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VAN DER CORPUT SETS IN Zd

BY

VITALY BERGELSON (Columbus, OH) and EMMANUEL LESIGNE (Tours)

Abstract. In this partly expository paper we study van der Corput sets in Zd, with
a focus on connections with harmonic analysis and recurrence properties of measure pre-
serving dynamical systems. We prove multidimensional versions of some classical results
obtained for d = 1 by Kamae and M. Mendès France and by Ruzsa, establish new char-
acterizations, introduce and discuss some modifications of van der Corput sets which
correspond to various notions of recurrence, provide numerous examples and formulate
some natural open questions.
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INTRODUCTION

The main topic of our paper is the intriguing connection between posi-
tive-definite sequences, recurrence properties of measure preserving dynam-
ical systems, and the theory of uniform distribution mod 1.

Let (X,A, µ, T ) be an invertible probability measure preserving dynam-
ical system (1). Given a set A ∈ A with µ(A) > 0, let RA = {n ∈ Z, n 6= 0 :
µ(A ∩ TnA) > 0}. While the classical Poincaré recurrence theorem, which
states that the set RA is non-empty (and hence infinite), is nowadays an
easy exercise, quite a few of the more subtle properties of sets of returns RA

and of the related sets RA,ε = {n ∈ Z, n 6= 0 : µ(A∩TnA) > ε} are still not
fully understood.

Following Furstenberg ([Fu2]), let us call a set of integers D a set of

recurrence if for any m.p.s. (X,A, µ, T ) and any A ∈ A with µ(A) > 0 one
has D∩RA 6= ∅. For example, for any k ∈ N, the set kN is a set of recurrence
(just consider the system (X,A, µ, T k)) and any set of recurrence has a non-
empty intersection with the set kN (just consider a permutation of a finite
set). A more general (and still rather trivial) example is provided by the
set of differences {ni − nj : i > j}, where (ni)i≥1 is an increasing sequence
of integers. (To see that this is a set of recurrence, just observe that if
µ(A) > 0, then the sets TniA cannot be pairwise disjoint, µ(X) being finite.)
The following generalization of the Poincaré recurrence theorem obtained by
Furstenberg (see [Fu1], [Fu2]) gives a much less trivial example of a set of
recurrence.

(1) Unless explicitly stated otherwise, we will assume in this paper that the measure
preserving transformations we are dealing with are invertible and that invariant measures
are normalized. We will write m.p.s. for invertible probability measure preserving dynamical

system.
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Theorem 0.1. For any polynomial p(n) ∈ Z[n] satisfying p(0) = 0, for

any m.p.s. (X,A, µ, T ) and for any A ∈ A with µ(A) > 0, there exists n ∈ N
such that p(n) 6= 0 and µ(A ∩ T p(n)A) > 0.

Following Ruzsa ([Ruz]), let us call a set D ⊂ N intersective if for any
S ⊂ N of positive upper density (2) there exist x, y ∈ S such that x−y ∈ D.
It is not hard to show that a set D is intersective if and only if it is a set of
combinatorial recurrence, that is, such that for any S ⊂ N with d(S) > 0,
there exists n ∈ D such that d(S ∩ (S − n)) > 0. This hints that the no-
tions of “set of recurrence” and “intersective set” are related and, indeed, it
turns out that these notions coincide. (The fact that intersectivity implies
measure-theoretic recurrence has been remarked by several authors, see for
example [BM] and [Berg.1]. The fact that measure-theoretic recurrence im-
plies combinatorial recurrence is a consequence of Furstenberg’s correspon-

dence principle, see for example [Berg.3].)

Thus, for example, Theorem 0.1 implies Sárközy’s theorem ([S]), which
states that for any polynomial p(n) ∈ Z[n] satisfying p(0) = 0 and any
set S ⊂ N with d(S) > 0 there exist x, y ∈ S and n ∈ N such that
x − y = p(n). We remark that it was shown in [Kam-MF] that a neces-
sary and sufficient condition for a polynomial p(n) ∈ Z[n] to satisfy the
Furstenberg–Sárközy theorem is that for any positive integer k there exists
an integer n such that p(n) is divisible by k. Actually, Kamae and Mendès
France in [Kam-MF] showed that many sets of recurrence, including the sets
mentioned above, have a stronger property which they called the van der

Corput property .

Definition. A set D of positive integers is a van der Corput set (or
vdC set) if it has the following property: given a real sequence (xn)n∈N, if
all the sequences (xn+d − xn)n∈N, d ∈ D, are uniformly distributed mod 1,
then the sequence (xn)n∈N is itself uniformly distributed mod 1.

This concept and terminology (3) come from the van der Corput in-

equality , which is presented at the beginning of the next section, and which
motivates the following van der Corput trick : if for a given real sequence
(xn)n∈N and any h ∈ N the sequence (xn+h−xn)n∈N is uniformly distributed
mod 1, then the sequence (xn)n∈N is uniformly distributed mod 1. Van der
Corput’s inequality and its application to uniform distribution appeared
for the first time in [vdC], under the name Dritte Haupteigenschaft (third
principal property).

(2) A subset S of N has positive upper density if

d(S) := lim sup
N→∞

1

N
|S ∩ {1, . . . , N}| > 0.

(3) Ruzsa uses the name correlative set instead of van der Corput set.
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Kamae and Mendès France showed in [Kam-MF] that every vdC set is a
set of recurrence. The other implication is false: Bourgain has constructed
in [Bou] an example of a set of recurrence which is not a vdC set.

The notions introduced above are connected via the notion of positive-
definiteness. Indeed, it is easy to check that the sequence (µ(A ∩ TnA)) is
positive-definite (4), which establishes the connection between sets of recur-
rence and properties of positive-definite sequences. As for the vdC prop-
erty, let us first note that in light of Weyl’s criterion (see [Ku-N]), the se-
quence (xn+d−xn)n∈N is uniformly distributed mod 1 if and only if, for any
k ∈ Z, k 6= 0, one has

lim
N→∞

1

N

N∑

n=1

e2πik(xn+d−xn) = lim
N→∞

1

N

N∑

n=1

e2πikxn+de2πikxn = 0.(1)

Now, given a bounded sequence α : N → C, it is not hard to see that for
some increasing sequence of integers (Nj)j∈N the limit

lim
j→∞

1

Nj

Nj∑

n=1

α(n + d)α(n) = γ(d)(2)

exists for all d ∈ Z and that, moreover, the sequence γ is positive-definite
(see [Bert]). Juxtaposing (1) and (2) we see that the vdC property is also
connected to the properties of positive-definite sequences.

By the Bochner–Herglotz theorem (see for example [Rud, Subsec-
tion 1.4.3]), any positive-definite sequence ϕ is given by the Fourier coef-
ficients of a positive measure νϕ on the circle:

ϕ(n) =
\
T

e2πinx dνϕ(x),

and the properties of this measure play a crucial role in verifying that certain
sets are vdC and in establishing the connections between (various versions
of) vdC sets and sets of recurrence (see in particular Section 3 below).

The following fact is also useful for a better understanding of the link
between vdC sets and sets of recurrence. Let D ⊂ Z. We prove (see Corol-
lary 1.31) that D is a vdC set if and only if the following is true: given a
bounded sequence of complex numbers (un)n∈N, if for all d ∈ D, the sequence
(un+dun) converges to zero in the Cesàro sense, then the sequence (un) also
converges to zero in the Cesàro sense. We also prove (see Theorem 3.1) that
D is a set of recurrence if and only if the analogous property holds with
“(un) is a bounded sequence of complex numbers” replaced by “(un) is a
bounded sequence of positive real numbers”.

(4) This fact was first noticed and utilized by Khinchin in [Kh].
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Driven by the desire to obtain new applications to combinatorics and
to better understand the recurrence properties of measure preserving Zd-
actions, we focus in this paper on Zd versions of vdC sets. As we will see,
many known properties extend from Z to Zd with relative ease. Still, some
properties turn out to be more recalcitrant and their extensions to Zd de-
mand more work.

The definition of vdC set in Zd is given in Subsection 1.2. Here are
some examples of facts/theorems which will be obtained in subsequent sec-
tions:

• The class of vdC sets has the Ramsey property. Namely, if D is a vdC
set in Zd and if D = D1 ∪ D2 then at least one of the Di is a vdC
set.

• Let p1, . . . , pd be a finite family of polynomials with integer coefficients,
to which we associate the subset S = {(p1(n), . . . , pd(n)) : n ∈ N}
of Zd. The following properties are equivalent:

◦ S is a set of recurrence for Zd-actions (5).
◦ S is a vdC set in Zd.
◦ S is a set of multiple recurrence for Z-actions (6).
◦ For any q ∈ N, there exists n ∈ N such that p1(n), . . . , pd(n) are all

divisible by q.

Moreover these equivalent properties are also necessary and sufficient
for the set S to be an enhanced vdC set (see Definition 3 in Subsec-
tion 2.2) and a set of strong recurrence (see Definition 5 in Subsec-
tion 3.1).

• Let P be the set of prime numbers. For any finite family f1, . . . , fd of
polynomials with integer coefficients and with zero constant terms the
set {f1(p − 1), . . . , fd(p − 1) : p ∈ P} is a vdC set in Zd. (It can also
be proved that it is an enhanced vdC set; see below.)

• The Cartesian product of two vdC sets is a vdC set in the correspond-
ing product of parameter spaces.

• A subset D of Z is a vdC set if and only if any positive measure σ on
the torus T such that

∑
d∈D |σ̂(d)| < ∞ is continuous.

• We establish a generalized van der Corput inequality for multiparam-
eter sequences in a Hilbert space (Proposition 1.30).

(5) A subset S of Zd is called a set of recurrence for Zd-actions if, given any measure
preserving Zd-action (Tn)n∈Zd on a probability space (X,A, µ) and any A ∈ A with
µ(A) > 0, there exists n ∈ S, n 6= 0 such that µ(A ∩ TnA) > 0.

(6) A subset S of Zd is called a set of multiple recurrence for Z-actions if, given
any m.p.s. (X,A, µ, T ) and any A ∈ A with µ(A) > 0, there exists (n1, . . . , nd) ∈
S \ {(0, . . . , 0)} such that µ(A ∩ T n1A ∩ · · · ∩ T ndA) > 0.
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In order to make the paper more readable we will restrict discussion
mainly to dimension d = 2. The reader should have no problem verifying
that our proofs work for general d ∈ N.

In Section 2, we introduce the notion of enhanced vdC set . We show
that the enhanced vdC property is equivalent to the FC+ property (which
appears in [Kam-MF], with a reference to Y. Katznelson). Moreover, the
enhanced vdC property is related to the notion of strong recurrence in the
same way as vdC sets are related to sets of recurrence. In Subsection 2.4 we
collect some natural open questions.

In Section 3 we discuss links between the recurrence and vdC properties.
We also introduce and discuss the notions of density vdC set and nice vdC

set .
In Section 4 we briefly discuss some modifications of the notion of vdC

set which are connected to various notions of uniform distribution.

It is worth mentioning that in practically every paper in the area of
ergodic Ramsey theory, some version of the van der Corput trick for se-
quences in Hilbert spaces is used. See for example [Fu-Kat-O], [Berg-Lei.1],
[Berg-Lei-McC], [Berg-McC], [Fr-Les-Wi] dealing with multiple recurrence,
and [Berg.2], [Berg-Lei.2], [Ho-Kr], [Z] and [Lei] dealing with mean conver-
gence of multiple ergodic averages. The van der Corput trick is also useful
in establishing results pertaining to pointwise convergence: see for example
[Les] and [Fr].

The influence on our work of the above-mentioned paper of Kamae and
Mendès France, and of the fundamental ideas developed by Ruzsa in [Ruz],
cannot be overestimated.

We are especially grateful to Randall McCutcheon for numerous useful
suggestions, and would like to thank Inger H̊aland-Knutson, Anthony Quas
and Máté Wierdl for pertinent communications.

Throughout the paper, we will use the classical notation e(t) := e2πit for
t ∈ R or t ∈ T = R/Z.

1. VAN DER CORPUT SETS IN Zd

In this section we develop a theory of van der Corput sets in the mul-
tidimensional lattice Zd, which is parallel to the known theory in Z (see
[Kam-MF], [Ruz], [Mo]). As we have already mentioned in the introduc-
tion, we limit our presentation to the case d = 2. Definitions, results and
arguments in this section follow the one-dimensional case, except at one
point: in order to obtain a generalized van der Corput inequality , Ruzsa
uses in [Ruz] a theorem of Fejér stating that any positive trigonometric
polynomials in one variable is the square modulus of another trigonomet-
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ric polynomial; this fact is no longer true for trigonometric polynomials of
several variables, hence we are forced to use a different argument to derive
the generalized van der Corput inequality in the multidimensional case (cf.
Subsection 1.4).

1.1. Van der Corput’s inequality and van der Corput’s principle

1.1.1. Van der Corput’s inequality in Z2. For a, b, c, d ∈ Z, we write
(a, b) ≤ (c, d) if a ≤ c and b ≤ d. (Similarly for <, ≥ and >.) We write 0 for
(0, 0) ∈ Z2.

