COLLOQUIUM MATHEMATICUM

GLOBAL ATTRACTOR FOR THE PERTURBED VISCOUS CAHN-HILLIARD EQUATION

BY
MARIA B. KANIA (Katowice)

Abstract

We consider the initial-boundary value problem for the perturbed viscous Cahn-Hilliard equation in space dimension $n \leq 3$. Applying semigroup theory, we formulate this problem as an abstract evolutionary equation with a sectorial operator in the main part. We show that the semigroup generated by this problem admits a global attractor in the phase space $\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times L^{2}(\Omega)$ and characterize its structure.

1. Introduction. Let $\Omega \subset \mathbb{R}^{n}$ be a nonempty bounded open set with the boundary $\partial \Omega$ of class C^{4}. In this paper we study the perturbed viscous Cahn-Hilliard equation

$$
\begin{equation*}
\varepsilon u_{t t}+u_{t}+\Delta\left(\Delta u+f(u)-\delta u_{t}\right)=0, \quad x \in \Omega, t>0, \tag{1}
\end{equation*}
$$

where $\varepsilon, \delta \in(0,1], n \leq 3$, and the derivative of f grows like $|u|^{q}$, with $0<q<2$ if $n=3$. This equation is considered with the initial-boundary conditions

$$
\begin{array}{lll}
u(0, x)=u_{0}(x), & u_{t}(0, x)=v_{0}(x) & \text { for } x \in \Omega, \\
u(t, x)=0, & \Delta u(t, x)=0 & \text { for } x \in \partial \Omega . \tag{3}
\end{array}
$$

Equation (1) in one space dimension $(\Omega=(0, \pi))$ and with the polynomial nonlinear term $f(u)=-u^{3}+u$ extending the classical Cahn-Hilliard parabolic equation ([10], [6]) has been introduced in [12]. The authors studied there the following four equations, named according to whether ε or δ vanishes or not:

- the nonviscous Cahn-Hilliard equation $(\varepsilon=\delta=0)$,
- the viscous Cahn-Hilliard equation $(\varepsilon=0, \delta>0)$,
- the perturbed nonviscous Cahn-Hilliard equation $(\varepsilon>0, \delta=0)$,
- the perturbed viscous Cahn-Hilliard equation $(\varepsilon>0, \delta>0)$.

Zheng and Milani showed that the semigroup generated by the initialboundary value problem for the perturbed (viscous and nonviscous) CahnHilliard equation admits a global attractor in the phase space $H_{0}^{1}(0, \pi) \times$
$H^{-1}(0, \pi)$ and that the family of such attractors (depending on $\varepsilon>0$) is upper-semicontinuous with respect to the perturbation parameter as $\varepsilon \rightarrow 0^{+}$. In the case of the perturbed viscous Cahn-Hilliard equation, they also obtained the regularity of the attractor.

Our main goal here is to generalize part of results of [12] concerning the existence of the global attractor generated by problem (1)-(3) $(\varepsilon, \delta>0)$. Considering this problem in higher space dimension $n \leq 3$ and with a more general nonlinear term f, but with the initial conditions from a more regular phase space $\left(u_{0}, v_{0}\right) \in\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times L^{2}(\Omega)$, we prove that the semigroup generated by this problem admits a global attractor \mathcal{A} in $\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times L^{2}(\Omega)$. Moreover, we show that $\mathcal{A}=\mathcal{M}(\mathcal{N})$, where $\mathcal{M}(\mathcal{N})$ is an unstable manifold emanating from the set \mathcal{N} of the equilibrium points for the semigroup $\{\mathcal{T}(t)\}$. We assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following assumptions:
(i) $f \in C^{2}(\mathbb{R}, \mathbb{R})$,
(ii) $\exists_{\bar{C} \in \mathbb{R}} \forall_{s \in \mathbb{R}} \bar{F}(s):=\int_{0}^{s} f(z) d z \leq \bar{C}$,
(iii) $\exists_{\sigma \geq\left(2 K_{1}^{2}+1\right) /(3 \sqrt{\varepsilon})} \exists_{C_{\sigma} \in \mathbb{R}^{+}} \forall_{s \in \mathbb{R}} s f(s)-\frac{4}{3} \bar{F}(s) \leq-\sigma s^{2}+C_{\sigma}$, where K_{1} is an embedding constant for $L^{2}(\Omega) \subset H^{-1}(\Omega)$ (see (9)),
(iv) $\exists_{\widehat{C} \in \mathbb{R}} \forall_{s \in \mathbb{R}}\left|f^{\prime}(s)\right| \leq \widehat{C}\left(1+|s|^{q}\right)$, where q is arbitrarily large if $n=1,2$, and $0<q<2$ if $n=3$.

Notice that the function $f(u)=-u^{3}+u$ used by Zheng and Milani satisfies the above assumptions for $n=1,2$.

Moreover, the technique used here is completely different. Precisely, working within semigroup theory, we consider problem (1)-(3) in the form of an abstract evolutionary equation; this approach makes our calculations easier than those in [12].

In this article all the Sobolev spaces H^{k} and C^{k}-type spaces are considered for functions defined on a fixed domain $\Omega \subset \mathbb{R}^{n}$, so we use the simplified notation $H^{k}=H^{k}(\Omega)$ and $C^{m}=C^{m}(\Omega)$ throughout. The norm in L^{2} is denoted by $\|\cdot\|$ and the scalar product on this space by (\cdot, \cdot). We reserve the letter K with suitable subscripts to denote constants such that the appropriate embedding estimate holds.

