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ERGODIC AUTOMORPHISMS WHOSE WEAK CLOSUREOF OFF-DIAGONAL MEASURES CONSISTS OF ERGODICSELF-JOININGSBYY. DERRIENNIC (Brest), K. FR�CZEK (Toru« and Warszawa),M. LEMA�CZYK (Toru« and Warszawa) and F. PARREAU (Paris)Abstra
t. Basi
 ergodi
 properties of the ELF 
lass of automorphisms, i.e. of the
lass of ergodi
 automorphisms whose weak 
losure of measures supported on the graphs ofiterates of T 
onsists of ergodi
 self-joinings are investigated. Disjointness of the ELF 
lasswith: 2-fold simple automorphisms, interval ex
hange transformations given by a spe
ialtype permutations and time-one maps of measurable �ows is dis
ussed. All ergodi
 Poissonsuspension automorphisms as well as dynami
al systems determined by stationary ergodi
symmetri
 α-stable pro
esses are shown to belong to the ELF 
lass.Introdu
tion. The notion of disjointness between measure-preservingautomorphisms of standard probability Borel spa
es was introdu
ed byFurstenberg [9℄ in 1967. Sin
e then many results showing disjointness ofsome 
lasses have been proved (see e.g. [9℄, [12℄, [14℄, [19℄, [21℄, [26℄, [28℄,[29℄, [46℄, [47℄).In [6℄ the se
ond and the third named authors of this paper introdu
edthe notion of ELF (1) �ow. An ELF �ow is, by de�nition, an ergodi
 �owsu
h that when we pass to the weak 
losure of its time-t maps 
onsidered asMarkov operators of the underlying L2-spa
e, then all the weak limits areinde
omposable Markov operators. The ELF property is interesting only inthe non-mixing 
ase, and indeed in 
ontrast with this property, some 
lassi
alweakly mixing but non-mixing spe
ial �ows over irrational rotations or, moregenerally, over interval ex
hange transformations turn out to have in theweak 
losure of Markov operators given by their time-t maps �su�
iently�de
omposable Markov operators. Su
h �ows are often spe
ial representationsof some smooth �ows on surfa
es and a motivation to introdu
e the ELFproperty was to prove disjointness (in the sense of Furstenberg) of su
h �ows2000 Mathemati
s Subje
t Classi�
ation: 37A05, 37A50.Key words and phrases: joinings, ELF property, disjointness.Resear
h partially supported by KBN grant 1 P03A 03826 and Marie Curie �Transferof Knowledge� program, proje
t MTKD-CT-2005-030042 (TODEQ).(1) The a
ronym ELF 
omes from the Fren
h abbreviation of �ergodi
ité des limitesfaibles�. [81℄ 
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82 Y. DERRIENNIC ET AL.from the ELF 
lass (see [6℄, [7℄, [8℄). In parti
ular, some 
lassi
al smoothweakly mixing �ows on surfa
es (e.g. 
onsidered in [25℄) turn out to bedisjoint from the ELF 
lass.On the other hand, the ELF property was also introdu
ed in the hope ofexpressing the fa
t that a given �ow is of �probabilisti
 origin�. Indeed, a �rstattempt to de�ne a system to be �of probabilisti
 origin� might be via theKolmogorov group property of the spe
trum. However, ea
h weakly mixingsystem has an ergodi
 extension whi
h has the Kolmogorov group property,simply by taking the in�nite dire
t produ
t of the system. Therefore thisspe
tral property is too weak to single out systems of �probabilisti
 origin�.As noti
ed in [6℄ Gaussian �ows enjoy the ELF property (this result alsofollows from some earlier results of [29℄). The present paper and, indepen-dently, the PhD thesis of E. Roy [36℄ are a further 
on�rmation of the fa
tthat dynami
al systems whose origin are well-known 
lasses of stationarypro
esses (see below) are inside the ELF 
lass. We also mention that in thegeneral 
ase, in
luding mixing, another joining property (satis�ed for exam-ple by �ows with Ratner's property [35℄) has been introdu
ed in [43℄ to showdisjointness from Gaussian systems.In this paper, instead of �ows, we 
onsider the ELF property for au-tomorphisms. One of the main results of the paper states that all ergodi
Poisson suspension automorphisms enjoy the ELF property. This result is a
onsequen
e of Theorem 1 below saying that Poissonian joinings of ergodi
Poisson automorphisms remain ergodi
; the same result is also proved inthe re
ent, independent paper [36℄. Moreover, we 
onsider so 
alled α-stableautomorphisms, i.e. ergodi
 automorphisms a
ting on a spa
e whose mea-surable stru
ture is determined by an invariant real subspa
e in whi
h allvariables are symmetri
 α-stable (0 < α < 2, for α = 2 we 
ome ba
k to theGaussian 
ase). We prove (Theorem 3 below) that α-stable self-joinings ofsu
h automorphisms must ne
essarily be ergodi
, from whi
h the ELF prop-erty dire
tly follows. In the aforementioned thesis [36℄, a further step forwardis even made: it is proved that given an ergodi
 stationary in�nitely divisiblepro
ess, ea
h in�nitely divisible self-joining of the 
orresponding measure-preserving automorphism remains ergodi
, and in parti
ular we also obtainthe ELF property in this most general 
ase.Furthermore, we show (Proposition 12 below) that weakly mixing butnon-mixing 2-fold simple automorphisms are disjoint from the ELF 
lass. It isalso shown that the time-one maps of �ows 
onsidered in [8℄ are disjoint fromany ELF automorphism, and therefore the time-one maps of Ko
hergin'ssmooth �ows from [25℄ are disjoint from any ELF automorphism.Re
ently, some attention has been devoted to joining properties of in-terval ex
hange transformations (see e.g. [4℄, [5℄). Here we are able to prove(see Proposition 15 below) that for almost all 
hoi
es of parameters de�n-



ELF AUTOMORPHISMS 83ing a three-interval ex
hange transformation we obtain disjointness from theELF 
lass. In fa
t, this result is a 
onsequen
e of a more general statementproved in the paper. Namely given k ≥ 3 we 
onsider spe
ial permutations of
{1, . . . , k} and we prove that for a.a. 
hoi
es of lengths of partition intervals of
[0, 1) the resulting automorphisms are disjoint from all ELF automorphisms.Some results in this paper have been obtained during the visit of thefourth-named author at Ni
olaus Coperni
us University in September 2003and during the visit of the third-named author at Université de BretagneO

identale in the Spring 2004.1. Preliminaries1.1. Fa
tors, joinings and Markov operators. Assume that T is an er-godi
 automorphism of a standard probability Borel spa
e (X,B, µ). Theasso
iated unitary a
tion of T on L2(X,B, µ) is given by UT (f) = f ◦T (butwe will often write T (f) instead of f ◦T ). We denote by C(T ) the 
entralizerof T , that is, the set of all automorphisms of (X,B, µ) 
ommuting with T .Endowed with the strong operator topology of U(L2(X,B, µ)) the 
entralizerbe
omes a Polish group. Any T -invariant sub-σ-algebra A ⊂ B is 
alled afa
tor of T . The quotient a
tion of T on the quotient spa
e (X/A,A, µ|A)will be denoted by T |A or even by A if no 
onfusion arises. We say that
T is rigid if the set {Tn : n ∈ Z} has an a

umulation point in C(T ). Itfollows that in the rigidity 
ase the 
entralizer is un
ountable and for somein
reasing sequen
e (qn), T qn → Id. Automorphisms whi
h have no rigidityat all are 
alled mildly mixing (see [11℄). More pre
isely, T is 
alled mildlymixing if its only rigid fa
tor is the one-point fa
tor.Assume now that S is another ergodi
 automorphism of a standard prob-ability Borel spa
e (Y, C, ν). By a joining of T and S we mean any T × S-invariant measure ̺ on (X × Y,B ⊗ C) whose marginals ̺X and ̺Y satisfy
̺X = ̺|X = µ and ̺Y = ̺|Y = ν respe
tively. The set of joinings between Tand S is denoted by J(T, S). Whenever the automorphism T × S a
ting on
(X×Y,B⊗C, ̺) (for short we will also write (T ×S, ̺)) is ergodi
, the joining
̺ is 
alled ergodi
 and the set of ergodi
 joinings is denoted by Je(T, S). Theformula \

X×Y

f ⊗ g d̺ =
\
Y

Φ̺(f) · g dνestablishes a one-to-one 
orresponden
e between the set J(T, S) and the set
J (T, S) of all Markov operators from L2(X,B, µ) to L2(Y, C, ν) intertwining
UT and US (see e.g. [42℄, [29℄ for more details). Re
all that a positive linearoperator Φ : L2(X,B, µ) → L2(Y, C, ν) is 
alled Markov if Φ(1X) = 1Y and
Φ∗(1Y ) = 1X , and then Φ = Φ̺ where ̺(A × B) =

T
B Φ(1A) dν for measur-able sets A ∈ B and B ∈ C. The set of Markov operators is 
losed in theweak operator topology of B(L2(X,B, µ), L2(Y, C, ν)), hen
e both J (T, S)



84 Y. DERRIENNIC ET AL.and J(T, S) are 
ompa
t (on the latter set we transport the topology of
J (T, S)). Ergodi
 joinings 
orrespond to so 
alled inde
omposable Markovoperators, i.e. to the extremal points in the set J (T, S), whi
h has a naturalstru
ture of a Choquet simplex. Note that the Markov operator 
orrespond-ing to the produ
t measure µ⊗ ν equals ΠX,Y (f) =

T
X f dµ. If one more er-godi
 automorphism R on (Z,D, η) is given and Φ̺ ∈ J (T, S), Φκ ∈ J (S, R)then Φκ ◦ Φ̺ ∈ J (T, R) and the 
orresponding joining of T and R will bedenoted by κ ◦ ̺.Whenever S = T we will write J2(T ) and Je

2(T ) instead of J(T, T ) and
Je(T, T ) respe
tively. Note that if W ∈ C(T ) then the formula µW (A × B)
= µ(A ∩ W−1B) determines a self-joining, 
alled a graph joining , of T ,and moreover µW ∈ Je

2(T ) (for W = Tn we speak about o�-diagonal self-joinings). We say that T is 2-fold simple (see [49℄, [21℄) if the only ergodi
self-joinings of T are graph joinings or the produ
t measure µ ⊗ µ. Themeasure µId will also be denoted by ∆X or ∆µ.We say that T is relatively weakly mixing with respe
t to a fa
tor A ⊂ B ifthe self-joining λ (
alled the relatively independent extension of the diagonalmeasure on A) given by
λ(A × B) =

\
X/A

E(1A | A) · E(1B | A) d(µ|A)

is ergodi
. If A1 ⊂ A is another fa
tor and T |A is relatively weakly mixingover A1 then T is still relatively weakly mixing over A1 (for this 
hain rulesee e.g. [20℄).Following [9℄ we say that two ergodi
 automorphisms T and S are disjointif J(T, S) = {µ ⊗ ν}. Re
all that Je(T, S) = {µ ⊗ ν} implies disjointnessof T and S. Given a 
lass R of ergodi
 automorphisms, we denote by R⊥the 
lass of all ergodi
 automorphisms disjoint from any member of R. Thenby a multiplier (see [12℄) of R⊥ we mean an ergodi
 automorphism ea
h ofwhose ergodi
 joinings with an automorphism belonging to R⊥ gives riseto another member of R⊥. The 
lass of multipliers of R⊥ is then denotedby M(R⊥).In what follows, we will need the following.Proposition 1 ([1℄). Let T be an ergodi
 automorphism of (X,B, µ). If
̺ ∈ Je

2(T ) and also ̺ ◦ ̺ ∈ Je
2(T ) then (T × T, ̺) is relatively weakly mixingover the two marginal fa
tors B ⊗ {∅, X} and {∅, X} ⊗ B.Assume that T is weakly mixing and ̺ ∈ Je

2(T ). Then dire
tly from the
hain rule for the relative weak mixing property we obtain the following.(1) If (T ×T, ̺) is relatively weakly mixing over the marginal fa
tors, then
(T × T, ̺) is weakly mixing.