Theorem 1.1. Let N = (N1, N2) ∈ N2, and (un)0<n≤N be a finite

family of complex numbers indexed by ([1, N1]×[1, N2])∩Z2. For h = (h1, h2)
∈ Z2, define

γ(N, h) :=
∑

0<n≤N
0<n+h≤N

un+hun.

For any H = (H1, H2) ∈ N2, we have
∣∣∣

∑

0<n≤N

un

∣∣∣
2
≤ []

(N1 + H1)(N2 + H2)

H2
1H2

2

×
∑

−H<h<H

(H1 − |h1|)(H2 − |h2|)γ(N, h).

The above inequality is usually applied in the following form:
∣∣∣

∑

0<n≤N

un

∣∣∣
2
≤ (N1 + H1)(N2 + H2)

H1H2

∑

−H<h<H

|γ(N, h)|.(3)

(The proof of Theorem 1.1 is an elementary application of Cauchy’s in-
equality. It is a particular case of the calculations presented in Subsec-
tion 1.1.3.)

1.1.2. Van der Corput’s principle in Z2. Let (un)n∈N2 be a family of
complex numbers. Starting from inequality (3), dividing by (N1N2)

2, then
letting N1 and N2 go to infinity, we deduce that, for any H ∈ N2,

lim sup
N1,N2→∞

∣∣∣∣
1

N1N2

∑

0<n≤N

un

∣∣∣∣
2

≤ 1

H1H2

∑

−H<h<H

lim sup
N1,N2→∞

1

N1N2
|γ(N, h)|.

As a direct consequence we obtain the following proposition.

Proposition 1.2. If (un)n∈N2 is a family of complex numbers such that

inf
H>0

1

H1H2

∑

−H<h<H

lim sup
N1,N2→∞

1

N1N2
|γ(N, h)| = 0
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then

lim
N1,N2→∞

1

N1N2

∑

0<n≤N

un = 0.

We use the following notion of uniform distribution for a family indexed
by N2.

Definition 1. A family (xn)n∈N2 of real numbers is uniformly dis-

tributed mod 1 (u.d. mod 1) if for any continuous function f on R, invariant
under translations by elements of Z, we have

lim
N1,N2→∞

1

N1N2

∑

0<n≤N

f(xn) =
\

[0,1]

f(t) dt.(4)

Other useful notions of uniform distribution can be introduced: for ex-
ample, one can replace in (4) the averages

(
1

N1N2

∑
0<n≤N . . .

)
N1,N2→∞

by(
1

(N1−M1)(N2−M2)

∑
M≤n<N . . .

)
N1−M1,N2−M2→∞

; this leads to the notion of

well distributed sequences. Or, one can consider averages defined by a given
Følner sequence. We postpone remarks on these variations to Section 4.

Note that since property (4) has an asymptotic nature, it makes sense
even if the entries in the sequence (xn) are defined only for indices n =
(n1, n2) for n1, n2 large enough. We tacitly utilize this observation in the
formulation of Corollary 1.3 below and throughout the paper.

Let us recall the classical Weyl criterion for uniform distribution (see
[We], [Ku-N]). A family (xn)n∈N2 of real numbers is u.d. mod 1 if and only
if, for any k ∈ Z \ {0},

lim
N1,N2→∞

1

N1N2

∑

0<n≤N

e(kxn) = 0.

As in dimension 1, van der Corput’s principle in Zd has a useful corollary
pertaining to uniform distribution.

Corollary 1.3. Let (xn)n∈N2 be a family of real numbers. If for any

h ∈ Z2 \ {0} the family (xn+h − xn)n∈N2 is u.d. mod 1, then the family

(xn)n∈N2 is u.d. mod 1.

When we apply Proposition 1.2 to prove Corollary 1.3, we see that it is
sufficient to let only one of H1, H2 go to infinity. The following definition
will allow us to give a more general version of this corollary.

Let D be a subset of Z2. We define

δ(D) := sup
H1,H2≥0

1

(2H1 + 1)(2H2 + 1)
card(D ∩ [−H1, H1] × [−H2, H2]).

(Note that δ(D) is not the ordinary notion of density, which corresponds to
lim supmin{H1,H2}→∞.)
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Corollary 1.4. Let (xn)n∈N2 be a family of real numbers, and D ⊂
Z2 \ {0}. If δ(D) = 1 and if , for any d ∈ D, the family (xn+d − xn) is u.d.

mod 1, then the family (xn) is u.d. mod 1.

Proof. There exists a sequence (H(k)) (with H(k) := (H
(k)
1 , H

(k)
2 )) in

(N ∪ {0})2 such that

lim
k→∞

1

(2H
(k)
1 + 1)(2H

(k)
2 + 1)

card(D ∩ [−H
(k)
1 , H

(k)
1 ] × [−H

(k)
2 , H

(k)
2 ]) = 1.

Let (un)n∈N2 be a family of complex numbers of modulus 1 such that, for
any d ∈ D,

lim
N1,N2→∞

1

N1N2

∑

0<n≤N

un+dun = 0.

For any d ∈ D, we have

lim
N1,N2→∞

1

N1N2
γ(N, d) = 0.

We deduce from van der Corput’s inequality that
∣∣∣∣

1

N1N2

∑

0<n≤N

un

∣∣∣∣
2

≤ (N1 + H1 + 1)(N2 + H2 + 1)

N1N2(H1 + 1)(H2 + 1)

∑

−H≤d≤H

1

N1N2
|γ(N, d)|.

Using the fact that |γ(N, d)| ≤ N1N2, we obtain

lim sup
N1,N2→∞

∣∣∣∣
1

N1N2

∑

0<n≤N

un

∣∣∣∣
2

≤ 1

(H1 + 1)(H2 + 1)
card(Dc ∩ [−H1, H1] × [−H2, H2]).

The right hand side of the last inequality goes to zero along the sequence
(H(k)). This argument can be applied to un = e(kxn) (no matter how xn

is defined for n ∈ Z2 \ N2) for any choice of k ∈ Z, k 6= 0. Thus, the result
follows from Weyl’s criterion.

Example. If, for any positive integer j, the family (xn+(j,0) − xn) is
u.d. mod 1, then the family (xn) is u.d. mod 1.

Example. The first application of van der Corput’s inequality was to
Weyl’s equidistribution theorem for polynomial sequences ([We], [vdC]). The
two-parameter version of this theorem says the following: if P ∈ R[X, Y ] is
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a real polynomial in two variables and if at least one coefficient of a non-
constant monomial in P is irrational, then the family (P (n1, n2))(n1,n2)∈N2

is uniformly distributed mod 1. (This result has a straightforward gener-
alization to polynomials in more than two variables.) This multiparameter
equidistribution theorem is a direct consequence of either Corollary 1.3, or
Corollary 1.4 applied to the sets D = 0 × N and D = N × 0.

1.1.3. An abstract version of van der Corput’s principle

Proposition 1.5. Let (G, ·) be a group, and E, D two finite subsets

of G. Let u be a complex-valued function defined on E. Then
∣∣∣
∑

n∈E

u(n)
∣∣∣
2
≤ |E · D−1|

|D|
∑

d∈D·D−1

∣∣∣
∑

n∈E
n∈E·d−1

u(n · d)u(n)
∣∣∣.(5)

Proof. Define u(n) to be zero if n /∈ E. We have

∣∣∣
∑

n∈E

u(n)
∣∣∣
2

=

∣∣∣∣
1

|D|
∑

d∈D

∑

n∈E·d−1

u(n · d)

∣∣∣∣
2

=

∣∣∣∣
1

|D|
∑

n∈E·D−1

∑

d∈D

u(n · d)

∣∣∣∣
2

.

Using Cauchy’s inequality, we obtain
∣∣∣
∑

n∈E

u(n)
∣∣∣
2
≤ |E · D−1|

|D|2
∑

n∈G

∣∣∣
∑

d∈D

u(n · d)
∣∣∣
2
,

and this last expression is equal to

|E · D−1|
|D|2

∑

d,d′∈D

∑

n∈G

u(n · d)u(n · d′)

=
|E · D−1|

|D|2
∑

d′∈D

∑

d∈D·d′−1

∑

n∈G

u(n · d)u(n)

≤ |E · D−1|
|D|2

∑

d′∈D

∑

d∈D·D−1

∣∣∣
∑

n∈G

u(n · d)u(n)
∣∣∣.

Note that inequality (5) contains inequality (3) as a special case corre-
sponding to

G = Z2, E = ([1, N1] × [1, N2]) ∩ Z2, D = ([1, H1] × [1, H2]) ∩ Z2.

Remark 1.6. The vdC inequality that has been stated above for a family
of complex numbers can be extended verbatim to any family of vectors in
a complex linear space equipped with a scalar product. This fact is very
useful in many applications to mean convergence theorems or recurrence
theorems in ergodic theory (see for example Lemma A6 and the references
in [Berg-McC]).
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1.2. Van der Corput sets

1.2.1. Definition

Definition 2. A subset D of Z2 \{0} is a van der Corput set (vdC set)
if for any family (un)n∈Z2 of complex numbers of modulus 1 such that

∀d ∈ D, lim
N1,N2→∞

1

N1N2

∑

0≤n<(N1,N2)

un+dun = 0

we have

lim
N1,N2→∞

1

N1N2

∑

0≤n<(N1,N2)

un = 0.(6)

Equivalently, D is a vdC set if any family (xn)n∈N2 of real numbers
having the property that for all d ∈ D the family (xn+d − xn)n∈N2 is u.d.
mod 1, is itself u.d. mod 1.

(A natural Cesàro summation method is also given by “bilateral av-
erages”. One obtains an equivalent definition of vdC set if we replace in
Definition 2 sums

∑
0≤n<(N1,N2) by sums

∑
(−N1,−N2)<n<(N1,N2). See Sec-

tion 4.)

Example 1.7. If δ(D) = 1, then D is a vdC set (see Corollary 1.4).

Note that various modifications of the notion of uniform distributions
(for example, considering other types of averages) lead, generally speaking,
to different notions of vdC set. See Section 4 for some remarks and open
questions.

1.2.2. Spectral characterization. If σ is a finite measure on the 2-torus T2,
we define its Fourier transform σ̂ by σ̂(n) =

T
T2 e(n1x1 + n2x2) dσ(x1, x2)

for any n = (n1, n2) ∈ Z2.

Theorem 1.8. Let D ⊂ Z2 \ {0}. The following statements are equiva-

lent :

(S1) D is a van der Corput set.

(S2) If σ is a positive measure on T2 such that σ̂(d) = 0 for all d ∈ D,
then σ({(0, 0)}) = 0.

(S3) If σ is a positive measure on T2 such that σ̂(d) = 0 for all d ∈ D,
then σ is continuous.

(We prove later (Subsection 1.5) that (S1)–(S3) are equivalent to the
following property: any positive measure σ on the 2-torus T2 such that∑

d∈D |σ̂(d)| < ∞ is continuous.)

The equivalence of (S2) and (S3) is clear, since a translation of a mea-
sure does not change the modulus of its Fourier coefficients. For a one-
dimensional space of parameters the implication (S2)⇒(S1) is proved in
[Kam-MF] and the implication (S1)⇒(S2) can be found in [Ruz].
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Lemma 1.9. Let (un)n∈Z2 be a bounded family of complex numbers and

(N (j))j∈N = ((N
(j)
1 , N

(j)
2 ))j∈N be a sequence in N2 such that min(N

(j)
1 , N

(j)
2 )

→ ∞ as j → ∞. If , for all h ∈ Z2,

γ(h) := lim
j→∞

1

N
(j)
1 N

(j)
2

∑

0≤n<N(j)

un+hun

exists, then there exists a positive measure σ on the 2-torus T2 such that ,
for all h ∈ Z2,

σ̂(h) = γ(h)

and this measure satisfies

lim sup
j→∞

1

N
(j)
1 N

(j)
2

∣∣∣
∑

0≤n<N(j)

un

∣∣∣ ≤
√

σ({(0, 0)}).

Sketch of proof. We write x = (x1, x2), n = (n1, n2), etc.

The family (γh)h∈Z2 is positive-definite and the Bochner–Herglotz the-
orem guarantees the existence of the desired positive measure σ (see for
example [Rud, Subsection 1.4.3]). This measure is the weak limit of the
sequence of absolutely continuous measures (σN(j)) where σN has density

gN (x) :=
1

N1N2

∣∣∣
∑

0≤n<N

une(−n1x1 − n2x2)
∣∣∣
2

with respect to Lebesgue measure dx1dx2.

We define

hN (x) :=
1

N1N2

∣∣∣
∑

0≤n<N

e(−n1x1 − n2x2)
∣∣∣
2
.

The sequence of measures with density hN converges weakly to the Dirac
delta measure at (0, 0), denoted by δ.