We denote by $-\Delta$ the Laplace operator with domain $D(-\Delta)=H_{0}^{1}$, and values in H^{-1}. We also consider the L^{2}-realization, $-\Delta_{L^{2}}$, of $-\Delta$ with the Dirichlet condition (see [1]), i.e. the linear operator in L^{2} defined by

$$
D\left(-\Delta_{L^{2}}\right):=\left\{u \in L^{2} \cap D(-\Delta):-\Delta u \in L^{2}\right\}, \quad-\Delta_{L^{2}} u:=-\Delta u
$$

We preserve the notation $-\Delta$ for this L^{2}-realization. Since $-\Delta$ is an unbounded, closed, positive self-adjoint linear operator with compact resolvent in L^{2}, we can define for $s \in \mathbb{R}$ the fractional powers $(-\Delta)^{s}$. The domain
$D\left((-\Delta)^{s}\right)$ of $(-\Delta)^{s}$ endowed with the scalar product and norm

$$
\left\{\begin{array}{l}
(u, v)_{D\left((-\Delta)^{s}\right)}=\left((-\Delta)^{s} u,(-\Delta)^{s} v\right), \tag{4}\\
\|u\|_{D\left((-\Delta)^{s}\right)}=\left((u, u)_{\left.D\left((-\Delta)^{s}\right)\right)^{1 / 2},},\right.
\end{array}\right.
$$

is a Hilbert space for any $s>0$. Let $D\left((-\Delta)^{-s}\right)$ denote the dual space of $D\left((-\Delta)^{s}\right)(s>0)$. This Hilbert space can be endowed with the product and norm as above, where s is replaced by $-s$ (see [10, Section 2.1]). Moreover, we infer from [8, Section 1.4] that for $\alpha>0, H^{\alpha} \supset D\left((-\Delta)^{\alpha / 2}\right)$ and the inner product on H^{-1} can be introduced as

$$
\begin{equation*}
(\phi, \varphi)_{H^{-1}}=\left((-\Delta)^{-1 / 2} \phi,(-\Delta)^{-1 / 2} \varphi\right), \quad \varphi, \phi \in H^{-1} . \tag{5}
\end{equation*}
$$

2. Operators A, B and their properties. Usually second order in time ("hyperbolic") equations are rewritten in the form of a first order system. Such a formulation and properties of operators appearing in it will now be discussed. Let A and B denote the operators $(-\Delta)^{2}$ and $(1 / \sqrt{\varepsilon})(\delta(-\Delta)+I)$ with domains $D(A)=\left\{u \in H^{3}: u_{\mid \partial \Omega}=\Delta u_{\mid \partial \Omega}=0\right\}$ and $D(B)=H_{0}^{1}$ in the space H^{-1}, respectively. Making a suitable change of time variable, we can write (1) as an abstract equation in $H_{0}^{1} \times H^{-1}$ in the following way:

$$
\frac{d}{d t}\left[\begin{array}{l}
u \tag{6}\\
v
\end{array}\right]=\mathbf{A}_{\mathbf{B}}\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{c}
0 \\
-\Delta(f(u))
\end{array}\right], \quad t>0,
$$

where

$$
\mathbf{A}_{\mathbf{B}}:=\left[\begin{array}{cc}
0 & I \tag{7}\\
-A & -B
\end{array}\right]: H_{0}^{1} \times H^{-1} \supset\left(H^{3} \cap H_{0}^{2}\right) \times H_{0}^{1} \rightarrow H_{0}^{1} \times H^{-1} .
$$

We discuss the properties of A and B necessary to prove that $-\mathbf{A}_{\mathbf{B}}$ is a sectorial, positive operator (i.e. $\operatorname{Re} \sigma\left(-\mathbf{A}_{\mathbf{B}}\right)>0$) and has compact resolvent. If we show that A and B are strictly positive definite self-adjoint operators on H^{-1}, the resolvent of A is compact and B is "comparable" with $A^{1 / 2}$, then $-\mathbf{A}_{\mathbf{B}}$ will be sectorial and $\operatorname{Re} \sigma\left(-\mathbf{A}_{\mathbf{B}}\right)>0$ (see [2, Theorem 1.1]). Since C_{0}^{∞} is dense in L^{2} and L^{2} is dense in H^{-1}, we deduce that A and B have dense domains.

Lemma 2.1.
(i) The operator $B: H^{-1} \rightarrow H^{-1}$ is strictly positive definite.
(ii) The operator $A: H^{-1} \rightarrow H^{-1}$ is strictly positive definite.
(iii) There exist two constants ϱ_{1} and $\varrho_{2}, 0<\varrho_{1}<\varrho_{2}<\infty$, such that

$$
\begin{equation*}
\varrho_{1}\left(A^{1 / 2} \varphi, \varphi\right)_{H^{-1}} \leq(B \varphi, \varphi)_{H^{-1}} \leq \varrho_{1}\left(A^{1 / 2} \varphi, \varphi\right)_{H^{-1}} \tag{8}
\end{equation*}
$$ for all $\varphi \in L^{2}$.

Proof. (i) For $\varphi \in H_{0}^{1}, \varphi \neq 0$, we have

$$
(B \varphi, \varphi)_{H^{-1}}=\frac{\delta}{\sqrt{\varepsilon}}\|\varphi\|^{2}+\frac{1}{\sqrt{\varepsilon}}\|\varphi\|_{H^{-1}}^{2}
$$

Thus from the embedding estimate

$$
\begin{equation*}
\|\varphi\|_{H^{-1}} \leq K_{1}\|\varphi\| \quad \text { for any } \varphi \in L^{2} \tag{9}
\end{equation*}
$$

we obtain

$$
(B \varphi, \varphi)_{H^{-1}} \geq\left(\frac{\delta}{K_{1}^{2} \sqrt{\varepsilon}}+\frac{1}{\sqrt{\varepsilon}}\right)\|\varphi\|_{H^{-1}}^{2}>0
$$

(ii) Let $\varphi \in D(A)$ and $\varphi \neq 0$. Using the Poincaré inequality $\|\nabla \varphi\|^{2} \geq$ $\lambda_{1}\|\varphi\|^{2}$, we obtain

$$
(A \varphi, \varphi)_{H^{-1}}=\left\|(-\Delta)^{1 / 2} \varphi\right\|^{2} \geq C\|\nabla \varphi\|^{2} \geq C_{1}\|\varphi\|^{2} \geq C_{2}\|\varphi\|_{H^{-1}}^{2}>0
$$

