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ISOMETRIC CLASSIFICATION
OF SOBOLEV SPACES ON GRAPHS

BY

M. I. OSTROVSKII (Queens, NY)

Abstract. Isometric Sobolev spaces on finite graphs are characterized. The charac-
terization implies that the following analogue of the Banach—Stone theorem is valid: if two
Sobolev spaces on 3-connected graphs, with the exponent which is not an even integer,
are isometric, then the corresponding graphs are isomorphic. As a corollary it is shown
that for each finite group G and each p which is not an even integer, there exists n € N
and a subspace L C ¢, whose group of isometries is the direct product G x Z.

1. Introduction. Let G be a finite simple graph. We denote by Vg and
Eg its vertex set and edge set, respectively. Let d, denote the degree of a
vertex v € Vg; we use the notation d, g if v is a vertex of several graphs
simultaneously. We omit the subscript G in Eqg, Vg, etc., if G is clear from
context. All undefined graph-theoretic terminology and notation follows [1]

and/or [6].

DEFINITION 1. Let f : Vg — R, and let 1 < p < oo. The Sobolev
seminorm of f corresponding to £ = Eg and p is defined by

1
171 =1fles = ( 3 1) fo)) "
weE
If G is connected, then the only functions f satisfying ||f|| g, = 0 are con-
stant functions, so || - ||g,p is a norm on each linear space of functions on
V' = Vg which does not contain constants. Usually we shall consider the
subspace in the space RV of all functions on Vg given by >, oy f(v)dy = 0.

The resulting normed space will be called a Sobolev space on G and will be
denoted by S,(G).

Sobolev seminorms have been used for work on spectral and isoperimetric
problems of graph theory, problems on finite metric spaces and on the shapes
of minimal-volume projections of cubes. We refer to [2], [3], [18], and [26] for
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more information on this matter. Isometries of classical Sobolev spaces were
studied in [5].

In this paper by an isometry between two normed spaces X and Y we
mean a linear bijection 7' : X — Y satisfying the condition | Tz| = ||z for
all x € X. The main purpose of this paper is to answer an isometric version
of the following general problem:

To what extent the geometry of the graph G is determined by the geometry
of the space S,(G) (for p # 2)?

Recall the following well-known result (see [7, p. 442]).

BANACH-STONE THEOREM. If the spaces C(Q) and C(R) of continuous
functions on compact Hausdorff spaces are isometric, then () and R are
homeomorphic.

The problem mentioned above can be considered as a problem about
analogues of the Banach—Stone theorem for Sobolev spaces on graphs.

For graphs the assumption that S,(G) and S,(H) are isometric does
not imply that G and H are isomorphic, even when p # 2. One of the
easiest ways to show this is by observing that if G is a tree, then S,(G)
is isometric to £ of the corresponding dimension. On the other hand, we
prove (Theorem 2) that if p is not an even integer and the graphs G and
H are 3-connected, then the isometric equivalence of S,(G) and S,(H) im-
plies that G and H are isomorphic. It is also worth mentioning that Sobolev
spaces of the same dimension can be “far” from each other. To state the
corresponding result we recall that the Banach—Mazur distance d(X,Y)
between two finite-dimensional normed spaces of the same dimension is de-

fined by

d(X,Y)=inf{||T|| - |[T7}|: T:X — Y is an isomorphism}.

It was shown in [17] that there exist connected graphs G on n? vertices

such that d(5:1(G), K’fz—l) > CVInn, where C' > 0 is an absolute con-
stant.

Sobolev spaces on graphs (of non-trivial size), which are not 3-connected,
can be isometric without the graphs being isomorphic. We describe (Theo-
rem 1) the degree of similarity between graphs G and H which is equivalent
to isometric equivalence of S,(G) and S,(H) for p ¢ {2,4,6,8,...,00}. (We
shall write the last condition as p ¢ 2N. The restriction comes from the use
of the extension theorem for L,-isometries.)

2. Surgeries preserving the isometric class of Sobolev spaces

DEFINITION 2. A connected induced subgraph O in a graph G is called
2-joined if 3 < |Vp| < |Vz| and there exist u,v € Vo, u # v, such that
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e Each path from a vertex of O to a vertex which is not in O has either
4 or v among its vertices.
e Both w and v are adjacent to vertices which are not in O.

The vertices u and v are called junction vertices of O.

REMARK. The following is an immediate consequence of the definitions:
A connected graph G with |Viz| > 4 contains a 2-joined subgraph if and only
if G is not 3-connected.