We follow the method of [Co-Kam-MF], in particular their Theorem 2,
which utilizes the connection between the affinity (7) of two probability
measures and weak convergence. Denoting by ̺(µ, ν) the affinity of two

(7) Let µ and ν be two probability measures on T2. The affinity ̺(µ, ν) is defined as

̺(µ, ν) =
\

T2

(
dµ

dm

)1/2(
dν

dm

)1/2

dm,

where m is any measure with respect to which both µ and ν are absolutely continuous.
Note that affinity is also called the Hellinger integral by probabilists. It is proved in
[Co-Kam-MF] that if (µn) and (νn) are two weakly convergent sequences of probability
measures, then

lim sup
n→∞

̺(µn, νn) ≤ ̺(limµn, lim νn).
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probability measures on T2, we have

̺(gN (x)dx, hN(x)dx) =
\

T2

√
gN (x)hN(x) dx1 dx2,

̺(σ, δ) =
√

σ({(0, 0)}),
and

lim sup
j→∞

\
T2

√
gN(j)(x)hN(j)(x) dx1 dx2 ≤

√
σ({(0, 0)}).

The conclusion of the lemma then follows from the inequality

1

N
(j)
1 N

(j)
2

∣∣∣
∑

0≤n<N(j)

un

∣∣∣ ≤
\

T2

√
gN(j)(x)hN(j)(x) dx1 dx2.

Proof of Theorem 1.8. Let us first prove that (S2)⇒(S1). Let (un)n∈Z2

be a bounded family of complex numbers such that, for all d ∈ D,

lim
N1,N2→∞

1

N1N2

∑

0≤n<(N1,N2)

un+dun = 0.

There exists a sequence (N (j))j∈N in N2 such that:

• min(N
(j)
1 , N

(j)
2 ) → ∞;

• lim
j→∞

1

N
(j)
1 N

(j)
2

∣∣∣
∑

0≤n<N(j)

un

∣∣∣ = lim sup
N1,N2→∞

1

N1N2

∣∣∣
∑

0≤n<N

un

∣∣∣;

• ∀h ∈ Z2, γ(h) := lim
j→∞

1

N
(j)
1 N

(j)
2

∑

0≤n<N(j)

un+hun exists.

The map γ is the Fourier transform of a positive measure σ on the 2-torus.
We have σ̂(d) = 0 for all d ∈ D. By condition (S2), the measure σ has no
point mass at (0, 0), and, using Lemma 1.9, we conclude that the family
(un)n∈Z2 converges to zero in the sense of (6). We have proved that D is a
vdC set.

Following Ruzsa ([Ruz]), we will use a probabilistic argument to prove
that (S1)⇒(S2). The next two lemmas are routine variations on the theme
of the law of large numbers.

Lemma 1.10. Let (θ(n))n∈N2 be an i.i.d. family of random variables with

values in the 2-torus T2. Write θ(n) = (θ1(n), θ2(n)). Define a family of

complex random variables (Y (n))n∈N2 by

Y (n1, n2) := e(r1θ1(m1, m2) + r2θ2(m1, m2))

if ni = m2
i + ri, with 0 ≤ ri ≤ 2mi, i = 1, 2. Then, almost surely ,

lim
N1,N2→∞

1

N1N2

∑

0<n≤N

Y (n) = P(θ = 0).
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Lemma 1.11. Let (X(n))n∈N2 be an i.i.d. family of bounded complex ran-

dom variables. Define a new family (Z(n))n∈N2 of complex random variables

by

Z(n1, n2) := X(m1, m2)

if ni = m2
i + ri with 0 ≤ ri ≤ 2mi, i = 1, 2. Then, almost surely ,

lim
N1,N2→∞

1

N1N2

∑

0<n≤N

Z(n) = E[X].

Let us briefly explain how (S1)⇒(S2) follows from these lemmas. Suppose
that a vdC set D ⊂ Z2 and a measure σ on T2 are given. We suppose that
the Fourier transform of σ is null on D. Without loss of generality, we can
suppose that σ is a probability measure, and we consider a family of random
variables (θ(n))n∈N2 independent and of law σ. We define, as in Lemma 1.10,
a family of complex random variables (Y (n))n∈N2. A slight modification (8)
of Lemma 1.11 gives us the following result: for all h ∈ Z2, almost surely,

lim
N1,N2→∞

1

N1N2

∑

0<n≤N

Y (n + h)Y (n) = E[e(h1θ1 + h2θ2)].

This last quantity is exactly σ̂(h) and, by hypothesis, it is null for h ∈ D.
Since D is a vdC set, we conclude that

lim
N1,N2→∞

1

N1N2

∑

0<n≤N

Y (n) = 0.

By Lemma 1.10, this means that P(θ = 0) = 0, i.e. σ({(0, 0)}) = 0.

1.2.3. Some corollaries. Here are some direct applications of the spectral
characterization.

Corollary 1.12 (Ramsey property; cf. [Ruz, Corollary 1]). If D =
D1 ∪D2 is a vdC set in Z2, then at least one of the sets D1 or D2 is a vdC

set. (In particular , if D is a vdC set in Z2 and E is a finite subset of D,
then D \ E is still a vdC set in Z2.)

Proof. If σ1 and σ2 are positive measures on T2 such that σ̂i is null
on Di, then the Fourier transform of their convolution σ1 ⋆ σ2 vanishes on
D1 ∪ D2. And σ1 ⋆ σ2({0}) ≥ σ1({0}) × σ2({0}).

If F is a family of subsets of Z2, we denote by F∗ its dual family, that
is, the family of all sets G ⊂ Z2 such that G ∩ F 6= ∅ for all F ∈ F . The
Ramsey property described in Corollary 1.12 has a remarkable consequence
for the family of vdC∗ sets: if A is a vdC set and B is a vdC∗ set, then A∩B
is a vdC set; this implies that the family of vdC∗ sets is stable with respect
to finite intersections, hence is a filter.

(8) Details are provided after Lemma 2.4 in Section 2.2.
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Corollary 1.13 (Sets of differences). If I is an infinite subset of Z2,
then the set of differences D := {n−m : n, m ∈ I and n 6= m} is a vdC set.

Proof. Suppose that σ is a probability measure on T2 whose Fourier
transform vanishes on D. This means that the characters x 7→ e(n · x) with
n ∈ I form an orthonormal family in L2(σ). For any finite subset J of I, we
have

(cardJ)2σ({(0, 0)}) ≤
\

T2

∣∣∣
∑

n∈J

e(n · x)
∣∣∣
2
dσ(x) = cardJ.

This implies that σ has no point mass at zero.

Remark 1.14. The above proof gives, in fact, more: any set D which

contains sets of differences of arbitrarily large finite sets is a vdC set.

Corollary 1.15 (Linear transformations of vdC sets). Let d and e
be positive integers, and let L be a linear transformation from Zd into Ze

(i.e. an e × d matrix with integer entries).

(1) If D is a vdC set in Zd and if 0 /∈ L(D), then L(D) is a vdC set

in Ze.

(2) Let D ⊂ Zd. If the linear map L is one-to-one, and if L(D) is a

vdC set in Ze, then D is a vdC set in Zd.

Proof. Let D be vdC set in Zd and σ a positive measure on the e-torus
such that σ̂ vanishes on L(D). Let us denote by tL the map from Te into Td

defined by k · tL(x) = L(k) · x for k ∈ Zd and x ∈ Te. Denoting by σ′ the
image of σ under the linear transformation tL, we see that, for all k ∈ Zd,

σ̂′(k) = σ̂(L(k)). Hence the Fourier transform σ̂′ vanishes on the vdC set D.
The measure σ′ has no mass at zero, and hence σ also has no mass at zero.
This proves the first assertion.

Suppose now that L is one-to-one and that L(D) is a vdC set in Ze.
Consider the lattice L(Zd) in Ze. By a classical lemma (see for example
[G, Exercise 8 of Chapter 31]), there exist n1, . . . , ne in Ze and positive
integers p1, . . . , pd such that Ze = Zn1 + · · · + Zne and L(Zd) = p1Zn1 +
· · ·+pdZnd. This allows us to view L(D) as a vdC set in Zd ≃ Zn1+· · ·+Znd

and L as an endomorphism of Zd.
Let σ′ be a positive measure on the d-torus such that σ̂′ vanishes on D.

The linear map tL from Td into Td is finite-to-one and onto. Since it is onto,
it has a right inverse and we can see σ′ as the image of a positive measure σ
on the d-torus, under the map tL. The Fourier transform σ̂ vanishes on L(D),
hence the measure σ is continuous. Since tL is finite-to-one, we conclude that
the measure σ′ is also continuous. This proves the second assertion.

Corollary 1.16 (Lattices are vdC∗). If G is any d-dimensional lattice

in Zd, and if D is a vdC set in Zd, then G ∩ D is a vdC set in Zd.
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Proof. To begin, we remark that if G is a lattice in Zd, and if z ∈ Zd,
z /∈ G, then the translate z +G is not a vdC set in Zd (test the definition of
a vdC set on the indicator function of the set G). Since G is a d-dimensional
lattice in Zd, there exist finitely many points z1, . . . , zk in Zd and outside G
such that

Zd = G ∪
k⋃

i=1

(zi + G).

Let D be a vdC set in Zd. We have

D = (G ∩ D) ∪
k⋃

i=1

(zi + G) ∩ D.

Since none of the sets (zi + G) ∩ D is vdC, Corollary 1.12 tells us that the
set (G ∩ D) is vdC.

Remark 1.17. As a consequence of the last two statements, we note the
following fact, which is a direct extension of Corollary 2 in [Ruz]:

Let L be a one-to-one linear transformation from Zd into itself; let D be

a vdC set in Zd; the set of n ∈ Zd such that L(n) ∈ D is vdC in Zd.

Indeed, by Corollary 1.16, D ∩ L(Zd) is a vdC set in Zd and, by Corol-
lary 1.15, its inverse image under L is a vdC set.

The spectral characterization also implies that various formulations of
the vdC property, associated to different averaging methods, are in fact
equivalent (see Section 4).

1.3. The Kamae–Mendès France criterion

1.3.1. The criterion. Let D ⊂ Z2 and let P be a real trigonometric
polynomial on T2. We say that the spectrum of P is contained in D if P
is a linear combination of the characters (x1, x2) 7→ e(d1x1 + d2x2) with
(d1, d2) ∈ ±D. In the case of a one-dimensional space of parameters, the
following proposition appears in Ruzsa’s article [Ruz], with the same proof.

Proposition 1.18. A subset D of Z2\{0} is a van der Corput set if and

only if for all ε > 0, there exists a real trigonometric polynomial P on the

2-torus T2 whose spectrum is contained in D and which satisfies P (0) = 1,
P ≥ −ε.

Proof. Assume that such a trigonometric polynomial exists. Let σ be a
positive measure on T2 whose Fourier transform σ̂ is null on D. Then\

T2

P dσ = 0.
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But from P (0) = 1 and P ≥ −ε we deduce that\
T2

P dσ ≥ σ({0}) − εσ(T2 \ {0}).

Thus necessarily σ({0}) = 0, and we deduce from Theorem 1.8 that D is a
vdC set.

For the proof of the converse implication, we follow Ruzsa’s argument
([Ruz, Section 5]). We will write m · x := m1x1 + m2x2 if x = (x1, x2) ∈ T2

and m = (m1, m2) ∈ Z2.
Suppose that D is a subset of Z2 and that there exists 0 < ε < 1 such

that, for any real trigonometric polynomial P with spectrum in D and such
that P (0) = 1, we have min(P + ε) ≤ 0. In the Banach space CR(T

2) of real
continuous functions on T2, equipped with the uniform norm, we consider
the set F of strictly positive functions and the set Q of real trigonometric
polynomials P , with spectrum in D and such that P (0) = 1. By hypothesis,
the convex sets F and ε + Q are disjoint. By the Hahn–Banach theorem,
there exists a non-zero real-valued continuous linear functional L on CR(T

2)
which takes non-negative values on F and non-positive values on ε+Q. Let
us denote by σ the measure on T2 associated to L by the Riesz representation
theorem: L(f) =

T
T2 f dσ for all f ∈ CR(T

2). Since L ≥ 0 on F , this measure
is positive and we can assume that it is normalized. Let m, n ∈ ±D. If P ∈ Q,
then, for all λ ∈ R, the function x 7→ ε + P + λ(cos 2π(m · x)− cos 2π(n ·x))
is still in ε+Q. This implies that

T
cos 2π(m ·x) dσ(x) =

T
cos 2π(n ·x) dσ(x).

Similarly, for all λ ∈ R, the function x 7→ ε + P + λ sin 2π(m · x) is still in
ε + Q, and this implies that

T
sin 2π(m · x) dσ(x) = 0.

We define r :=
T
cos 2π(m · x) dσ(x) for m ∈ ±D. If P ∈ Q, we have\

T2

(ε + P ) dσ ≤ 0

and, writing

P (x) =
∑

m∈±D

am cos 2π(m · x) + bm sin 2π(m · x),

we have \
T2

P dσ = r
∑

m∈±D

am = rP (0) = r.

Hence r ≤ −ε < 0. Denoting by δ the Dirac mass at 0, we consider a new
probability measure σ′ defined by

σ′ :=
1

1 − r
(σ − rδ).

We have σ′({0}) ≥ −r/(1 − r) > 0. But this probability satisfies σ̂′(m) = 0
for all m ∈ D, and, using Theorem 1.8, we conclude that D is not a vdC
set.
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1.3.2. Application to polynomial sequences and sequences of shifted

primes. The following proposition is the two-dimensional extension of Ex-
ample 3 in [Kam-MF].