ELF AUTOMORPHISMS 85We will also need the following simple lemma.Lemma 2. Assume that T is a weakly mixing automorphism of a stan-dard probability Borel spa
e (X,B, µ). Assume that N0 ⊂ N and the densityof N \ N0 equals zero. Assume moreover that for ea
h f, g ∈ L2(X,B, µ),
〈f ◦ Tn, g〉 → 〈f, 1〉〈1, g〉as n→∞, n ∈ N0. Assume that ̺∈ J(T ). Then for all f, g, h∈L∞(X,B, µ),\

X×X

f(Tnx)g(x)h(Tny) d̺(x, y) →
\
X

f(x)h(y) d̺(x, y)
\
X

g(x) dµ(x).

Proof. We have\
X×X

f(Tnx)g(x)h(Tny) d̺(x, y) =
\
X

f(Tnx)g(x)Φ∗
̺(h ◦ Tn)(x) dµ(x)

=
\
X

(f · Φ∗
̺(h)) ◦ Tn · g dµ

→
\
X

f · Φ∗
̺(h) dµ

\
X

g dµ =
\

X×X

f ⊗ h d̺
\
X

g dµ.

For more information on joinings we refer the reader to the monograph byE. Glasner [13℄. For the spe
tral theory of dynami
al systems see e.g. [3℄, [33℄.1.2. Sub-joinings and sub-Markov operators in in�nite measure-preserv-ing 
ase. Given two automorphisms T and S a
ting on σ-�nite standardBorel spa
es (X,B, µ) and (Y, C, ν) respe
tively, by a sub-joining of T and Swe mean ea
h positive σ-�nite T × S-invariant measure ̺ on (X × Y,B⊗ C)whose marginals ̺X and ̺Y satisfy ̺X ≤ µ and ̺Y ≤ ν. By the formula\
X×Y

f(x)g(y) d̺(x, y) =
\
Y

V (f) · g dν,

there is a one-to-one 
orresponden
e between the set of sub-joinings andthe set of sub-Markov operators V : L2(X,B, µ) → L2(Y, C, ν) intertwining
UT and US , where by a sub-Markov operator we mean a positive operator
V : L2(X,B, µ) → L2(Y, C, ν) su
h that V f ≤ 1 for all f ∈ L2(X,B, µ)satisfying 0 ≤ f ≤ 1, and V ∗g ≤ 1 for all g ∈ L2(Y, C, ν) satisfying 0 ≤ g ≤ 1.Remark 1. Note that even in the 
ase T = S, although the o�-diagonalmeasures µT n have the property that their marginals are equal to µ (equiva-lently, TX Tn(1A) dµ = µ(A) for ea
h A ⊂ X of �nite measure), the fa
t thatthe 
onstant fun
tion 1X is not integrable may 
ause that the marginals ofa weak limit ̺ of a sequen
e of o�-diagonal measures need not be equal to µ(nevertheless, we will have ̺X ≤ µ).



86 Y. DERRIENNIC ET AL.1.3. Co
y
les and 
ompa
t group extensions. Assume that T is an ergodi
automorphism of a standard probability Borel spa
e (X,B, µ). Let G bea 
ompa
t metri
 group with the σ-algebra B(G) of Borel sets and Haarmeasure mG. Let ϕ : X → G be a measurable map. It generates a 
o
y
le
ϕ( · )( · ) : Z × X → G by the formula

ϕ(n)(x) =





ϕ(Tn−1x) · ϕ(Tn−2x) · . . . · ϕ(x) if n > 0,
1 if n = 0,
(ϕ(T−1x) · . . . · ϕ(Tnx))−1 if n < 0.We denote by Tϕ the skew produ
t automorphism de�ned on (X × G,

B ⊗ B(G), µ ⊗ mG) by the formula
Tϕ(x, g) = (Tx, ϕ(x) · g).We 
all Tϕ a 
ompa
t group extension of T .Denote by τg the map on X × G given by τg(x, g1) = (x, g1g

−1). Notethat τg ∈ C(Tϕ) for ea
h g ∈ G.Compa
t group extensions have the so 
alled relative unique ergodi
ity(RUE) property: whenever the produ
t measure µ ⊗ mG is ergodi
, it isthe only Tϕ-invariant measure of (X ×G,B ⊗B(G)) whose proje
tion on Xequals µ (see e.g. [10℄).We say that a 
o
y
le ϕ : X → G is ergodi
 if Tϕ 
onsidered with
µ ⊗ mG is ergodi
. In this 
ase ergodi
 self-joinings of Tϕ whose proje
tionson X ×X are ∆X are ne
essarily graph joinings 
orresponding to τg, g ∈ G(see [21℄).1.4. Gaussian automorphisms. An ergodi
 automorphism T of a stan-dard probability Borel spa
e (X,B, µ) is 
alled Gaussian if there exists a
UT -invariant subspa
e H ⊂ L2(X,B, µ) of real-valued fun
tions generating
B and su
h that ea
h non-zero variable from H has a Gaussian distribution.For a joining theory of Gaussian automorphisms we refer the reader to [29℄(see also [3℄ for a general theory of Gaussian automorphisms). In parti
ular,it is proved in [29℄ that there is a spe
ial subset Jg

2 (T ) ⊂ Je
2(T ) 
alled theset of Gaussian self-joinings (for ̺ ∈ Jg

2 (T ), (T × T, ̺) remains a Gaussianautomorphism). Roughly speaking, this set 
orresponds to all 
ontra
tions ofthe �rst 
haos H intertwining the unitary a
tion of T on H (all o�-diagonalself-joinings µT n are in Jg
2 (T )). It follows that Jg

2 (T ) is 
losed in the weaktopology of joinings.A Gaussian automorphism T is entirely determined by the spe
tral mea-sure σ of UT on H(c) = H + iH. Moreover, T is ergodi
 i� σ is 
ontinuous.The maximal spe
tral type of T is the sum of 
onse
utive 
onvolutions σ(n)of σ, in parti
ular ergodi
ity implies weak mixing for Gaussian automor-phisms.



ELF AUTOMORPHISMS 87Ea
h variable f ∈ H, viewed as a map f : X → R, is 
alled a Gaussian
o
y
le. It is 
alled a Gaussian 
oboundary if f = g − g ◦ T for some g ∈ H.The subspa
e H 
onsists entirely of Gaussian 
oboundaries i� 1 is not inthe topologi
al support of σ ([27℄). We refer the reader to [27℄ for moreinformation about ergodi
ity of 
ir
le group extensions of the form Te2πif ,where f is a Gaussian 
o
y
le.1.5. Integral automorphisms and spe
ial �ows. Let T be an ergodi
 au-tomorphism of a standard probability Borel spa
e (X,B, µ). Assume that
f : X → N is a measurable fun
tion with �nite integral. Let Xf ⊂ X × Nbe given by ⋃

n∈N
Xn × {n}, where Xn = {x ∈ X : f(x) ≤ n}. Let Bfdenote the restri
tion of the produ
t σ-algebra of B and the σ-algebra ofall subsets of N to the set Xf . Let µf denote the restri
tion of the prod-u
t measure µ⊗

∑
n∈N

δ{n} to Xf . By the integral transformation built overthe automorphism T and under the fun
tion f we mean the transformation
Tf : (Xf ,Bf , µf ) → (Xf ,Bf , µf ) de�ned by

Tf (x, k) =

{
(x, k + 1) if f(x) < k,
(Tx, 1) if f(x) = k.Suppose that A ∈ B has positive measure. It is easy to 
he
k that (TA)τA

and
T are metri
ally isomorphi
, where TA : A → A is the indu
ed automorphismand τ : A → N stands for the �rst return time fun
tion (see [3, Chapter 1℄).Denote by mR the Lebesgue measure on R. Assume that f : X → Ris a measurable positive fun
tion su
h that TX f dµ = 1. The spe
ial�ow T f = {(T f )t}t∈R built from T and f is de�ned on the spa
e Xf =
{(x, t) ∈ X × R : 0 ≤ t < f(x)} (
onsidered with Bf , the restri
tion of theprodu
t σ-algebra, and µf , the restri
tion of the produ
t measure µ ⊗ mRof X × R). Under the a
tion of the spe
ial �ow ea
h point in Xf movesverti
ally at unit speed, and we identify the point (x, f(x)) with (Tx, 0) (seee.g. [3, Chapter 11℄). In the spe
ial 
ase where f ≡ 1 the spe
ial �ow T fa
ts on X × [0, 1) and is 
alled the suspension �ow for the automorphism T .Then we write T̂ instead of T f and (X̂, B̂, µ̂) instead of (Xf ,Bf , µf ). Let
π : X̂ = X × [0, 1) → X denote the natural proje
tion. Then the σ-algebra
π−1(B) ⊂ B̂ is (T̂ )1-invariant and π : (X̂, π−1(B), µ̂) → (X,B, µ) establishesan isomorphism between automorphisms (T̂ )1 of (X̂, π−1(B), µ̂) and T of
(X,B, µ). Finally, noti
e that the �ows T̂f and T f are isomorphi
 whenever
f : X → N.Lemma 3. Let T be an ergodi
 automorphism of (X,B, µ) and let f :
X → N be a measurable fun
tion with �nite integral. Suppose that (an) isa sequen
e of integers su
h that (T f )an → p((T f )1) weakly , where p is atrigonometri
 polynomial. Then T an

f → p(Tf ) weakly.



88 Y. DERRIENNIC ET AL.Proof. Sin
e the operators (T f )1 a
ting on L2(Xf ,Bf , µf ) and (T̂f )1a
ting on L2(X̂f , B̂f , µ̂f ) are unitarily isomorphi
,
(T̂f )an → p((T̂f )1)in the weak operator topology on L2(X̂f , B̂f , µ̂f ). Let π : X̂f = Xf × [0, 1) →

Xf be the natural proje
tion. Sin
e L2(X̂f , π−1(Bf ), µ̂f ) ⊂ L2(X̂f , B̂f , µ̂f )is an invariant subspa
e with respe
t to the operators (T̂f )an (n ∈ N),
(T̂f )an → p((T̂f )1) in the weak operator topology on L2(X̂f , π−1(Bf ), µ̂f ).Sin
e the operators Tf on L2(Xf ,Bf , µf ) and (T̂f )1 on L2(X̂f , π−1(Bf ), µ̂f )are unitarily isomorphi
, T an

f → p(Tf ) in the weak operator topology on
L2(Xf ,Bf , µf ).2. Basi
 properties of ELF automorphisms. An ergodi
 automor-phism T of a standard Borel spa
e (X,B, µ) is said to have the ELF prop-erty if {µT n : n ∈ Z} ⊂ Je

2(T ), or equivalently, the weak 
losure of the set ofMarkov operators {Tn : n ∈ Z} 
onsists of inde
omposable Markov opera-tors. For short, we will speak about ELF automorphisms .It is 
lear that ergodi
 dis
rete spe
trum automorphisms and mixingautomorphisms are examples of ELF automorphisms. By what was said inSe
tion 1.4, Gaussian automorphisms also enjoy the ELF property (see [6℄for a dire
t proof of that fa
t).The following two 
onsequen
es of Proposition 1 have already been no-ti
ed in [6℄.Proposition 4 ([6℄). If T is an ELF automorphism and if ̺ ∈

{µT n : n ∈ Z} then (T × T, ̺) is relatively weakly mixing with respe
t to thetwo natural marginal σ-algebras.Proposition 5 ([6℄). Assume that T is an ELF automorphism and let
̺ ∈ {µT n : n ∈ Z}. Let S be an ergodi
 automorphism on (Y, C, ν). Assumethat ̺1 is an ergodi
 joining of T and S. Then ̺1 ◦ ̺ is still ergodi
.2.1. Disjointness of ELF automorphisms from time-one maps of somemeasurable �ows. Proposition 5, similarly to [6℄, allows us to prove disjoint-ness of the 
lass of ELF automorphisms from automorphisms having a pie
eof integral Markov operator in the weak 
losure of its powers. Indeed, as-sume that S is an automorphism of (Y, C, ν). Let P be a probability measurede�ned on the Borel σ-algebra of C(S). We de�ne a Markov operator MPon L2(Y, C, ν) by putting

MP (f) =
\

C(S)

f ◦ R dP (R).



