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ISOMETRIC CLASSIFICATIONOF SOBOLEV SPACES ON GRAPHSBYM. I. OSTROVSKII (Queens, NY)Abstra
t. Isometri
 Sobolev spa
es on �nite graphs are 
hara
terized. The 
hara
-terization implies that the following analogue of the Bana
h�Stone theorem is valid: if twoSobolev spa
es on 3-
onne
ted graphs, with the exponent whi
h is not an even integer,are isometri
, then the 
orresponding graphs are isomorphi
. As a 
orollary it is shownthat for ea
h �nite group G and ea
h p whi
h is not an even integer, there exists n ∈ Nand a subspa
e L ⊂ ℓn
p whose group of isometries is the dire
t produ
t G × Z2.1. Introdu
tion. Let G be a �nite simple graph. We denote by VG and

EG its vertex set and edge set, respe
tively. Let dv denote the degree of avertex v ∈ VG; we use the notation dv,G if v is a vertex of several graphssimultaneously. We omit the subs
ript G in EG, VG, et
., if G is 
lear from
ontext. All unde�ned graph-theoreti
 terminology and notation follows [1℄and/or [6℄.Definition 1. Let f : VG → R, and let 1 ≤ p < ∞. The Sobolevseminorm of f 
orresponding to E = EG and p is de�ned by
‖f‖ = ‖f‖E,p =

(

∑

uv∈E

|f(u) − f(v)|p
)1/p

.If G is 
onne
ted, then the only fun
tions f satisfying ‖f‖E,p = 0 are 
on-stant fun
tions, so ‖ · ‖E,p is a norm on ea
h linear spa
e of fun
tions on
V = VG whi
h does not 
ontain 
onstants. Usually we shall 
onsider thesubspa
e in the spa
e R

VG of all fun
tions on VG given by ∑

v∈V f(v)dv = 0.The resulting normed spa
e will be 
alled a Sobolev spa
e on G and will bedenoted by Sp(G).Sobolev seminorms have been used for work on spe
tral and isoperimetri
problems of graph theory, problems on �nite metri
 spa
es and on the shapesof minimal-volume proje
tions of 
ubes. We refer to [2℄, [3℄, [18℄, and [26℄ for2000 Mathemati
s Subje
t Classi�
ation: 52A21, 46B04, 05C40.Key words and phrases: Sobolev spa
e on a graph, linear isometry, group of isometries,
3-
onne
ted graph.Resear
h supported by St. John's University Summer 2006 Support of Resear
h Pro-gram. [287℄ 
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more information on this matter. Isometries of 
lassi
al Sobolev spa
es werestudied in [5℄.In this paper by an isometry between two normed spa
es X and Y wemean a linear bije
tion T : X → Y satisfying the 
ondition ‖Tx‖ = ‖x‖ forall x ∈ X. The main purpose of this paper is to answer an isometri
 versionof the following general problem:To what extent the geometry of the graph G is determined by the geometryof the spa
e Sp(G) (for p 6= 2)?Re
all the following well-known result (see [7, p. 442℄).
Banach–Stone Theorem. If the spa
es C(Q) and C(R) of 
ontinuousfun
tions on 
ompa
t Hausdor� spa
es are isometri
, then Q and R arehomeomorphi
.The problem mentioned above 
an be 
onsidered as a problem aboutanalogues of the Bana
h�Stone theorem for Sobolev spa
es on graphs.For graphs the assumption that Sp(G) and Sp(H) are isometri
 doesnot imply that G and H are isomorphi
, even when p 6= 2. One of theeasiest ways to show this is by observing that if G is a tree, then Sp(G)is isometri
 to ℓn

p of the 
orresponding dimension. On the other hand, weprove (Theorem 2) that if p is not an even integer and the graphs G and
H are 3-
onne
ted, then the isometri
 equivalen
e of Sp(G) and Sp(H) im-plies that G and H are isomorphi
. It is also worth mentioning that Sobolevspa
es of the same dimension 
an be �far� from ea
h other. To state the
orresponding result we re
all that the Bana
h�Mazur distan
e d(X, Y )between two �nite-dimensional normed spa
es of the same dimension is de-�ned by

d(X, Y ) = inf{‖T‖ · ‖T−1‖ : T : X → Y is an isomorphism}.It was shown in [17℄ that there exist 
onne
ted graphs G on n2 verti
essu
h that d(S1(G), ℓn2
−1

