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Abstract. Basic ergodic properties of the ELF class of automorphisms, i.e. of the
class of ergodic automorphisms whose weak closure of measures supported on the graphs of
iterates of T' consists of ergodic self-joinings are investigated. Disjointness of the ELF class
with: 2-fold simple automorphisms, interval exchange transformations given by a special
type permutations and time-one maps of measurable flows is discussed. All ergodic Poisson
suspension automorphisms as well as dynamical systems determined by stationary ergodic
symmetric a-stable processes are shown to belong to the ELF class.

Introduction. The notion of disjointness between measure-preserving
automorphisms of standard probability Borel spaces was introduced by
Furstenberg [9] in 1967. Since then many results showing disjointness of
some classes have been proved (see e.g. [9], [12], [14], [19], [21], [26], [28],
[20], [46], [47]).

In 6] the second and the third named authors of this paper introduced
the notion of ELF (1) flow. An ELF flow is, by definition, an ergodic flow
such that when we pass to the weak closure of its time-t maps considered as
Markov operators of the underlying L?-space, then all the weak limits are
indecomposable Markov operators. The ELF property is interesting only in
the non-mixing case, and indeed in contrast with this property, some classical
weakly mixing but non-mixing special flows over irrational rotations or, more
generally, over interval exchange transformations turn out to have in the
weak closure of Markov operators given by their time-t maps “sufficiently”
decomposable Markov operators. Such flows are often special representations
of some smooth flows on surfaces and a motivation to introduce the ELF
property was to prove disjointness (in the sense of Furstenberg) of such flows
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from the ELF class (see [6], [7], [8]). In particular, some classical smooth
weakly mixing flows on surfaces (e.g. considered in [25]) turn out to be
disjoint from the ELF class.

On the other hand, the ELF property was also introduced in the hope of
expressing the fact that a given flow is of “probabilistic origin”. Indeed, a first
attempt to define a system to be “of probabilistic origin” might be via the
Kolmogorov group property of the spectrum. However, each weakly mixing
system has an ergodic extension which has the Kolmogorov group property,
simply by taking the infinite direct product of the system. Therefore this
spectral property is too weak to single out systems of “probabilistic origin”.
As noticed in [6] Gaussian flows enjoy the ELF property (this result also
follows from some earlier results of [29]). The present paper and, indepen-
dently, the PhD thesis of E. Roy [36] are a further confirmation of the fact
that dynamical systems whose origin are well-known classes of stationary
processes (see below) are inside the ELF class. We also mention that in the
general case, including mixing, another joining property (satisfied for exam-
ple by flows with Ratner’s property [35]|) has been introduced in [43] to show
disjointness from Gaussian systems.

In this paper, instead of flows, we consider the ELF property for au-
tomorphisms. One of the main results of the paper states that all ergodic
Poisson suspension automorphisms enjoy the ELF property. This result is a
consequence of Theorem 1 below saying that Poissonian joinings of ergodic
Poisson automorphisms remain ergodic; the same result is also proved in
the recent, independent paper [36]. Moreover, we consider so called a-stable
automorphisms, i.e. ergodic automorphisms acting on a space whose mea-
surable structure is determined by an invariant real subspace in which all
variables are symmetric a-stable (0 < a < 2, for @ = 2 we come back to the
Gaussian case). We prove (Theorem 3 below) that a-stable self-joinings of
such automorphisms must necessarily be ergodic, from which the ELF prop-
erty directly follows. In the aforementioned thesis [36], a further step forward
is even made: it is proved that given an ergodic stationary infinitely divisible
process, each infinitely divisible self-joining of the corresponding measure-
preserving automorphism remains ergodic, and in particular we also obtain
the ELF property in this most general case.

Furthermore, we show (Proposition 12 below) that weakly mixing but
non-mixing 2-fold simple automorphisms are disjoint from the ELF class. It is
also shown that the time-one maps of flows considered in [8] are disjoint from
any ELF automorphism, and therefore the time-one maps of Kochergin’s
smooth flows from [25] are disjoint from any ELF automorphism.

Recently, some attention has been devoted to joining properties of in-
terval exchange transformations (see e.g. |4], |5]). Here we are able to prove
(see Proposition 15 below) that for almost all choices of parameters defin-
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ing a three-interval exchange transformation we obtain disjointness from the
ELF class. In fact, this result is a consequence of a more general statement
proved in the paper. Namely given k > 3 we consider special permutations of
{1,...,k} and we prove that for a.a. choices of lengths of partition intervals of
[0, 1) the resulting automorphisms are disjoint from all ELF automorphisms.

Some results in this paper have been obtained during the visit of the
fourth-named author at Nicolaus Copernicus University in September 2003
and during the visit of the third-named author at Université de Bretagne
Occidentale in the Spring 2004.

