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ON THE RADIUS OF CONVEXITY

FOR A CLASS OF CONFORMAL MAPS

BY

V. KARUNAKARAN and K. BHUVANESWARI (Madurai)

Abstract. Let A denote the class of all analytic functions f in the open unit disc D

in the complex plane satisfying f(0) = 0, f ′(0) = 1. Let U(λ) (0 < λ ≤ 1) denote the class
of functions f ∈ A for which
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The behaviour of functions in this class has been extensively studied in the literature. In
this paper, we shall prove that no member of U0(λ) = {f ∈ U(λ) : f ′′(0) = 0} is convex
in D for any λ and obtain a lower bound for the radius of convexity for the family U0(λ).
These results settle a conjecture proposed in the literature negatively. We also improve
the existing lower bound for the radius of convexity of the family U0(λ).

1. Introduction. Let A denote the class of all analytic functions f in
the open unit disc D in the complex plane satisfying f(0) = 0 and f ′(0) = 1.
Let U(λ) (0 < λ ≤ 1) denote the class of functions f ∈ A for which
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and let U0(λ) be the class of f ∈ U(λ) with f ′′(0) = 0. The properties of
functions in U(λ) and U0(λ) have been studied in detail in the literature (see
[2]–[5]). Recently, Ponnusamy and Vasundhra [5] proposed the conjecture
that f ∈ U0(λ) is convex at least when 0 < λ ≤ 3 − 2

√
2. In [6], Vasundhra

also obtained a lower bound for the radius of convexity of the families U(λ)
and U0(λ).

The aim of the present paper is to show that the above conjecture is not
valid. We shall also improve the lower bound for the radius of convexity of
U0(λ). Further we shall obtain a lower bound for Re(zf ′(z)/f(z)) on each
|z| = r < 1, thereby giving an alternative proof for the order of starlikeness
of the family U0(λ).
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2. Main results

Theorem 2.1. If f ∈ U0(λ) then |z| ≤ r < 1 we have
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1 − λr2

1 + λr2
if r2 ≤ 1/2λ,

1 − 2λ2r4

2(1 − λ2r4)
if r2 ≥ 1/2λ.

Proof. From [6, p. 22] (replacing w by −w) we have

zf ′(z)

f(z)
=

1 − λw

1 + λw1

where w(z) is analytic in |z| < 1 with |w(z)| ≤ |z|2 < 1 and

w1(z) =

1\
0

w(tz)

t2
dt.(1)

By a simple computation we have
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≥ (1 − λa)(1 + λa1) − λ2bb1

1 + λ2(a2
1 + b2

1) + 2λa1

with w(z) = a+ib and w1(z) = a1+ib1 (so that a2+b2 ≤ r4 and a2
1+b2

1 ≤ r4).
Put λ|a| = y, λa1 = x so that 0 ≤ y ≤ λr2 and −λr2 ≤ x ≤ λr2. Using

a ≤ |a|, λ|b| ≤
√

λ2r4 − y2, λ|b1| ≤
√

λ2r4 − x2

we get

Re
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We now fix x with |x| ≤ λr2. We observe that the function

F (y) = (1 − y)(1 + x) −
√

λ2r4 − x2
√

λ2r4 − y2

for 0 ≤ y ≤ λr2 attains its absolute minimum at

y =
λr2(1 + x)√
1 + λ2r4 + 2x

= y0 with F (y0) = (1 + x) − λr2
√

1 + λ2r4 + 2x.

Hence
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.

We now observe that

H ′(x) = − 1 − λ2r4

(1 + λ2r4 + 2x)2
+

λr2

(1 + λ2r4 + 2x)3/2

so that

H ′(x) < 0 for x < x0 =
1 − 3λ2r4

2λ2r4
,
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H ′(x0) = 0 and H ′(x) ≥ 0 for x ≥ x0. However, x0 is an admissible value
for x if and only if

−λr2 ≤ x0 ≤ λr2.

We can verify that −λr2 ≤ x0 holds trivially and that x0 ≤ λr2 if and only
if (1 + λr2)(2λ2r4 + λr2 − 1) ≥ 0, that is, r2 ≥ 1/2λ.

Thus H(x) ≥ H(x0) for r2 ≥ 1/2λ. On the other hand, if 0 < r2 ≤ 1/2λ
then −λr2 ≤ x ≤ λr2 < x0 and hence H(x) is a decreasing function of x.
Thus in this case H(x) ≥ H(λr2). By a simple computation we have

H(λr2) =
1 − λr2

1 + λr2
and H(x0) =

1 − 2λ2r4

2(1 − λ2r4)
.

This completes the proof of our theorem.

Corollary 2.2. Let f ∈ U0(λ) for 0 < λ ≤ 1. Then f(z) is starlike of

order δ with 0 < δ < 1 where δ = δ(λ) is given by

δ(λ) =















1 − λ

1 + λ
if λ ≤ 1/2,

1 − 2λ2

2(1 − λ2)
if λ ≥ 1/2.

In particular f is starlike of order 0 for 0 < λ ≤ 1/
√

2, and of order 1/2
for 0 < λ ≤ 1/3.

Theorem 2.3. For each fixed λ with 0 < λ ≤ 1 we have

lim
r→1−

Re

(

1 +
rf ′′

r (r)

f ′
r(r)

)

= −∞

where for each α in D, fα ∈ U0(λ) is defined by

zf ′

α(z)

fα(z)
=

1 + λwα(z)

1 − λwα1(z)

with wα(z) = −z2gα(z) = −z2 z−α
1−zα and wα1 = (wα)1 (see (1)).