1 ) ≥ C
√

lnn, where C > 0 is an absolute 
on-stant.Sobolev spa
es on graphs (of non-trivial size), whi
h are not 3-
onne
ted,
an be isometri
 without the graphs being isomorphi
. We des
ribe (Theo-rem 1) the degree of similarity between graphs G and H whi
h is equivalentto isometri
 equivalen
e of Sp(G) and Sp(H) for p /∈ {2, 4, 6, 8, . . . ,∞}. (Weshall write the last 
ondition as p /∈ 2N. The restri
tion 
omes from the useof the extension theorem for Lp-isometries.)2. Surgeries preserving the isometri
 
lass of Sobolev spa
esDefinition 2. A 
onne
ted indu
ed subgraph O in a graph G is 
alled
2-joined if 3 ≤ |VO| < |VG| and there exist u, v ∈ VO, u 6= v, su
h that
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• Ea
h path from a vertex of O to a vertex whi
h is not in O has either
u or v among its verti
es.

• Both u and v are adja
ent to verti
es whi
h are not in O.The verti
es u and v are 
alled jun
tion verti
es of O.
Remark. The following is an immediate 
onsequen
e of the de�nitions:A 
onne
ted graph G with |VG| ≥ 4 
ontains a 2-joined subgraph if and onlyif G is not 3-
onne
ted.It 
an be easily veri�ed in a straightforward way that all results of thispaper are valid in the 
ase |VG| ≤ 3. We assume |VG| ≥ 4 without mentioningthis expli
itly.Theorem 1. Let G and H be 
onne
ted graphs. Let 1 ≤ p < ∞, p /∈ 2N.The spa
es Sp(G) and Sp(H) are isometri
 if and only if the graph G isisomorphi
 to a graph obtained from H by using �nitely many surgeries ofthe following two types.
Type 1. Let v be a 
utvertex of G, and let O be one of the 
omponentsof G − v. We 
hoose a vertex u ( 6= v) in G − O. For ea
h vertex w in Owhi
h is adja
ent to v we delete the edge wv and introdu
e a new edge wu.
Type 2. Let O be a 2-joined subgraph of G with jun
tion verti
es uand v. Suppose that O has at least one vertex , distin
t from u and v, whi
his not adja
ent to both u and v. We �twist� O in G. More formally , we do si-multaneously the following two pro
edures: (1) for ea
h vertex w ∈ VO\{u, v}whi
h is adja
ent to u, but not to v, we delete the edge wu and introdu
e anew edge wv; (2) for ea
h vertex w ∈ VO\{u, v} whi
h is adja
ent to v, butnot to u, we delete the edge wv and introdu
e a new edge wu.Proof. The �if� part of the theorem is true for ea
h 1 ≤ p < ∞. It is animmediate 
onsequen
e of the following result.Proposition 1. Let 1 ≤ p < ∞. Let H be a graph obtained from G byusing one of the surgeries des
ribed in Theorem 1. Then Sp(H) is isometri
to Sp(G).Proof. Let AG be the linear operator AG : R

VG → R
VG given by

(AGf)(u) = f(u) −
∑

v f(v)dv,G
∑

v dv,G
.It is easy to see that AG maps ea
h fun
tion from R

VG into Sp(G), and that
‖AGf‖E,p = ‖f‖E,p.First we show that for ea
h surgery there exists a natural bije
tion Sfrom EG onto EH .
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Type 1 surgeries: The bije
tion 
oin
ides with the identity mapping onall edges from EG whi
h are also in EH . On the remaining edges, S is de�nedas follows: S(wv) = wu for w ∈ VO with wv ∈ EG.Type 2 surgeries: The bije
tion S 
oin
ides with the identity mappingon all edges from EG\EO, and on all edges of EO whi
h are not in
ident to

v or u. On the remaining edges it is de�ned as follows:
• S(wu) = wv for ea
h w ∈ VO \ {v} with wu ∈ EO.
• S(wv) = wu for ea
h w ∈ VO \ {u} with wv ∈ EO.
• S(uv) = uv if uv ∈ EO.Observe that to prove the proposition it is enough to �nd a linear map-ping L : R