1. Preliminaries

1.1. Factors, joinings and Markov operators. Assume that T is an er-
godic automorphism of a standard probability Borel space (X, B, ). The
associated unitary action of T on L?(X, B, 1) is given by Ur(f) = foT (but
we will often write T'(f) instead of foT). We denote by C(T') the centralizer
of T, that is, the set of all automorphisms of (X, B, 1) commuting with 7.
Endowed with the strong operator topology of U(L?(X, B, 1)) the centralizer
becomes a Polish group. Any T-invariant sub-o-algebra A C B is called a
factor of T. The quotient action of T on the quotient space (X/A, A, p]4)
will be denoted by T'|4 or even by A if no confusion arises. We say that
T is rigid if the set {T™ : n € Z} has an accumulation point in C(T). It
follows that in the rigidity case the centralizer is uncountable and for some
increasing sequence (¢ ), 79 — Id. Automorphisms which have no rigidity
at all are called mildly mizing (see [11]). More precisely, T is called mildly
mazing if its only rigid factor is the one-point factor.

Assume now that S is another ergodic automorphism of a standard prob-
ability Borel space (Y,C,v). By a joining of T and S we mean any T x S-
invariant measure g on (X x Y, B ® C) whose marginals px and gy satisfy
ox = o|x = p and gy = g|y = v respectively. The set of joinings between T’
and S is denoted by J(T,S). Whenever the automorphism 7' x S acting on
(X xY,B®C, o) (for short we will also write (1'x S, 0)) is ergodic, the joining
0 is called ergodic and the set of ergodic joinings is denoted by J¢(T', S). The
formula

| fegdo=\@(f) gdv
XxY Y
establishes a one-to-one correspondence between the set J(7',5) and the set
J (T, S) of all Markov operators from L?(X, B, 1) to L?(Y,C, v) intertwining
Ur and Ug (see e.g. [42], [29] for more details). Recall that a positive linear
operator @ : L*(X, B, ) — L?(Y,C,v) is called Markov if #(1x) = 1y and
&*(1y) = 1x, and then ¢ = &, where o(A x B) = {5 ®(14) dv for measur-
able sets A € B and B € C. The set of Markov operators is closed in the
weak operator topology of B(L?(X,B, u), L*(Y,C,v)), hence both J(T,S)
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and J(T,S) are compact (on the latter set we transport the topology of
J(T,S)). Ergodic joinings correspond to so called indecomposable Markov
operators, i.e. to the extremal points in the set J (7, S), which has a natural
structure of a Choquet simplex. Note that the Markov operator correspond-
ing to the product measure p @ v equals IIx y (f) = SX f dp. If one more er-
godic automorphism R on (Z,D,n) is given and &, € J (T, S), . € J(S, R)
then @, 0 @, € J(T,R) and the corresponding joining of 7" and R will be
denoted by k o p.

Whenever S = T we will write Jo(7T") and JS(T') instead of J(T',T) and
Je(T,T) respectively. Note that if W € C(T) then the formula puw (A x B)
= u(A N W~IB) determines a self-joining, called a graph joining, of T,
and moreover puy € JS(T') (for W = T™ we speak about off-diagonal self-
joinings). We say that T is 2-fold simple (see [49], [21]) if the only ergodic
self-joinings of T are graph joinings or the product measure p ® p. The
measure fq will also be denoted by Ax or A,,.

We say that T is relatively weakly mizing with respect to a factor A C B if
the self-joining A (called the relatively independent extension of the diagonal
measure on A) given by

MAxB)= | E(1a|A)-E(1p|A)d(ula)
X/A

is ergodic. If A; C A is another factor and T'| 4 is relatively weakly mixing
over A; then T is still relatively weakly mixing over A; (for this chain rule
see e.g. [20]).

Following [9] we say that two ergodic automorphisms 7" and S are disjoint
if J(T,S) = {p ® v}. Recall that J(T,5) = {¢ ® v} implies disjointness
of T and S. Given a class R of ergodic automorphisms, we denote by R+
the class of all ergodic automorphisms disjoint from any member of R. Then
by a multiplier (see [12]) of Rt we mean an ergodic automorphism each of
whose ergodic joinings with an automorphism belonging to R’ gives rise
to another member of R*. The class of multipliers of R+ is then denoted
by M(R4).

In what follows, we will need the following.

PROPOSITION 1 ([1]). Let T be an ergodic automorphism of (X, B, u). If
0 € J5(T) and also po p € JS(T) then (T x T, o) is relatively weakly mizing
over the two marginal factors B®@ {0, X} and {0, X} @ B. =

Assume that 7" is weakly mixing and g € J5(T"). Then directly from the
chain rule for the relative weak mixing property we obtain the following.

(1) If (T xT,p) is relatively weakly mixing over the marginal factors, then
(T x T, p) is weakly mixing.
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We will also need the following simple lemma.

LEMMA 2. Assume that T is a weakly mizing automorphism of a stan-
dard probability Borel space (X, B, u). Assume that Ng C N and the density
of N\ Ny equals zero. Assume moreover that for each f,g € L*(X,B, 1),

(foT" g) — (f,1)(1,9)

asn — o0, n € No. Assume that p € J(T'). Then for all f,g,h € L>®(X, B, u),
| F(T2)g(x)h(T"y) dol(w,y) — | f(2)h(y) do(z,y) | g(x) du(x).
XxX X X

Proof. We have
\ F(T2)g(@)(T™y) do(w,y) = | f(T"2)g(2)B(ho T™) () dpu(x)

XxX X
= (-5 (n) o T - gdps

><

—>Sf Sgdu: S f®hdg§gd,u.-
X XxX X

For more information on joinings we refer the reader to the monograph by
E. Glasner [13]. For the spectral theory of dynamical systems see e.g. [3], [33].