Proposition 1.19. Let D ⊂ Z2. For each q ∈ N, define

Dq := {(d1, d2) ∈ D : q! divides d1 and d2}.
Suppose that , for every q, there exists a sequence (hq,n)n∈N in Dq such

that , for every x = (x1, x2) ∈ R2, if x1 or x2 is irrational , the sequence

(hq,n · x)n∈N is uniformly distributed mod 1. Then D is a vdC set.

Proof. Define a family of trigonometric polynomials with spectrum con-
tained in D, by the formula

Pq,N (x) :=
1

N

N∑

n=1

e(hq,n · x),(7)

where q and N are positive integers and x ∈ R2. By hypothesis, if x /∈ Q2

then limN→∞ Pq,N (x) = 0. For each q, there exists a subsequence (Pq,N ′)
which is pointwise convergent to a function gq. For all x ∈ Q2, we have
gq(x) = 1 for all large enough q, and for all x /∈ Q2, we have gq(x) = 0. The
sequence (gq) is pointwise convergent to the characteristic function of Q2.
Consider now a positive measure σ on T2 whose Fourier transform σ̂ vanishes
on D. We have

T
Pq,N dσ = 0 for all q, N . Applying the dominated conver-

gence theorem twice, we conclude that σ(Q2) = 0. In particular σ({0}) = 0,
and we are done.

A sequence (dn)n∈N in Z2 will be called a vdC sequence if the set of its
values {dn : n ∈ N} is a vdC set.

The (d-dimensional version of the) following proposition extends Theo-
rem 4.2 in [Berg.1].

Proposition 1.20. Let p1 and p2 be two polynomials with integer coef-

ficients. The sequence (p1(n), p2(n))n∈N is a vdC sequence in Z2 if and only

if for all positive integers q, there exists n ≥ 1 such that q divides p1(n)
and p2(n).

Note that the divisibility condition is satisfied if p1 and p2 have zero
constant term.

Proof of Proposition 1.20. By Corollary 1.16, the divisibility condition
is necessary for the sequence (p1(n), p2(n)) to be vdC. Let us prove that
this condition is sufficient. We distinguish two cases: either p1 and p2 are
proportional, or not.

In the first case, there exists a polynomial p ∈ Z[X] and integers a, b such
that p1 = ap and p2 = bp. The polynomial p satisfies the divisibility property,
which ensures that (p(n)) is a vdC sequence in Z (this is a direct consequence
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of the one-dimensional version of Proposition 1.19, cf. [Kam-MF]). By the
first statement of Corollary 1.15, this implies that (ap(n), bp(n)) is a vdC
sequence in Z2.

Consider now the second case, in which polynomials p1 and p2 are not
proportional. Let q be a positive integer and (x1, x2) ∈ R2 \Q2; there exists
n ≥ 1 such that q! | p1(n) and q! | p2(n); for all k ∈ Z, we have q! | p1(n+kq!)
and q! | p2(n + kq!). We claim that the sequence

(p1(n + kq!)x1 + p2(n + kq!)x2)k∈N(8)

is uniformly distributed mod 1. This fact implies, by Proposition 1.19, that
(p1(n), p2(n)) is a vdC sequence in Z2. To prove the claim, we consider first
the case when 1, x1 and x2 are linearly independent over Q; in this case
the sequence (8) is u.d. mod 1 by Weyl’s theorem. Consider now the case
in which 1, x1 and x2 are linearly dependent over Q and x1 is irrational; in
this case we have x2 = rx1 + s with r, s ∈ Q, and, if q has been chosen large
enough, the sequence (8) has (mod 1) the form

((p1(n + kq!) + rp2(n + kq!))x1)k∈N;

we conclude once more by Weyl’s theorem since the polynomial p1 + rp2 is
not constant. Finally, if x1 is rational, then x2 is irrational and the argument
is similar.

Remark 1.21 (see Appendix). There exist pairs of polynomials p1, p2

satisfying:

• For all integers a and b and for all positive integers q, there exists
n such that q | ap1(n) + bp2(n) (hence (ap1(n) + bp2(n))n∈N is a vdC
sequence in Z).

• There exists a positive integer q such that for no n are the numbers
p1(n) and p2(n) simultaneously multiples of q (hence (p1(n), p2(n))n∈N

is not a vdC sequence in Z2).

Let P be the set of prime numbers. It is shown in [Kam-MF] that P− 1
and P + 1 are vdC sets, and that no other translate of P is a vdC set.
This can be extended to polynomials along P − 1 and P + 1, and to the
multidimensional setting. For example, we have the following result.

Proposition 1.22. Let f, g be two (non-zero) polynomials with integer

coefficients and zero constant term. The set {(f(p− 1), g(p− 1)) : p ∈ P} is

a vdC set in Z2.

The proof of this proposition relies on Proposition 1.19 and on the fol-
lowing Vinogradov type theorem.

Theorem 1.23. Let q be a positive integer and h be a real polynomial

such that the polynomial h − h(0) has at least one irrational coefficient.
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The sequence (h(p)) is uniformly distributed mod 1, where p describes the

increasing sequence of prime numbers in the congruence class 1 + qN.

The proof of this theorem can be given in a few sentences, by “quota-
tion”. It is proved in [Rh] (see also [N]) that if a real polynomial h̃ is such

that h̃ − h̃(0) has at least one irrational coefficient, then

the sequence (h̃(p))p∈P is u.d. mod 1.(9)

Now we can use the following simple trick (cf. [Mo, p. 34]):

∑

p≤n
p≡1 [q]

e(h(p)) =
1

q

q∑

j=1

e

(
−j

q

) ∑

p≤n

e(h(p) + pj/q).

After division by π(n), the right side goes to zero as n goes to infinity because

(9) can be applied to h̃(p) = h(p) + pj/q.
Moreover, it is well known that the prime number theorem has a natural

extension to the distribution of primes in arithmetic progressions: the num-
ber of primes less than n in 1+qN is asymptotically equivalent to π(n)/ϕ(q)
as n goes to infinity.

We obtain

lim
n→∞

1

#{p ≤ n : p ≡ 1 [q]}
∑

p≤n
p≡1 [q]

e(h(p)) = 0.

This is still true when we replace h by a non-zero integer multiple of h, which,
via Weyl’s criterion, gives uniform distribution (mod 1) of the sequence
((h(p))p∈P, p≡1 [q]).

Proof of Proposition 1.22. This proof is parallel to that of Proposi-
tion 1.20. If f and g are proportional, we use the fact that (f(p−1))p∈P is a
vdC sequence (which is a direct consequence of the one-dimensional version
of Proposition 1.19 and of Theorem 1.23). If f and g are not proportional,
we deduce from Theorem 1.23 that for all large enough positive integers q,
and for all (x1, x2) ∈ R2\Q2, the sequence (f(p−1)x1+g(p−1)x2)p∈P, p≡1 [q]

is u.d. mod 1. We conclude by Proposition 1.19.

Several other examples of vdC sets are presented in Subsection 2.5.

1.3.3. One more corollary à la Ruzsa. Following [Ruz], we deduce from
Proposition 1.18 a new combinatorial property of vdC sets.

Corollary 1.24 (cf. [Ruz, Corollary 3]). Any vdC set in Z2 can be

partitioned into infinitely many pairwise disjoint vdC sets.

Proof. Let D be a vdC set in Z2. There exists a sequence (Ik)k≥1 of pair-
wise disjoint finite subsets of D, and for each k, a trigonometric polynomial
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Pk with spectrum in Ik and such that Pk(0) = 1, Pk + 1/k > 0. The exis-
tence of Ik and Pk can be proved by induction using the direct implication
in Proposition 1.18 and the fact that, for each k, the set D \ (I1 ∪ · · · ∪ Ik) is
vdC (see Corollary 1.12). From the converse implication in Proposition 1.18,
we deduce that any infinite union of the Ik’s is a vdC set. We can consider
an infinite family of pairwise disjoint such sets.

1.4. Positive-definite multiparameter sequences and generalized

vdC inequality

1.4.1. The inequality. We show in this subsection that the Kamae–
Mendès France criterion can be formulated in terms of positive-definite se-
quences. This will allow us, for a given vdC set D, to obtain a quantitative
van der Corput type inequality in which only correlations γ(N, d) for d ∈ D
are involved.

Proposition 1.25. Let (ah)h∈Z2 be a family of complex numbers such

that all but finitely many of the ah are zero. This family is positive-definite

if and only if the trigonometric polynomial T (x) :=
∑

h ahe(h · x), x ∈ R2,
takes only nonnegative values.

Proof. Recall that the family (ah) of complex numbers is positive-definite
if, for any family (zh)h∈Z2 of complex numbers, all zero but finitely many,

∑

h,h′∈Z2

ah−h′zhzh′ ≥ 0.

We will write h = (h1, h2).
The family (ah) is the Fourier transform of the measure having density T

with respect to Lebesgue measure on the 2-torus. Thus it is clear that if the
trigonometric polynomial is positive, then the family is positive-definite. In
the opposite direction, suppose that (ah) is positive-definite (and that ah = 0
for all h but finitely many). For all x ∈ R2 and for all positive integers c,

∑

0≤h,h′<(c,c)

ah−h′e(h · x)e(−h′ · x) ≥ 0.

This can be written∑

(−c,−c)<h<(c,c)

(c − |h1|)(c − |h2|)ahe(h · x) ≥ 0.

Dividing this expression by c2, and letting c go to infinity, we obtain
∑

h

ahe(h · x) ≥ 0.

Remark 1.26. The Kamae–Mendès France criterion (Proposition 1.18)
can now be rewritten as follows: a subset D of Z2 \ {0} is a vdC set if and
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only if, for all ε > 0, there exists a positive-definite family (ad)d∈Z2 such
that:

• all but finitely many ad are zero;
• ad = 0 whenever d 6= 0 and d /∈ D ∪ (−D);
• a0 ≤ ε and

∑
d ad = 1.

As in the first subsection, we define

γ(N, h) :=
∑

0<n≤N
0<n+h≤N

un+hun

if h ∈ Z2, N ∈ N2 and (un)0≤n<N is a family of complex numbers. We also
write

‖u‖∞ := max
n

|un|.

Theorem 1.27. Let H ∈ N2 and (ah)−H<h<H be a finite positive-

definite family of complex numbers, with
∑

h ah = 1. Let N ∈ N2 and

(un)0<n≤N be a finite family of complex numbers. We have
∣∣∣

∑

0<n≤N

un

∣∣∣
2

≤ N1N2

(∑

h

ahγ(N, h) + 5‖u‖2
∞

∑

h

(|h1|N2 + |h2|N1 + |h1h2|)|ah|
)
.

This inequality should be compared with the “generalized van der Corput
Lemma” stated in [Mo] (Chap. 2, Lemma 1).

If we consider a bounded family (un)n∈N2 of complex numbers, we deduce
from Theorem 1.27 the inequality

∣∣∣∣
1

N1N2

∑

0<n≤N

un

∣∣∣∣
2

≤
∑

h

ah
1

N1N2
γ(N, h) + O

(
max

(
1

N1
,

1

N2

))
,

which will be utilized when describing the vdC property of Cartesian prod-
ucts of vdC sets.

Corollary 1.28 below, which is a direct consequence of Theorem 1.27,
gives what one might call a quantitative version of the van der Corput trick.
The “if” part of the Kamae–Mendès France criterion is a direct consequence
of this corollary.

Corollary 1.28. Let (ah)−H<h<H be a positive-definite family of com-

plex numbers, and (un)n∈N2 be a family of complex numbers. If , for any h
such that h 6= 0 and ah 6= 0,

lim
N1,N2→∞

1

N1N2
γ(N, h) = 0
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then

lim sup
N1,N2→∞

∣∣∣∣
1

N1N2

∑

0<n≤N

un

∣∣∣∣ ≤ ‖u‖∞
√

a0.

Proof of Theorem 1.27. Define

m :=
1

N1N2

∑

0<n≤N

un and vn := un − m.

We have

γ(N, h) =
∑

0<n≤N
0<n+h≤N

(vn+h + m)(vn + m) = Ah + Bh + Ch + Dh,

where
Ah :=

∑

0<n≤N
0<n+h≤N

vn+hvn, Bh := m
∑

0<n≤N
0<n+h≤N

vn,

Ch := m
∑

0<n≤N
0<n+h≤N

vn+h, Dh := |m|2
∑

0<n≤N
0<n+h≤N

1.

Since the family (ah) is positive-definite, we have
∑

h

ahAh ≥ 0.

The number of points n in the square [1, N1] × [1, N2] such that we do
not have 0 < n + h ≤ N is less than or equal to |h1|N2 + |h2|N1. Since∑

0<n≤N vn = 0 we deduce that

|Bh| ≤ |m|(|h1|N2 + |h2|N1)‖v‖∞ ≤ 2|m|(|h1|N2 + |h2|N1)‖u‖∞
≤ 2(|h1|N2 + |h2|N1)‖u‖2

∞.

