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A CONVOLUTION PROPERTY OF SOME MEASURES

WITH SELF-SIMILAR FRACTAL SUPPORT

BY

DENISE SZECSEI (Daytona Beach, FL)

Abstract. We define a class of measures having the following properties:

(1) the measures are supported on self-similar fractal subsets of the unit cube IM =
[0, 1)M , with 0 and 1 identified as necessary;

(2) the measures are singular with respect to normalized Lebesgue measure m on IM ;
(3) the measures have the convolution property that µ ∗ Lp

⊆ Lp+ε for some ε =
ε(p) > 0 and all p ∈ (1,∞).

We will show that if (1/p, 1/q) lies in the triangle with vertices (0, 0), (1, 1) and (1/2, 1/3),
then µ ∗ Lp

⊆ Lq for any measure µ in our class.

1. Introduction. Let T denote the circle group R/Z and, for 1 ≤ p<∞,
let Lp denote the usual Lebesgue space formed with respect to normalized
Lebesgue measure m on T . While every complex Borel measure µ on T
acts as a convolution operator on any Lp-space: µ ∗ Lp ⊆ Lp, there are also
probability measures µ on T which are singular with respect to m and have
the property that for each p ∈ (1,∞), µ ∗ Lp ⊆ Lp+ε for some ε = ε(p) > 0.
An example of such a measure, as well as a discussion of this phenomenon,
can be found in [4]. The Cantor–Lebesgue measure is a singular measure on
the circle group R/Z, and its support is the Cantor set, which is a self-similar
fractal subset of R. Oberlin [3] showed that for each p ∈ (1,∞) there is an
ε > 0 for which the Cantor–Lebesgue measure has the convolution property
that ‖λ ∗ f‖Lp+ε ≤ ‖f‖Lp . We will generalize this result by defining a class
of measures having the following properties:

(1) the measures are supported on self-similar fractal subsets of the unit
cube IM = [0, 1)M , with 0 and 1 identified as necessary;

(2) the measures are singular with respect to normalized Lebesgue mea-
sure m on IM ;

(3) the measures have the convolution property that µ ∗ Lp ⊆ Lp+ε for
some ε = ε(p) > 0 and all p ∈ (1,∞).
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We will show that if (1/p, 1/q) lies in the triangle with vertices (0, 0),
(1, 1) and (1/2, 1/3), then µ ∗ Lp ⊆ Lq for any measure µ in our class.

This paper is organized as follows: §2 introduces our class of sets and
measures, while §3 is concerned with their convolution properties.

2. The class ℑ of self-similar fractal sets. Let IM denote the unit
cube in R

M viewed as an abelian group with binary operation component-
wise addition modulo 1. Fix 0 < r < 1 and distinct x0, x1, . . . , xn ∈ IM ,
where {x0, x1, . . . , xn} forms a subgroup of IM . Denote this subgroup G1.
We will be dealing with certain iterated function systems (f0, f1, . . . , fn)
on IM where fi will have the form fi = rx + xi. A discussion of iterated
function systems can be found in [1] and [2]. This type of iterated function
system realizes the ratio list (r, . . . , r). Because of the identification of the
edges of the M -dimensional torus, there may be some confusion regarding
the interpretation of “+”. If we consider IM as a subset of R

M , where “+”
denotes addition inherited from R

M , then each fi is a similarity, and we can
obtain the invariant set for these iterated function systems ([1], [2]). When
we generate the invariant set using the sets G1 and S1, as described below,
we will identify the edges of the M -dimensional torus, and “+” will denote
addition modulo 1, so that we remain in the group Gn.

Let S1 = {x1, . . . , xn} and consider the iterated function system
(f1, . . . , fn) realizing the ratio list (r, . . . , r). Write S for the invariant set
of this iterated function system. We will define two sequences of sets, {SN}
and {GN}, in similar fashions. Let

SN =

n
⋃

k=1

fk(SN−1)
.
=

n
⋃

k=1

(rSN−1 + xk) =

n
⋃

k=1

(SN−1 + rN−1xk),

GN =
n
⋃

k=0

fk(GN−1)
.
=

n
⋃

k=0

(rGN−1 + xk) =
n
⋃

k=0

(GN−1 + rN−1xk)

for N ≥ 2. Since S1 and G1 are compact sets, the invariant sets S and G for
their respective iterated function systems can be generated from S1 and G1.