It can be easily verified in a straightforward way that all results of this
paper are valid in the case |Vg| < 3. We assume |Vz| > 4 without mentioning
this explicitly.

THEOREM 1. Let G and H be connected graphs. Let 1 < p < oo, p ¢ 2N.
The spaces Sp(G) and S,(H) are isometric if and only if the graph G is
isomorphic to a graph obtained from H by using finitely many surgeries of
the following two types.

TYPE 1. Let v be a cutvertex of G, and let O be one of the components
of G —v. We choose a vertex u (# v) in G — O. For each vertex w in O
which is adjacent to v we delete the edge wv and introduce a new edge wu.

TyYPE 2. Let O be a 2-joined subgraph of G with junction vertices u
and v. Suppose that O has at least one vertex, distinct from u and v, which
1s not adjacent to both u and v. We “twist” O in G. More formally, we do si-
multaneously the following two procedures: (1) for each vertex w € Vo\{u,v}
which is adjacent to u, but not to v, we delete the edge wu and introduce a
new edge wv; (2) for each vertex w € Vo\{u,v} which is adjacent to v, but
not to u, we delete the edge wv and introduce a new edge wu.

Proof. The “if” part of the theorem is true for each 1 < p < oo. It is an
immediate consequence of the following result.

PROPOSITION 1. Let 1 < p < co. Let H be a graph obtained from G by
using one of the surgeries described in Theorem 1. Then S,(H) is isometric

to Sp(G).
Proof. Let Ag be the linear operator Ag : RV¢ — RYE given by

_ ZU f(v)dv,G
(Acf)(u) = f(u) - TS deo

It is easy to see that Ag maps each function from RY¢ into S,(G), and that
[ fllEp = [If1lEp-

First we show that for each surgery there exists a natural bijection S
from Eg onto Ey.
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Type 1 surgeries: The bijection coincides with the identity mapping on
all edges from Eg which are also in Eg. On the remaining edges, S is defined
as follows: S(wv) = wu for w € Vo with wv € Egq.

Type 2 surgeries: The bijection S coincides with the identity mapping
on all edges from Eg\Fo, and on all edges of Fp which are not incident to
v or u. On the remaining edges it is defined as follows:

e S(wu) =wv for each w € Vp \ {v} with wu € Fp.
e S(wv) = wu for each w € Vp \ {u} with wv € Ep.
o S(uv) =wv if uv € Ep.

Observe that to prove the proposition it is enough to find a linear map-
ping L : RV¢ — RV# such that for yz = S(wz) we have

(1) [(Lg)(y) — (Lg)(2)| = lg(w) — g(=)|.

In fact, if there is an L satisfying (1), then Ay L : Sp(G) — Sp(H) is an
isometry.

Straightforward verification shows that the following mappings satis-

fy (1).

Type 1 surgeries:

(Lo = {

Type 2 surgeries:
(Lg)(z):{g(z) szEG’ O,z=wu,or z=w,
g(u) +g(v) —g(z) if z€Vo\{u,v}. =

To prove the “only if” part of the theorem we need the so-called extension
theorem for isometries of subspaces of L,. The theorem in the form used by
us is due to C. Hardin [11]. Results of the same spirit were proved earlier by
W. Lusky [16] and A. Plotkin (see [20]-[22]). See [4], [8, Section 3.3], [12], [13,
Section 2|, [23], and [24] for related information and historical comments.

Let F be a set of functions on a measure space ({21, X1, p11). We assume,
for simplicity, that F' contains a function whose support is 2. Let o(F)
denote the least o-algebra in which all quotients f/g (f,g € F) are measur-
able; here the quotients are allowed to have oo as one of their values (and
0/0 is defined to be oo). We denote by R(F') the set of all o( F')-measurable
functions on 21, and by R(F') - F' the set of all functions of the form rf,
where r € R(F), f € F.

EXTENSION THEOREM. Let p € (0,00), p ¢ 2N, H be a closed sub-
space of Ly(£21,X1,p1), and T : H — L, ({25, X5, u2) be a linear isomet-
ric embedding. Then T can be extended to a linear isometric embedding of

R(H) -HN Lp(.Ql, X, ,ul) nto LP(QQ, Yo, ,U,Q).