The same inequality holds for |Ch|. We also have

Dh = (N1 − |h1|)(N2 − |h2|)|m|2

≥ 1

N1N2

∣∣∣
∑

0<n≤N

un

∣∣∣
2
− (|h1|N2 + |h2|N1 + |h1h2|)‖u‖2

∞.

From these inequalities, we deduce that
∑

h

ahγ(N, h) ≥
∑

h

ahAh +
∑

h

ahDh −
∑

h

ah(|Bh| + |Ch|)

≥ 1

N1N2

∣∣∣
∑

0<n≤N

un

∣∣∣
2
− 5

∑

h

|ah|(|h1|N2 + |h2|N1 + |h1h2|)‖u‖2
∞,

and the result follows.

In the next two subsections we present corollaries of Theorem 1.27.
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1.4.2. Cartesian products of vdC sets

Corollary 1.29. Let k, l be positive integers, and D, E be vdC

sets in, respectively , Zk and Zl. The product set D × E is a vdC set

in Zk+l.

Proof. Let us consider, as a typical example, the case k = l = 2. We
consider two vdC sets D and E in Z2. Let (un,m)n,m∈Z2 be a family of

complex numbers of modulus one indexed by Z4, and satisfying: for all
d ∈ D and all e ∈ E,

lim
N1,N2→∞
M1,M2→∞

1

N1N2M1M2

∑

0≤n<(N1,N2)
0≤m<(M1,M2)

un+d,m+eun,m = 0.(10)

It is not hard to verify that (10) is still true when d ∈ (−D) or e ∈ (−E).

Fix ε > 0. By Remark 1.26, there exist two positive-definite families (ad)
and (be) indexed by Z2 such that ad (resp. be) is zero whenever d (resp. e)

is outside a finite subset of D ∪ (−D) ∪ {0} (resp. E ∪ (−E) ∪ {0}), with
a0 < ε, b0 < ε and

∑
d ad =

∑
e be = 1.

It is clear from Proposition 1.25 (or from the Bochner–Herglotz theorem)
that the family (adbe)(d,e)∈Z4 is positive-definite. Set P := N1N2M1M2 and

p := min{N1, N2, M1, M2}. The generalized vdC inequality (Theorem 1.27)

applied to Z4 gives
∣∣∣

∑

0≤n<(N1,N2)
0≤m<(M1,M2)

un,m

∣∣∣
2

≤ P
∑

d,e

adbe

∑

0≤n,n+d<(N1,N2)
0≤m,m+e<(M1,M2)

un+d,m+eun,m + P 2O(1/p).

Dividing by P 2, letting p go to infinity and using (10), we obtain

lim sup
N1,N2→∞
M1,M2→∞

∣∣∣∣
1

N1N2M1M2

∑

0≤n<(N1,N2)
0≤m<(M1,M2)

un,m

∣∣∣∣
2

≤
∑

d=0or e=0

adbe.

Since
∑

d or e=0 adbe = a0
∑

e be + b0
∑

d ad −a0b0 ≤ 2ε, we conclude that the

last limsup is zero.

1.4.3. Sequences in Hilbert space. The goal of this subsection is to point
out that generalized van der Corput inequalities can be extended from nu-
merical sequences to sequences of vectors in a Hilbert space. One of the
reasons to be interested in such extensions is that they provide useful con-
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vergence criteria for multiple ergodic averages (see for example the references
mentioned at the end of the Introduction).

Let H be a Hilbert space and (un)n∈N2 be a doubly indexed family of
vectors in this space. We define, for any h ∈ Z2,

γ(N, h) :=
∑

0<n≤N
0<n+h≤N

〈un+h, un〉 and ‖u‖∞ := sup
n

‖un‖.

Proposition 1.30. Let H ∈ N2 and (ah)−H<h<H be a finite positive-

definite family of complex numbers, with
∑

h ah = 1. We have
∥∥∥

∑

0<n≤N

un

∥∥∥
2

≤ N1N2

(∑

h

ahγ(N, h) + 5‖u‖2
∞

∑

h

(|h1|N2 + |h2|N1 + |h1h2|)|ah|
)
.

The proof of Proposition 1.30 is similar to the scalar case and will be
omitted. Combined with Remark 1.26, this proposition leads to the following
extension of the notion of vdC set to families in Hilbert space.

Corollary 1.31. Let D be a vdC set in Z2 and (un)n∈Z2 be a bounded

family in H. If

∀d ∈ D, lim
N1,N2→∞

1

N1N2

∑

0<n≤(N1,N2)

〈un+d, un〉 = 0

then

lim
N1,N2→∞

1

N1N2

∑

0<n≤(N1,N2)

un = 0.

1.5. A new spectral characterization. We work in this subsection
with ordinary sequences indexed by Z. The extension to the multidimen-
sional case is straightforward. We have the following spectral characteriza-
tion of vdC sets, which completes the classical Theorem 1.8.

Theorem 1.32. Let D ⊂ Z. Then D is a van der Corput set if and

only if any positive measure σ on the torus T such that
∑

d∈D |σ̂(d)| < ∞ is

continuous.

This result is not surprising, because we have a “parallel” fact pertaining
to recurrence properties. It is not difficult to prove that if a set D is a set of
recurrence, then, for any m.p.s. (X,A, µ, T ) and any set A in A such that
µ(A) > 0, not only does there exist d ∈ D such that µ(A ∩ T dA) > 0, but
also

∑
d∈D µ(A ∩ T dA) = ∞.

Proof of Theorem 1.32. Let D be a vdC set in Z, and fix ε > 0. By
Remark 1.26, we know that there exists a positive-definite sequence (ah)h∈Z
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such that:

• all but finitely many ah are zero;
• ah = 0 whenever h 6= 0 and h /∈ D ∪ (−D);
• a0 ≤ ε and

∑
d ad = 1.

Moreover, for any positive-definite sequence (bh)h∈Z with support in {−H+1,
. . . , H − 1} and such that

∑
h bh = 1, we have the following vdC inequal-

ity (simply the one-dimensional version of Theorem 1.27): for any complex
numbers u1, . . . , uN ,

∣∣∣
N∑

n=1

un

∣∣∣
2
≤ N

( ∑

h

bhγ(N, h) + 5‖u‖2
∞

∑

h

|hbh|
)
.

We apply this inequality to the sequence (ah) after noticing that since the
sequence is positive-definite, we have |ah| ≤ a0. We obtain

∣∣∣
N∑

n=1

un

∣∣∣
2
≤ Na0

(
γ(N, 0) +

∑

d∈D∪(−D)
|d|≤H

|γ(N, d)| + 5‖u‖2
∞H2

)
.

Hence

(11)

∣∣∣∣
1

N

N∑

n=1

un

∣∣∣∣
2

≤ ε

(
1

N

N∑

n=1

|un|2 +
∑

d∈D∪(−D)
|d|≤H

∣∣∣∣
1

N
γ(N, d)

∣∣∣∣ +
5

N
‖u‖2

∞H2

)
.

Let σ be a probability measure on the torus such that
∑

d∈D |σ̂(d)| < ∞.
Following Ruzsa ([Ruz]), we consider a sequence (Yn)n∈N of complex random
variables of modulus one such that almost surely,

1

N

∑

0<n≤N

Yn → σ({0}) and
1

N

∑

0<n≤N

Yn+hYn → σ̂(h).

(Details of the construction of such a sequence (Yn) are given below, in
Lemmas 2.3 and 2.4 and in the text that follows.)

We apply (11) to un = Yn and let N go to infinity. After noticing that

1

N
γ(N, d) =

1

N

∑

0<n≤N
0<n+d≤N

Yn+dYn → σ̂(d),

we obtain
|σ({0})|2 ≤ ε

(
1 + 2

∑

d∈D

|σ̂(d)|
)
.

This proves that σ({0}) = 0.
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2. ENHANCED VAN DER CORPUT SETS

2.1. Introduction. In this section, we introduce a new property which
we call enhanced vdC . It is a natural concept for several reasons:

• The set of all integers is enhanced vdC, and it is often this property
which is classically used in equidistribution theory and ergodic theory.

• The spectral characterization of enhanced vdC sets is given by the
FC+ property (Theorem 2.1).

• In the manner that the notion of vdC set is linked to the notion of set
of recurrence, the notion of enhanced vdC set is linked to the notion
of set of strong recurrence (see Subsection 3.3).

We give here the definition and spectral characterization of enhanced vdC
sets in Z, extension to Zd being completely routine.

2.2. Definitions and a spectral characterization

Definition 3. An infinite set of integers D is enhanced van der Corput

if, for any sequence (un)n∈Z of complex numbers of modulus 1 such that

∀d ∈ D, γ(d) := lim
N→∞

1

N

N−1∑

n=0

un+dun exists(12)

and

lim
|d|→∞, d∈D

γ(d) = 0,

we have

lim
N→∞

1

N

N−1∑

n=0

un = 0.

(Note that we obtain an equivalent definition if we replace lim by lim sup
in (12). See Proposition 2.5.)

Definition 4. An infinite set of integers D is FC+ if every positive
measure σ on the torus T with lim|d|→∞, d∈D σ̂(d) = 0 is continuous.

This definition appears in [Kam-MF] and in [Bou]. We remark that
in [Pe], Peres uses the notation FC+ for sets satisfying the apparently weaker
condition (S3) of Theorem 1.8. We ask in Question 1 below whether condi-
tion (S3) is actually strictly weaker than condition FC+.

Theorem 2.1. The notions of enhanced vdC set and FC+ set coincide.

Proof. The proof follows the lines of the spectral characterization of vdC
sets. To prove that FC+ sets are enhanced vdC, we use the following lemma,
which is the one-parameter version of Lemma 1.9.
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Lemma 2.2. Let (un)n∈N be a bounded sequence of complex numbers and

(Nj)j∈N be an increasing sequence of positive integers. If for all h ∈ N,

γ(h) := lim
j→∞

1

Nj

Nj∑

n=1

un+hun exists,

then there exists a positive measure σ on the torus such that , for all h ∈ N,

σ̂(h) = γ(h)

and this measure satisfies

lim sup
j→∞

1

Nj

∣∣∣
Nj∑

n=1

un

∣∣∣ ≤
√

σ({0}).

Let D be an FC+ set. Let (un) be a bounded sequence of complex num-
bers such that

lim
|d|→∞, d∈D

lim
N→∞

1

N

N∑

n=1

un+dun = 0.

There exists an increasing sequence (Nj)j∈N of positive integers such that

• lim
j→∞

1

Nj

∣∣∣
Nj∑

n=1

un

∣∣∣ = lim sup
N→∞

1

N

∣∣∣
N∑

n=1

un

∣∣∣,

• ∀h ∈ N, γ(h) := lim
j→∞

1

Nj

Nj∑

n=1

un+hun exists.

The map γ is the Fourier transform of a positive measure σ on the torus.
We have lim|d|→∞, d∈D σ̂(d) = 0. By hypothesis, this forces the measure σ to
be continuous. We have σ({0}) = 0 and, using the above lemma, we obtain
the Cesàro convergence of (un) to zero. The set D is enhanced vdC.

To prove that any enhanced vdC set is FC+, the arguments of Ruzsa
([Ruz]) can be adapted and we use the following probabilistic lemmas.

Lemma 2.3. Let (θn)n∈N be an i.i.d. sequence of random variables with

values in the torus T. Define a new sequence of complex random variables

(Yn) by

Yn := e(rθm),

if n = m2 + r, with 0 ≤ r ≤ 2m. Then, almost surely ,

lim
N→∞

1

N

N∑

n=1

Yn = P(θ = 0).
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Lemma 2.4. Let (Xn)n∈N be an i.i.d. sequence of bounded complex ran-

dom variables. Define a new sequence of complex random variables (Zn) by

Zn := Xm

if n = m2 + r, with 0 ≤ r ≤ 2m. Then, almost surely ,

lim
N→∞

1

N

N∑

n=1

Zn = E[X].

Let D be an enhanced vdC set, and let σ be a positive measure on T.
We suppose that the Fourier coefficient σ̂(d) goes to zero when d goes
to infinity in D. Without loss of generality, we can suppose that σ is a
probability measure, and we consider a sequence (θn) of independent ran-
dom variables of law σ. We define, as in Lemma 2.3, the family (Yn) of
complex random variables. Let us fix h ∈ N. We define Zn = e(hθm) for
n = m2 + r and 0 ≤ r ≤ 2m. By Lemma 2.4 we know that, almost surely,

limN→∞ N−1
∑N

n=1 Zn = E[e(hθ)]. Furthermore, the set of positive integers

n such that Yn+hYn = Zn has full density. Thus, almost surely,

lim
N→∞

1

N

N∑

n=1

Yn+hYn = E[e(hθ)].

This last quantity is exactly σ̂(h) and, by hypothesis, it goes to zero
when h goes to infinity in D. Since the set D is enhanced vdC, we conclude
that

lim
N→∞

1

N

N∑

n=1

Yn = 0.

By Lemma 2.3, this means that P(θ = 0) = 0, that is, σ({0}) = 0. The same
argument can be applied to all the images of σ under translations of the
torus, and we conclude that σ is a continuous measure. Hence D is FC+.

The spectral characterization makes it possible to give an alternative
definition of enhanced vdC sets.