We will say that S ∈ ℑ if the following three conditions hold:

• 0 ∈ S1.
• There exists a non-empty bounded open set V in IM such that fi(V )∩

fj(V ) = ∅ for i 6= j, and V ⊃
⋃n

i=0 fi(V ). This condition is referred to
as the open set condition.

• GN is the subgroup of IM generated by SN , |SN | = |S1|
N and |GN | =

|G1|
N .

Examples of fractal sets belonging to ℑ include the triadic Cantor set,
the Sierpiński gasket and the Sierpiński carpet [2]. For the triadic Cantor
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set,
S1 = {0, 2/3}, G1 = {0, 1/3, 2/3}.

For the Sierpiński gasket,

S1 = {(0, 0), (1/4, 1/2), (3/4, 1/2)},

G1 = {(0, 0), (1/2, 0), (1/4, 1/2), (3/4, 1/2)}.

For the Sierpiński carpet,

S1 = {(0, 0), (1/3, 0), (2/3, 0), (0, 1/3), (2/3, 1/3),

(0, 2/3), (1/3, 2/3), (2/3, 2/3)},

G1 = {(0, 0), (1/3, 0), (2/3, 0), (0, 1/3), (1/3, 1/3), (2/3, 1/3),

(0, 2/3), (1/3, 2/3), (2/3, 2/3)}.

In general, and roughly, to construct self-similar fractal sets in IM be-
longing to ℑ, begin with a geometric subset of IM , such as a square, triangle,
cube, etc. Divide it evenly into n congruent pieces, each of which has the
same geometric shape as the original, and remove one of the pieces. Con-
struct the sets S1 and G1 from the vertices of the divided geometric shape.
Determine the ratio list from the geometry of the setting, and define the
iterated function system using the set S1 and the ratio list.

The open set condition ensures that the components fi(S) of S do not
overlap “too much”. Because 0 ∈ S1, we have S1 ⊂ S2 ⊂ · · · . The third
condition ensures that {GN} is a nested sequence of subgroups of IM , from
which it follows that G is a subgroup of IM .

Since S1 is compact, {SN} converges to S in the Hausdorff metric, and
hence

⋃∞
N=1 SN is dense in S. Thus the invariant set S for the iterated

function system (f1, . . . , fn) satisfies S =
⋃∞

N=1 SN . Similarly,
⋃∞

N=1 GN

is dense in G, and the invariant set G for the iterated function system
(f0, f1, . . . , fn) satisfies G =

⋃∞
N=1 GN .

Let Lp(GN ) denote the Lebesgue space formed with respect to normal-
ized counting measure (denoted mN ) on GN , and let m denote the Haar
measure on G. Then m is the weak∗ limit of the probability measures mN .
The norm in Lp(GN ) will be written as ‖·‖p,N . Denote by C(G) the space of
continuous functions on G. Denote by µN the normalized counting measure
on SN , i.e. the probability measure uniformly distributed on SN . Then {µN}
is a weak∗-Cauchy sequence of measures; we will denote its weak∗ limit by µ.

3. Convolution properties. Suppose S and G are self-similar fractal
sets constructed as above, with S ∈ ℑ. We will prove the following convolu-
tion theorem:

Theorem 1. Let µ be the measure on S as defined above. For each

p ∈ (1,∞) there is an ε > 0 such that ‖µ ∗ f‖Lp+ε(G) ≤ ‖f‖Lp(G) for all

f ∈ Lp(G).
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The proof of this theorem requires two lemmas, the first of which is
stated in a more general setting. Suppose G1 and G2 are abelian groups
satisfying G1 ⊂ G2, |G1| = nJ , |G2| = nJ+1, and G2 =

⋃n
j=1(xj + G1). Let

S1 and S2 be subsets of G1 and G2 respectively, satisfying |S1| = (n − 1)J ,
|S2| = (n − 1)J+1, and S2 =

⋃n−1
j=1 (xj + S1). Let µi denote the normalized

counting measure on Si, and ‖g‖p,i denote the Lp norm with respect to the
normalized counting measure on Gi.