(iii) From the embedding estimate (9), for $\varphi \in L^{2}$, we obtain

$$
(B \varphi, \varphi)_{H^{-1}} \leq \frac{\delta+K_{1}^{2}}{\sqrt{\varepsilon}}\|\varphi\|^{2} \quad \text { and } \quad\left(A^{1 / 2} \varphi, \varphi\right)_{H^{-1}}=(-\Delta \varphi, \varphi)_{H^{-1}}=\|\varphi\|^{2}
$$

so that inequality (8) holds with $\varrho_{1}:=\delta / \sqrt{\varepsilon}$ and $\varrho_{2}:=\left(\delta+K_{1}^{2}\right) / \sqrt{\varepsilon}$.
Our next goal will be to show that A and B are self-adjoint. To this end, we introduce the differential operators $S_{1}: H^{-1} \supset C^{4} \cap C_{0}^{2} \rightarrow H^{-1}$ and $S_{2}: H^{-1} \supset C^{2} \cap C_{0} \rightarrow H^{-1}$, defined by

$$
S_{1} \phi:=(-\Delta)^{2} \phi, \quad \phi \in C^{4} \cap C_{0}^{2}
$$

and

$$
S_{2} \varphi:=\frac{1}{\sqrt{\varepsilon}}(\delta(-\Delta)+I) \varphi, \quad \varphi \in C^{2} \cap C_{0}
$$

It suffices to show that S_{i} is a symmetric operator in H^{-1}, strictly positive definite for $i=1,2$. Then there exists a unique, self-adjoint operator A_{i} such that $S_{i} \subset A_{i}$ (see [9, Section 8.10]). Since C_{0}^{∞} is dense in L^{2} and L^{2} is dense in H^{-1}, we deduce that S_{1} and S_{2} have dense domains.

Proposition 2.1. The operators $S_{i}, i=1,2$, are symmetric and strictly positive definite.

Proof. We just prove that $S_{i}, i=1,2$, are symmetric, because from Lemma 2.1 it follows that they are strictly positive definite. Integrating by parts, for $\phi, \varphi \in C^{4} \cap C_{0}^{2}$ we obtain

$$
\begin{aligned}
\left(S_{1} \phi, \varphi\right)_{H^{-1}} & =\left(\Delta^{2}(-\Delta)^{-1 / 2} \phi,(-\Delta)^{-1 / 2} \varphi\right) \\
& =\left((-\Delta)^{-1 / 2} \phi, \Delta^{2}(-\Delta)^{-1 / 2} \varphi\right)=\left(\phi, S_{1} \varphi\right)_{H^{-1}}
\end{aligned}
$$

Using integration by parts again, for $\phi, \varphi \in C^{2} \cap C_{0}$ we get

$$
\begin{aligned}
\left(S_{2} \phi, \varphi\right)_{H^{-1}} & =\frac{\delta}{\sqrt{\varepsilon}}\left((-\Delta)(-\Delta)^{-1 / 2} \phi,(-\Delta)^{-1 / 2} \varphi\right)+\frac{1}{\sqrt{\varepsilon}}(\phi, \varphi)_{H^{-1}} \\
& =\frac{\delta}{\sqrt{\varepsilon}}\left((-\Delta)^{-1 / 2} \phi,(-\Delta)(-\Delta)^{-1 / 2} \varphi\right)+\frac{1}{\sqrt{\varepsilon}}(\phi, \varphi)_{H^{-1}} \\
& =\left(\phi, S_{2} \varphi\right)_{H^{-1}}
\end{aligned}
$$

We next show that the resolvent of $-\mathbf{A}_{\mathbf{B}}$ is compact. Notice that for $u \in Y:=\left\{\varphi \in H^{-1}: \varphi \in D(A), A \varphi \in D(B), B \varphi \in D(A)\right\}$ the operators A and B commute (i.e. $A B u=B A u$). It is easy to see that $Y \subset H^{5}$.

Lemma 2.2. If $A B=B A$ then for all $\lambda \in \varrho\left(-\mathbf{A}_{\mathbf{B}}\right)$ and sufficiently smooth functions we have
(i) $\left(\lambda^{2} I-\lambda B+A\right)^{-1} A=A\left(\lambda^{2} I-\lambda B+A\right)^{-1}$,
(ii) $\left(\lambda^{2} I-\lambda B+A\right)^{-1}(\lambda I-B)=(\lambda I-B)\left(\lambda^{2} I-\lambda B+A\right)^{-1}$,
(iii) $A(\lambda I-B)=(\lambda I-B) A$.

Proof. If $\lambda=0$ then the above equalities are obvious. Let $\lambda \neq 0$.
(i) We first show that

$$
\left(\lambda^{2} I-\lambda B+A\right) A=A\left(\lambda^{2} I-\lambda B+A\right)
$$

Indeed, from $A B=B A$ we obtain

$$
\begin{aligned}
\left(\lambda^{2} I-\lambda B+A\right) A & =\lambda^{2} A-\lambda B A+A^{2}=\lambda^{2} A-\lambda A B+A^{2} \\
& =A\left(\lambda^{2} I-\lambda B+A\right)
\end{aligned}
$$

hence

$$
\begin{aligned}
\left(\lambda^{2} I-\lambda B\right. & +A)^{-1} A \\
& =\left(\lambda^{2} I-\lambda B+A\right)^{-1} A\left(\lambda^{2} I-\lambda B+A\right)\left(\lambda^{2} I-\lambda B+A\right)^{-1} \\
& =\left(\lambda^{2} I-\lambda B+A\right)^{-1}\left(\lambda^{2} I-\lambda B+A\right) A\left(\lambda^{2} I-\lambda B+A\right)^{-1}
\end{aligned}
$$

(ii) This property is a direct consequence of (i).
(iii) This is obvious.