VG → R
VH su
h that for yz = S(wx) we have
|(Lg)(y) − (Lg)(z)| = |g(w) − g(x)|.(1) In fa
t, if there is an L satisfying (1), then AHL : Sp(G) → Sp(H) is anisometry.Straightforward veri�
ation shows that the following mappings satis-fy (1).Type 1 surgeries:

(Lg)(z) =

{

g(z) if z ∈ G − O,
g(z) − g(v) + g(u) if z ∈ VO.Type 2 surgeries:

(Lg)(z) =

{

g(z) if z ∈ G − O, z = u, or z = v,
g(u) + g(v) − g(z) if z ∈ VO \ {u, v}.To prove the �only if� part of the theorem we need the so-
alled extensiontheorem for isometries of subspa
es of Lp. The theorem in the form used byus is due to C. Hardin [11℄. Results of the same spirit were proved earlier byW. Lusky [16℄ and A. Plotkin (see [20℄�[22℄). See [4℄, [8, Se
tion 3.3℄, [12℄, [13,Se
tion 2℄, [23℄, and [24℄ for related information and histori
al 
omments.Let F be a set of fun
tions on a measure spa
e (Ω1, Σ1, µ1). We assume,for simpli
ity, that F 
ontains a fun
tion whose support is Ω1. Let ̺(F )denote the least σ-algebra in whi
h all quotients f/g (f, g ∈ F ) are measur-able; here the quotients are allowed to have ∞ as one of their values (and

0/0 is de�ned to be ∞). We denote by R(F ) the set of all ̺(F )-measurablefun
tions on Ω1, and by R(F ) · F the set of all fun
tions of the form rf ,where r ∈ R(F ), f ∈ F .
Extension Theorem. Let p ∈ (0,∞), p /∈ 2N, H be a 
losed sub-spa
e of Lp(Ω1, Σ1, µ1), and T : H → Lp(Ω2, Σ2, µ2) be a linear isomet-ri
 embedding. Then T 
an be extended to a linear isometri
 embedding of

R(H) · H ∩ Lp(Ω1, Σ1, µ1) into Lp(Ω2, Σ2, µ2).
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There is a natural isometri
 embedding of Sp(G) into ℓp(EG). To de�neit we 
hoose a dire
tion for ea
h edge uv ∈ EG and let
(CGg)(uv) = g(u) − g(v)for g ∈ Sp(G), where uv is dire
ted from u to v. We identify Sp(G) with

CG(Sp(G)). The embedding CG makes the extension theorem appli
able toSobolev spa
es on graphs. Using the extension theorem we proveProposition 2. Let p /∈ 2N, let T : Sp(G) → Sp(H) be an isometry ,and let an orientation of edges of G and H be given. Then there exist afun
tion θ : EH → {−1, 1} and a bije
tion B : EH → EG su
h that :
1. If f ∈ ℓp(EG) is in CG(Sp(G)), then g ∈ ℓp(EH) given by g(uv) =

θ(uv)f(B(uv)) is in CH(Sp(H)) and Tf = g.
2. The bije
tion B is 
y
le-preserving (a set of edges forming a 
y
le in

H is mapped onto a similar set in G).Proof. Let T : Sp(G) → Sp(H) be an isometry. Without loss of general-ity we assume that the numbers of edges of G and H satisfy |EG| ≥ |EH |.We 
onsider Sp(G) and Sp(H) as subspa
es of ℓp(EG) and ℓp(EH), respe
-tively, by means of the natural embedding de�ned above. In order to use theterminology and notation of the extension theorem we identify ℓp(EG) with
Lp(EG, Σ1, µ1) and ℓp(EH) with Lp(EH , Σ2, µ2), where Σ1 and Σ2 are the
σ-algebras of all subsets, and µ1 and µ2 are the 
ounting measures.Lemma 1. If Sp(G) is embedded into Lp(EG, Σ1, µ1) using CG, then
̺(Sp(G)) = Σ1.Proof. The image of Sp(G) in Lp(EG, Σ1, µ1) 
ontains fun
tions of fullsupport: indeed, 
onsider CG(AGs) for any fun
tion s : VG → R with s(u) 6=
s(v) for u 6= v. Hen
e for ea
h 
ut C ⊂ EG there is a fun
tion of the form
f/g, with f, g ∈ CG(Sp(G)), supported on C. Hen
e C ⊂ ̺(Sp(G)). Onthe other hand, the σ-algebra generated by all 
uts of G is Σ1. In fa
t, forea
h edge uv ∈ EG 
onsider C(u)∩C(v), where C(u) (resp. C(v)) is the 
ut
ontaining all edges in
ident to u (resp. v). Sin
e G is assumed to be withoutmultiple edges, it follows that C(u) ∩ C(v) = {uv}.By Lemma 1, the extension theorem implies that there exists an iso-metri
 embedding T ′ : ℓp(EG) → ℓp(EH) whi
h extends the isometry T :
Sp(G) → Sp(H). The assumption |EG| ≥ |EH | implies that T ′ is surje
tive.We re
all the des
ription of isometries of ℓn