1.2. Sub-joinings and sub-Markov operators in infinite measure-preserv-
ing case. Given two automorphisms 7T and S acting on o-finite standard
Borel spaces (X, B, 1) and (Y, C, v) respectively, by a sub-joining of T and S
we mean each positive o-finite 7' x S-invariant measure g on (X xY,B®C)
whose marginals px and gy satisfy pox < p and gy < v. By the formula

\ F@)g(y) do(x,y) =\ V(f)-gdv,

XxY Y

there is a one-to-one correspondence between the set of sub-joinings and
the set of sub-Markov operators V : L?(X, B, ) — L*(Y,C,v) intertwining
Ur and Ug, where by a sub-Markov operator we mean a positive operator
V @ L*(X,B,n) — L*(Y,C,v) such that Vf < 1 for all f € L*(X,B,u)
satisfying 0 < f < 1,and V*g < 1forall g € L?(Y,C,v) satistying 0 < g < 1.

REMARK 1. Note that even in the case T' = S, although the off-diagonal
measures g7 have the property that their marginals are equal to p (equiva-
lently, {, T"(14) dp = p(A) for each A C X of finite measure), the fact that
the constant function 1x is not integrable may cause that the marginals of
a weak limit ¢ of a sequence of off-diagonal measures need not be equal to i
(nevertheless, we will have ox < p).
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1.3. Cocycles and compact group extensions. Assume that 7' is an ergodic
automorphism of a standard probability Borel space (X, B, u). Let G be
a compact metric group with the o-algebra B(G) of Borel sets and Haar
measure mg. Let ¢ : X — G be a measurable map. It generates a cocycle
©)(-):Z x X — G by the formula

(T 1x) - (T 2x) - ... p(z) ifn>0,
oM (z)={1 if n =0,
(o(Tz) ... o(Trz))! if n <0.

We denote by T, the skew product automorphism defined on (X x G,
B ® B(G), n ® mg) by the formula

Ty(z,9) = (T, 0() - g).

We call T, a compact group extension of T

Denote by 7, the map on X x G given by 74(z,g1) = (z,9197'). Note
that 7, € C(T},) for each g € G.

Compact group extensions have the so called relative unique ergodicity
(RUE) property: whenever the product measure p ® mg is ergodic, it is
the only T, -invariant measure of (X x G, B® B(G)) whose projection on X
equals u (see e.g. [10]).

We say that a cocycle ¢ : X — G is ergodic if T, considered with
i ® mg is ergodic. In this case ergodic self-joinings of T}, whose projections
on X x X are Ay are necessarily graph joinings corresponding to 74, g € G
(see [21]).

1.4. Gaussian automorphisms. An ergodic automorphism 7T of a stan-
dard probability Borel space (X, B, u) is called Gaussian if there exists a
Ur-invariant subspace H C L%(X,B, 1) of real-valued functions generating
B and such that each non-zero variable from H has a Gaussian distribution.
For a joining theory of Gaussian automorphisms we refer the reader to [29]
(see also [3] for a general theory of Gaussian automorphisms). In particular,
it is proved in [29] that there is a special subset J§(T') C JS(T') called the
set of Gaussian self-joinings (for o € JE(T'), (T x T, o) remains a Gaussian
automorphism). Roughly speaking, this set corresponds to all contractions of
the first chaos H intertwining the unitary action of 7" on H (all off-diagonal
self-joinings prn are in JS(T')). It follows that J$(T') is closed in the weak
topology of joinings.

A Gaussian automorphism 7' is entirely determined by the spectral mea-
sure o of Ur on H(®) = H + iH. Moreover, T is ergodic iff ¢ is continuous.
The maximal spectral type of T is the sum of consecutive convolutions (")
of o, in particular ergodicity implies weak mixing for Gaussian automor-
phisms.
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Each variable f € H, viewed as a map f : X — R, is called a Gaussian
cocycle. It is called a Gaussian coboundary if f = g—goT for some g € H.
The subspace H consists entirely of Gaussian coboundaries iff 1 is not in
the topological support of o ([27]). We refer the reader to [27] for more
information about ergodicity of circle group extensions of the form 7 2xif,
where f is a Gaussian cocycle.

1.5. Integral automorphisms and special flows. Let T be an ergodic au-
tomorphism of a standard probability Borel space (X, B, u). Assume that
f + X — Nis a measurable function with finite integral. Let Xy C X x N
be given by U, ey Xn X {n}, where X, = {z € X : f(z) < n}. Let By
denote the restriction of the product o-algebra of B and the o-algebra of
all subsets of N to the set Xy. Let py denote the restriction of the prod-
uct measure 4 ® Y -y dny to Xy. By the integral transformation built over
the automorphism 7" and under the function f we mean the transformation
Ty : (Xf, By, pup) — (X5,By, pf) defined by

(k1) i fl2) <E,
Ty(a,k) = { (Tz,1)  if f(z) = k.

Suppose that A € B has positive measure. It is easy to check that (74),, and
T are metrically isomorphic, where T4 : A — A is the induced automorphism
and 7 : A — N stands for the first return time function (see [3, Chapter 1]).