Proposition 2.2. The resolvent of $-\mathbf{A}_{\mathbf{B}}$ is compact.
Proof. From the properties of A and B we infer that for $\lambda \in \varrho\left(-\mathbf{A}_{\mathbf{B}}\right)$ the resolvent operator $\left(\lambda \mathbf{I}+\mathbf{A}_{\mathbf{B}}\right)^{-1}$ of $-\mathbf{A}_{\mathbf{B}}$ is given by the formula

$$
\left(\lambda \mathbf{I}+\mathbf{A}_{\mathbf{B}}\right)^{-1}=\left[\begin{array}{cc}
(\lambda I-B)\left(\lambda^{2} I-\lambda B+A\right)^{-1} & -\left(\lambda^{2} I-\lambda B+A\right)^{-1} \\
A\left(\lambda^{2} I-\lambda B+A\right)^{-1} & \lambda\left(\lambda^{2} I-\lambda B+A\right)^{-1}
\end{array}\right]
$$

For $(\phi, \varphi)^{T} \in H_{0}^{1} \times H^{-1}$ we obtain

$$
\begin{aligned}
\|(\lambda \mathbf{I}+ & \left.\mathbf{A}_{\mathbf{B}}\right)^{-1}[\phi, \varphi]^{T} \|_{H^{3} \times H^{1}} \\
\leq & \frac{\delta}{\sqrt{\varepsilon}}\left\|\left(\lambda^{2} I-\lambda B+A\right)^{-1} \phi\right\|_{H^{5}}+\left|\lambda-\frac{1}{\sqrt{\varepsilon}}\right|\left\|\left(\lambda^{2} I-\lambda B+A\right)^{-1} \phi\right\|_{H^{3}} \\
& +\left\|\left(\lambda^{2} I-\lambda B+A\right)^{-1} \phi\right\|_{H^{5}} \\
& +\left\|\left(\lambda^{2} I-\lambda B+A\right)^{-1} \varphi\right\|_{H^{3}}+|\lambda|\left\|\left(\lambda^{2} I-\lambda B+A\right)^{-1} \varphi\right\|_{H^{1}} \\
\leq & \frac{\delta}{\sqrt{\varepsilon}}\|\phi\|_{H^{1}}+\left|\lambda-\frac{1}{\sqrt{\varepsilon}}\right|\|\phi\|_{H^{-1}}+\|\phi\|_{H^{1}}+\|\varphi\|_{H^{-1}}+|\lambda|\|\varphi\|_{H^{-3}} \\
\leq & C\left\|(\phi, \varphi)^{T}\right\|_{H^{1} \times H^{-1}},
\end{aligned}
$$

hence for any bounded subset $G \subset H_{0}^{1} \times H^{-1}$ the set $\left(\lambda \mathbf{I}+\mathbf{A}_{\mathbf{B}}\right)^{-1}(G)$ is bounded in $H^{3} \times H^{1}$. Now, the compactness of the embedding $H^{3} \times H^{1} \subset$ $H_{0}^{1} \times H^{-1}$ implies that $-\mathbf{A}_{\mathbf{B}}$ has compact resolvent.
3. Local solutions and a priori estimates. Consider the semilinear Cauchy problem for the perturbed viscous Cahn-Hilliard equation

$$
\begin{cases}u_{t t}+\frac{1}{\sqrt{\varepsilon}} u_{t}+\Delta\left(\Delta u+f(u)-\frac{\delta}{\sqrt{\varepsilon}} u_{t}\right)=0, & x \in \Omega, t>0 \tag{10}\\ u(0, x)=u_{0}(x), \quad u_{t}(0, x)=v_{0}(x), & x \in \Omega \\ u(t, x)=0, \quad \Delta u(t, x)=0, & x \in \partial \Omega, t \geq 0\end{cases}
$$

where $\varepsilon, \delta \in(0,1], \Omega$ is a nonempty, bounded, open subset of \mathbb{R}^{n} for $n \leq 3$, $\partial \Omega \in C^{4}$ and $f \in C^{2}(\mathbb{R}, \mathbb{R})$. Then the problem (10) will be written in an abstract form in $X:=H_{0}^{1} \times H^{-1}$ as

$$
\frac{d}{d t}\left[\begin{array}{l}
u \tag{11}\\
v
\end{array}\right]=\mathbf{A}_{\mathbf{B}}\left[\begin{array}{l}
u \\
v
\end{array}\right]+F(u, v), \quad t>0, \quad\left[\begin{array}{l}
u \\
v
\end{array}\right]_{\mid t=0}=\left[\begin{array}{l}
u_{0} \\
v_{0}
\end{array}\right]
$$

where the operator $\mathbf{A}_{\mathbf{B}}$ is given by formula (7) and the function $F: X^{1 / 2}:=$ $\left(H^{2} \cap H_{0}^{1}\right) \times L^{2} \rightarrow X$ is defined as

$$
F(u, v)=\left[\begin{array}{c}
0 \tag{12}\\
-\Delta(f(u))
\end{array}\right]
$$

Note that F is well defined. Indeed, taking $(u, v)^{T} \in X^{1 / 2}$, we have

$$
\begin{equation*}
\|F(u, v)\|_{X}=\|(-\Delta) f(u)\|_{H^{-1}} \leq C_{1}\|\nabla f(u)\|=C_{1}\left\|f^{\prime}(u)|\nabla u|\right\| \tag{13}
\end{equation*}
$$

Using the Hölder inequality and the embedding estimate

$$
\begin{equation*}
\|u\|_{W^{1,6}} \leq K_{2}\|u\|_{H^{2}}, \quad n \leq 3 \tag{14}
\end{equation*}
$$

we obtain

$$
\|F(u, v)\|_{X} \leq C_{1}\left(\int_{\Omega}\left|f^{\prime}(u)\right|^{3} d x\right)^{1 / 3}\left(\int_{\Omega}|\nabla u|^{6} d x\right)^{1 / 6} \leq C\left\|f^{\prime}(u)\right\|_{L^{\infty}}\|u\|_{H^{2}}
$$

Thus, from the assumption that $f \in C^{2}(\mathbb{R}, \mathbb{R})$ and the estimate

$$
\begin{equation*}
\|u\|_{L^{\infty}} \leq K_{3}\|u\|_{H^{2}}, \quad n \leq 4 \tag{15}
\end{equation*}
$$

we deduce that the right-hand side of the last inequality is finite.
THEOREM 3.1. Let $\left(u_{0}, v_{0}\right) \in X^{1 / 2}$. Then there exists a unique local solution $(u, v)^{T}$ of the problem (11) in X, defined on the maximal interval of existence $\left(0, \tau_{\max }\right)$ and

$$
(u, v)^{T} \in C\left(\left[0, \tau_{\max }\right), X^{1 / 2}\right) \cap C^{1}\left(\left(0, \tau_{\max }\right), X\right) \cap C\left(\left(0, \tau_{\max }\right), D\left(\mathbf{A}_{\mathbf{B}}\right)\right)
$$