ELF AUTOMORPHISMS 89The integral on the right hand side is meant in the weak sense, i.e. for ea
h
f, g ∈ L2(Y, C, ν),

〈 \
C(S)

f ◦ R dP (R), g
〉

=
\

C(S)

〈f ◦ R, g〉 dP (R).

In order to see that this de�nition is 
orre
t we de�ne
〈〈f, g〉〉 =

\
C(S)

〈f ◦ R, g〉 dP (R)

and 
he
k that we have obtained a bilinear form on L2(Y, C, ν) whi
h, by theS
hwarz inequality, is bounded. Clearly, MP ∈ J2(S).Proposition 6. Let S : (Y, C, ν) → (Y, C, ν) be an ergodi
 automor-phism. Assume that there exist an in
reasing sequen
e (tn) of natural num-bers and a probability Borel measure P on C(S) su
h that
Stn → a

\
C(S)

R dP (R) + (1 − a)Φ

in the weak operator topology on B(L2(Y, C, ν)), where a > 0 and Φ ∈ J2(S).Assume that P ({R ∈ C(S) : R is weakly mixing}) > 0. Then S is weaklymixing. If moreover P is not Dira
 and either(i) P is 
on
entrated on {Si : i ∈ Z}, or(ii) P is 
on
entrated on {St : t ∈ R}, where S1 = S (i.e. we assume inparti
ular that S is embeddable in a measurable �ow),then S is disjoint from all ELF automorphisms.Proof. First, let us show that S is weakly mixing. Indeed, if f is itseigenfun
tion then
‖f‖2

L2 = |〈Stnf, f〉| →
∣∣∣a

\
C(S)

〈f ◦ R, f〉 dP (R) + (1 − a)〈Φ(f), f〉
∣∣∣.

Sin
e |〈f ◦ R, f〉| ≤ ‖f‖2 and |〈Φ(f), f〉| ≤ ‖f‖2, a 
onvexity argumentshows that we must have 〈f ◦ R, f〉 = ‖f‖2 for P -a.e. R ∈ C(S) (and also
〈Φ(f), f〉 = ‖f‖2 provided a < 1). So for su
h an R, we have f ◦ R = c(R)f(c(R) ∈ C), and sin
e R may be taken weakly mixing, f is 
onstant.Let T be an ELF automorphism on (X,B, µ). Let Ψ : L2(Y, C, ν) →
L2(X,B, µ) be an inde
omposable Markov operator intertwining S and T .Then Ψ ◦Stn = T tn ◦Ψ and by passing to a subsequen
e of (tn) if ne
essary,we �nd

Ψ ◦ (aMP + (1 − a)Φ) = Φ̺ ◦ Ψ,where ̺ = limn→∞ µT tn . In view of Proposition 5, Φ̺ ◦ Ψ remains inde
om-
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Ψ ◦ (aMP + (1 − a)Φ) = a

\
C(S)

Ψ ◦ R dP (R) + (1 − a)Ψ ◦ Φ,

and hen
e we must have Ψ ◦ R = Φ̺ ◦ Ψ for P -a.e. R ∈ C(S). This meansthat for a set of full P ⊗ P -measure of (R1, R2) ∈ C(S) × C(S), we have
R2 ◦ R−1

1 ◦ Ψ∗ = Ψ∗. Noti
e however that both assumptions (i) and (ii) andthe fa
t that P is not Dira
 imply that for some weakly mixing element
R ∈ C(S) we have R ◦ Ψ∗ = Ψ∗ and therefore Ψ = ΠY,X .Suppose now that (St)t∈R is a measurable, weakly mixing �ow a
ting on
(Y, C, ν). Suppose that for a sequen
e (rn) of real numbers with rn → ∞ wehave(2) Srn → a

\
R

St dQ(t) + (1 − a)Φ,where Q is not Dira
. By passing to a subsequen
e if ne
essary we 
an assumethat the sequen
e ({rn}) of fra
tional parts of rn 
onverges to 0 ≤ b ≤ 1.Sin
e the �ow is measurable, S{rn} → Sb in the strong operator topology.It follows that the sequen
e (S1)
[rn] = Srn ◦ S−{rn} 
onverges in the weakoperator topology and we have

(S1)
[rn] → a

\
R

St−b dQ(t) + (1 − a)Φ ◦ S−b.We have proved the following.Corollary 7. Assume that (St)t∈R is a measurable, weakly mixing �owfor whi
h (2) holds with Q whi
h is not Dira
. Then the time-one map S1is disjoint from all ELF automorphisms.Remark 2. The assumptions of Corollary 7 are satis�ed for time-onemaps of some 
lassi
al examples of spe
ial �ows over irrational rotationsand over interval ex
hange transformations (see [6℄�[8℄) and in parti
ular itis satis�ed for some smooth �ows on surfa
es (see [8℄).2.2. Fa
tors and dire
t produ
ts of ELF automorphisms. The followingproposition shows that the 
lass of ELF automorphisms is 
losed under somebasi
 operations.Proposition 8. The 
lass of ELF automorphisms is 
losed under fa
-tors and inverse limits. The dire
t produ
t of weakly mixing ELF automor-phisms remains an ELF automorphism.Proof. Closedness under taking fa
tors and inverse limits is obvious.Assume that Ti is a weakly mixing ELF automorphism of (Xi,Bi, µi),
i ≥ 1. Consider now T = T1×T2×· · · a
ting on (X1×X2×· · · , µ1⊗µ2⊗· · · ).



ELF AUTOMORPHISMS 91Suppose that Tni → Φ̺ for some ̺ ∈ J2(T ). By applying the diagonalizingpro
edure if ne
essary, we 
an assume that for ea
h j ≥ 1, Tni

j → Φ̺j
forsome ̺j ∈ Je

2(Tj). It easily follows that ̺ = ̺1 ⊗̺2 ⊗· · · and be
ause of (1),
̺ is ergodi
, whi
h 
ompletes the proof.Remark 3. Note however that an ergodi
 self-joining of an ELF auto-morphism need not be an ELF automorphism. Indeed, even if T is mixingthen an ergodi
 self-joining need not give rise to an ELF automorphism. Forexample, by Smorodinsky�Thouvenot's result from [45℄ it follows that givenan ergodi
 zero entropy automorphism S and a Bernoulli automorphism Twe 
an �nd an ergodi
 self-joining ̺ of T su
h that (T × T, ̺) has S as itsfa
tor.2.3. Lifting the ELF property to 
ompa
t group extensions. We will nowdis
uss the possibility of lifting the ELF property by a 
ompa
t group ex-tension. So assume that T is an ELF automorphism and let ϕ : X → G be a
o
y
le, where G is a 
ompa
t metri
 group. Re
all �rst that if T is mixingand the extension Tϕ is weakly mixing then Tϕ is in fa
t mixing (see [37℄).A look at a short joining proof (due to A. del Jun
o) of that fa
t gives riseto a 
riterion of lifting the ELF property.Proposition 9. Assume that T has the ELF property and ϕ : X → G isergodi
. Assume moreover that for ea
h ̺ ∈ {µT n : n ∈ Z} the 
o
y
le ϕ×ϕover (T × T, ̺) is ergodi
. Then Tϕ has the ELF property.Proof. Assume that (Tϕ)mi → Φ˜̺. We must show that ˜̺ is ergodi
.We 
an assume that mi → ∞, otherwise the result is 
lear. We then have
Tmi → Φ̺, where ̺ is the proje
tion of ˜̺ on X × X. Now, ˜̺ is a Tϕ × Tϕ-invariant measure whose proje
tion is ̺. However, by our standing assump-tion the measure ̺⊗mG ⊗mG has the same property and it is ergodi
. Theresult now follows from the relative unique ergodi
ity property for 
ompa
tgroup extensions.The above proof suggests that in general we have no 
han
e to lift theELF property and in fa
t we will loose this property when the base hasdis
rete spe
trum.Proposition 10. An ergodi
 isometri
 extension T̂ of a dis
rete spe
-trum automorphism T has the ELF property i� the extension also has dis
retespe
trum.Proof. We 
an assume that T is an ergodi
 rotation (Tx = x + x0) of a
ompa
t metri
 monotheti
 group X. Moreover assume that ϕ : X → G isan ergodi
 
o
y
le for whi
h T is the Krone
ker fa
tor and T̂ is the quotienta
tion of Tϕ on X × G/H. All we need to show is that under all theseassumptions T̂ does not have the ELF property.
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hoose a sequen
e (ni) of density 1 su
h that(3) Uni

T̂
→ 0 weakly on L2(X × G/H, mX ⊗ mG/H) ⊖ L2(X, mX),whi
h is possible be
ause T is the Krone
ker fa
tor of T̂ and therefore thespe
tral type of U

