}\right) \leq \varepsilon$ for all $m \geq n_{0}$.

On the other hand, since $\left\|f_{n}+f_{m}\right\|_{B^{\phi}} \rightarrow 2$ as $n, m \rightarrow \infty$, from Lemma 2 it follows that $\left\{k_{n} f_{n}\right\}$ is a $\bar{\mu}$-Cauchy sequence. Now, we will show that it is also modular equicontinuous.

Given any $\varepsilon>0$, from Remark 2 there is $\delta>0$ such that $\varrho_{B^{\phi}}\left(f_{n} \chi_{E}\right) \leq \delta$ $\Rightarrow\left\|k_{n} f_{n} \chi_{E}\right\|_{B^{\phi}} \leq \varepsilon$ and then from the arguments presented above we also have the implication $\bar{\mu}(E)<\delta^{\prime} \Rightarrow\left\|k_{n} f_{n} \chi_{E}\right\|_{B^{\phi}} \leq \varepsilon, \forall n \geq n_{0}$ for some δ^{\prime}. This means that the sequence $\left\{k_{n} f_{n}\right\}_{n}$ is norm equicontinuous.

Moreover, from Lemma $8,\left\{\varrho_{B^{\phi}}\left(k_{n} f_{n}\right)\right\}_{n \geq 1}$ is a Cauchy sequence in \mathbb{R}, whence it converges to some $l \in \mathbb{R}$.

Now, using (1.1), we may write $\left\|f_{n}\right\|_{B^{\phi}}=\left(1 / k_{n}\right)\left(1+\varrho_{B^{\phi}}\left(k_{n} f_{n}\right)\right)$ and letting $n \rightarrow \infty$ we get $\lim _{n \rightarrow \infty} k_{n}=1+l$.

Finally, from Lemma 9, the sequence $\left(k_{n} f_{n}\right)_{n}$ is modular Cauchy and again by the Δ_{2}-condition it is a norm Cauchy sequence, i.e. it converges in norm to some $g \in B^{\phi}$-a.p.

Consequently, $\left\{f_{n}\right\}$ is norm convergent to $g /(1+l)$.

REFERENCES

[1] S. Chen, Geometry of Orlicz spaces, Dissertationes Math. 356 (1996).
[2] K. Fan and I. Glicksberg, Some geometric properties of the spheres in a normed linear space, Duke Math. J. 25 (1958), 553-568.
[3] T. R. Hillmann, Besicovitch-Orlicz spaces of almost periodic functions, in: Real and Stochastic Analysis, Wiley, 1986, 119-167.
[4] H. Hudzik and B. Wang, Approximative compactness in Orlicz spaces, J. Approx. Theory 95 (1998), 82-89.
[5] M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
[6] M. Morsli, On some convexity properties of the Besicovitch-Orlicz space of almost periodic functions, Comment. Math. Prace Mat. 34 (1994), 137-152.
[7] -, Espace de Besicovitch-Orlicz de fonctions presque périodiques. Structure générale et géométrie, Thèse de Doctorat, 1996.
[8] -, On modular approximation property in the Besicovitch-Orlicz space of almost periodic functions, Comment. Math. Univ. Carolin. 38 (1997), 485-496.
[9] M. Morsli, F. Bedouhene and F. Boulahia, Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions, ibid. 43 (2002), 103-117.
[10] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49-65.
[11] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Dekker, New York, 1991.
Department of Mathematics
Faculty of Sciences
University of Tizi-Ouzou, Algeria
E-mail: fbedouhene@yahoo.fr mdmorsli@yahoo.fr

[^0]: 2000 Mathematics Subject Classification: 46B20, 42A75.
 Key words and phrases: k-convexity, Besicovitch-Orlicz space, almost periodic function.