Lemma 1. Suppose that the n-point inequality

(1)

(

1

n

n
∑

i=1

(

1

n − 1

∑

j 6=i

aj

)q)1/q

≤

(

1

n

n
∑

i=1

ap
i

)1/p

holds for all positive real numbers {ai}
n
i=1. If the inequality

(2)

(

1

nJ

∑

x∈G1

∣

∣

∣

∣

1

(n − 1)J

∑

t∈S1

h(x − t)

∣

∣

∣

∣

q)1/q

≤

(

1

nJ

∑

x∈G1

|h(x)|p
)1/p

holds for all functions h ∈ Lp(G1), then the inequality

(3)

(

1

nJ+1

∑

x∈G2

∣

∣

∣

∣

1

(n − 1)J+1

∑

t∈S2

g(x − t)

∣

∣

∣

∣

q)1/q

≤

(

1

nJ+1

∑

x∈G2

|g(x)|p
)1/p

holds for all functions g ∈ Lp(G2).

Lemma 2. Inequality (1) is valid for q = 3 and p = 2.

We observe that (2) is just ‖µ1 ∗ h‖q,1 ≤ ‖h‖p,1, and (3) is just ‖µ2 ∗ g‖q,2

≤ ‖g‖p,2. Once the two lemmas are proven, an inductive argument will show
that ‖µN ∗ ft‖L3(GN ) ≤ ‖f‖L2(GN ) for all f ∈ Lp(GN ) and all N . Then if
f ∈ C(G), it follows that |µN ∗ f | → |µ ∗ f | uniformly on G, and we have\

|µN ∗ f |3 dmN →
\
|µ ∗ f |3 dm.

Since
[\

|µN ∗ f |3 dmN

]2/3
≤
\
|f |2 dmN and

\
|f |2 dmN →

\
|f |2 dm,

we see that

‖µ ∗ f‖L3(G) ≤ ‖f‖L2(G)

for all non-negative continuous functions f on G. In addition, we know that

‖µ ∗ f‖L1(G) ≤ ‖f‖L1(G)

for f ∈ L1(G) and

‖µ ∗ f‖L∞(G) ≤ ‖f‖L∞(G),

so application of the Riesz–Thorin theorem will complete the proof of The-
orem 1.
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Proof of Lemma 1. We begin by using a coset expansion of S2 and G2

in terms of S1 and G1 to show that
(

1

nJ+1

∑

x∈G2

∣

∣

∣

∣

1

(n − 1)J+1

∑

t∈S2

g(x − t)

∣

∣

∣

∣

q)1/q

=

(

1

n

n
∑

i=1

∥

∥

∥

∥

1

n − 1

n−1
∑

j=1

µi ∗ g(x + (xi − xj))

∥

∥

∥

∥

q

q,1,x

)1/q

.

We calculate
(

1

nJ+1

∑

x∈G2

∣

∣

∣

∣

1

(n − 1)J+1

∑

t∈S2

g(x − t)

∣

∣

∣

∣

q)1/q

=

(

1

nJ+1

∑

x∈G2

∣

∣

∣

∣

1

(n − 1)J+1

n−1
∑

j=1

∑

t∈xj+S1

g(x − t)

∣

∣

∣

∣

q)1/q

=

(

1

nJ+1

n
∑

i=1

∑

x∈xi+G1

∣

∣

∣

∣

1

(n − 1)J+1

n−1
∑

j=1

∑

t∈S1

g(x − xj − t)

∣

∣

∣

∣

q)1/q

=

(

1

nJ+1

n
∑

i=1

∑

x∈G1

∣

∣

∣

∣

1

(n − 1)J+1

n−1
∑

j=1

∑

t∈S1

g(x + xi − xj − t)