Proposition 2.5. An infinite set D of integers is enhanced vdC if and

only if for any sequence (un)n∈Z of complex numbers of modulus 1 such that

lim
|d|→∞, d∈D

lim sup
N→∞

∣∣∣∣
1

N

N−1∑

n=0

un+dun

∣∣∣∣ = 0,

one has

lim
N→∞

1

N

N−1∑

n=0

un = 0.
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2.3. Some properties of enhanced vdC sets. From the spectral
characterization we deduce various corollaries. We omit detailed proofs since
they are similar to those of the corresponding statements for vdC sets (see
Subsection 1.2.3).

Corollary 2.6 (Ramsey property). If D = D1 ∪ D2 is an enhanced

vdC set , then at least one of the sets D1 or D2 is enhanced vdC.

Corollary 2.7 (Sets of differences). Let D ⊂ N. Suppose that , for all

n > 0 there exist a1 < · · · < an such that {aj − ai : 1 ≤ i < j ≤ n} ⊂ D.

Then D is an enhanced vdC set.

Corollary 2.8 (Linear transformations). Let d and e be positive inte-

gers, and L be a linear transformation from Zd into Ze (i.e. an e×d matrix

with integer entries).

(1) If D is an enhanced vdC set in Zd and if 0 /∈ L(D), then L(D) is

an enhanced vdC set in Ze.

(2) Let D ⊂ Zd. If the linear map L is one-to-one, and if L(D) is an

enhanced vdC set in Ze, then D is an enhanced vdC set in Zd.

Corollary 2.9 (Lattices are (enhanced vdC)∗). If G is any d-dimen-

sional lattice in Zd, and if D is an enhanced vdC set in Zd, then G ∩ D is

an enhanced vdC set in Zd.

2.4. Questions

Question 1. Our intuition is that there exist vdC sets which are not
enhanced vdC. Is this true? Is it possible to exhibit a particular example?

Question 2. We know (Corollary 1.31) that the notions of vdC set for

families in a Hilbert space and of vdC set coincide. Is the analogous fact
true for enhanced vdC sets?

Question 3. We know (Corollary 1.24) that any vdC set can be parti-
tioned into infinitely many vdC sets. Is the analogous fact true for enhanced
vdC sets?

Question 4. We know (Corollary 1.29) that the Cartesian product of
two vdC sets is a vdC set. Is the analogous fact true for enhanced vdC sets?

2.5. Examples

2.5.1. Ergodic sequences. A sequence (dn)n∈N of integers is called er-

godic if the following mean ergodic theorem is valid: given an ergodic m.p.s.
(X,A, µ, T ) and f ∈ L2(µ), the averages N−1

∑N
n=1 f ◦ T dn converge in L2

to
T
f dµ when N goes to infinity.
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It follows from the spectral theorem that the sequence (dn) is ergodic if
and only if, for all x ∈ R \ Z,

lim
N→∞

1

N

N∑

n=1

e(dnx) = 0.(13)

Proposition 2.10. Any ergodic sequence is an enhanced vdC sequence.

Proof. Let (dn) be an ergodic sequence and σ a finite measure on the
torus. Using the dominated convergence theorem we deduce from (13) that

lim
N→∞

1

N

N∑

n=1

σ̂(dn) = σ({0}).

Hence it is immediate that the sequence (dn) is FC+.

Proposition 2.10 can be used to exhibit many examples of enhanced vdC
sets.

(i) In [Bos-Ko-Q-Wi] the authors consider sequences of the form dn =
[a(n)] where the function a belongs to some Hardy field. They characterize
those of them which are ergodic. See Theorems 3.2–3.5 and 3.8 in that paper.
Here are some examples of ergodic sequences, coming from [Bos-Ko-Q-Wi]:

• {[bnc] : n ∈ N}, where c is irrational > 1 and b 6= 0;
• {[bnc + dna] : n ∈ N}, where b, d 6= 0, b/d is irrational, c ≥ 1, a > 0

and a 6= c;
• {[bnc(log n)d] : n ∈ N}, where b 6= 0, c is irrational > 1 and d is any

number;
• {[bnc(log n)d] : n ∈ N}, where b 6= 0, c is rational > 1 and d 6= 0;
• {[bnc + d(log n)a] : n ∈ N}, where b, d 6= 0, c ≥ 1, and a > 1.

The cited paper also contains interesting examples of non-ergodic se-
quences. For example [

√
2n3/2 + log n] is not ergodic, whereas [

√
2n3/2 +

(log n)2] and [
√

2nπ/2 + log n] are ergodic. Is {[
√

2n3/2 + log n] : n ∈ N} an
enhanced vdC set? We leave this as an open question.

(ii) In [Berg-Ha2] a mean ergodic theorem along a tempered sequence

is proved. More precisely, it is shown (see Theorem 8.1 in [Berg-Ha2])
that, for any tempered function (9) g, the sequence ([g(n)]) is ergodic.
This gives a large new class of examples. For example, the function g(x) =
xa(cos((log x)b) + 2), where a > 0 and 0 < b < 1, is a tempered function
(which does not belong to any Hardy field).

(9) A real-valued function g defined on a half-line [α,∞) is called a tempered function

if there exist k ∈ N such that g is k times continuously differentiable, g(k)(x) tends
monotonically to zero as x → ∞, and limx→∞ x|g(k)(x)| = ∞. This notion is classical in
the theory of uniform distribution (see [Ci]).
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(iii) A different type of example is provided by so-called “automatic se-
quences”. Characterizations of ergodic automatic sequences are well known
(see for example [Ma]). A typical example of such a sequence is the Morse
sequence (0, 3, 5, 6, 9, 10, . . .), which consists of the integers whose sum of
digits in base two is even.

(iv) As a consequence of the Wiener–Wintner ergodic theorem, we know
that for any weakly mixing m.p.s. (X,A, µ, T ) and for any A ∈ A with
µ(A) > 0, for almost every x ∈ X the sequence {n ∈ N : Tnx ∈ A} is
ergodic.

In [Lem-Les-Pa-V-Wi] other types of random sequences that are almost

surely ergodic are constructed, of the form (
∑N−1

n=0 f ◦ Tn) where f is an

integer-valued function on a m.p.s. (X,A, µ, T ), under some conditions on
the m.p.s. and the function.

2.5.2. Polynomial sequences. The examples given in Subsection 1.3.2
not only have the ordinary vdC property, but also the enhanced vdC prop-
erty (in Zd). We restrict ourselves here to the one-parameter case.

The following criterion, which generalizes Proposition 2.10, is useful in
obtaining additional interesting examples.

Proposition 2.11. Let D = (dn)n∈N be a sequence of non-zero integers.

Suppose that

(i) for all q ∈ N, D ∩ qZ has positive upper density in D;
(ii) for all irrational real numbers x, the sequence (dnx) is uniformly

distributed mod 1.

Then D is an enhanced vdC sequence.

Proof. Fix q ∈ N. There exists an increasing sequence (N
(q)
k )k∈N of pos-

itive integers such that

lim inf
k→∞

1

N
(q)
k

#{n ∈ [1, N
(q)
k ] : q! divides dn} > 0.(14)

Define a family of uniformly bounded trigonometric polynomials with
spectrum contained in D by the formula

Pq,k(x) :=
1

#{n ≤ N
(q)
k : q! | dn}

∑

n≤N
(q)
k , q!|dn

e(dnx).(15)

Replacing if necessary the sequence (N
(q)
k ) by a subsequence, we can suppose

that, for all rational numbers y, the sequence (Pq,k(y)) converges as k → ∞.
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Consider now an irrational real number x. We have

Pq,k(x) =
1

#{n ≤ N
(q)
k : q! | dn}

∑

n≤N
(q)
k

e(dnx)
1

q!

q!−1∑

j=0

e

(
dnj

q!

)

=
N

(q)
k

#{n ≤ N
(q)
k : q! | dn}

1

q!

q!−1∑

j=0

1

N
(q)
k

∑

n≤N
(q)
k

e

(
dn

(
x +

j

q!

))
.

Using (14) and hypothesis (ii), we see that limk→∞ Pq,k(x) = 0.

We denote by gq the pointwise limit of the sequence (Pk,q)k∈N. For all
rational numbers y, we have Pq,k(y) = 1 for all large enough q.

Letting q go to infinity, we see that the sequence (gq) converges every-
where to the characteristic function of the rationals. Applying the dominated
convergence theorem twice, we observe that, for all finite measures σ on T,

lim
q→∞

lim
k→∞

\
T

Pq,k dσ = σ(Q/Z).

Let σ be a positive measure on T such that limn→∞ σ̂(dn) = 0. From (15),
we deduce that limk→∞

T
T

Pq,k dσ = 0, hence σ(Q/Z) = 0, and in particular
σ({0}) = 0.

We have proved that D is an FC+ set.

From Proposition 2.11, one can deduce the following (not too surprising)
corollaries.

Corollary 2.12. Let p be a polynomial with integer coefficients. The

sequence (p(n))n∈N is enhanced vdC if and only if for all positive integers q,
there exists n ≥ 1 such that q divides p(n).

Corollary 2.13. Let f be a (non-zero) polynomial with integer coef-

ficients and zero constant term. The sequences {(f(p − 1)) : p ∈ P} and

{(f(p + 1)) : p ∈ P} are enhanced vdC.

Let us describe one more family of examples, coming from generalized

polynomials (10), dealt with in [Berg-Ha1]. Let q be an integer valued gen-
eralized polynomial. Corollary 3.5 of [Berg-Ha1] gives a sufficient condition
for (q(n)) to be an averaging sequence of recurrence and this condition is
the same as the hypothesis of our Proposition 2.11. In particular, averaging
sequences of recurrence in [Berg-Ha1, p. 106] provide examples of enhanced
vdC sets. Here are two of them:

(10) The class of polynomial functions is obtained, starting from the constants and
the identity function x 7→ x, by the use of addition and multiplication. To define the class
of generalized polynomials just add the greatest integer function as an allowed operation.
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• For α1, . . . , αk non-zero real numbers and k ≥ 3,

{[α1n] . . . [αkn] : n ∈ N} is an enhanced vdC set.

• For α a non-zero real number, {[αn]n2 : n ∈ N} is an enhanced vdC
set.

3. VAN DER CORPUT SETS AND SETS OF RECURRENCE

In this section we discuss some links between the vdC property and
recurrence in dynamical systems.

3.1. Sets of strong recurrence. Recall that a subset D of Z is a set of

recurrence if, given any m.p.s. (X,A, µ, T ) and any subset A in A of positive
µ-measure, there exists d ∈ D, d 6= 0, such that µ(A ∩ T dA) > 0.

Definition 5. An infinite subset D of Z is a set of strong recurrence if,
given any m.p.s. (X,A, µ, T ) and any subset A in A of positive µ-measure,

lim sup
d∈D, |d|→∞

µ(A ∩ T dA) > 0.

One of the reasons to be interested in sets of strong recurrence is that
they naturally appear in combinatorial applications. See for example Theo-
rem 4.1 in [Berg.1].

Alan Forrest ([Fo]) gave an example of a set of recurrence which is not
a set of strong recurrence.

3.2. VdC sets and sets of recurrence. Recall once more the defini-
tion of a vdC set (cf. Definition 2).

A set of non-zero integers D is a van der Corput set if, for any sequence
(un)n∈N of complex numbers of modulus 1 such that

∀d ∈ D, γ(d) := lim
N→∞

1

N

N∑

n=1

un+dun = 0,

we have

lim
N→∞

1

N

N∑

n=1

un = 0.

We know that we obtain an equivalent definition if we replace in the
last sentence “any sequence (un)n∈N of complex numbers of modulus 1”
by “any bounded sequence (un)n∈N of complex numbers”. (This is a con-
sequence of the generalized vdC inequality, as Corollary 1.31 follows from
Proposition 1.30.)

A set D is a set of recurrence if and only if it is intersective, that is,
satisfies the following condition: for any set E of integers of positive upper
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density, one has D ∩ (E − E) 6= ∅. This fact is well known (see [BM] and
[Berg.1]). It is utilized in the proof of the following theorem.

Theorem 3.1. Let D ⊂ Z \ {0}. The set D is a set of recurrence if

and only if it satisfies the following van der Corput’s type property : for any

sequence (un)n∈N of 0’s and 1’s such that

∀d ∈ D, γ(d) := lim
N→∞

1

N

N∑

n=1

un+dun = 0

we have

lim
N→∞

1

N

N∑

n=1

un = 0.

It is an exercise to verify that we obtain an equivalent statement if we
replace in the preceding sentence “for any sequence (un)n∈N of 0’s and 1’s”
by “for any bounded sequence (un)n∈N of positive real numbers”.

As a consequence of Theorem 3.1, we obtain the well known fact that any
van der Corput set is a set of recurrence ([Kam-MF]). Answering a question
of Ruzsa, Bourgain proved in [Bou] that there exist sets of recurrence which
are not vdC.

Proof of Theorem 3.1. If D is not a set of recurrence, then there exists
a set E ⊂ N such that

d(E) := lim sup
N→∞

1

N
|E ∩ [1, N ]| > 0 and D ∩ (E − E) = ∅.