Denote by mg the Lebesgue measure on R. Assume that f: X — R
is a measurable positive function such that SX fdu = 1. The special
flow TS = {(TF);}ier built from T and f is defined on the space X7 =
{(z,t) e X xR :0 <t < f(z)} (considered with B/, the restriction of the
product o-algebra, and pf, the restriction of the product measure p ® mp
of X x R). Under the action of the special flow each point in X/ moves
vertically at unit speed, and we identify the point (z, f(z)) with (T'z,0) (see
e.g. [3, Chapter 11]). In the special case where f = 1 the special flow T/
acts on X x [0,1) and is called the suspension flow for the automorphism 7.
Then we write 7' instead of T and ()?,Z/S\, fi) instead of (X7, Bf, uf). Let
7:X = X x[0,1) — X denote the natural projection. Then the o-algebra
7= Y(B) C Bis (T);-invariant and 7 : (X, 7 1(B), 1) — (X, B, y) establishes

an isomorphism between automorphisms (T); of (X, 7 (B),7i) and T of

X, B, ). Finally, notice that the flows Ty and T/ are isomorphic whenever
K f
f:X—N

LEMMA 3. Let T be an ergodic automorphism of (X,B,u) and let f :
X — N be a measurable function with finite integral. Suppose that (a,) is
a sequence of integers such that (T7),, — p((T1)1) weakly, where p is a
trigonometric polynomial. Then T;}" — p(Ty) weakly.
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Proof. Since the operators (T7); acting on L?(X7, B/, /) and (ff)l
acting on L?(X £, By, i) are unitarily isomorphic,

(Tf)an — p((Ty)1)
in the weak operator topology on LQ()?f, B\f, fig). Let 7 : )?f =X¢x[0,1) —
Xy be the natural projection. Since LQ()A(f,ﬂfl(Bf),ﬁf) CALQ()A(f,l:D’\f,ZZf)
is an invariant subspace with respect to the operators (T%)s, (n € N),
(ff)an — p((ff)l) in the weak operator topology on LQ()/(:f,ﬂ'_l(Bf),ﬁf).

Since the operators Ty on L?(X ¢, By, 1) and (ff)l on L2()/(\'f,7r_1(Bf), 1)
are unitarily isomorphic, TJ‘?" — p(Ty) in the weak operator topology on
L2(Xf, Bf, Mf)- L]

2. Basic properties of ELF automorphisms. An ergodic automor-
phism T of a standard Borel space (X, B, i) is said to have the ELF prop-
erty if {prn :n € Z} C JS(T'), or equivalently, the weak closure of the set of
Markov operators {T™ : n € Z} consists of indecomposable Markov opera-
tors. For short, we will speak about ELF automorphisms.

It is clear that ergodic discrete spectrum automorphisms and mixing
automorphisms are examples of ELF automorphisms. By what was said in
Section 1.4, Gaussian automorphisms also enjoy the ELF property (see [6]
for a direct proof of that fact).

The following two consequences of Proposition 1 have already been no-
ticed in [6].

ProrosITION 4 ([6]). If T is an ELF automorphism and if o €
{prn :n € Z} then (T x T, ) is relatively weakly mizing with respect to the
two natural marginal o-algebras. w

PROPOSITION 5 ([6]). Assume that T is an ELF automorphism and let
0 € {upn :n € Z}. Let S be an ergodic automorphism on (Y,C,v). Assume
that 01 is an ergodic joining of T and S. Then g1 o g is still ergodic. m

2.1. Disjointness of ELF automorphisms from time-one maps of some
measurable flows. Proposition 5, similarly to [6], allows us to prove disjoint-
ness of the class of ELF automorphisms from automorphisms having a piece
of integral Markov operator in the weak closure of its powers. Indeed, as-
sume that S is an automorphism of (Y,C,v). Let P be a probability measure
defined on the Borel o-algebra of C(S). We define a Markov operator Mp
on L?(Y,C,v) by putting

Mp(f)= | foRdP(R).
c(8)
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The integral on the right hand side is meant in the weak sense, i.e. for each
f.g€ LA(Y.C,v),

(] foRdP(R),g>: | (foR.g)dP(R).
c(S) c(9)

In order to see that this definition is correct we define

(f.9)= | (foR,g)dP(R)

c(8)

and check that we have obtained a bilinear form on L?(Y,C, v) which, by the
Schwarz inequality, is bounded. Clearly, Mp € J5(.5).

PROPOSITION 6. Let S : (Y,C,v) — (Y,C,v) be an ergodic automor-
phism. Assume that there exist an increasing sequence (t,) of natural num-
bers and a probability Borel measure P on C(S) such that

S —a | RdP(R)+ (1 - a)®
c(9)

in the weak operator topology on B(L*(Y,C,v)), where a > 0 and ® € J»(S).
Assume that P({R € C(S) : R is weakly mizing}) > 0. Then S is weakly
mizing. If moreover P is not Dirac and either

(i) P is concentrated on {S*:i € Z}, or
(ii) P is concentrated on {S; : t € R}, where S1 = S (i.e. we assume in
particular that S is embeddable in a measurable flow),

then S 1is disjoint from all ELF automorphisms.