T̂
on L2(X×G/H, mX⊗mG/H)⊖L2(X, mX) is 
ontinuous.Sin
e the density of (ni) is 1, there exists a subsequen
e (mi) of (ni) su
hthat Tmi → Id. Indeed, given a neighbourhood W ∋ 0 in X, by the pointwiseergodi
 theorem for stri
tly ergodi
 systems the average time of visiting Wby the orbit of an arbitrary point of X is equal to mX(W ), hen
e positive.Therefore we 
an �nd nj = nj(W ) so that njx0 ∈ W . Letting W → {0}proves the 
laim.It follows from (3) that T̂mi 
onverges weakly to the operator E( · |X)whi
h 
orresponds to the joining ∆X ⊗ mG/H ⊗ mG/H . However, this lastjoining is not ergodi
: the fun
tion F (x, gH, x, g′H) = g−1g′H is not 
onstantbut it is T̂ × T̂ -invariant ∆X ⊗ mG/H ⊗ mG/H -a.e. Therefore, T̂ does nothave the ELF property and the result follows.The following 
orollary follows dire
tly from Proposition 10.Corollary 11. If an extension of a rotation T has the ELF property ,then the extension is relatively weakly mixing over T .Remark 4. In [52℄ there are expli
it 
onstru
tions of ELF automor-phisms whi
h are relatively weakly mixing extensions of some irrational ro-tations.Let us now show however that the 
riterion of Proposition 9 may workin some 
ases of mildly mixing ELF automorphisms whi
h are not mixing.We 
onsider symmetri
 probability measures σ on T su
h that(4) all weak 
losure points of the sequen
e {zn : n ∈ Z} in L2(T, σ) are inthe set {azn : |a| < 1, n ∈ Z}.Sin
e σ is a symmetri
 measure, the numbers a in (4) have to be real. Underthe above assumption, the Gaussian automorphism asso
iated to σ has tobe mildly mixing. Re
all that 
lassi
al Riesz produ
ts yield examples of su
hmeasures, in
luding examples whi
h are not Raj
hman measures so that theset of weak 
losure points is not trivial (see [16, Ch. II, Se
t. 7℄).Proposition 12. Assume that T is a mildly mixing Gaussian automor-phism determined by a measure satisfying (4) for whi
h a 
ertain a 6= 0 is inthe weak 
losure of 
hara
ters (su
h a T is not mixing). Take f from the �rstreal 
haos. Assume that f is not a Gaussian 
oboundary. Then T := Te2πifis still an ELF automorphism.
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e (nt) with nt → ∞. Then Tnt → Φ̺, where ̺ is the proje
-tion of ˜̺ on X×X. Without loss of generality we 
an assume that znt → a inthe weak topology of L2(T, σ) for some real a with |a| < 1. We have to provethat ˜̺∈ J2(Te2πif ) is ergodi
. If now ̺ is the produ
t measure then so is ˜̺,sin
e Te2πif is weakly mixing ([27℄) and we may apply the relative unique er-godi
ity property for 
ompa
t group extensions to 
on
lude. Note that ̺ 
an-not be a graph measure, sin
e T is assumed to be mildly mixing. Moreover,sin
e znt → a in the weak topology of L2(T, σ), Tnt restri
ted to the �rst real
haos tends to multipli
ation by a, and hen
e Φ̺ is multipli
ation by a on the�rst real 
haos. By Proposition 9 all we need to show is that Te2πif × Te2πifis ergodi
 as a T×T-extension of (T × T, ̺). Following Proposition 6 in [27℄it is su�
ient to show that the 
o
y
le lf(x) + mf(y) (with (l, m) 6= (0, 0))is not a Gaussian 
oboundary (for the Gaussian automorphism (T × T, ̺)).If for ea
h r ∈ N we put f (r)(x) = f(x) + f(Tx) + · · · + f(T r−1x) then wehave
‖lf (r)(x) + mf (r)(y)‖2

L2(̺) = (l2 + m2)‖f (r)‖2 + 2lm〈f (r)(x), f (r)(y)〉L2(̺)

= (l2 + m2)‖f (r)‖2 + 2lm
\
X

(Φ̺f
(r))(y)f (r)(y) dµ(y)

= (l2 + m2 + 2ml · a)‖f (r)‖2.Now, f is not a Gaussian 
oboundary, so ‖f (rt)‖ → ∞ along a subsequen
e
(rt) (see [27℄) and sin
e |a| < 1,

(l2 + m2 + 2ml · a)‖f (rt)‖ → ∞or equivalently
‖lf (rt)(x) + mf (rt)(y)‖L2(̺) → ∞,whi
h means (see [27℄) that indeed lf(x)+mf(y) is not a Gaussian 
obound-ary.3. Poisson automorphisms have the ELF property. In this se
tionwe will de�ne and study a spe
ial 
lass of self-joinings for the 
lass of au-tomorphisms obtained by Poisson suspension of in�nite measure-preservingmaps.3.1. Poisson suspension automorphisms. Assume that T is an automor-phism of a standard Borel spa
e (X,B, µ), where µ is σ-�nite. We denote by

T̃ the Poisson suspension automorphism a
ting on (X̃, B̃, µ̃). The points of
X̃ are in�nite 
ountable subsets x̃ = {xn : n ≥ 1}. Given a set A ∈ B of



94 Y. DERRIENNIC ET AL.�nite measure we de�ne NA : X̃ → N by putting
NA(x̃) = #{n ∈ N : xn ∈ A}.Then we de�ne B̃ as the smallest σ-algebra of subsets of X̃ for whi
h allvariables NA, µ(A) < ∞, are measurable. The measure µ̃ is de�ned by therequirement that the variables NA satisfy the Poisson law with parameter

µ(A) and moreover that for ea
h family of pairwise disjoint subsets of Xof �nite measure the 
orresponding variables are independent (see [24℄ fordetails). Finally, we let T̃ a
t by the formula T̃ ({xn}) = ({Txn}) to obtain anautomorphism of (X̃, B̃, µ̃). The spa
e L2(X̃, B̃, µ̃) admits a de
ompositioninto invariant 
haos ⊕
n≥0 H(n), where H(0) is the subspa
e of 
onstants,

H = HX = H(1) is the subspa
e generated by the 
entred variables N0
A =

NA − µ(A) and H(n) is the ortho
omplement of the sum of 
haos H(i),
0 ≤ i ≤ n − 1, in the subspa
e generated by the produ
ts of n variables ofthe form NA (see [32℄). The map 1A 7→ N0

A 
an be extended to an isometry Iof L2(X,B, µ) onto H and it 
onjugates UT with U
T̃
|H . Moreover we obtaina natural isometry between H(n) and the nth symmetri
 tensor produ
t

H⊙n of H under whi
h ⊙n
i=1N

0
Ai


orresponds to the proje
tion of ∏n
i=1 NAiin H(n).The operator U

T̃
preserves the 
haos and, for ea
h n ≥ 0, its restri
tionto H(n) 
orresponds to (U

T̃
|H)⊙n by this natural isometry. In su
h a 
ase,we will say that an operator a
ts well on the 
haos .If 0 6= f ∈ L2(X,B, µ) is an eigenfun
tion of UT 
orresponding to c(with |c| = 1), then f is an eigenfun
tion of UT 
orresponding to c. Then

I(f) ⊙ I(f ) ∈ H(2) and it is a UT̃ -invariant fun
tion. Furthermore, if σdenotes the maximal spe
tral type of U
T̃
on H (whi
h is equal to the maximalspe
tral type of UT on L2(X,B, µ)) then the maximal spe
tral type of U

T̃on the nth 
haos is equal to the nth 
onvolution σ(n) = σ ∗ · · · ∗ σ. Re
allthat σ(n) is 
ontinuous i� σ is 
ontinuous.Therefore the Poisson suspension automorphism T̃ on (X̃, B̃, µ̃) is ergodi
if and only if the spe
tral type of T on L2(X,B, µ) is 
ontinuous; equivalently,i� there are no T -invariant subsets of X of �nite positive measure or else i�
L2(X,B, µ) does not 
ontain non-zero T -invariant fun
tions. In this 
ase T̃is weakly mixing. Finally, note that, in parti
ular, if a Poisson suspensionautomorphism is ergodi
 then ne
essarily the measure µ is in�nite.3.2. Fa
tors and Poisson joinings. If X1 is a T -invariant subset of X,then T̃ is the dire
t produ
t of two Poisson suspensions of T a
ting on X1 andon X \X1, in parti
ular, T̃ |X1 is a fa
tor of T̃ . Assume now that S a
ting onanother σ-�nite standard Borel spa
e (Y, C, ν) is a fa
tor of (X1, µ|X1 , T |X1)in the sense that there is a measurable map F : X1 → Y su
h F∗(µ|X1) = ν
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and F ◦ T = S ◦ F on X1. Then S̃ a
ting on (Ỹ , C̃, ν̃) is a fa
tor of T̃ |X1 viathe map F̃ : X̃1 → Ỹ given by F̃ ({xn}) = {F (xn)}.Then the asso
iated operator V
F̃

: L2(Ỹ , ν̃) → L2(X̃1, µ̃|X1), g 7→ g ◦ F̃ ,a
ts well on the 
haos.By Poisson fa
tors of T̃ we will mean fa
tors S̃ obtained as above. Wewill also say that the map F is a partial map of X to Y semi-
onjugating Tand S. Note that if F : X1 → Y establishes a semi-
onjugation of T and Sthen the asso
iated isometry VF is a sub-Markov operator from L2(Y, ν) to
L2(X1, µ|X1).Assume that T and S are automorphisms of σ-�nite spa
es (X,B, µ)and (Y, C, ν) respe
tively. A joining η of T̃ and S̃ is 
alled a Poisson join-ing if the asso
iated Markov operator Ṽ = Φη a
ts well on the 
haosand, via the natural isomorphisms of the �rst 
haos HX of (X̃, B̃, µ̃) and
HY of (Ỹ , C̃, ν̃) with L2(X,B, µ) and L2(Y, C, ν), the operator Ṽ |HX


or-responds to the sub-Markov operator V asso
iated to a sub-joining of Tand S.Proposition 13. The 
lass of Poisson joinings between T̃ and S̃ is
losed in the weak topology of joinings , in parti
ular , the 
lass of Poissonself-joinings of T̃ 
ontains the weak 
losure of {T̃n : n ∈ Z}.Moreover , the relative produ
t of T̃ over a Poisson fa
tor is a Poissonself-joining.Proof. The �rst part follows dire
tly from the fa
t that the set of sub-Markov operators is 
losed in the weak operator topology.To prove the se
ond part take a Poisson fa
tor whi
h is determined by apartial fun
tion F : X1 ⊂ X → Y . Then the Markov operator 
orrespondingto the relative produ
t over this fa
tor is given by V
F̃
◦V ∗

F̃
◦P

L2(X̃1)
. Sin
e V

F̃
,

V ∗
F̃
, P

L2(X̃1)
a
t well on the 
haos and their restri
tions to the �rst 
haos 
annaturally be identi�ed with VF , V ∗

F , L2(X) ∋ f 7→ f |X1 ∈ L2(X1) resp., soare sub-Markov operators, the 
omposition V
F̃
◦V ∗

F̃
◦P

L2(X̃1)
is the asso
iatedMarkov operator of a Poisson self-joining.3.3. Ergodi
ity of Poisson joinings. Assume that ̺ is a sub-joining of

T and S and denote by V the 
orresponding sub-Markov operator from
L2(X,B, µ) to L2(Y, C, ν). We will now pass to a 
onstru
tion of a Poissonjoining η of T̃ and S̃ 
orresponding to ̺, i.e. if we put Ṽ = Φη then Ṽ |H ≡ V .This Poisson joining turns out to be unique, so the stru
ture of Poissonjoinings will be understood.Set µ′ = µ− ̺X and ν ′ = ν − ̺Y . Let us de�ne a σ-�nite standard spa
e
(Z, ̺′) as a formal disjoint union of (X, µ′), (Y, ν ′) and of (X × Y, ̺). Then



96 Y. DERRIENNIC ET AL.we de�ne R on (Z, ̺′) by putting R|X = T , R|Y = S and R|X×Y = T × S.Sin
e ̺X and ̺Y are T - and S-invariant respe
tively, ̺′ is R-invariant.We now have the partial mapping F : X ∪ (X × Y ) ⊂ Z → X whi
h to
x ∈ X or to (x, y) ∈ X×Y asso
iates x, and for ea
h A ⊂ X of �nite measurewe have ̺′(F−1(A)) = µ′(A) + ̺X(A) = µ(A). Clearly, F ◦R = T ◦ F , so Festablishes a semi-
onjugation of R and T . The mapping G : Y ∪ (X ×Y ) ⊂
Z → Y whi
h to y ∈ Y or to (x, y) ∈ X × Y asso
iates y has similarproperties. Hen
e, the two maps F̃ : Z̃ → X̃ and G̃ : Z̃ → Ỹ are fa
tormappings of R̃ to T̃ and S̃ respe
tively. It follows that (F̃ , G̃) : Z̃ → X̃ × Ỹde�nes a joining η = (F̃ , G̃)∗( ˜̺′) of T̃ and S̃, that is, for ea
h f ∈ L2(X̃, B̃, µ̃)and g ∈ L2(Ỹ , C̃, ν̃) we have\

f(x̃)g(ỹ) dη(x̃, ỹ) =
\
f ◦ F̃ · g ◦ G̃ d ˜̺′.It follows that the Markov operator asso
iated to η is equal to Ṽ = V ∗