p , p 6= 2 (see, e.g., [14, p. 112℄):ea
h of them is formed by permutations of the unit ve
tors and multipli
ationof them by ±1. Therefore, for ea
h isometry T ′ : ℓp(EG) → ℓp(EN ) thereexists a bije
tion B : EH → EG, and a fun
tion θ : EH → {−1, 1}, su
h that
T ′f(uv) = θ(uv)f(B(uv)), uv ∈ EH .(2)
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It remains to show that B is 
y
le-preserving. Denote by e∗v (v ∈ VH)the fun
tional on R

VH given by e∗v(f) = f(v). Denote by e∗uv (uv ∈ EH) thefun
tional on ℓp(EH) given by e∗uv(h) = h(uv). It is 
lear that the restri
tionof e∗uv to Sp(H) is equal to e∗u − e∗v or e∗v − e∗u, depending on the 
hoi
e of thedire
tion of the edge uv, whi
h was used to de�ne the natural embedding.The formula (2) 
an be rewritten as
(T ′)∗(e∗uv) = θ(uv)e∗B(uv).Let u1v1, u2v2, . . . , unvn ∈ EH be a set of edges forming a 
y
le. We knowthat e∗uivi

|Sp(H) = θi(e
∗

ui
− e∗vi

) for some θi ∈ {−1, 1}. Sin
e {uivi}n
i=1 form a
y
le, there exist τi ∈ {−1, 1} su
h that

n
∑

i=1

τiθi(e
∗

ui
− e∗vi

) = 0 or (

n
∑

i=1

τie
∗

uivi

)∣

∣

∣

Sp(H)
= 0.Sin
e T ′ maps Sp(G) into Sp(H), this implies

(

n
∑

i=1

τiθ(uivi)e
∗

B(uivi)

)∣

∣

∣

Sp(G)
=

(

(T ′)∗
(

n
∑

i=1

τie
∗

uivi

))∣

∣

∣

Sp(G)
= 0.Let B(uivi) = wiyi. The dis
ussion above implies that e∗B(uivi)
|Sp(G) =

γi(e
∗

wi
− e∗yi

) for some γi ∈ {−1, 1}. We get
n

∑

i=1

τiθ(uivi)γi(e
∗

wi
− e∗yi

) = 0.This 
an happen only if ea
h of the e∗v is repeated in this sum an even numberof times (half of them with negative sign). The well-known argument of theEuler's theorem (see, e.g., [1, p. 17℄) implies that {wiyi}n
i=1 is a union of
y
les. Sin
e we 
an inter
hange the roles of G and H in this argument, itis a single 
y
le.

Remark. It 
an also be shown that ea
h dire
tion-preserving bije
tion
B satisfying 
ondition 2 of Proposition 2 
an be used to de�ne an isometryas des
ribed in 
ondition 1 of Proposition 2. This observation explains whyin the rest of the proof it is enough to use the 
y
le-preserving property of
B only.The fa
t that the existen
e of a bije
tion B satisfying the 
onditions ofProposition 2 implies that the graph G 
an be obtained from H by using�nitely many surgeries of types 1 and 2 
an be 
onsidered as part of Whit-ney's 2-isomorphism theorem [29℄. Usually this theorem is stated in termsof matroids and for general, not ne
essarily 
onne
ted graphs (see [27℄ or[19, p. 148℄). Stated for 
onne
ted graphs and without matroid terminology,the theorem is:



SOBOLEV SPACES ON GRAPHS 293

Whitney’s 2-isomorphism Theorem. If G and H are 
onne
tedgraphs su
h that there exists a bije
tion between EG and EH whi
h is also abije
tion between the sets of 
y
les, then G 
an be obtained from H by using�nitely many surgeries of types 1 and 2.It is 
lear that appli
ation of this theorem 
ompletes the proof of Theo-rem 1.3. Analogue of the Bana
h�Stone theorem for Sobolev spa
eson 3-
onne
ted graphs and groups of isometries of subspa
es of ℓn
p .The next result is an immediate 
orollary of Theorem 1, be
ause (as alreadyobserved) 3-
onne
ted graphs do not have 2-joined subgraphs, and hen
e, inthis 
ase, the 
on
lusion of Theorem 1 implies that G and H are isomorphi
.Theorem 2. Let G and H be 3-
onne
ted graphs and let 1 ≤ p < ∞,

p /∈ 2N. If Sp(G) and Sp(H) are isometri
 Bana
h spa
es, then G and Hare isomorphi
.
Remark. For 3-
onne
ted graphs, ea
h mapping B : EH → EG satisfy-ing 
ondition 2 of Proposition 2 
orresponds to an isomorphism of H and G(see [28, p. 156℄ and [19, Lemma 5.3.2, p. 148℄).An interesting 
orollary of this remark and Proposition 2 is:Theorem 3. For ea
h 1 ≤ p < ∞, p /∈ 2N, and ea
h �nite group Gthere exists n ∈ N and a subspa
e X ⊂ ℓn

p su
h that the dire
t produ
t G×Z2is isomorphi
 to the group of all isometries of X.Proof. First we prove that ea
h isometry T : Sp(H) → Sp(H) for a
3-
onne
ted graph H and 1 ≤ p < ∞, p /∈ 2N, 
orresponds to a pair (ϕ, θ),where ϕ is an automorphism of H and θ = ±1. In fa
t, let B : EH → EH bethe 
y
le-preserving bije
tion whose existen
e is proved in Proposition 2. Bythe remark after Theorem 2, B 
orresponds to an automorphism of H, say ϕ.Also, a

ording to Proposition 2, the extension T ′ of T to ℓp(EH) is givenby (T ′f)(uv) = θT (uv)f(B(uv)). It remains to show that if two isometriesof Sp(H), say T and S, 
orrespond to the same automorphism ϕ of H, theneither θT (uv) = θS(uv) for ea
h uv ∈ EH , or θT (uv) = −θS(uv) for ea
h
uv ∈ EH .Assume the 
ontrary, that is, there exist edges uv and wz su
h that
T ∗e∗uv = S∗e∗uv and T ∗e∗wz = −S∗e∗wz. It is well known that in a 2-
onne
tedgraph any two edges are 
ontained in a 
y
le. Let C be a 
y
le 
ontainingboth uv and wz. We infer (see Proposition 2) that for some 
olle
tion τxy ∈
{−1, 1},

(

∑

xy∈C

τxye
∗

xy

)∣

∣

∣

Sp(H)
= 0.
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Hen
e

(

∑

xy∈C

τxyT
∗e∗xy

)∣

∣

∣

Sp(H)
= 0 and (

∑

xy∈C

τxyS
∗e∗xy

)∣

∣

∣

Sp(H)
= 0.(3)Subtra
ting the equations from (3) and using the assumptions, we dedu
ethat the values of fun
tions from CH(Sp(H)) on a proper subset of the 
y
le

B(C) satisfy a non-trivial linear equation. It is easy to see that this leads toa 
ontradi
tion.Therefore it su�
es to 
onstru
t a 3-
onne
ted graph H whose group ofautomorphisms is isomorphi
 to G. To do this we use the result ofR. Fru
ht [9℄ (see also [15, �12.8℄) stating that for ea
h �nite group G thereis a �nite 3-regular graph F whose group of automorphisms is isomorphi
to G. To �nish the proof we use the following observations (the �rst 
omesfrom Fru
ht's 
onstru
tion, the other two are immediate 
onsequen
es of thede�nitions):
• Graphs in Fru
ht's 
onstru
tion 
an be required to have ≥ 10 verti
es.
• The group of automorphisms of the 
omplement H of a graph F is thesame as the group of automorphisms of F .
• If F is 3-regular and has ≥ 10 verti
es, then its 
omplement H is

3-
onne
ted.Hen
e H has the required properties.
Remark. Y. Gordon�R. Loewy [10℄ and J. Stern [25℄ proved similar�universality� results with X being Hilbert spa
es with an equivalent norm,obtained by a slight perturbation of the original norm.
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