Proof. Since $-\mathbf{A}_{\mathbf{B}}$ is a sectorial, positive operator, it suffices to show that $F: X^{1 / 2} \rightarrow X$ is Lipschitz continuous on bounded subsets of $X^{1 / 2}$ (see [7, Section 4.2]). Fix a bounded set $G \subset X^{1 / 2}$ and let $\left(u_{1}, v_{1}\right)^{T},\left(u_{2}, v_{2}\right)^{T} \in G$. Then we have

$$
\begin{aligned}
\| F\left(u_{1}, v_{1}\right) & -F\left(u_{2}, v_{2}\right)\left\|_{X}=\right\|(-\Delta)\left(f\left(u_{1}\right)-f\left(u_{2}\right)\right) \|_{H^{-1}} \\
& \leq C_{1}\left(\left\|f^{\prime}\left(u_{1}\right)\left|\nabla\left(u_{1}-u_{2}\right)\right|\right\|+\left\|\left(f^{\prime}\left(u_{1}\right)-f^{\prime}\left(u_{2}\right)\right)\left|\nabla u_{2}\right|\right\|\right)
\end{aligned}
$$

Using the Hölder inequality, continuity of f^{\prime} and the fact that for any $(u, v) \in$ G, thanks to (15), there is a constant m such that $\|u\|_{L^{\infty}} \leq m$, we have

$$
\begin{aligned}
\| F\left(u_{1}, v_{1}\right)- & F\left(u_{2}, v_{2}\right) \|_{X} \leq
\end{aligned} C_{1}\left(\int_{\Omega}\left|f^{\prime}\left(u_{1}\right)\right|^{2}\left|\nabla\left(u_{1}-u_{2}\right)\right|^{2} d x\right)^{1 / 2} .
$$

Consequently, from (14) and the assumption that $f \in C^{2}(\mathbb{R}, \mathbb{R})$, we deduce

$$
\left\|F\left(u_{1}, v_{1}\right)-F\left(u_{2}, v_{2}\right)\right\|_{X} \leq C(G)\left\|u_{1}-u_{2}\right\|_{H^{2}}
$$

Throughout the remainder of this section we need a condition on the nonlinear term f weaker than (iv), that is,

$$
\begin{equation*}
|f(s)| \leq \widetilde{C}\left(1+|s|^{q+1}\right), \quad s \in \mathbb{R} \tag{16}
\end{equation*}
$$

where $q>0$ can be arbitrarily large. Moreover, assume from now on the dissipativity conditions

$$
\begin{equation*}
\exists_{\sigma \geq\left(2 K_{1}^{2}+1\right) /(3 \sqrt{\varepsilon})} \exists_{C_{\sigma} \in \mathbb{R}^{+}} \forall_{s \in \mathbb{R}} \quad s f(s)-\frac{4}{3} \bar{F}(s) \leq-\sigma s^{2}+C_{\sigma} \tag{17}
\end{equation*}
$$

where K_{1} was introduced in (9), and

$$
\begin{equation*}
\exists_{\bar{C} \in \mathbb{R}} \forall_{s \in \mathbb{R}} \quad \bar{F}(s):=\int_{0}^{s} f(z) d z \leq \bar{C} \tag{18}
\end{equation*}
$$

Denote by $\langle\cdot, \cdot\rangle_{H^{-1} \times H_{0}^{1}}$ the duality pairing between H^{-1} and H_{0}^{1}, and for $u, v \in H^{-1}$ set

$$
\begin{equation*}
[u, v]:=\left\langle v,(-\Delta)^{-1} u\right\rangle_{H^{-1} \times H_{0}^{1}} \tag{19}
\end{equation*}
$$

Our next goal will be to investigate the behavior of the Lyapunov type functional $\Phi_{0}: X^{1 / 2} \rightarrow \mathbb{R}$ connected with (10) and defined by

$$
\begin{equation*}
\Phi_{0}(u, v)=E_{0}(u, v)+\frac{\delta}{2 \sqrt{\varepsilon}}\|u\|^{2}-2 \int_{\Omega} \bar{F}(u) d x \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{0}(u, v)=\|v\|_{H^{-1}}^{2}+[u, v]+\frac{1}{2 \sqrt{\varepsilon}}\|u\|_{H^{-1}}^{2}+\|u\|_{H_{0}^{1}}^{2} \tag{21}
\end{equation*}
$$

and derive uniform in time estimates of local solutions to (11) in X. Notice that the square root of E_{0} defines an equivalent norm on X. We infer from (16) that the functional Φ_{0} is well defined. It is easy to check that it is bounded from below. Indeed, by (18) and (20), we obtain

$$
\begin{equation*}
\Phi_{0}(u, v) \geq-2 \int_{\Omega} \bar{F}(u) d x \geq-2 \bar{C}|\Omega|=:-M_{0} \tag{22}
\end{equation*}
$$

Now we estimate Φ_{0} from above.
Lemma 3.1. Under the assumptions (17) and as long as a local solution $(u, v)^{T}$ to (11) exists, we have

$$
\begin{equation*}
\Phi_{0}(u(t), v(t)) \leq\left(\Phi_{0}\left(u_{0}, v_{0}\right)-\frac{3}{2} M_{1}\right) e^{-2 t / 3}+\frac{3}{2} M_{1} \tag{23}
\end{equation*}
$$

where M_{1} is a positive constant.
Proof. Consider the equation formally obtained by applying $(-\Delta)^{-1}$ to (10), i.e.

$$
\begin{equation*}
(-\Delta)^{-1} u_{t t}+\frac{1}{\sqrt{\varepsilon}}(-\Delta)^{-1} u_{t}+(-\Delta) u-f(u)+\frac{\delta}{\sqrt{\varepsilon}} u_{t}=0 \tag{24}
\end{equation*}
$$