G̃
V

F̃
.Hen
e, Ṽ a
ts well on the 
haos and 
learly its restri
tion to HX 
an benaturally identi�ed with V ∗

GVF . Let us now show that V ∗
GVF = V . Indeed,take A ⊂ X and B ⊂ Y of �nite measure. Noti
e that 1A ◦ F · 1B ◦ Gequals zero outside of X × Y , and on X × Y this fun
tion is equal to 1A×B.Therefore\

V ∗
GVF1A · 1B dν =

\
1A ◦ F · 1B ◦ Gd̺′ = ̺(A × B) =

\
V 1A · 1B dν,when
e V ∗

GVF = V .Theorem 14. Ea
h Poisson joining of two ergodi
 Poisson suspensionautomorphisms remains ergodi
. In parti
ular , ea
h ergodi
 Poisson suspen-sion automorphism has the ELF property.Proof. Noti
e that the se
ond assertion follows from the �rst one andProposition 13.Assume that T̃ and S̃ are ergodi
. It follows that X and Y have noinvariant sets of �nite positive measure. Let us show that in Z there are no
R-invariant sets of �nite positive ̺′-measure. Indeed, suppose that h = 1C ∈
L2(Z, ̺′) is R-invariant. Then V ∗

F h is T -invariant, so equal to zero µ-a.e. Inparti
ular for ea
h subset A ⊂ X of �nite measure we have
0 = 〈V ∗

F h,1A〉 = 〈h, VF (1A)〉 =
\
h · (1A ◦ F ) d̺′that is, ̺′(C ∩ F−1(A)) = 0. Sin
e F−1(A) is a formal disjoint union of

A and A × Y , ̺′(C ∩ X) = 0 and by a similar argument ̺′(C ∩ Y ) = 0together with ̺′(C ∩ (A×B)) = 0 for ea
h A ⊂ X, B ⊂ Y of �nite measure.Therefore ̺′(C) = 0. It follows that the Poisson suspension R̃ of R is ergodi
and therefore its fa
tor (T̃ × S̃, η) remains ergodi
.



ELF AUTOMORPHISMS 97Remark 5. Independently, using di�erent arguments, the result on er-godi
ity of Poissonian joinings has also been proved by E. Roy in [36℄.4. Self-joinings of symmetri
 α-stable automorphisms. In thisse
tion we will de�ne and study α-stable self-joinings for α-stable automor-phisms, i.e. automorphisms given by stationary ergodi
 symmetri
 α-stablepro
esses (see [17℄, [30℄, [44℄). We will show that ea
h ergodi
 symmetri

α-stable automorphism has the ELF property.4.1. Auxiliary lemmas. The proofs of the following two elementary in-equalities are slight adaptations of the proofs from [44, pp. 91�92℄.Lemma 15. If 0 < α < 1 then for all x, y ∈ R we have(6) |x|α + |y|α − |x + y|α ≥ (2 − 2α) min(|x|α, |y|α).If 1 ≤ α < 2 then for all x, y ∈ R we have(7) 2(|x|α + |y|α) − (|x + y|α + |x − y|α) ≥ 2(2 − 2α/2) min(|x|α, |y|α).In parti
ular, (6) implies(8) | |x + y|α − |y|α| ≤ |x|α for x, y ∈ R and 0 < α ≤ 1,and by the Hölder inequality(9) |x + y|α ≤ max(1, 2α−1)(|x|α + |y|α) for x, y ∈ R and 0 < α ≤ 2.The following result is a 
onsequen
e of (8) and the Hölder inequality.Lemma 16. Assume that 0 < α ≤ 2. Let (Ω,F , m) be a �nite measurespa
e. Let (An)n≥1 ⊂ F . Assume that (fn), (gn) ⊂ Lα(Ω, m) satisfy\

An

|fn|
α dm → 0 and \

Ω

|gn|
α dm = O(1) as n → ∞.Then \

An

(|fn + gn|
α − |gn|

α) dm → 0 as n → ∞.

4.2. Symmetri
 α-stable pro
esses. Re
all that a real random variable
X has a stable distribution if for any a, b > 0 we 
an �nd c > 0 and a realnumber d su
h that the distributions of aX1 + bX2 and of cX + d are thesame, where X1, X2 are independent 
opies of X (one proves then that thereexists α = α(X), 0 < α ≤ 2, su
h that c = (aα + bα)1/α). In what follows wewill 
onsider only the symmetri
 
ase (i.e. the distribution of X and of −Xare the same, 
f. the Gaussian 
ase). In this 
ase, the 
hara
teristi
 fun
tionof X 6= 0 is of the form E(eitX) = e−|t|ασ for some positive σ (t ∈ R).Let 0 < α ≤ 2. Let S be an arbitrary 
ountable set. Let X = (Xs)s∈Sbe a pro
ess de�ned on a probability spa
e (Ω,F , P ). We say that Xis (symmetri
) α-stable if ea
h �nite linear 
ombination Y =

∑m
i=1 aiXsi



98 Y. DERRIENNIC ET AL.(ai ∈ R, i = 1, . . . , m) is a symmetri
 α-stable variable, i.e. there exists
σ ≥ 0 su
h that EeitY = e−|t|ασ for all t ∈ R (and σ > 0 whenever Y 6= 0).We then write

((Y ))α = σ1/α.Remark 6. For 1 ≤ α < 2 (α = 2 leads to the Gaussian 
ase) ((Y ))αturns out to be a norm in the Bana
h spa
e ⋂
0<r<α Lr(Ω, P ), and for ea
h

0 < r < α there exists c = cα,r su
h that ((Y ))α = cr,α‖Y ‖r for ea
h Y whi
his α-stable. For 0 < α < 1 in a similar manner we obtain a Fré
het spa
e.The following theorem has been proved in [30, pp. 127�128℄.Theorem 17. Assume that 0 < α ≤ 2. Assume moreover that X =
(Xs)s∈S is an α-stable pro
ess. Then there exists a �nite positive Borel mea-sure (
alled a spe
tral measure of X) m on RS su
h that

E exp
(
i

n∑

j=1

ajXsj

)
= exp

(
−

1

2

\
RS

∣∣∣
n∑

j=1

ajxsj

∣∣∣
α

dm(x)

)

for arbitrary a1, . . . , an ∈ R and s1, . . . , sn ∈ S, where x = (xs)s∈S.Remark 7. It follows that ((
∑n

j=1 ajXsj
))α

α = 1
2

T
RS |

∑n
j=1ajxsj

|αdm(x).Remark 8. When 0 < α < 2, the measure m is not unique.4.3. α-stable automorphisms. We say that an automorphism T of a stan-dard probability Borel spa
e is α-stable if there exists a linear spa
e B0 ofreal fun
tions on X su
h that1. B(B0) = B,2. for ea
h 0 6= f ∈ B0, f is an α-stable variable,3. B0 is T -invariant.The following 
riterion as well as the method of proof are very 
lose to theergodi
ity 
riteria in [17℄ and [15℄.Proposition 18. T is ergodi
 i� for ea
h f, g ∈ B,
((f ◦ Tn − g))α

α → ((f))α
α + ((g))α

αalong a subsequen
e of n's whose 
omplement has density zero. Moreover , if
T is ergodi
 then T is weakly mixing.4.4. Self-joinings of ergodi
 α-stable automorphisms. From now on weassume that T is an ergodi
 α-stable automorphism of (X,B, µ) and B is its
α-stable subspa
e.Assume that ̺ ∈ J(T ). We say that this self-joining is α-stable if thevariable F (x, y) = f(x) + g(y) as a variable on (X × X, ̺) is α-stable forea
h f, g ∈ B.
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ording to the de�nition of ̺ the automorphism T × Ta
ting on (X × X,B ⊗ B, ̺) is α-stable with its α-stable spa
e being the
losure of B0(̺) = {f(x) + g(y) : f, g ∈ B}.In this se
tion we will prove that ea
h ergodi
 α-stable automorphismhas the ELF property.Proposition 19. Let T be an ergodi
 α-stable automorphism. Assumethat Φ = limt→∞ UT nt , Φ = Φ̺. Then ̺ is α-stable.Proof. Take f, g ∈ B and s ∈ R. We have\
X×X

eis(f(x)+g(y)) d̺(x, y) =
\

X×X

eisf(x)eisg(y) d̺(x, y)

=
\
X

Φ(eisf )(y)eisg(y) dµ(y) = lim
t→∞

\
X

eisf◦T nt
· eisg dµ

= lim
t→∞

\
X

eis(f◦T nt+g) = lim
t→∞

e−|s|α((f◦T nt+g))α
α .Hen
e for some σ ≥ 0 and any s ∈ R,

lim
t→∞

e−|s|α((f◦T nt+g))α
α = e−|s|ασ.It follows easily that if σ = 0 then f(x)+g(y) = 0 for ̺-a.e. (x, y) ∈ X×X.From now on we �x N0 ⊂ N su
h that N \ N0 has density zero and forea
h f, g ∈ B,

((f ◦ Tn − g))α
α → ((f))α

α + ((g))α
αas n → ∞, n ∈ N0 (whi
h uses the fa
t that T is weakly mixing).Using Proposition 18 and the de�nition of an α-stable self-joining weobtain the following.Lemma 20. Assume that T is an ergodi
 α-stable automorphism with Bits α-stable subspa
e and N0 as above. Assume that ̺ ∈ J(T ) is α-stable.Then ̺ ∈ Je(T ) i� for ea
h f, g, h, j ∈ B,

((f(Tnx) + g(Tny)−h(x)− j(y)))α
α,̺ → ((f(x) + g(y)))α

α,̺ + ((h(x)+ j(y)))α
α,̺as n → ∞, n ∈ N0.We 
an now apply Lemma 2 to eif , eig, eih and to eif , eig, eij to obtainthe following.Lemma 21. Assume that T is an ergodi
 α-stable automorphism with Bits α-stable subspa
e and N0 as above. Assume that ̺ ∈ J(T ) is α-stable.Then for ea
h f, g, h, j ∈ B,

((f(Tnx) + g(Tny) − h(x)))α
α,̺ → ((f(x) + g(y)))α

α,̺ + ((h))α
α,(10)

((f(Tnx) + g(Tny) − j(y)))α
α,̺ → ((f(x) + g(y)))α

α,̺ + ((j))α
α,(11)as n → ∞, n ∈ N0.