If we consider the sequence (un) defined by

un =

{
1 if n ∈ E,

0 if n /∈ E,

we see that

∀d ∈ D,
1

N

N∑

n=1

un+dun = 0, but lim sup
N→∞

1

N

N∑

n=1

un > 0.

This proves the “if” part of the theorem.

Suppose now that D is a set of recurrence. The fact that if E is
a set of positive upper density, then there exists d ∈ D such that {n ∈ E :
n + d ∈ E} 6= ∅, is a consequence of Furstenberg’s correspondence princi-
ple. But this principle gives more (11): there exists d ∈ D such that the set
{n ∈ E : n + d ∈ E} has positive upper density.

(11) For a statement of Furstenberg’s correspondence principle in the form we utilize
here, see for example Theorem 1.1 in [Berg.3].
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Hence if a sequence (un) is the indicator of a set E of positive upper
density, then there exists d ∈ D such that

lim sup
N→∞

1

N

N∑

n=1

un+dun > 0.

The similarity and the distinction between the recurrence property and
the vdC property is also illustrated by the next proposition (to be compared
with the spectral characterization of vdC sets—Theorem 1.8).

If (X,A, µ, T ) is a m.p.s. and if A ∈ A, we denote by σA the spectral

measure of A, which is defined by µ(A∩T−nA) = σ̂A(n) for any n ∈ Z. If f
is a square integrable function on X, we denote by σf the spectral measure

of f , which is defined by
T
f ◦ Tn · f dµ = σ̂f (n) for any n ∈ Z. (Of course,

we have σA = σ1A .)

Proposition 3.2. Let D ⊂ Z \ {0}. The set D is a set of recurrence if

and only if one of the following two equivalent properties is satisfied :

• In any ergodic m.p.s., if the Fourier transform σ̂A of a set A vanishes

on D, then σA = 0.
• In any ergodic m.p.s., if the Fourier transform σ̂f of a bounded positive

function f vanishes on D, then σf = 0.

Proof. Suppose that D is not a set of recurrence. There exists an ergodic
m.p.s. (X,A, µ, T ) and a set A in A with positive measure such that, for all
d ∈ D, µ(A∩T dA) = 0. The spectral measure σA of A satisfies σ̂(d) = 0 for
all d ∈ D, and σA({0}) = µ(A) 6= 0.

Suppose that D is a set of recurrence. Let σf be the spectral measure of
a bounded positive function f . Suppose that for all d ∈ D, σ̂f (d) = 0. By
the ergodic theorem, we have almost surely, for all d ∈ D,

0 =
\
f · f ◦ T d dµ = lim

N→∞

1

N

N−1∑

n=0

f ◦ Tn · f ◦ Tn−d.

Using Theorem 3.1 (and more precisely the remark immediately following
the theorem), we deduce that, almost surely,

lim
N→∞

1

N

N−1∑

n=0

f ◦ Tn = 0.

The ergodic theorem gives
T
f dµ = 0, hence σf = 0.

3.3. Enhanced vdC sets and strong recurrence. The results in this
subsection indicate that the link between enhanced van der Corput sets and
sets of strong recurrence is parallel to the link between van der Corput sets
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and sets of recurrence. However, we do not know if there exists here any
example of Bourgain’s type ([Bou]). Such an example would give a negative
answer to the following question.

Question 5 (perhaps very difficult). Is every set of strong recurrence
an FC+ set (or, equivalently, an enhanced van der Corput set)?

The following question also comes naturally.

Question 6. Is there any inclusion between the collection of sets of
strong recurrence and the collection of van der Corput sets?

The next theorem gives an equivalence between strong recurrence and
strong intersectivity (which is defined by (SR2) below).

Theorem 3.3. Let D ⊂ Z. The following assertions are equivalent :

(SR1) D is a set of strong recurrence.

(SR2) For any E ⊂ N of upper density d(E) > 0, there exists ε > 0 and

infinitely many d ∈ D such that

d(E ∩ (E + d)) > ε.

(SR3) For any sequence (un)n∈N of 0’s and 1’s such that

lim
|d|→∞, d∈D

lim sup
N→∞

1

N

N∑

n=1

un+dun = 0

we have

lim
N→∞

1

N

N∑

n=1

un = 0.

Proof. It is clear that properties (SR2) and (SR3) are the same. The
fact that (SR1)⇒(SR2) follows directly from Furstenberg’s correspondence
principle. The following proof of (SR2)⇒(SR1) has been communicated to
us by Anthony Quas. Let (X,A, µ, T ) be a m.p.s. and A ∈ A with µ(A) > 0.
Let (xn)n≥1 be a sequence of random points in X chosen independently and
with the law µ. We consider a new sequence in X defined by

(yn) := (x1, x2, Tx2, x3, Tx3, T
2x3, x4, . . . , T

3x4, x5, . . . , T
4x5, . . .),

and the random set E of numbers n such that yn ∈ A. We claim that, almost
surely,

lim
N→∞

1

N

N∑

n=1

1E(n) = µ(A).(16)

This claim can be justified by the following law of large numbers, applied



38 V. BERGELSON AND E. LESIGNE

to the mutually independent random variables

Yk :=

(
1

k

k−1∑

j=0

1A(T jxk)

)
− µ(A).

Lemma 3.4 (Law of large numbers). Let (Yk) be a sequence of random

variables such that supk E(Y 2
k ) < ∞, E(Yk) = 0, and E(YkYl) = 0 if k 6= l.

Almost surely we have

lim
n→∞

1

n2

n∑

k=1

kYk = 0.(17)

(The convergence (17) is a direct consequence of some easy L2 estimates.
It can also be deduced from the convergence of ordinary Cesàro averages.
We omit the proof.)

A similar argument using the block structure of the sequence (yn) gives
(almost surely)

lim
N→∞

1

N

N∑

n=1

1E(n)1E(n + d) = µ(A ∩ T−dA).(18)

Assume now that condition (SR2) is satisfied. From (16) we deduce that
d(E) > 0, hence there exist ε > 0 and infinitely many d ∈ D such that

d(E ∩ (E + d)) > ε,

which means (by (18)) that µ(A ∩ T−dA) > ε.

Proposition 3.5. Any enhanced vdC set is a set of strong recurrence.

Proof. Let D ⊂ Z be an enhanced vdC set, let (X,A, µ, T ) be a m.p.s.
and A ∈ A with µ(A) > 0. There exists a positive measure σ on the torus
such that, for all n ∈ Z,

σ̂(n) = µ(A ∩ TnA).

This measure has a point mass at zero: σ({0}) ≥ µ(A)2. Since the set D is
FC+, this implies that there exists ε > 0 such that σ̂(d) > ε for infinitely
many d ∈ D.

3.4. Density notions of vdC sets and sets of recurrence. A new
natural notion of vdC type set, which we will call density vdC , can be
obtained by replacing in Definition 3 the convergence of γ to zero along the
set D by the convergence of γ to zero along a subset of D which has full
density in D. We will associate to it a notion of density FC+ set . These
notions are related to averaging sets of recurrence, as we will see below.
Here are the formal definitions.
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If D is an infinite set of integers, we will write D = {dm : m ∈ N}
with the convention that the numbers dm are pairwise distinct and the se-
quence (|dm|) is non-decreasing. Let us recall that for any bounded sequence
(v(dm))m∈N of positive numbers the following two properties are equivalent:

• lim
M→∞

1

M

M∑

m=1

v(dm) = 0.

• There exists D′ ⊂ D such that

lim
M→∞

#D′ ∩ [−M, M ]

#D ∩ [−M, M ]
= 1 and lim

m→∞, dm∈D′

v(dm) = 0.

Definition 6. An infinite set of integers D is a density vdC set if for
any sequence (un)n∈Z of complex numbers of modulus 1 such that

lim
M→∞

1

M

M∑

m=1

lim sup
N→∞

∣∣∣∣
1

N

N−1∑

n=0

un+dmun

∣∣∣∣ = 0,

one has

lim
N→∞

1

N

N−1∑

n=0

un = 0.

(Compare this definition with Proposition 2.5.)

Definition 7. An infinite set of integers D is a density FC+ set if every
positive measure σ on the torus T such that limM→∞ M−1

∑M
m=1 σ̂(dm) = 0

is continuous. (Compare with Definition 4. Any density FC+ set is an FC+

set.)

Definition 8. An infinite set of integers D is an averaging set of recur-

rence if for any m.p.s. (X,A, µ, T ) and A ∈ A with µ(A) > 0,

lim sup
M→∞

1

M

M∑

m=1

µ(A ∩ T−dmA) > 0.

Note that this definition differs slightly from the one given in [Berg-Ha1]
where the limsup is replaced by a lim.

Any averaging set of recurrence is a set of strong recurrence.

Theorem 3.6. The notions of a density vdC set and of a density FC+

set coincide.

The proof is similar to that of Theorem 2.1 and is omitted.

From Theorem 3.6 one can deduce for example that the class of density
vdC sets has the Ramsey property.

Of course, every density vdC set is an enhanced vdC set. We do not
know whether the reverse implication holds.
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Question 7. Do the notions of density vdC set and enhanced vdC set
coincide?

Questions 2, 3 and 4 that we asked about enhanced vdC sets have obvious
density vdC sets analogues.

Note also that the examples described in Subsection 2.5 can also be
utilized to illustrate the notion of density vdC set. In particular we have:

• If (dn) is an increasing ergodic sequence of integers, then the set {dn}
is a density vdC set. This leads to the examples presented in Subsec-
tion 2.5.1.

• If an increasing sequence (dn) of integers satisfies hypotheses (i) and
(ii) of Proposition 2.11, then the set {dn} is a density vdC set. This
leads to the “polynomial examples” presented in Subsection 2.5.2.

The following proposition establishes a link with recurrence.

Proposition 3.7. Any density vdC set is an averaging set of recurrence.

The proof is similar to that of Proposition 3.5 and is omitted.

3.5. Nice vdC sets and nice recurrence. Another natural notion of
recurrence is that of nice recurrence.

Definition 9. A set D of integers is a set of nice recurrence if given
any m.p.s. (X,A, µ, T ), A ∈ A with µ(A) > 0, and any ε > 0, we have

µ(A ∩ T−dA) ≥ µ(A)2 − ε

for infinitely many d ∈ D.

The following proposition provides an equivalent definition for sets of
nice recurrence.

Proposition 3.8. A set D of integers is a set of nice recurrence if and

only if

(C) given any m.p.s. (X,A, µ, T ), A ∈ A with µ(A) > 0, and any ε > 0,
there exists d ∈ D, d 6= 0, such that µ(A ∩ T−dA) ≥ µ(A)2 − ε.

Proof. We have to prove that the integer d appearing in condition (C)
can be chosen arbitrarily large. Suppose that (C) is satisfied. Consider a
m.p.s. (X,A, µ, T ) and a set A ∈ A with µ(A) > 0. Denote by (Y,B, ν, S)
a Bernoulli scheme on two letters (Y is the set of sequences of 0’s and 1’s,
ν is a non-trivial product measure, and S is the shift). Let k be a positive
integer and B be the cylinder set in Y of all sequences beginning with a 1
followed by k 0’s. We have ν(B) > 0, ν(B ∩ S−dB) = 0 if |d| ≤ k, and
ν(B ∩ S−dB) = ν(B)2 if |d| > k. Applying the hypothesis to the product
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T × S of the two dynamical systems, we find that there exists d ∈ D such
that

µ ⊗ ν((A × B) ∩ (T × S)−d(A × B)) ≥ (µ ⊗ ν(A × B))2 − εν(B)2,

hence there exists d ∈ D, |d| > k, such that

µ(A ∩ T−dA) ≥ µ(A)2 − ε.

The notion of sets of nice recurrence seems to be naturally related to the
following definitions.

Definition 10. An infinite set D of integers is a nice vdC set if, for any
sequence (un)n∈N of complex numbers of modulus one,

lim sup
N→∞

∣∣∣∣
1

N

N∑

n=1

un

∣∣∣∣
2

≤ lim sup
|d|→∞, d∈D

lim sup
N→∞

∣∣∣∣
1

N

N∑

n=1

un+dun

∣∣∣∣.

Definition 11. A infinite set D of integers is a nice FC+ set if, for any
positive measure σ on the torus,

σ({0}) ≤ lim sup
|d|→∞, d∈D

|σ̂(d)|.

The following proposition is similar in spirit to Proposition 3.8.

Proposition 3.9. A set D of integers is a nice FC+ set if and only if

(C′) for any positive measure σ on the torus and any ε > 0, there exists

d ∈ D, d 6= 0, such that |σ̂(d)| > σ({0}) − ε.

Proof. We have to prove that the integer d appearing in condition (C′)
can be chosen arbitrarily large. Suppose that (C′) is satisfied. Let k be a
positive integer. There exists a positive measure ̺ on the torus such that
̺̂(n) = 0 if |n| ≤ k and ̺̂(n) = ̺({0}) > 0 if |n| > k. (Choose the spectral
measure of the indicator of the set B in the Bernoulli scheme considered in
the proof of Proposition 3.8.) We apply our hypothesis to the measure σ ⋆̺.
There exists d ∈ D such that

|σ̂(d)̺̂(d)| = |σ̂ ⋆ ̺(d)| > σ ⋆ ̺({0}) − ε̺({0}) ≥ σ({0})̺({0}) − ε̺({0}),
hence there exists d ∈ D, |d| > k, such that

|σ̂(d)| > σ({0}) − ε.