∣

∣

∣

∣

q)1/q

=

(

1

nJ+1

n
∑

i=1

∑

x∈G1

∣

∣

∣

∣

1

(n − 1)1

n−1
∑

j=1

1

(n − 1)J

∑

t∈S1

g(x − t + (xi − xj))

∣

∣

∣

∣

q)1/q

=

(

1

n

n
∑

i=1

[

1

nJ

∑

x∈G1

∣

∣

∣

∣

1

n − 1

n−1
∑

j=1

µ1 ∗ g(x + (xi − xj))

∣

∣

∣

∣

q]){1/q

=

[

1

n

n
∑

i=1

∥

∥

∥

∥

1

n − 1

n−1
∑

j=1

µ1 ∗ g(x + (xi − xj))

∥

∥

∥

∥

q

q,1,x

]1/q

.

Using the triangle inequality and the inductive hypothesis ‖µ1 ∗ g‖q,1 ≤
‖g‖p,1, we see that

[

1

n

n
∑

i=1

∥

∥

∥

∥

1

n − 1

n−1
∑

j=1

µ1 ∗ g(x + (xi − xj))

∥

∥

∥

∥

q

q,1,x

]1/q

≤

[

1

n

n
∑

i=1

[

1

n − 1

n−1
∑

j=1

‖µ1 ∗ g(x + (xi − xj))‖q,1,x

]q]1/q

=

[

1

n

n
∑

i=1

1

n − 1

[

n−1
∑

j=1

‖g‖p,1,(xi−xj)+G1

]q
]1/q

.
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Now, for fixed i, {(xi − xj) + G1}
n−1
j=1 spans all of the cosets of G1 in G2

except (xi − xn)+G1. And, for fixed k, {(xi − xk) + G1}
n
i=1 spans all of the

cosets of G1 in G2, so by (1),

[

1

n

n
∑

i=1

1

n − 1

[

n−1
∑

j=1

‖g‖p,1,(xi−xj)+G1

]q
]1/q

≤

[

1

n

n
∑

i=1

‖g‖p
p,1,xi+G1

]1/p

=

[

1

n

n
∑

i=1

n‖g‖p
p,2,xi+G1

]1/p

=
[

n
∑

i=1

‖g‖p
p,2,xi+G1

]1/p
= [‖g‖p

p,2]
1/p = ‖g‖p,2.

Proof of Lemma 2. Cubing both sides of
(

1

n

n
∑

i=1

(

1

n − 1

∑

j 6=i

aj

)3)1/3

≤

(

1

n

n
∑

i=1

a2
i

)1/2

yields
n

∑

i=1

(

∑

j 6=i

aj

)3
≤ (n − 1)3n−1/2

(

n
∑

i=1

a2
i

)3/2
.

Since both sides are homogeneous of degree 3, it is enough to show that
the maximum of

∑n
i=1 (

∑

j 6=i aj)
3 subject to the constraint

∑n
i=1 a2

i = 1

is (n − 1)3n−1/2. By Lagrange’s method, the maximum of
∑n

i=1 (
∑

j 6=i aj)
3

subject to the constraint
∑n

i=1 (
∑

j 6=i aj)
3 = 1 occurs when the ai’s satisfy

the system of equations

(4)
∂

∂ak

(

n
∑

i=1

(

∑

j 6=i

aj

)3)

= 2λak for 1 ≤ k ≤ n.

Expanding the left-hand side of (4) yields the following system of equations:

(5)
[

a2
k + 2

n
∑

j=1
j 6=k

ajak + (n − 2)

n
∑

j=1

a2
j + 2(n − 3)

n
∑

i=1

n
∑

j>i

aiaj

]

= −2λak

for 1 ≤ k ≤ n, n ≥ 3. This system of equations is satisfied only when ai = aj

for 1 ≤ i, j ≤ n. We can therefore write a = ai, and given that
∑n

i=1 a2
i = 1,

we have
n

∑

i=1

(

n
∑

j=1
j 6=i

a
)3

=(n − 1)3n−1/2.
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