9(2) if z€ G- O,
g9(z) —gw) +g(u) if z € Vp.
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There is a natural isometric embedding of S,(G) into £,(E¢). To define
it we choose a direction for each edge uv € Eg and let

(Cag)(uwv) = g(u) = g(v)
for g € Sp(G), where wv is directed from u to v. We identify S,(G) with

Ca(Sp(G)). The embedding C makes the extension theorem applicable to
Sobolev spaces on graphs. Using the extension theorem we prove

PROPOSITION 2. Let p ¢ 2N, let T : S,(G) — Sp(H) be an isometry,
and let an orientation of edges of G and H be given. Then there exist a
function 0 : Eyp — {—1,1} and a bijection B : Eg — E¢g such that:

1. If f € Ly(Eg) is in Cq(Sp(G)), then g € €,(Ex) given by g(uv) =
O(uv) f(B(uv)) is in Ca(Sp(H)) and Tf = g.

2. The bijection B is cycle-preserving (a set of edges forming a cycle in
H is mapped onto a similar set in G).

Proof. Let T : Sp(G) — Sp(H) be an isometry. Without loss of general-
ity we assume that the numbers of edges of G and H satisfy |Eq| > |Eq|.
We consider S,(G) and Sp(H) as subspaces of {,(Eq) and £,(Ef), respec-
tively, by means of the natural embedding defined above. In order to use the
terminology and notation of the extension theorem we identify ¢,(E¢g) with
L,(Eg, X1, ) and €,(Ey) with L,(Epq, X2, p2), where Xy and X are the
o-algebras of all subsets, and p; and po are the counting measures.

LEMMA 1. If S,(G) is embedded into L,(Egq, X1, 1) using Cg, then
0(5p(G)) = 2.

Proof. The image of S,(G) in Ly(Eg, X1, 1) contains functions of full
support: indeed, consider Cgu(Ags) for any function s : Vg — R with s(u) #
s(v) for u # v. Hence for each cut C C Eg there is a function of the form
f/g, with f,g € Cq(Sp(G)), supported on C. Hence C C p(S,(G)). On
the other hand, the o-algebra generated by all cuts of G is 2. In fact, for
each edge uv € E¢ consider C'(u) N C(v), where C(u) (resp. C'(v)) is the cut
containing all edges incident to u (resp. v). Since G is assumed to be without
multiple edges, it follows that C(u) N C(v) = {uv}. =

By Lemma 1, the extension theorem implies that there exists an iso-
metric embedding 7" : ¢,(Eg) — {p(Ex) which extends the isometry T :
Sp(G) — Sp(H). The assumption |Eq| > |Ey| implies that 7" is surjective.

We recall the description of isometries of £}, p # 2 (see, e.g., [14, p. 112]):
each of them is formed by permutations of the unit vectors and multiplication
of them by +1. Therefore, for each isometry 1" : ¢,(Eg) — ¢,(EN) there
exists a bijection B : Ey — Eg, and a function 6 : Ey — {—1, 1}, such that

(2) T f(uv) = O(uwv) f(B(w)), wv € Eg.
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It remains to show that B is cycle-preserving. Denote by e} (v € Vg)
the functional on RV# given by eX(f) = f(v). Denote by e, (uv € Ey) the
functional on ¢,(Ep) given by e} (h) = h(uv). It is clear that the restriction
of e}, to S,(H) is equal to e}, — e} or e} — e}, depending on the choice of the
direction of the edge uwv, which was used to define the natural embedding.
The formula (2) can be rewritten as

(T (en0) = O(wv) e -
Let uiv1, usva, . .., unv, € Efy be a set of edges forming a cycle. We know
that ey, ., |s, ) = Oi(ey, — e, for some 0; € {—1,1}. Since {u;v;}}-; form a
cycle, there exist 7; € {—1, 1} such that

n
Zn@i(ezi— e,,) =0 or (Zn um)
i=1

Since T" maps S,(G) into S,(H), this implies

(gn@(uwi)e*B(um)) ‘SP(G) = ((T’)* ( g Tieziw)) 5,

Let B(ujv;) = w;y;. The discussion above implies that e*B(um)| S,(G) =
i€y, — ej,;) for some v; € {—1,1}. We get

n
Z 7i0(uvi)vi(er, — €y,) = 0.
i=1

This can happen only if each of the €}, is repeated in this sum an even number
of times (half of them with negative sign). The well-known argument of the
Euler’s theorem (see, e.g., [1, p. 17]) implies that {w;y;}!" ; is a union of
cycles. Since we can interchange the roles of G and H in this argument, it
is a single cycle. =

=0.
(@)

REMARK. It can also be shown that each direction-preserving bijection
B satisfying condition 2 of Proposition 2 can be used to define an isometry
as described in condition 1 of Proposition 2. This observation explains why
in the rest of the proof it is enough to use the cycle-preserving property of
B only.