Proof. First, let us show that S is weakly mixing. Indeed, if f is its
eigenfunction then

1FI32 = 1S £, 1) = |a | (fo R, f)dP(R) + (1 = a)(@(f), /)|

()

Since [(f o R, f) < fI> and [(®(f), f)] < [If| a convexity argument
shows that we must have (f o R, f) = ||f||?> for P-a.e. R € C(S) (and also
(@(f), f) = ||f||* provided a < 1). So for such an R, we have f o R = c¢(R)f
(c(R) € C), and since R may be taken weakly mixing, f is constant.

Let T be an ELF automorphism on (X,B,u). Let ¥ : L*(Y,C,v) —
L?(X,B, ) be an indecomposable Markov operator intertwining S and 7.
Then ¥ o S = T o ¥ and by passing to a subsequence of (¢,) if necessary,
we find

Vo(aMp+ (1—a)®P)=P,0Y,

where ¢ = lim;, .o fi7tn. In view of Proposition 5, &, o ¥ remains indecom-
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posable. On the other hand,

Wo(aMp+(1-a)®)=a | ¥oRdP(R)+ (1-a)¥od,
c(s)
and hence we must have ¥ o R = &, o ¥ for P-a.e. R € C(S). This means
that for a set of full P ® P-measure of (Ry, R2) € C(S) x C(S), we have
Ry o Ry! o W* = ¥*. Notice however that both assumptions (i) and (ii) and
the fact that P is not Dirac imply that for some weakly mixing element

R € C(S) we have Ro¥* = ¥* and therefore ¥ = IIy x. =

Suppose now that (S)er is a measurable, weakly mixing flow acting on
(Y,C,v). Suppose that for a sequence (r,,) of real numbers with r, — oo we
have

(2) S, — a| S, dQ(t) + (1 - a)®,

R
where @ is not Dirac. By passing to a subsequence if necessary we can assume
that the sequence ({ry,}) of fractional parts of 7, converges to 0 < b < 1.
Since the flow is measurable, Sy, 1 — Sp in the strong operator topology.
It follows that the sequence (S1)I") = S, o S_{r,y converges in the weak
operator topology and we have

(S = a {8 dQ(t) + (1 — a)Bo Sy,
R
We have proved the following.

COROLLARY 7. Assume that (Si)ier is a measurable, weakly mizing flow
for which (2) holds with @ which is not Dirac. Then the time-one map S
18 disjoint from all ELF automorphisms. =

REMARK 2. The assumptions of Corollary 7 are satisfied for time-one
maps of some classical examples of special flows over irrational rotations
and over interval exchange transformations (see [6]-[8]) and in particular it
is satisfied for some smooth flows on surfaces (see [8]).

2.2. Factors and direct products of ELF automorphisms. The following
proposition shows that the class of ELF automorphisms is closed under some
basic operations.

PROPOSITION 8. The class of ELF automorphisms is closed under fac-
tors and inverse limits. The direct product of weakly mizing FLF automor-
phisms remains an ELF automorphism.

Proof. Closedness under taking factors and inverse limits is obvious.
Assume that T; is a weakly mixing ELF automorphism of (X, B;, i),
i > 1. Consider now T' =T} xTp X - - acting on (X1 X Xo X+ , u1 @uo®---).
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Suppose that T" — @, for some p € J2(T). By applying the diagonalizing
procedure if necessary, we can assume that for each 7 > 1, TJ’.” — @, for
some g; € J5(Tj). It easily follows that o = 01 ® 02 ® - - - and because of (1),
o is ergodic, which completes the proof. =

REMARK 3. Note however that an ergodic self-joining of an ELF auto-
morphism need not be an ELF automorphism. Indeed, even if T is mixing
then an ergodic self-joining need not give rise to an ELF automorphism. For
example, by Smorodinsky—-Thouvenot’s result from [45] it follows that given
an ergodic zero entropy automorphism S and a Bernoulli automorphism 7T
we can find an ergodic self-joining ¢ of T such that (7' x T, ¢) has S as its
factor.

2.3. Lifting the ELF property to compact group extensions. We will now
discuss the possibility of lifting the ELF property by a compact group ex-
tension. So assume that 7" is an ELF automorphism and let ¢ : X — G be a
cocycle, where G is a compact metric group. Recall first that if 7" is mixing
and the extension T, is weakly mixing then T, is in fact mixing (see [37]).
A look at a short joining proof (due to A. del Junco) of that fact gives rise
to a criterion of lifting the ELF property.

PROPOSITION 9. Assume that T has the ELF property and ¢ : X — G is

ergodic. Assume moreover that for each ¢ € {ppn : m € Z} the cocycle p X ¢
over (T' x T, o) is ergodic. Then T, has the ELF property.

Proof. Assume that (T,)"™ — @®; We must show that ¢ is ergodic.
We can assume that m; — oo, otherwise the result is clear. We then have
T™ — @,, where p is the projection of p on X x X. Now, g is a T, x T-
invariant measure whose projection is p. However, by our standing assump-
tion the measure o ® mg ® mg has the same property and it is ergodic. The
result now follows from the relative unique ergodicity property for compact
group extensions. m

The above proof suggests that in general we have no chance to lift the
ELF property and in fact we will loose this property when the base has
discrete spectrum.

PROPOSITION 10. An ergodic isometric extension T of a discrete spec-
trum automorphism T has the ELF property iff the extension also has discrete
spectrum.