100 Y. DERRIENNIC ET AL.Theorem 22. Assume that T is an ergodi
 α-stable automorphism with
B its α-stable subspa
e and N0 as above. Assume that ̺ ∈ J(T ) is α-stable.Then ̺ ∈ Je

2(T ).Proof. All we need to show is that (see Lemma 20)(12) ((F ◦ (T × T )n − (H + J)))α
α,̺ → ((F ))α

α,̺ + ((H + J))α
α,̺as n → ∞, n ∈ N0, where F (x, y) = f(x) + g(y), H(x, y) = h(x), J(x, y) =

j(y) and f, g, h, j ∈ B. In view of Lemma 21 we already have
((F ◦ (T × T )n ± H))α

α,̺ → ((F ))α
α,̺ + ((H))α

α,̺,(13)

((F ◦ (T × T )n ± J))α
α,̺ → ((F ))α

α,̺ + ((J))α
α,̺,(14)as n → ∞, n ∈ N0. In parti
ular, for 1 ≤ α < 2 we have

((F ◦(T ×T )n−H))α
α,̺+((F ◦(T ×T )n+H))α

α,̺ → 2(((F ))α
α,̺+((H))α

α,̺),(15)

((F ◦(T ×T )n−J))α
α,̺+((F ◦(T ×T )n +J))α

α,̺ → 2(((F ))α
α,̺+((J))α

α,̺),(16)as n → ∞, n ∈ N0.Let S = Z ∪ {a, b} and put
Xt =





F ◦ (T × T )n if t = n ∈ Z,
H if t = a,
J if t = b.We hen
e obtain a pro
ess (Xs)s∈S with variables de�ned on (X×X, ̺). Notethat ea
h �nite linear 
ombination of these variables has an α-stable law. Itfollows from Theorem 17 that there exists a �nite positive Borel measure mon RS = RZ × Ra × Rb su
h that

(( p∑

j=1

ajXsj

))α

α,̺
=

1

2

\
RS

∣∣∣
p∑

j=1

ajxsj

∣∣∣
α

dm(x),

where x ∈ RS , s1, . . . , sp ∈ S and a1, . . . , ap ∈ R.For 1 ≤ α < 2, using Lemma 15, we obtain\
RS

(2(|xn|
α + |xa|

α) − (|xn − xa|
α + |xn + xa|

α)) dm(x)

≥ 
onst \
RS

min(|xn|
α, |xa|

α) dm(x),while for 0 < α < 1, using Lemma 15 we obtain\
RS

(|xn|
α + |xa|

α − |xn + xa|
α) dm(x) ≥ 
onst \

RS

min(|xn|
α, |xa|

α) dm(x).Note that both these inequalities are also true if we repla
e the fun
tion
x 7→ xa by x 7→ xb, and moreover the left hand sides tend to zero as n → ∞,
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n ∈ N0 (by (15) and (16)). Thus(17) \
RS

min(|xn|
α, |xa|

α) dm(x) → 0 as n → ∞, n ∈ N0and similarly(18) \
RS

min(|xn|
α, |xb|

α) dm(x) → 0 as n → ∞, n ∈ N0.Set
A1,n = {x ∈ RS : |xn| ≤ |xa|},

A2,n = {x ∈ RS : |xa| < |xn| and |xn| ≤ |xb|},

A3,n = {x ∈ RS : |xa| < |xn| and |xb| < |xn|}.In view of (17), \
A1,n

|xn|
α dm(x) → 0 as n → ∞, n ∈ N0.

Using Lemma 16 with An = A1,n, fn(x) = xn and gn(x) = −(xa + xb) weobtain \
A1,n

(|xn − (xa + xb)|
α − |xa + xb|

α) dm(x) → 0,

when
e(19) \
A1,n

(|xn − (xa + xb)|
α − (|xn|

α + |xa + xb|
α)) dm(x) → 0

as n → ∞, n ∈ N0.Using (18) we �nd that TA2,n
|xn|

α dm(x) → 0, and it follows by theargument as above that(20) \
A2,n

(|xn − (xa + xb)|
α − (|xn|

α + |xa + xb|
α)) dm(x) → 0

as n → ∞, n ∈ N0.Applying (17) and (18) on
e more we see that\
A3,n

|xa|
α dm(x) → 0 and \

A3,n

|xb|
α dm(x) → 0,

hen
e, in view of (9),TA3,n
|xa + xb|

α dm(x) → 0 as n → ∞, n ∈ N0. We nowuse Lemma 16 with An = An,3, fn(x) = −(xa + xb) and gn(x) = xn. Wehen
e obtain \
A3,n

(|xn − (xa + xb)|
α − |xn|

α) dm(x) → 0,
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e(21) \
A3,n

(|xn − (xa + xb)|
α − (|xn|

α + |xa + xb|
α)) dm(x) → 0as n → ∞, n ∈ N0.Putting together (19), (20) and (21) we 
on
lude that\

RS

(|xn − (xa + xb)|
α − (|xn|

α + |xa + xb|
α)) dm(x) → 0as n → ∞, n ∈ N0. Thus (12) holds and our proof is 
omplete.Corollary 23. Assume that T is an ergodi
 α-stable automorphism.Then T has the ELF property.Remark 10. In the re
ent PhD thesis [36℄, E. Roy 
onsiders automor-phisms given by stationary in�nitely divisible (ID) pro
esses (for simpli
ityof notation here and below we assume that su
h a pro
ess has no Gauss-ian part), hen
e in parti
ular the 
lass 
ontaining all symmetri
 α-pro
esses(0 < α < 2). He then studies ID-joinings of su
h automorphisms and provesergodi
ity of su
h joinings whenever the joined ID-automorphisms are er-godi
. It follows that ergodi
 ID-automorphisms have the ELF property. Hismethod of studying ergodi
 properties of ID-automorphisms is 
ompletelydi�erent from the method presented in this se
tion, and is based on a deeptheorem of Maruyama (see [31℄): ea
h ID-pro
ess 
an be represented as astationary pro
ess given by a 
ertain sto
hasti
 integral in the Poisson sus-pension given by the Lévy measure of the original pro
ess. A study of thePoisson suspension automorphism over the Lévy measure is then the maintool of [36℄. In parti
ular, it follows from [36℄ that ID-automorphisms arefa
tors of Poisson suspension automorphisms.5. 2-fold simpli
ity and the ELF property. In this se
tion we will
ompare the 2-fold simpli
ity property and the ELF property. Clearly, the in-teresting 
ase is when automorphisms under 
onsideration are weakly mixingbut not mixing. In this 
ase we will show a disjointness result.Some auxiliary fa
ts are needed.Lemma 24. Assume that T is an ergodi
 automorphism of (X,B, µ).Assume moreover that the 
losure of the set of powers of T in the weakoperator topology satis�es(22) {Tn : n ∈ Z} ⊂ C(T ) ∪ {ΠX}.Then either

{Tn : n ∈ Z} ⊂ C(T )and T has dis
rete spe
trum, or Tn → ΠX and T is mixing.
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G := {Tn : n ∈ Z} ∩ C(T ),whi
h is a topologi
al monotheti
 group (re
all that on C(T ) the weak andstrong topologies 
oin
ide). Sin
e G is monotheti
, it is either 
ompa
t, orisomorphi
 to Z, or not lo
ally 
ompa
t. In the �rst 
ase it is well-knownthat T has dis
rete spe
trum. Suppose that T is not mixing. Then there is aweak limit point of powers of T di�erent from ΠX . In view of (22) this limitpoint must be a graph joining, and therefore G is not isomorphi
 to Z. Now,note that by adding ΠX to G we obtain a one-point 
ompa
ti�
ation of G,so G is lo
ally 
ompa
t, a 
ontradi
tion.The assumptions of Lemma 24 are always satis�ed for 2-fold simple ELFmaps and therefore we have proved the following.Lemma 25. Assume that T is weakly mixing. If T is 2-fold simple andhas the ELF property , then T is mixing.Next we turn to fa
tors of a 2-fold simple automorphism. Re
all(see [21℄, [49℄) that a 2-fold simple map is a 
ompa
t group extension ofany of its non-trivial fa
tors.Lemma 26. Assume that T is a weakly mixing , but non-mixing , 2-foldsimple automorphism. Then no non-trivial fa
tor of T is an ELF automor-phism.Proof. Suppose that {∅, X} ( A ⊂ B and A is an ELF fa
tor. Notethat A is still not mixing by Vee
h's theorem ([49℄). Let T |A be the quotienta
tion of T on (X/A,A, µ|A). It is an ELF automorphism, so in view ofProposition 4, ea
h self-joining λ in the weak 
losure of powers of T |A isrelatively weakly mixing with respe
t to the two marginal σ-algebras.On the other hand, by Lemma 25, T |A is not 2-fold simple, and whatis more, in view of Lemma 24, in the weak 
losure of the powers of T |A wemust �nd a self-joining di�erent from the produ
t measure and from anygraph measure. However, sin
e this joining is ergodi
, it is the image of agraph joining of T a
ting on B. In other words, this joining, as an a
tion, isisomorphi
 to the a
tion of T on A∨RA for some R ∈ C(T ). However, sin
e

B → A is a 
ompa
t group extension, A∨RA → A is a non-trivial isometri
extension, so it 
annot be relatively weakly mixing, a 
ontradi
tion.We are now able to prove a disjointness result.Proposition 27. Assume that T is a weakly mixing 2-fold simple au-tomorphism whi
h is not mixing. Then T is disjoint from an arbitrary ELFautomorphism.



104 Y. DERRIENNIC ET AL.Proof. Let S be an ELF automorphism a
ting on (Y, C, ν). Assume that
Φ : L2(X,B, µ) → L2(Y, C, ν) is a non-trivial (Φ 6= ΠX,Y ) inde
omposableMarkov operator intertwining T and S. Consider the subalgebraspan{Φ∗(g1) · . . . · Φ

∗(gn) : gi ∈ L∞(Y, C, ν), i = 1, . . . , n, n ≥ 1}of L∞(X,B, µ). By a result of Zimmer ([53℄) there exists A ⊂ B su
h that
L2(A) = span{Φ∗(g1) · . . . · Φ

∗(gn) : gi ∈ L∞(Y, C, ν), i = 1, . . . , n, n ≥ 1}and sin
e the fun
tion algebra is T -invariant, A is a fa
tor of T . Sin
e Φ isnon-trivial, A is a non-trivial fa
tor of T . By Vee
h's theorem ([21℄, [49℄),
A is given as the �xed points of the a
tion of a 
ompa
t group H = H(A) :=
{R ∈ C(T ) : R|A = Id} on B.We will now show that the a
tion of T on A has the ELF property, whi
his in 
on�i
t with Lemma 26. Take any sequen
e (nt) and suppose that Tnt(weakly) 
onverges to a self-joining di�erent from ΠX . We have

Tnt → a
\

C(T )

R dP (R) + (1 − a)ΠX ,

where a > 0. By passing to a further subsequen
e if ne
essary we obtain
Φ ◦

(
a
\

C(T )

R dP (R) + (1 − a)ΠX

)
= W ◦ Φ,

where by Proposition 5, W ◦Φ is still inde
omposable (that is, it 
orrespondsto an ergodi
 joining). Sin
e
Φ ◦

(
a
\

C(T )

R dP (R) + (1 − a)ΠX

)
= a

\
C(T )

Φ ◦ R dP (R) + (1 − a)ΠX,Y ,

we have a = 1 and \
C(T )

Φ ◦ R dP (R) = W ◦ Φ.

It follows that for (R1, R2) belonging to a subset of C(T ) × C(T ) of full
P ⊗ P -measure we have

Φ ◦ R1 ◦ R−1
2 = Φ,or equivalently

R2 ◦ R−1
1 ◦ Φ∗ = Φ∗.But R2 ◦ R−1

1 preserves the produ
t of fun
tions, and therefore R2 ◦ R−1
1 |Ais the identity map, i.e. R2 ◦R−1

1 ∈ H. It follows that there exists R′ ∈ C(T )su
h that
P (R′H) = 1.