Proof. From [6, p. 22] we have, for f ∈ U0(λ),

zf ′(z)

f(z)
=

1 + λw

1 − λw1
(2)

where w(z) is analytic in |z| < 1 with |w(z)| ≤ |z|2 < 1 and w1 is given
by (1).

Note that, conversely, all functions f defined by (2) are members of
U0(λ). Let F be the subfamily of U0(λ) consisting of functions fα with

zf ′

α(z)

fα(z)
=

1 + λwα(z)

1 − λwα1(z)

for wα(z) and wα1(z) as in the statement.
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Using (2) we have, for each f ∈ U0(λ),

1 +
zf ′′(z)

f ′(z)
= 2

zf ′(z)
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− 1 +

λzw′(z)
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= 2
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For fr ∈ F and z = r we also have

1 +
rf ′′

r (r)
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= 2
1 + λwr(r)

1 − λwr1(r)
− 1 +

λrw′
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with wr1(r) = r + 1−r2

r log(1 − r2). Now

2
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− 1 +

λrw′
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2
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Hence

lim
r→1

Re

(

1 +
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Re

(

2
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[
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)

= −∞,

proving the theorem.

Theorem 2.4. Let f ∈ U0(λ). Then

Re

(

1 +
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f ′(z)

)

≥ 0 for |z| ≤ R

where
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


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
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1

7λ
,

8

35
≤ λ ≤ 1,

5 + λ −
√

(1 − λ)(25 − λ)

6λ
, 0 < λ ≤ 8

35
.

Proof. Taking logarithmic derivatives in (2) we have

1 +
zf ′′(z)

f ′(z)
=

λzw′(z)

1 + λw(z)
+

λzw′

1(z) + 1 + λw(z)

1 − λw1(z)
(3)

By a simple computation we see that zw′

1(z) = w(z)+w1(z). By using this,
we deduce from (3) that

1 +
zf ′′(z)

f ′(z)
=

λzw′(z)

1 + λw(z)
+

λ(w(z) + w1(z)) + 1 + λw(z)

1 − λw1(z)

= 2
1 + λw(z)

1 − λw1(z)
− 1 +

λzw′(z)

1 + λw(z)
.
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Therefore

zf ′′(z)

f ′(z)
= 2

(

1 + λw(z)

1 − λw1(z)
− 1

)

+
λzw′(z)

1 + λw(z)
(4)

= 2
λ(w(z) + w1(z))

1 − λw1(z)
+

λzw′(z)

1 + λw(z)

Since w2(z) = w(z)/z is a Schwarz function,

|w′

2(z)| ≤ 1 − |w2(z)|2
1 − |z|2

(see [1, p. 136]), which is equivalent to

|zw′(z) − w(z)| ≤ |z|2 − |w(z)|2
1 − |z|2 .(5)

From (4) and (5) we have
∣
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≤ 2λ(|w(z)| + r2)

1 − λr2
+

λ

1 − λ|w(z)| |w(z)|

+
r2 − |w(z)|2

1 − r2

λ

1 − λ|w(z)| .

If we let |w(z)| = x (note that 0 ≤ x ≤ r2), the above inequality becomes
∣
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zf ′′(z)

f ′(z)

∣

∣

∣

∣

≤ 2λ(x + r2)

1 − λr2
+

λx

1 − λx
+

r2 − x2

1 − r2

λ

1 − λx
= φ(x) (say).

By some simple computations, we see that

φ(x) ≤ φ(r2) =
6λr2

1 − λr2
if r2 <

5 + λ −
√

(1 − λ)(25 − λ)

6λ
= x0.

Thus ∣

∣
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zf ′′(z)

f ′(z)

∣
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< 1 if r2 <
1

7λ
.

Therefore
∣

∣
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∣

zf ′′(z)

f ′(z)

∣
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< 1, that is, f is convex for |z| ≤ r if

r2 ≤ min

{

1

7λ
,
5 + λ −

√

(1 − λ)(25 − λ)

6λ

}

.

However, we have

1

7λ
<

5 + λ −
√

(1 − λ)(25 − λ)

6λ
for λ ≥ 8/35

and
5 + λ −

√

(1 − λ)(25 − λ)

6λ
<

1

7λ
for λ ≤ 8/35,

proving the theorem.
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Note 2.5. Theorem 2.3 implies that the conjecture proposed in [5] is
not true. Indeed, if it were, even for a single λ with 0 < λ ≤ 1, then for each
fixed r < 1 we would have

Re

(

1 +
rf ′′

r (r)

f ′
r(r)

)

≥ inf
α∈D

Re

(

1 +
rf ′′

α(r)

f ′
α(r)

)

≥ inf
f∈U0(λ)

Re

(

1 +
rf ′′(r)

f ′(r)

)

≥ 0.

However, this implies that if limr→1− Re(1+rf ′′

r (r)/f ′

r(r)) exists, it is greater
than or equal to zero, contradicting Theorem 2.3.

Theorem 2.4 improves the lower bounds obtained in [6] for the radius
of convexity of the family U0(λ). For example if λ = 1 then R = 1/

√
7 =

0.377 whereas for the same value of λ the lower bound in [6] is 0.3489
approximately.
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