Proof. We can assume that 7' is an ergodic rotation (Tx = = + x¢) of a
compact metric monothetic group X. Moreover assume that ¢ : X — G is
an ergodic cocycle for which T' is the Kronecker factor and T is the quotient
action of T, on X x G/H. All we need to show is that under all these
assumptions T does not have the ELF property.
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To this end first choose a sequence (n;) of density 1 such that

(3) Uz’ —0 weakly on L*(X x G/H,mx @ mgu) © L*(X,mx),

which is possible because T is the Kronecker factor of T and therefore the
spectral type of Uz on L>(X xG/H,mx ®mg/H)@L2(X, my ) is continuous.
Since the density of (n;) is 1, there exists a subsequence (m;) of (n;) such
that 7" — Id. Indeed, given a neighbourhood W > 0 in X, by the pointwise
ergodic theorem for strictly ergodic systems the average time of visiting W
by the orbit of an arbitrary point of X is equal to mx (W), hence positive.
Therefore we can find n; = n;j(W) so that njzg € W. Letting W — {0}
proves the claim.

It follows from (3) that 7™ converges weakly to the operator E(-|X)
which corresponds to the joining Ax ® mg/g ® mg,u. However, this last
joining is not ergodic: the function F(x, gH,z,¢g'H) = g~ !¢’ H is not constant
but it is 7 x T-invariant Ax ® mg g ® mg g-a.e. Therefore, T does not
have the ELF property and the result follows. m

The following corollary follows directly from Proposition 10.

COROLLARY 11. If an extension of a rotation T has the ELF property,
then the extenston is relatively weakly mizing over T. m

REMARK 4. In [52] there are explicit constructions of ELF automor-
phisms which are relatively weakly mixing extensions of some irrational ro-
tations.

Let us now show however that the criterion of Proposition 9 may work
in some cases of mildly mixing ELF automorphisms which are not mixing.
We consider symmetric probability measures ¢ on T such that

(4)  all weak closure points of the sequence {z" : n € Z} in L?(T, o) are in
the set {az": |a| < 1,n € Z}.

Since o is a symmetric measure, the numbers a in (4) have to be real. Under

the above assumption, the Gaussian automorphism associated to ¢ has to

be mildly mixing. Recall that classical Riesz products yield examples of such

measures, including examples which are not Rajchman measures so that the

set of weak closure points is not trivial (see [16, Ch. II, Sect. 7]).

PROPOSITION 12. Assume that T is a mildly mizing Gaussian automor-
phism determined by a measure satisfying (4) for which a certain a # 0 is in
the weak closure of characters (such a T is not mizing). Take f from the first
real chaos. Assume that f is not a Gaussian coboundary. Then T := T axif
1s still an ELF automorphism.
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Proof. Assume that
(5) (TeZWif)nt — @5

for some sequence (n) with ny — oo. Then T™* — &, where  is the projec-
tion of g on X x X. Without loss of generality we can assume that 2" — a in
the weak topology of L?(T, o) for some real a with |a| < 1. We have to prove
that 0 € Jo(T.2xir) is ergodic. If now p is the product measure then so is p,
since T,axis is weakly mixing (|27]) and we may apply the relative unique er-
godicity property for compact group extensions to conclude. Note that o can-
not be a graph measure, since 7' is assumed to be mildly mixing. Moreover,
since 2™ — a in the weak topology of L?(T, o), T™ restricted to the first real
chaos tends to multiplication by a, and hence @, is multiplication by a on the
first real chaos. By Proposition 9 all we need to show is that T, 2rif X T 2xis
is ergodic as a T x T-extension of (T x T, g). Following Proposition 6 in [27]
it is sufficient to show that the cocycle I f(z) +mf(y) (with (I,m) # (0,0))
is not a Gaussian coboundary (for the Gaussian automorphism (7" x T, 0)).
If for each r € N we put f)(z) = f(z) + f(Tx) + - + f(T" ') then we
have

1£T @)+ mf O W)l[F2, = +m?)FON + 20mF (@), £ ) 120

= (2 +m?)If D) + 20m § (2o D) () ST (y) du(y)
X

= (P +m*+2mi-a)| f7)*.

Now, f is not a Gaussian coboundary, so ||f{")|| — co along a subsequence
(r¢) (see [27]) and since |a| < 1,

(P +m?+2ml-a)||f)) —

or equivalently
117 (@) +m T ()] L2 () — o0,

which means (see [27]) that indeed [ f(x)+m f(y) is not a Gaussian cobound-
ary. m

3. Poisson automorphisms have the ELF property. In this section
we will define and study a special class of self-joinings for the class of au-
tomorphisms obtained by Poisson suspension of infinite measure-preserving
maps.

3.1. Poisson suspension automorphisms. Assume that T is an automor-
phism of a standard Borel space (X, B, i), where p is o-finite. We denote by

T the Poisson suspension automorphism acting on (X, g, ). The points of
X are infinite countable subsets ¥ = {x,, : n > 1}. Given a set A € B of
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finite measure we define Ny : X >N by putting
Ny(z) =#{n eN:x, € A}.