Question 8. What are the implications between the three properties:
nice vdC, nice FC+ and nice recurrence?

Here is what we know:

(N1) Nice FC+ ⇒ nice recurrence.
(N2) Nice FC+ ⇒ nice vdC.
(N3) Nice vdC ⇒ a weak form of nice recurrence.
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Let us explain what this last assertion means. If D is a nice vdC set, then
for any probability measure σ on the torus,

σ({0})2 ≤ lim sup
|d|→∞, d∈D

|σ̂(d)|,

and consequently, we have the following recurrence property: given any
m.p.s. (X,A, µ, T ), A ∈ A with µ(A) > 0, and any ε > 0, we have

µ(A ∩ T−dA) ≥ µ(A)4 − ε(19)

for infinitely many d ∈ D. (Note that the exponent 4 in (19) is not a typo.
It would be “nice” to better understand the meaning of inequality (19).)

The proof of (N1) is a direct application of the spectral theorem: let
(X,A, µ, T ) be a m.p.s. and A ∈ A. There exists a positive measure σ on
the torus such that

∀n ∈ N, σ̂(n) = µ(A ∩ T−nA) and σ({0}) =
\
A

µ(A|I) dµ ≥ µ(A)2.

The proof of (N2) follows the lines of the spectral characterization de-
scribed in Subsections 1.2.2 and 2.2. Let (un) be a sequence of complex
numbers of modulus one and

M := lim sup
|d|→∞, d∈D

lim sup
N→∞

∣∣∣∣
1

N

N∑

n=1

un+dun

∣∣∣∣.

There exists an increasing sequence (Nj)j≥0 of positive integers such that

• lim
j→∞

1

Nj

∣∣∣
Nj∑

n=1

un

∣∣∣ = lim sup
N→∞

1

N

∣∣∣
N∑

n=1

un

∣∣∣,

• ∀h ∈ Z, γ(h) := lim
j→∞

1

Nj

Nj∑

n=1

un+hun exists.

The map γ is the Fourier transform of a positive measure σ on the torus.
Suppose that D is a nice vdC set. By Lemma 2.2 we have

lim sup
N→∞

∣∣∣∣
1

N

N∑

n=1

un

∣∣∣∣
2

≤ σ({0}) ≤ lim sup
|d|→∞, d∈D

|σ̂(d)| ≤ M.

Claim (N3) can be proved using Lemmas 2.3 and 2.4. Following the
method described in Subsection 2.2, we have

lim
N→∞

1

N

N∑

n=1

Yn+hYn = σ̂(h) and lim
N→∞

1

N

N∑

n=1

Yn = σ({0}).

Hence, if D is nice vdC, then

σ({0})2 ≤ lim sup
|d|→∞, d∈D

|σ̂(d)|

and (N3) is verified.
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One more natural question concerns the Ramsey property.
Using product dynamical systems, it is easy to verify that the class of

sets of recurrence and the class of sets of strong recurrence have the Ramsey
property. We saw that the class of vdC sets and the class of enhanced vdC
sets have this property. The other notions of vdC sets and of recurrence
could be studied from this point of view.

Question 9. Do the class of sets of nice recurrence and the class of nice
vdC sets have the Ramsey property?

Note that the class of sets of nice recurrence has the Ramsey property if
and only if the following property of simultaneous nice recurrence is valid:
given any set D ⊂ Z \ {0} of nice recurrence, any m.p.s. (X,A, µ, T ), any
sets A and B in A, and any ε > 0, there exists d ∈ D such that

µ(A ∩ T−dA) > µ(A)2 − ε and µ(B ∩ T−dB) > µ(B)2 − ε.

4. VARIATIONS ON THE AVERAGING METHOD

In this final section we provide additional remarks on some of the possible
variations on the vdC theme, related to different notions of averaging which
naturally appear in the theory of uniform distribution and ergodic theory.
For simplicity and in order to be able to more easily stress the important
points, we restrict our discussion to subsets of Z. We want, however, to
remark that many of the results in this paper can be extended to a much
wider setup involving general groups and various methods of summation.
(See for example [Pe], where some directions of extensions are indicated.)

4.1. Well distribution. Recall that a sequence (xn)n∈N of real numbers
is well distributed mod 1 if, for any continuous function f on the torus T,
we have

lim
N−M→∞

1

N − M

N−1∑

n=M

f(xn) =
\
T

f(t) dt.

To this notion of well distribution is naturally associated a notion of van
der Corput set. Let us call it a w-vdC set: a set D of positive integers is a
w-vdC set if, for any sequence (un)n∈N of complex numbers of modulus 1
such that

∀d ∈ D, γ(d) := lim
N−M→∞

1

N − M

N−1∑

n=M

un+dun = 0

we have

lim
N−M→∞

1

N − M

N−1∑

n=M

un = 0.
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The spectral characterization of vdC sets given in Theorem 1.8 immedi-
ately implies that any vdC set is a w-vdC set.

But the proof, coming from Ruzsa ([Ruz]), of the fact that the spectral
properties (S1) and (S2) are necessary for vdC sets cannot be applied to
w-vdC. This is because the law of large numbers fails dramatically when we
replace averages N−1

∑
0≤n<N by moving averages (N − M)−1

∑
M≤n<N .

Question 10. Is every w-vdC set a vdC set?

4.2. Følner sequences. Let F = (FN )N≥1 be a Følner sequence in
the space of parameters (which is Z in this section). Let us say that a real
sequence (xn)n∈Z is F -u.d. mod 1 if, for any continuous function f on the
torus T, we have

lim
N→∞

1

|FN |
∑

n∈FN

f(xn) =
\
T

f(x) dx.(20)

(We say that the sequence (f(xn)) converges to the integral of f in the

F -sense when (20) is satisfied.)

One can naturally define also the notion of F -vdC. A set D of non-zero
integers is an F -vdC set if any sequence (xn) such that, for all d ∈ D, the
sequence xn+d − xn is F -u.d. mod 1, is itself F -u.d. mod 1.

In order to compare the notion of F -vdC set with the notion of vdC set,
it would be of interest to obtain a spectral characterization of F -vdC sets
similar to Theorem 1.8.

Note that the sequence of correlations

γ(h) := lim sup
N→∞

1

|FN |
∑

n∈FN

un+hun

is positive-definite, and the Følner property is exactly what is needed in
order to prove a result similar to Lemma 1.9. An argument similar to the
one used in the proof of the implication (S2)⇒(S3) allows one to establish
the fact that any vdC set is an F -vdC set .

In the other direction we do not know any general result, but, keeping
in mind the argument we used in the proof of Theorems 1.8 and 2.1, we
can state the following sufficient condition: suppose that for any probability

measure on the torus T there exists a sequence (Yn)n∈N of complex numbers

of modulus one such that, for all h ∈ Z,

lim
N→∞

1

|FN |
∑

n∈FN

Yn = σ({0}) and lim
N→∞

1

|FN |
∑

n∈FN

Yn+hYn = σ̂(h);

then any F -vdC set is a vdC set.
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We have in particular the following result (and its multiparameter ex-
tensions):

Proposition 4.1. If a Følner sequence F is such that any bounded

sequence which converges in the Cesàro sense also converges in the F -

sense (12) then the notions of vdC set and F -vdC set coincide.

5. APPENDIX. A REMARK ON DIVISIBILITY OF POLYNOMIALS

Definitions

• A polynomial p ∈ Z[X] is divisible by an integer d if there exists n ∈ Z
such that d divides p(n).

• A polynomial p ∈ Z[X] is divisible if it is divisible by any integer.
• Polynomials p1, . . . , pr ∈ Z[X] are simultaneously divisible by an inte-

ger d if there exists n ∈ Z such that d divides pi(n), 1 ≤ i ≤ r.
• Polynomials p1, . . . , pr ∈ Z[X] are simultaneously divisible if they are

simultaneously divisible by any integer.

(Trivial examples: if p(0) = 0 then p is divisible; the polynomial 2X + 1
is not divisible; the polynomials X and X + 1 are divisible but not simulta-
neously divisible.)

Known facts. Let p1, . . . , pr ∈ Z[X]. The following assertions are equiv-
alent:

• The sequence (p1(n), . . . , pr(n))n∈N is a Poincaré recurrence sequence
for finite measure preserving Zr actions.

• The sequence (p1(n), . . . , pr(n))n∈N is a van der Corput sequence in Zr.
• p1, . . . , pr are simultaneously divisible.

In [Berg-Lei-Les], we prove that the simultaneous divisibility of poly-
nomials p1, . . . , pr is also a necessary and sufficient condition for multiple
recurrence of the type

µ(A ∩ T p1(n)A ∩ T p2(n)A ∩ · · · ∩ T pr(n)A) > 0.

Claim. The simultaneous divisibility of a family of polynomials is a

property strictly stronger than the divisibility of any of their linear com-

binations. In other words, there exist two polynomials p and q in Z[X] such

that , for any integers a and b, the polynomial ap + bq is divisible but the

polynomials p and q are not simultaneously divisible.

(12) If any bounded sequence which converges in the Cesàro sense also converges in
the F -sense then the limits in the Cesàro sense and in the F -sense coincide (when they
exist). This fact is left as an exercise for the reader.
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Here are two facts which seem to go against this Claim. Let p, q ∈ Z[X].

• Let d be a prime number. If for all pairs (a, b) of integers, the polyno-
mial ap+bq is divisible by d, then p and q are simultaneously divisible
by d.

• Let d and e be two relatively prime integers. If p and q are simultane-
ously divisible by d and simultaneously divisible by e, then they are
simultaneously divisible by de.

These facts indicate that the key to the distinction between the simultaneous
divisibility and the divisibility of linear combinations of polynomials lies with
the divisibility by dk where d is a prime number and k > 1.

Proof of Claim. Let us show that the polynomials

p(X) = (2 + X2 + X3)(1 + 2X) and q(X) = X(1 + X)(1 + 2X)

are not simultaneously divisible by 4 although the polynomial ap + bq is
divisible for all a, b in Z.

Modulo 4, we have p(0) = 2 and q(0) = 0; p(1) = 0 and q(1) = 2;
p(2) = q(2) = 2; p(3) = 2 and q(3) = 0. This shows that p and q are not
simultaneously divisible by 4.

Let us fix a and b in Z and show that ap + bq is divisible. It is of course
enough to consider the case when a and b are relatively prime. The divis-
ibility of ap + bq by odd integers is directly given by the presence of the
common factor 1 + 2X. Let us examine divisibility by the powers of 2. We
will distinguish the case when one of the two numbers a and b is even, and
the case when both are odd.

First case: a or b is even (and the other is odd). Let us show by
induction on k that, for all k ≥ 0, there exists an odd number nk such
that 2k | ap(nk) + bq(nk). We can choose any number n0, and n1 = 1
is OK. Suppose that the result is true for an integer k ≥ 1. Define l :=
max{i ≥ k : 2i | ap(nk)+ bq(nk)}. We have l ≥ k and ap(nk)+ bq(nk) = 2lα,
with α odd. Define a new odd number by nk+1 = nk + 2l. Using

ap(X) + bq(X) = 2aX4 + (3a + 2b)X3 + (a + 3b)X2 + (4a + b)X + 2a,

we note that, modulo 2l+1,

ap(nk+1) + bq(nk+1)

= ap(nk) + bq(nk) + 2a(4 · 2ln3
k) + (3a + 2b)(3 · 2ln2

k)

+ (a + 3b)(2 · 2lnk) + (4a + b)2l

= 2lα + a2ln2
k + 2lb = 2l(α + an2

k + b).

Since α + an2
k + b is even, this shows that 2l+1 | ap(nk+1) + bq(nk+1). We

have l + 1 ≥ k + 1, and nk+1 is odd. This concludes the induction.
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Second case: a and b are odd. Let us show by induction on k that,
for all k ≥ 0, there exists an even number nk such that 2k | ap(nk) + bq(nk).
We can choose any number n0, and n1 = 2 is OK. Suppose that the result
is true for an integer k ≥ 1. We define l and nk+1 = nk + 2l as in the first
case, but now the number nk is even, hence we still have

ap(nk+1) + bq(nk+1) = 2l(α + an2
k + b) = 0 modulo 2l+1,

and the induction process works.
In any case, we have proved that ap+bq is divisible by all the powers of 2.

We also know that the polynomial ap + bq is divisible by any odd integer.
Let us prove that it is divisible by any integer 2kα where α is odd. We write
ap(X) + bq(X) = (2X + 1)r(X). We know that 2k | r(nk). By the Bézout
identity, there exist integers u and v such that

2nk + 1 = −u2k+1 + vα.

We have α | 2(nk + 2ku) + 1 and 2k | r(nk + 2ku), hence

2kα | ap(nk + 2ku) + bq(nk + 2ku).

This proves that the polynomial ap + bq is divisible.
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(UMR CNRS 6083)
Fédération de Recherche Denis Poisson
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