The fact that the existence of a bijection B satisfying the conditions of
Proposition 2 implies that the graph G can be obtained from H by using
finitely many surgeries of types 1 and 2 can be considered as part of Whit-
ney’s 2-isomorphism theorem [29]. Usually this theorem is stated in terms
of matroids and for general, not necessarily connected graphs (see [27] or
[19, p. 148]). Stated for connected graphs and without matroid terminology,
the theorem is:
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WHITNEY’S 2-ISOMORPHISM THEOREM. If G and H are connected
graphs such that there exists a bijection between Eq and Ep which is also a
bijection between the sets of cycles, then G can be obtained from H by using
finitely many surgeries of types 1 and 2.

It is clear that application of this theorem completes the proof of Theo-
rem 1. m

3. Analogue of the Banach—Stone theorem for Sobolev spaces
on 3-connected graphs and groups of isometries of subspaces of /).
The next result is an immediate corollary of Theorem 1, because (as already
observed) 3-connected graphs do not have 2-joined subgraphs, and hence, in
this case, the conclusion of Theorem 1 implies that G and H are isomorphic.

THEOREM 2. Let G and H be 3-connected graphs and let 1 < p < o0,
p ¢ 2N. If S,(G) and Sy(H) are isometric Banach spaces, then G and H
are isomorphic.

REMARK. For 3-connected graphs, each mapping B : Fg — FEg satisfy-
ing condition 2 of Proposition 2 corresponds to an isomorphism of H and G
(see [28, p. 156] and [19, Lemma 5.3.2, p. 148]).

An interesting corollary of this remark and Proposition 2 is:

THEOREM 3. For each 1 < p < oo, p ¢ 2N, and each finite group G
there exists n € N and a subspace X C () such that the direct product G x Zs
1s 1isomorphic to the group of all isometries of X.

Proof. First we prove that each isometry T : S,(H) — S,(H) for a
3-connected graph H and 1 < p < oo, p ¢ 2N, corresponds to a pair (¢, ),
where ¢ is an automorphism of H and § = +1. In fact, let B : Eyy — Ep be
the cycle-preserving bijection whose existence is proved in Proposition 2. By
the remark after Theorem 2, B corresponds to an automorphism of H, say ¢.
Also, according to Proposition 2, the extension 7" of T to ¢,(Ey) is given
by (T'f)(uv) = Op(uv) f(B(uv)). It remains to show that if two isometries
of Sp(H), say T and S, correspond to the same automorphism ¢ of H, then

either Op(uv) = fg(uv) for each wv € Epg, or Op(uv) = —Og(uv) for each
uwv € Fy.

Assume the contrary, that is, there exist edges uv and wz such that
T ey, = S*ey, and T"e; . = —S™ e} .. It is well known that in a 2-connected

graph any two edges are contained in a cycle. Let C' be a cycle containing
both uv and wz. We infer (see Proposition 2) that for some collection 7., €

{-1,1},
( Z T’”yej"y) ‘SP(H) =0

zyeC
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Hence

(3) ( 2 TxyT*e;y)‘sp(H) =0 and ( 2 T’”ys*e:’y) ‘SP(H) -0
zyeC zyeC

Subtracting the equations from (3) and using the assumptions, we deduce

that the values of functions from Cy (S,(H)) on a proper subset of the cycle

B(C) satisfy a non-trivial linear equation. It is easy to see that this leads to

a contradiction.

Therefore it suffices to construct a 3-connected graph H whose group of
automorphisms is isomorphic to G. To do this we use the result of
R. Frucht [9] (see also [15, §12.8]) stating that for each finite group G there
is a finite 3-regular graph F whose group of automorphisms is isomorphic
to G. To finish the proof we use the following observations (the first comes
from Frucht’s construction, the other two are immediate consequences of the
definitions):

e Graphs in Frucht’s construction can be required to have > 10 vertices.

e The group of automorphisms of the complement H of a graph F' is the
same as the group of automorphisms of F.

o If F'is 3-regular and has > 10 vertices, then its complement H is
3-connected.

Hence H has the required properties. m

REMARK. Y. Gordon-R. Loewy [10] and J. Stern [25] proved similar
“universality” results with X being Hilbert spaces with an equivalent norm,
obtained by a slight perturbation of the original norm.
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