Multiplying (24) in L^{2} first by $2 u_{t}$, then by u we obtain

$$
\begin{equation*}
\frac{d}{d t}\left(\left\|u_{t}\right\|_{H^{-1}}^{2}+\|u\|_{H_{0}^{1}}^{2}-2 \int_{\Omega} \bar{F}(u) d x\right)+\frac{2}{\sqrt{\varepsilon}}\left\|u_{t}\right\|_{H^{-1}}^{2}+\frac{2 \delta}{\sqrt{\varepsilon}}\left\|u_{t}\right\|^{2}=0 \tag{25}
\end{equation*}
$$

and

$$
\frac{d}{d t}\left(\left[u, u_{t}\right]+\frac{1}{2 \sqrt{\varepsilon}}\|u\|_{H^{-1}}^{2}+\frac{\delta}{2 \sqrt{\varepsilon}}\|u\|^{2}\right)-\left\|u_{t}\right\|_{H^{-1}}^{2}+\|u\|_{H_{0}^{1}}^{2}-\int_{\Omega} f(u) u d x=0
$$

Adding these identities and recalling (20), we get

$$
\frac{d}{d t} \Phi_{0}\left(u, u_{t}\right)+\frac{2-\sqrt{\varepsilon}}{\sqrt{\varepsilon}}\left\|u_{t}\right\|_{H^{-1}}^{2}+\frac{2 \delta}{\sqrt{\varepsilon}}\left\|u_{t}\right\|^{2}+\|u\|_{H_{0}^{1}}^{2}-\int_{\Omega} f(u) u d x=0
$$

but since $\varepsilon \leq 1$ and $\delta>0$, we have

$$
\begin{equation*}
\frac{d}{d t} \Phi_{0}\left(u, u_{t}\right) \leq-\left\|u_{t}\right\|_{H^{-1}}^{2}-\|u\|_{H_{0}^{1}}^{2}+\int_{\Omega} f(u) u d x \tag{26}
\end{equation*}
$$

Further, we deduce from (20), (21) and $\left[u, u_{t}\right] \leq \frac{1}{2}\|u\|_{H^{-1}}^{2}+\frac{1}{2}\left\|u_{t}\right\|_{H^{-1}}^{2}$ that

$$
\begin{align*}
\frac{2}{3} \Phi_{0}\left(u, u_{t}\right) \leq & \left\|u_{t}\right\|_{H^{-1}}^{2}+\frac{1+\sqrt{\varepsilon}}{3 \sqrt{\varepsilon}}\|u\|_{H^{-1}}^{2}+\frac{2}{3}\|u\|_{H_{0}^{1}}^{2} \tag{27}\\
& +\frac{1}{3 \sqrt{\varepsilon}}\|u\|^{2}-\frac{4}{3} \int_{\Omega} \bar{F}(u) d x
\end{align*}
$$

Adding (26) and (27), we get

$$
\frac{d}{d t} \Phi_{0}\left(u, u_{t}\right)+\frac{2}{3} \Phi_{0}\left(u, u_{t}\right) \leq \frac{2 K_{1}^{2}+1}{3 \sqrt{\varepsilon}}\|u\|^{2}+\int_{\Omega} f(u) u d x-\frac{4}{3} \int_{\Omega} \bar{F}(u) d x
$$

From the dissipativity condition (17) it follows that

$$
\begin{equation*}
\frac{d}{d t} \Phi_{0}\left(u, u_{t}\right)+\frac{2}{3} \Phi_{0}\left(u, u_{t}\right) \leq C_{\sigma}|\Omega|=: M_{1} \tag{28}
\end{equation*}
$$

Integrating the last inequality over $[0, t]$, we obtain (23).
Corollary 3.1. Under the assumptions (16)-(18) and as long as a local solution $(u, v)^{T}$ to (11) exists, we have

$$
\left\|(u, v)^{T}\right\|_{X} \leq c\left(\left\|\left(u_{0}, v_{0}\right)^{T}\right\|_{X^{1 / 2}}\right)
$$

where $c:[0, \infty) \rightarrow[0, \infty)$ is a locally bounded function.
Proof. From Lemma 3.1 we obtain

$$
\begin{equation*}
E_{0}(u(t), v(t)) \leq\left(\Phi_{0}\left(u_{0}, v_{0}\right)-\frac{3}{2} M_{1}\right) e^{-2 t / 3}+\frac{3}{2} M_{1}+M_{0} \tag{29}
\end{equation*}
$$

Since $u \in H^{2}$ conditions (15) and (16) give

$$
\left|\int_{\Omega} u f(u) d x\right| \leq \widetilde{C}\left(\|u\|_{L^{1}}+\|u\|_{L^{q+2}}^{q+2}\right)
$$

hence from (17), recalling that $\sigma>0$, we have

$$
-2 \int_{\Omega} \bar{F}(u) d x \leq \frac{3}{2}\left(\widetilde{C}\|u\|_{L^{1}}+\widetilde{C}\|u\|_{L^{q+2}}^{q+2}+M_{1}\right)
$$

so that

$$
\Phi_{0}(u, v) \leq E_{0}(u, v)+\frac{\delta}{2 \sqrt{\varepsilon}}\|u\|^{2}+\frac{3}{2}\left(\widetilde{C}\|u\|_{L^{1}}+\widetilde{C}\|u\|_{L^{q+2}}^{q+2}+M_{1}\right)
$$

From (15), (29) and the last inequality we deduce that

$$
\begin{align*}
E_{0}(u(t), & v(t)) \tag{30}\\
\leq & \left(E_{0}\left(u_{0}, v_{0}\right)+\frac{\delta}{2 \sqrt{\varepsilon}}\left\|u_{0}\right\|^{2}+\frac{3}{2} \widetilde{C}\left(\left\|u_{0}\right\|_{L^{1}}+\left\|u_{0}\right\|_{L^{q+2}}^{q+2}\right)\right) e^{-2 t / 3} \\
& +\frac{3}{2} M_{1}+M_{0} \\
\leq & C_{1}\left(\left\|\left(u_{0}, v_{0}\right)^{T}\right\|_{H^{2} \times L^{2}}^{2}+\left\|u_{0}\right\|_{H^{2}}^{2}+\left\|u_{0}\right\|_{H^{2}}+\left\|u_{0}\right\|_{H^{2}}^{q+2}\right) e^{-2 t / 3} \\
& +\frac{3}{2} M_{1}+M_{0}
\end{align*}
$$

since the square root of E_{0} defines an equivalent norm on X.
4. Global solutions. Under an additional growth restriction on the derivative of f local solutions will now be extended to global ones.