Then we define B as the smallest o-algebra of subsets of X for which all
variables N4, 1(A) < oo, are measurable. The measure 1 is defined by the
requirement that the variables N4 satisfy the Poisson law with parameter
i(A) and moreover that for each family of pairwise disjoint subsets of X
of finite measure the corresponding variables are independent (see [24] for
details). Finally, we let T act by the formula T({xn}) ({Tx,}) to obtain an
automorphism of (X, B, i). The space L2(X, B, i) admits a decomposition
into invariant chaos @,,~,H () where H© is the subspace of constants,
H = Hy = HW is the subspace generated by the centred variables N =
Ny — p(A) and H™ is the orthocomplement of the sum of chaos H®,
0 < i <n —1, in the subspace generated by the products of n variables of
the form Ny (see [32]). The map 14 — N§ can be extended to an isometry I
of L?(X, B, 1) onto H and it conjugates Ur with Uz|1. Moreover we obtain
a natural isometry between H( and the nth symmetric tensor product
H®"™ of H under which ® Ng_ corresponds to the projection of [[}" ; N,
in H™, '

The operator Uz preserves the chaos and, for each n > 0, its restriction
to H™ corresponds to (Uj:|H)®” by this natural isometry. In such a case,
we will say that an operator acts well on the chaos.

If 0 # f € L*(X,B,pu) is an eigenfunction of Ur corresponding to ¢
(with |c| = 1), then f is an eigenfunction of Ur corresponding to €. Then
I(f) o I(f) € H? and it is a Uz-invariant function. Furthermore, if o
denotes the maximal spectral type of Uz on H (which is equal to the maximal
spectral type of Ur on L?(X, B, 1)) then the maximal spectral type of Uz
on the nth chaos is equal to the nth convolution ¢(™ = g % --- x . Recall
that ¢(™ is continuous iff ¢ is continuous. _ o

Therefore the Poisson suspension automorphism 7" on (X, B, it) is ergodic
if and only if the spectral type of T'on L%(X, B, ;1) is continuous; equivalently,
iff there are no T-invariant subsets of X of finite positive measure or else iff
L?(X, B, 1) does not contain non-zero T-invariant functions. In this case T
is weakly mixing. Finally, note that, in particular, if a Poisson suspension
automorphism is ergodic then necessarily the measure g is infinite.

3.2. Factors and Poisson joinings. If Xy is a T-invariant subset of X,
then T is the direct product of two Poisson suspensions of T" acting on X7 and

on X \ Xy, in particular, T'|x, is a factor of T. Assume now that S acting on
another o-finite standard Borel space (Y, C,v) is a factor of (X1, p|x,,T|x,)
in the sense that there is a measurable map F' : X1 — Y such Fi(u|x,) =v
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and FoT = SoF on X;. Then S acting on (Y,C,7) is a factor of f]}: via
the map F : X; — Y given by F({zn}) = {F(z,)}.

Then the associated operator Vi : L2(Y, D) — L3(Xy, MT/Xl)a g— goF,
acts well on the chaos. ~

By Poisson factors of T we will mean factors S obtained as above. We
will also say that the map F' is a partial map of X to Y semi-conjugating T
and S. Note that if F': X; — Y establishes a semi-conjugation of T" and S
then the associated isometry Vi is a sub-Markov operator from L?(Y,v) to
L2(X17:U’|X1)'

Assume that 7" and S are automorphisms of o-finite spaces (X, B, 1)
and (Y,C,v) respectively. A joining 1 of T and S is called a Poisson join-
ing if the associated Markov operator vV = &, acts well on the chaos
and, via the natural isomorphisms of the first chaos Hx of ()? B, @) and
Hy of (Y,C,7) with L2(X,B, ) and L2(Y,C,v), the operator Vg, cor-
responds to the sub-Markov operator V associated to a sub-joining of T

and S.

PROPOSITION 13. The class of Poisson joinings between T and S is
closed in the weak topology of joinings, in particular, the class of Poisson
self-joinings of T contains the weak closure of {TV" :n € Z}.

Moreover, the relative product of T over a Poisson factor is a Poisson
self-joining.

Proof. The first part follows directly from the fact that the set of sub-
Markov operators is closed in the weak operator topology.

To prove the second part take a Poisson factor which is determined by a
partial function F': X1 C X — Y. Then the Markov operator corresponding
to the relative product over this factor is given by VﬁngfoPLQ(;ﬁ). Since V7,
Vg, P, (%) act well on the chaos and their restrictions to the first chaos can
naturally be identified with Vi, V3, L2(X) 5 f — f|x, € L*(X1) resp., so
are sub-Markov operators, the composition VﬁoVI}fo L2(%) is the associated
Markov operator of a Poisson self-joining. =

3.3. Ergodicity of Poisson joinings. Assume that g is a sub-joining of
T and S and denote by V the corresponding sub-Markov operator from
L?(X,B, ) to L2(Y,C,v). We will now pass to a construction of a Poisson
joining 1 of T and S corresponding to g, i.e. if we put V= &,, then V\H =V.
This Poisson joining turns out to be unique, so the structure of Poisson
joinings will be understood.

Set i/ = p— ox and v/ = v — gy . Let us define a o-finite standard space
(Z,0') as a formal disjoint union of (X, '), (Y,2/) and of (X X Y, p). Then
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we define R on (Z, ¢') by putting R|x =T, Rly =S and R|xxy =T x S.
Since pox and py are T- and S-invariant respectively, ¢’ is R-invariant.