ELF AUTOMORPHISMS 105If now f, g ∈ L∞(A) then
〈f ◦ Tnt , g〉 →

〈( \
C(T )

R dP (R)
)
f, g

〉
=

\
C(T )

〈Rf, g〉 dP (R) = 〈R′f, g〉.We know that the image on A⊗A of the measure determined by the Markovoperator TR dP 
orresponds to E( · | A)◦R′ and sin
e the latter is the restri
-tion of µR′ to A⊗A, it is inde
omposable. Hen
e A has the ELF property.Remark 11. T. de la Rue [39℄ has shown that Gaussian automorphismsare never of rank 1. Gaussian automorphisms enjoy the ELF property. We
onje
ture that no weakly mixing, non-mixing rank 1 automorphism has theELF property.Let us re
all that if T is rank 1 then by a result of Ryzhikov ([40,Thm. 3.1℄) for ea
h ergodi
 self-joining ̺ of T there exists a sequen
e (nt)su
h that
Tnt → aΦ̺ + (1 − a)Φη,where a > 0 (η ∈ J2(T )). It follows that if T is rank 1 and has the ELFproperty, then (by Proposition 4) T is semisimple (in the sense of [20℄).We �nish this se
tion by showing that the minimal self-joinings (MSJ)automorphisms (see [37℄ for the de�nition) whi
h are not mixing are 
on-tained in the 
lass of multipliers of ELF⊥. The proof is similar in spirit tothe proof of Theorem 5.3 in [41℄.Proposition 28. Let T be an MSJ automorphism whi
h is not mixing.Then T belongs to M(ELF⊥).Proof. Sin
e T has the MSJ property, by the basi
 lemma on multi-pliers ([28℄) all we need to show is that the Cartesian square T × T is dis-joint from any ELF automorphism. Using now the 
riterion for disjointnessfrom [29℄ (and the fa
t that T has the MSJ property) it is enough to showthat no fa
tor of T×∞ has the ELF property. A fa
tor of T×∞ 
an be ob-tained only from permutations of �nitely many 
oordinates ([37℄), that is,it is of the form T×k a
ting on X × · · · × X︸ ︷︷ ︸

k

/Sk for some k ≥ 1, where Skstands for the group of all permutations of k 
oordinates. Suppose now thatsu
h a fa
tor has the ELF property (re
all that a fa
tor of an ELF automor-phism remains an ELF automorphism). Denoting by F the fa
tor σ-algebra,we seek a 
ontradi
tion.Sin
e T is not mixing, there exists a sequen
e (nj) su
h that
Tnj → a

∞∑

n=−∞

anTn + (1 − a)ΠX ,where 0 < a ≤ 1, an ≥ 0, ∑∞
n=−∞ an = 1 and either



106 Y. DERRIENNIC ET AL.(A) a < 1 and then am0 6= 0 for some m0, or(B) a = 1 and then there are m1 6= m2 su
h that am1 6= 0 6= am2 .We now 
ontinue the proof assuming (B). We have
(T ×· · ·×T )nj → Φ := akak

m1
Tm1 ⊗· · ·⊗Tm1 +akak

m2
Tm2 ⊗· · ·⊗Tm2 +bΘ,where Θ is a Markov operator. Sin
e (T × · · · × T )ni preserves the subspa
e

L2(F), so does the weak limit Φ, and sin
e the �rst two summands of thelimit also preserve L2(F), so does Θ. Therefore,
Φ|L2(F) = akak

m1
Tm1⊗· · ·⊗Tm1 |L2(F)+akak

m2
Tm2⊗· · ·⊗Tm2 |L2(F)+bΘ|L2(F).Sin
e T×∞ restri
ted to F has the ELF property, the Markov operator

Φ|L2(F) is inde
omposable in J2(T
×∞|F ). It follows that all summands onthe right hand side of the above equality are equal. In parti
ular,

Tm1 ⊗ · · · ⊗ Tm1 |F = Tm2 ⊗ · · · ⊗ Tm2 |F ,so Tm2−m1 ⊗ · · · ⊗ Tm2−m1 |F = Id, whi
h is not possible.In 
ase (A) we pro
eed in the same way working in the weak limit withthe operators akak
m0

Tm0 ⊗ · · · ⊗ Tm0 and (1 − a)kΠXk .6. Disjointness of interval ex
hange transformations from ELFautomorphisms. In this se
tion we will study disjointness of interval ex-
hange transformations from the 
lass of ELF automorphisms.6.1. Interval ex
hange transformations. Rauzy indu
tion. Re
all that(see e.g. [3, Chapter 5℄) an m-interval ex
hange transformation is a Lebesguemeasure-preserving automorphism of [0, 1) given by a probability ve
tor
(λ1, . . . , λm) together with a permutation π of {1, . . . , m}. The unit inter-val [0, 1) is partitioned into m subintervals of lengths λ1, . . . , λm whi
h arerearranged a

ording to the permutation π. For some basi
 properties of in-terval ex
hange transformations (IET) we refer the reader to [3, Chapter 5℄.Katok [22℄ proves that IET's have no mixing fa
tors. In fa
t, an analysis ofKatok's proof shows that IET's are disjoint from all mixing automorphisms(
f. [8℄). An IET 
an be weakly mixing, and the problem of �how many�IET's are weakly mixing was one of the most important ones in this theory(see [51℄). Quite re
ently, in a deep paper [2℄ Avila and Forni give a posi-tive answer to Vee
h's 
onje
ture: under some ne
essary restri
tions on thepermutation, for almost all 
hoi
es of probability ve
tors, the 
orrespond-ing IET is weakly mixing. Re
all also that some IET's 
an be even 2-foldsimple automorphisms (see [18℄, [4℄, [5℄). In this se
tion we will prove thatfor some spe
ial permutations almost all IET's are disjoint from all ELFautomorphisms.



ELF AUTOMORPHISMS 107Fix m > 1, and let S0
m denote the set of all irredu
ible permutations of

{1, . . . , m}, i.e. su
h that π{1, . . . , k} = {1, . . . , k} implies k = m. Set
Λm = {λ ∈ Rm : λj > 0, 1 ≤ j ≤ m}.Given λ ∈ Λm put

β0(λ) = 0, βj(λ) =

j∑

i=1

λi,

|λ| =

m∑

i=1

λi, Iλ
j = [βj−1(λ), βj(λ)) ⊂ Iλ = [0, |λ|),for 1 ≤ j ≤ m. We also de�ne a ve
tor λπ, where λπ

j = λπ−1j , 1 ≤ j ≤ m.With the notation as above, given (λ, π) ∈ Λm×S0
m denote by T = T(λ,π)the 
orresponding interval ex
hange transformation of Iλ, i.e.

T(λ,π)x = x + βπ(i)−1(λ
π) − βi−1(λ)whenever x ∈ Iλ

i , 1 ≤ i ≤ m.We will now re
all the Rauzy indu
tion (see the original papers [34℄,[48℄, [50℄, [51℄). Let Z(λ, π) = [0, max(βm−1(λ), βm−1(λ
π))). Then the in-du
ed transformation TZ(λ,π) : Z(λ, π) → Z(λ, π) is an m-interval ex
hangetransformation determined by a pair I(λ, π) ∈ Λm × S0

m. This de�nes thetransformation I : Λm × S0
m → Λm × S0

m (see [34℄).For ea
h k = 1, . . . , m de�ne a permutation τk by
τk(j) =





j for 1 ≤ j ≤ k,
j + 1 for k < j < m,
k + 1 for j = m.G. Rauzy [34℄ has de�ned useful maps a, b : S0

m → S0
m by

a(π) = π ◦ τ−1
π−1(m)

, b(π) = τπ(m) ◦ π.These maps generate a group of maps of S0
m, any orbit of whi
h is 
alled aRauzy 
lass. We asso
iate to π and c = a or b the m × m matri
es A(π, c)su
h that

A(π, a)λ = (λ1, . . . , λπ−1m−1, λπ−1m +λπ−1m+1, λπ−1m+2, . . . , λm, λπ−1m+1),

A(π, b)λ = (λ1, . . . , λm−1, λm + λπ−1m).De�ne
c(λ, π) =

{
a if λm < λπ−1m,
b if λm > λπ−1m.Then

I(λ, π) = (A−1λ, c(π)),
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m. Then In(λ, π) =

(λ(n), π(n)), where
π(n) = cn ◦ cn−1 ◦ · · · ◦ c1(π) with ck = ck(λ, π) = c(Ik−1(λ, π))and
λ = A(n)λ(n) with A(n) = A(π, c1)A(π(1), c2) · · ·A(π(n−1), cn).Set ∆m−1 = {λ∈Λm : |λ|= 1}, and de�ne P : ∆m−1×S0

m →∆m−1×S0
mby

P(λ, π) =

(
A−1λ

|A−1λ|
, c(π)

)
,where c = c(λ, π) and A = A(π, c). Then P is essentially two-to-one andnon-singular. Moreover, the inverses of P are given by

P−1
c (λ, π) =

(
A(c−1(π), c)λ

|A(c−1(π), c)λ|
, c−1(π)

)
,where c ∈ {a, b}.Proposition 29 (Vee
h [49℄). Let R ⊂ S0

m be a �xed Rauzy 
lass.On ∆m−1 × R there exists a smooth positive σ-�nite P-invariant measure
M = MR, with respe
t to whi
h P is ergodi
 and 
onservative.Given (λ, π) ∈ ∆m−1 × S0

m and γ ∈ (0, 1), for β ∈ [0, 1) de�ne
τ−
(λ,π,γ)(β) = max{k ≤ 0 : T k

(λ,π)(β) ∈ [0, γ)}.Sin
e for a.a. (λ, π) ∈ ∆m−1 × S0
m the transformation T(λ,π) is ergodi
,for a.a. (λ, π) ∈ ∆m−1 × S0

m the measurable fun
tion τ−
(λ,π,γ) : [0, 1) →

−N ∪ {−∞} is almost everywhere �nite. Let us 
onsider the skew produ
t
P∗ : ∆m−1 × S0

m × [0, 1) → ∆m−1 × S0
m × [0, 1) given by

P∗(λ, π, β) =

(
P(λ, π),

T
τ−
(λ,π,|Z(λ,π)|)

(β)

(λ,π) (β)

|Z(λ, π)|

)
.Then

Pn
∗ (λ, π, β) =

(
Pn(λ, π),

T
τ−

(λ,π,|(A(n))−1λ|)
(β)

(λ,π) (β)

|(A(n))−1λ|

)
.Let R ⊂ S0

m be a �xed Rauzy 
lass. Then, as shown in [48, �3℄, thereexist n > 1, π0 ∈ R and c = (c1, . . . , cn) ∈ {a, b}n su
h that
B = A(π0, c1)A(π1, c2) · · ·A(πn−1, cn)



ELF AUTOMORPHISMS 109is a positive m × m matrix, where πj = cj ◦ cj−1 ◦ · · · ◦ c1(π0), 1 ≤ j ≤ n. Ifwe now put P−1
c = P−1

c1 ◦ . . . ◦ P−1
cn

then
P−1

c (∆m−1 × {πn}) =

{(
Bλ

|Bλ|
, π0

)
, λ ∈ ∆m−1

}
.Indeed, it is easy to 
he
k that P−1

c (λ, πn) = (Bλ/|Bλ|, π0) for every
λ ∈ ∆m−1.For ea
h 0 < ε < 1 denote by Yε ⊂ Λm × {πn} the set of all (λ, πn)su
h that λ1 > (1 − ε)|λ|. Let ∆ri

m−1 denote the set of all elements from
∆m−1 su
h that the only rational relations between λ1, . . . , λm are multiplesof λ1 + · · · + λm = 1. Set
WR = (∆ri

m−1 × R × [0, 1))

∩
⋂

s∈N

⋃

k≥s

⋃

l≥s

((P−l(P−1
c (Y1/k))) × [0, 1)) ∩ P−l−n

∗ (Y1/k × [1/3, 2/3))).