THEOREM 4.1. Under assumptions (17), (18) and the growth restriction

$$
\begin{equation*}
\left|f^{\prime}(s)\right| \leq \widehat{C}\left(1+|s|^{q}\right), \quad s \in \mathbb{R} \tag{31}
\end{equation*}
$$

where q can be arbitrarily large if $n=1,2$, and $0<q<2$ if $n=3$, a local solution to (11) exists globally in time.

Proof. Note that for every $s \geq 1 / 2 q$ and $r \geq 1$ if $n=1,2$, and for every $s \in[1 / 2 q, 3 / q]$ and $r \in[1,3)$ if $n=3$, we have

$$
\begin{equation*}
\|u\|_{L^{2 s q}} \leq K_{4}\|u\|_{H_{0}^{1}} \quad \text { for } u \in H_{0}^{1} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\|_{W^{1,2 r}} \leq \check{C}\|u\|_{H^{2}}^{\eta}\|u\|_{H_{0}^{1}}^{1-\eta} \quad \text { for } u \in H^{2} \cap H_{0}^{1} \tag{33}
\end{equation*}
$$

with some $\eta \in[0,1)$. By (13), (31) we get

$$
\|F(u, v)\|_{X} \leq C_{1}\left[\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{1 / 2}+\left(\int_{\Omega}|u|^{2 q}|\nabla u|^{2} d x\right)^{1 / 2}\right]
$$

Using the Hölder inequality with $s>\max \{1 / 2 q, 1\}$ if $n=1,2$, and $s=3 / q$ if $n=3(r=s /(s-1))$, we obtain

$$
\|F(u, v)\|_{X} \leq C_{1}\left(\|u\|_{H_{0}^{1}}+\|u\|_{L^{2 s q}}^{q}\|u\|_{W^{1,2 r}}\right)
$$

Consequently, from (32) and (33),

$$
\begin{aligned}
\|F(u, v)\|_{X} & \leq C \max \left\{\|u\|_{H_{0}^{1}},\|u\|_{H_{0}^{1}}^{q+1-\eta}\right\}\left(1+\|u\|_{H^{2}}^{\eta}\right) \\
& \leq g\left(\left\|(u, v)^{T}\right\|_{X}\right)\left(1+\left\|(u, v)^{T}\right\|_{X^{1 / 2}}^{\eta}\right)
\end{aligned}
$$

where $g:[0, \infty) \rightarrow[0, \infty)$ is some nondecreasing function, so that any local solution to (11) exists globally in time (see [3, Theorem 3.1.1]).

Denote by $\{\mathcal{T}(t)\}$ the C^{0} semigroup of global solutions to (11), which is defined on $X^{1 / 2}=\left(H^{2} \cap H_{0}^{1}\right) \times L^{2}$ by the relation

$$
\mathcal{T}(t)\left(u_{0}, v_{0}\right)=(u(t), v(t)), \quad t \geq 0
$$

Theorem 4.2. The semigroup $\{\mathcal{T}(t)\}$ has a global attractor \mathcal{A} in $X^{1 / 2}$.
Proof. Since the resolvent of $\mathbf{A}_{\mathbf{B}}$ is compact, we know (see [3, Theorem 3.3.1]) that the semigroup is compact. If we show that $\{\mathcal{T}(t)\}$ is point dissipative, then $\{\mathcal{T}(t)\}$ will have a global attractor in $X^{1 / 2}$ (see [3, Corollary 1.1.6]). To this end, it suffices to prove (see [3, Corollary 4.1.4]) that for all $\left(u_{0}, v_{0}\right) \in X^{1 / 2}$,

$$
\limsup _{t \rightarrow \infty}\|(u, v)\|_{X} \leq \frac{3}{2} M_{1}+M_{0},
$$

where M_{0} and M_{1} are the constants from (22) and (28), respectively. Note that this inequality follows directly from (30).
4.1. Geometric structure of the global attractor. Following [4, Section 1.6] we now study the structure of the global attractor for the semigroup $\{\mathcal{T}(t)\}$. To this end, we discuss the properties of the Lyapunov type functional $\Phi_{1}: X^{1 / 2} \rightarrow \mathbb{R}$ defined as

$$
\begin{equation*}
\Phi_{1}(u, v)=\|v\|_{H^{-1}}^{2}+\|u\|_{H_{0}^{1}}^{2}-2 \int_{\Omega} \bar{F}(u) d x . \tag{34}
\end{equation*}
$$

Proposition 4.1.

(i) Φ_{1} is bounded from below.
(ii) Φ_{1} is continuous.
(iii) For each $\left(u_{0}, v_{0}\right) \in X^{1 / 2}$ the function $0<t \mapsto \Phi_{1}\left(\mathcal{T}(t)\left(u_{0}, v_{0}\right)\right)$ is nonincreasing.
(iv) If $\Phi_{1}\left(\mathcal{T}(t)\left(u_{0}, v_{0}\right)\right)=\Phi_{1}\left(u_{0}, v_{0}\right)$ for all $t>0$ and some $\left(u_{0}, v_{0}\right) \in$ $X^{1 / 2}$ then $\mathcal{T}(t)\left(u_{0}, v_{0}\right)=\left(u_{0}, v_{0}\right)$ for all $t>0$.

Proof. (i) We show that Φ_{1}, like Φ_{0}, is bounded from below by $-M_{0}$. Indeed, by (18), (34) and the definition of M_{0} (see (22)) we obtain

$$
\Phi_{1}(u, v) \geq-2 \int_{\Omega} \bar{F}(u) d x \geq-M_{0} .
$$

(ii) Let $(u, v),\left(u_{n}, v_{n}\right) \in X^{1 / 2}$ be such that $\left\|\left(u_{n}-u, v_{n}-v\right)\right\|_{X^{1 / 2}} \rightarrow 0$ as $n \rightarrow \infty$, hence we may assume that $\left\|u_{n}\right\|_{L^{\infty}},\|u\|_{L^{\infty}} \leq M$. Since

$$
\begin{aligned}
& \left|\Phi_{1}\left(u_{n}, v_{n}\right)-\Phi_{1}(u, v)\right| \leq\left\|v_{n}-v\right\|_{H^{-1}}\left(\left\|v_{n}\right\|_{H^{-1}}+\|v\|_{H^{-1}}\right) \\
& +\left\|u_{n}-u\right\|_{H_{0}^{1}}\left(\left\|u_{n}\right\|_{H_{0}^{1}}+\|u\|_{H_{0}^{1}}\right)+2 \int_{\Omega}\left|\bar{F}\left(u_{n}\right)-\bar{F}(u)\right| d x,
\end{aligned}
$$

it suffices to show that $\int_{\Omega}\left|\bar{F}\left(u_{n}\right)-\bar{F}(u)\right| d x \rightarrow 0$ as $n \rightarrow \infty$. From (16) we have

$$
\begin{aligned}
& \int_{\Omega}\left|\bar{F}\left(u_{n}(x)\right)-\bar{F}(u(x))\right| d x \leq\left.\int\right|_{\Omega} \int_{0}^{u_{n}(x)} f(s) d s-\int_{0}^{u(x)} f(s) d s \mid d x \\
& \leq \int_{\Omega}\left|\int_{u(x)}^{u_{n}(x)}\right| f(s)|d s| d x \leq\left.\int\right|_{\Omega} ^{u_{n}(x)} \int_{u(x)}\left(1+|s|^{q}\right) d s \mid d x \\
& \leq|\Omega| \sup _{|s| \leq M}\left(1+|s|^{q}\right)\left\|u_{n}-u\right\|_{L^{\infty}}
\end{aligned}
$$

(iii) For $\left(u_{0}, v_{0}\right) \in X^{1 / 2}$ from (25) and the definition of the semigroup $\{\mathcal{T}(t)\}$, we deduce that

$$
\frac{d}{d t} \Phi_{1}\left(u(t), u_{t}(t)\right)=-\frac{2}{\sqrt{\varepsilon}}\left\|u_{t}\right\|_{H^{-1}}^{2}-\frac{2 \delta}{\sqrt{\varepsilon}}\left\|u_{t}\right\|^{2} \leq 0
$$

(iv) Let $\left(u_{0}, v_{0}\right) \in X^{1 / 2}$ be such that $\Phi_{1}\left(\mathcal{T}(t)\left(u_{0}, v_{0}\right)\right)=\Phi_{1}\left(u_{0}, v_{0}\right)$ for $t>0$. Then from (25) we obtain

$$
0=\frac{d}{d t} \Phi_{1}\left(\mathcal{T}(t)\left(u_{0}, v_{0}\right)\right)=-\frac{2}{\sqrt{\varepsilon}}\left\|u_{t}\right\|_{H^{-1}}^{2}-\frac{2 \delta}{\sqrt{\varepsilon}}\left\|u_{t}\right\|^{2}
$$

but the left hand side is independent of t, hence $\left\|u_{t}\right\|_{H^{-1}}=\left\|u_{t}\right\|=0$, so that $u_{t}(t, x)=0$ a.e. for $t>0$.

Let \mathcal{N} be the set of equilibrium points for the semigroup $\{\mathcal{T}(t)\}$, i.e.

$$
\mathcal{N}=\left\{(\varphi, \phi) \in X^{1 / 2}: \mathcal{T}(t)(\varphi, \phi)=(\varphi, \phi) \text { for } t \geq 0\right\}
$$

We define the unstable manifold $\mathcal{M}(\mathcal{N})$ emanating from the set \mathcal{N} as the set of all $\left(u_{0}, v_{0}\right) \in X^{1 / 2}$ such that there exists a full trajectory $\gamma=$ $\{(u(t), v(t)): t \in \mathbb{R}\}$ with the properties

$$
(u(0), v(0))=\left(u_{0}, v_{0}\right) \quad \text { and } \quad \lim _{t \rightarrow-\infty} \operatorname{dist}_{X^{1 / 2}}((u(t), v(t)), \mathcal{N})=0
$$

Proposition 4.2. We have $\mathcal{A}=\mathcal{M}(\mathcal{N})$. Moreover, the global attractor consists of full trajectories $\gamma=\{(u(t), v(t)): t \in \mathbb{R}\}$ such that $\lim _{t \rightarrow \infty} \operatorname{dist}_{X^{1 / 2}}((u(t), v(t)), \mathcal{N})=0 \quad$ and $\quad \lim _{t \rightarrow-\infty} \operatorname{dist}_{X^{1 / 2}}((u(t), v(t)), \mathcal{N})=0$.

Proof. This follows directly from [4, Theorem 6.1] and Proposition 4.1.

REFERENCES

[1] H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser, Basel, 1995.
[2] S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. Math. 136 (1989), 15-55.
[3] J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge Univ. Press, Cambridge, 2000.
[4] I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 2002.
[5] R. Czaja, Differential Equations with Sectorial Operator, Wydawnictwo Uniwersytetu Sląskiego, Katowice, 2002.
[6] T. Dlotko, Global attractor for the Cahn-Hilliard equation in H^{2} and H^{3}, J. Differential Equations 113 (1994), 381-393.
[7] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988.
[8] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin, 1981.
[9] S. Mizohata, The Theory of Partial Differential Equations, Cambridge Univ. Press, New York, 1973.
[10] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1997.
[11] K. Yosida, Functional Analysis, Springer, Berlin, 1978.
[12] S. Zheng and A. Milani, Global attractors for singular perturbations of the CahnHilliard equations, J. Differential Equations 209 (2005), 101-139.

Institute of Mathematics
Silesian University
40-007 Katowice, Poland
E-mail: mkania@math.us.edu.pl