Let m[0,1) stand for the Lebesgue measure on [0, 1).Lemma 30. The set W has full M ⊗ m[0,1)-measure.Proof. By the ergodi
ity and 
onservativity of P the set
W ′ = (∆ri

m−1 × R) ∩
⋂

s∈N

⋃

k≥s

⋃

l≥s

P−l(P−1
c Y1/k)

has full M-measure be
ause M(P−1
c Y1/k) > 0 for every k ∈ N. Sin
e W ′ isthe proje
tion of W on ∆m−1×R, it su�
es to show that for ea
h (λ, π) ∈ W ′the se
tion

W(λ,π) = {β ∈ [0, 1) : (λ, π, β) ∈ W}has full Lebesgue measure.Fix 0 < ε < 1 and l ≥ 1 and suppose that (λ, π) ∈ P−l(P−1
c Yε) and

λ ∈ ∆ri
m−1. Then (λ′, πn) := Jn+l(λ, π) ∈ Yε and

λ = A(n+l)λ′ = A(l)(Bλ′).Write J = Jε,l = Iλ′

1 and q = qε,l =
∑m

i=1 A
(n+l)
i1 . Sin
e λ ∈ ∆ri

m−1, we have
|λ′| = |(A(n+l))−1λ| → 0 as l → ∞. As shown in [51℄, J and q satisfy thefollowing 
onditions:

• J ∩ T j
(λ,π)J = ∅ for 1 ≤ j < q,

• T(λ,π) is linear on T j
(λ,π)

J for 0 ≤ j < q,
• |J ∩ T q

(λ,π)J | > (1 − 2ε)|J |,
• |

⋃q−1
j=0 T j

(λ,π)J | > 1 − ν(B) ε
1−ε ,
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onsider the tower
Ξε,l =

(
T j

(λ,π)

[
1

2
|J |,

2

3
|J |

))

0≤j<q

.Noti
e that if β ∈ Ξε,l then(23) Pn+l
∗ (λ, π, β) ∈ Yε ×

[
1

2

|Iλ′

1 |

|Iλ′ |
,
2

3

|Iλ′

1 |

|Iλ′ |

)
⊂ Yε ×

[
1

2
(1 − ε),

2

3

)
.Now suppose that (λ, π) ∈ W ′. Then there exist in
reasing sequen
es

(ks)s∈N, (ls)s∈N of natural numbers su
h that (λ, π) ∈ P−ls(P−1
c Y1/ks

). Bythe pre
eding observation, T(λ,π) has rank 1, hen
e is ergodi
. Moreover, as
lim inf
s→∞

m[0,1)(Ξ1/ks,ls) = 1/6and T(λ,π) is ergodi
, there exists a set Θ(λ,π) ⊂ Iλ = [0, 1) of full m[0,1)measure su
h that for ea
h β ∈ Θ(λ,π) there exist in�nitely many s su
h that
β ∈ Ξ1/ks,ls (see King [23, Lemma 3.4 and remark after it℄). Then using (23)we obtain Θ(λ,π) ⊂ W(λ,π), whi
h 
ompletes the proof.6.2. Disjointness theorem. Denote by Sr

m (resp. Sl
m) the set of all π ∈

S0
m su
h that π(j) + 1 6= π(j + 1) for any 1 ≤ j < m and

π(π−1(m) + 1) = π(m) + 1 (resp. π(π−1(1) − 1) = π(1) − 1).In this se
tion we will prove that if π ∈ Sr
m ∪ Sl

m then for almost every
λ ∈ Λm the interval ex
hange transformation T(λ,π) is disjoint from all ELFautomorphisms.Suppose that (λ, π, β) ∈ WR (see Se
tion 6.1) and let f : [0, 1) → R be apositive fun
tion of bounded variation. For short, we will write T for T(λ,π).In view of the proof of Lemma 30, we 
an 
hoose a sequen
e (Jn) of intervalswhose left end-point equals 0 and an in
reasing sequen
e of natural numbers
(qn) su
h that

• the intervals {T lJn, 0 ≤ l < qn} are pairwise disjoint,
• T is linear on T lJn for 0 ≤ l < qn,
• |Jn ∩ T qnJn|/|Jn| → 1,
• |

⋃qn−1
l=0 T lJn| → 1,

• β ∈
⋃qn−1

l=0 T l[(1/4)|Jn|, (3/4)|Jn|).Therefore T is ergodi
 and (qn) is a rigidity time for T . Set Cn :=
⋃qn−1

l=0 T lJnand bn := |Jn|−1
T
Cn

f(x) dx. Putting In := Jn ∩ T−qnJn (whi
h is also aninterval) we obtain
• T lIn are intervals for 1 ≤ l < 2qn,
• T kIn ∩ T k+lIn = ∅ for 0 ≤ k < qn and 1 ≤ l < qn,
• T is linear on T lIn for 0 ≤ l < 2qn,
• |In ∩ T qnIn|/|In| → 1,
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• |
⋃qn−1

l=0 T lIn| → 1,
• β ∈

⋃qn−1
l=0 T l+k[(1/5)|In|, (4/5)|In|) for every 0 ≤ k < qn.If x ∈ C ′

n :=
⋃qn−1

l=0 T lIn, then ea
h element of the orbit T lx, 0 ≤ l < qn, liesin exa
tly one interval T klJn, 0 ≤ kl < qn. Therefore
|f (qn)(x) − bn| ≤

qn−1∑

l=0

∣∣∣∣f(T lx) −
1

|Jn|

\
T klJn

f(t) dt

∣∣∣∣

≤

qn−1∑

l=0

1

|Jn|

\
T klJn

|f(T lx) − f(t)| dt

≤

qn−1∑

l=0

VarT klJn
f ≤ Var f.Assume again that (λ, π, β) ∈ WR and suppose that β ∈ Iλ

k+1, where
0 ≤ k ≤ m − 1. Consider the fun
tion f = 1 + χ[βk(λ),β) and put an := [bn].Lemma 31. Let P be a weak limit measure of ((f (qn) − an)∗(m[0,1)))n.Then P is 
on
entrated on Z ∩ [−2, 2] and has at least two atoms.Proof. Sin
e |f (qn)(x)− an| < Var f + 1 = 3 for x ∈ C ′

n, f (qn) − an takesonly integer values and |C ′
n| → 1, P is 
on
entrated on Z ∩ [−2, 2].Fix n ≥ 1 and take 0 ≤ j < qn. Then βk(λ) /∈

⋃qn−1
l=0 T l(IntT jIn)and β ∈

⋃qn−1
l=0 T j+l[(1/5)|In|, (4/5)|In|). It follows that T jIn splits into twosubintervals K−

j , K+
j of size at least |In|/5 su
h that f (qn) − an is 
onstanton ea
h of them and the values whi
h f (qn) − an takes on K−

j and K+
j di�erby 1. Sin
e f (qn) − an on C ′

n takes values only from the set {−2,−1, 0, 1, 2}there exists a ∈ {−2,−1, 0, 1, 2} su
h that the 
ardinality of An = {0 ≤
j < qn : (f (qn) − an)(K−

j ) = {a}} is at least qn/5 for in�nitely many n.Moreover, there exists ζ = ±1 su
h that #{j ∈ An : (f (qn) − an)(K+
j ) =

{a + ζ}} ≥ #An/2 ≥ qn/10 for in�nitely many n. Sin
e |K−
j |, |K+

j | ≥ |In|/5and qn|In| → 1, we 
on
lude that P ({a}) ≥ 1/25 and P ({a + ζ}) ≥ 1/50,whi
h 
ompletes the proof.Proposition 32. Suppose that (λ, π, β) ∈ WR and β ∈ Iλ
k+1 for some

0 ≤ k ≤ m − 1. Then there exists an in
reasing sequen
e (an) of natu-ral numbers and a non-trivial (i.e. with at least two non-zero frequen
ies)trigonometri
 polynomial p su
h that
(Tf )an → p(Tf )weakly , where f = 1 + χ[βk(λ),β). Moreover , Tf is weakly mixing and it isdisjoint from all ELF automorphisms.
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e of
(an) if ne
essary we have

(T f )an → p((T f )1),where p(z) =
∑2

i=−2 P ({i})z−i and at least two of the numbers P ({i}),
−2 ≤ i ≤ 2, are positive. By Lemma 3, (Tf )an → p(Tf ). Moreover, bythe proof of Lemma 31 there is i ∈ {−2,−1, 0, 1} su
h that P ({i}) and
P ({i + 1}) are positive. It now follows from an argument used in the proofof Proposition 6 that Tf is weakly mixing. Using Proposition 6 again, we
on
lude that Tf is disjoint from all ELF automorphisms.Sin
e IET's asso
iated to permutations from Sl

m are isomorphi
 via thesymmetry x 7→ 1−x to IET's asso
iated to permutations from Sr
m, we fo
uson the latter family. It is easy to see that if (λ, π) ∈ ∆m−1×Sr

m then TP(λ,π) isan m−1-interval ex
hange transformation. Indeed, for ea
h j = 1, . . . , m−1de�ne ij : {1, . . . , m−1} → {1, . . . , m} and pj : {1, . . . , m} → {1, . . . , m−1}by
ij(k) =

{
k for 1 ≤ k ≤ j,
k + 1 for j < k ≤ m − 1and

pj(k) =

{
k for 1 ≤ k ≤ j,
k − 1 for j < k ≤ m.Then TP(λ,π) = TL(λ,π), where L : ∆m−1 ×Sr

m → ∆m−2 ×S0
m−1 is given by

L(λ, π)=





(
(λ1,...,λj−1,λj−λm,λj+1+λm,λj+2,...,λm−1)

1−λm
, pπm ◦ π ◦ im−1

)
, λm < λj ,

(
(λ1,...,λj−1,λj+λj+1,λj+2,...,λm−1,λm−λj)

1−λj
, pm−1 ◦ π ◦ ij−1

)
, λm > λj ,with j = π−1(m). Moreover, by the de�nition of P, T(λ,π) is isomorphi
 tothe integral transformation (TL(λ,π))f(L(λ,π),β(λ,π))

, where
f(λ,π,β) = 1 + χ[βi−1(λ),β) whenever β ∈ Iλ

i = [βi−1(λ), βi(λ))and
β(λ, π) =





λ1 + · · · + λπ−1(m)

1 − λm
if λm < λπ−1(m),

λ1 + · · · + λπ−1(m)

1 − λπ−1(m)
if λm > λπ−1(m).Consider the map L∗ : ∆m−1 × Sr

m → ∆m−2 × S0
m−1 × [0, 1) with

L∗(λ, π) = (L(λ, π), β(λ, π)).
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e L∗ is essentially one-to-one and its inverse is pie
ewise smooth,
L∗ :

(
∆m−1 × Sr

m, Leb∆m−1 ⊗
∑

π∈Sr
m

δπ

)

→
(
L∗(∆m−1 × Sr

m), Leb∆m−2 ⊗
∑

π∈S0
m−1

δπ ⊗ m[0,1)

)

is non-singular. Re
all that ⋃
R WR has full Leb∆m−2 ⊗

∑
π∈S0

m−1
δπ⊗m[0,1)-measure. Therefore W = L−1

∗ (
⋃

R WR) has full Leb∆m−1 ⊗
∑

π∈Sr
m

δπ-mea-sure.Theorem 33. If π ∈ Sr
m ∪ Sl

m then for Leb∆m−1-almost every λ in
∆m−1 the interval ex
hange transformation T(λ,π) is disjoint from all ELFtransformations.Proof. First noti
e that it su�
es to show that if (λ, π) ∈ W then T(λ,π)is disjoint from all ELF transformations. Assume that (λ, π) ∈ W . Then
L∗(λ, π) = (λ′, π′, β) ∈ WR, where R is the Rauzy 
lass of π′. By Proposi-tion 32, the integral transformation (T(λ′,π′))f(λ′,π′,β)

is disjoint from all ELFtransformations. On the other hand, (T(λ′,π′))f(λ′,π′,β)
is isomorphi
 to T(λ,π),whi
h 
ompletes the proof.
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