We now have the partial mapping F': X U (X xY) C Z — X which to
x € Xorto (z,y) € X XY associates x, and for each A C X of finite measure
we have o/(F~1(A)) = 1/(A) + ox(A) = u(A). Clearly, FoR=ToF,so F
establishes a semi-conjugation of R and 7. The mapping G : YU (X xY) C
Z — Y which to y € Y or to (z,y) € X XY associates y has similar
properties. Hence, the two maps F:Z— Xand G:Z — Y are factor
mappings of RtoT and S respectlvely It follows that (F G) Z—-XxY

defines a joining 7 = (F, G)4(¢') of T and S, that is, for each f € L%(X, B, [i)
and g € L2(Y,C, ) we have

Vr@g@ dn(@.5) =\foF-goGdd.

It follows that the Markov operator associated to 7 is equal to V= V~V~

Hence, V acts well on the chaos and clearly its restriction to Hx can be
naturally identified with V:Vp. Let us now show that ViVr = V. Indeed,
take A C X and B C Y of finite measure. Notice that 140 F -1 0o G
equals zero outside of X XY, and on X x Y this function is equal to 1 4« .
Therefore

\VeVela-1pdv =140 F - 1p0Gdg = o(Ax B) = V14 1pdy,
whence ViVp = V.

THEOREM 14. FEach Poisson joining of two ergodic Poisson suspension
automorphisms remains ergodic. In particular, each ergodic Poisson suspen-
ston automorphism has the ELF property.

Proof. Notice that the second assertion follows from the first one and
Proposition 13.

Assume that T and S are ergodic. It follows that X and Y have no
invariant sets of finite positive measure. Let us show that in Z there are no
R-invariant sets of finite positive ¢-measure. Indeed, suppose that h = 1o €
L*(Z,¢') is R-invariant. Then Vjih is T-invariant, so equal to zero p-a.e. In
particular for each subset A C X of finite measure we have

0= (Vih,14) = (h,Vp(1a)) = \h- (140 F)d¢

that is, o/(C N F71(A)) = 0. Since F~(A) is a formal disjoint union of
Aand A XY, ¢(CNX) =0 and by a similar argument o'(CNY) = 0
together with o/(CN(Ax B)) =0 for each A C X, B C Y of finite measure.
Therefore ¢'(C) = 0. It follows that the Poisson suspension Rof Ris ergodic
and therefore its factor (T’ x S, n) remains ergodic. m
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REMARK 5. Independently, using different arguments, the result on er-
godicity of Poissonian joinings has also been proved by E. Roy in [36].

4. Self-joinings of symmetric a-stable automorphisms. In this
section we will define and study a-stable self-joinings for a-stable automor-
phisms, i.e. automorphisms given by stationary ergodic symmetric a-stable
processes (see [17], [30], [44]). We will show that each ergodic symmetric
a-stable automorphism has the ELF property.

4.1. Auziliary lemmas. The proofs of the following two elementary in-
equalities are slight adaptations of the proofs from [44, pp. 91-92].

LEMMA 15. If 0 < a < 1 then for all z,y € R we have

(6) 2l + Iyl — o+ y[° > (2 — 27) min(fe]*, [y]°).

If 1 < a <2 then for all z,y € R we have

(7)) 2(j2[* + |y1*) = (Jo +y|* + o = y|*) = 2(2 = 2*/*) min(|z|*, [y|*). =
In particular, (6) implies

(8) Iz +y|* —|y|*] < |z]* forz,y e Rand 0 < a <1,

and by the Hoélder inequality

9) |7 +yl* <max(1,2° N (|z|* + |y|*) forz,y e Rand 0 < a < 2.

The following result is a consequence of (8) and the Holder inequality.

LEMMA 16. Assume that 0 < a < 2. Let (2, F, m) be a finite measure
space. Let (Ap)p>1 C F. Assume that (fy), (gn) C LY(£2,m) satisfy

S |fn|“dm — 0 and S lgn|“dm = O(1)  asn — oco.
An ]
Then
S (Ifr + gnl® = |gn|*)dm — 0 asn—oco. m
An

4.2. Symmetric a-stable processes. Recall that a real random variable
X has a stable distribution if for any a,b > 0 we can find ¢ > 0 and a real
number d such that the distributions of aX; + bXs and of ¢X + d are the
same, where X1, Xy are independent copies of X (one proves then that there
exists @ = a(X), 0 < a < 2, such that ¢ = (a® 4 b*)/). In what follows we
will consider only the symmetric case (i.e. the distribution of X and of —X
are the same, cf. the Gaussian case). In this case, the characteristic function
of X # 0 is of the form E(e'X) = 17 for some positive o (¢ € R).

Let 0 < a < 2. Let S be an arbitrary countable set. Let X = (Xs)ses
be a process defined on a probability space (£2,F,P). We say that X
is (symmetric) a-stable if each finite linear combination ¥ = Y"1, a; X,
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(a; € R, i = 1,...,m) is a symmetric a-stable variable, i.e. there exists
o > 0 such that Ee™ = 7117 for all t € R (and ¢ > 0 whenever Y # 0).
We then write

(Y))a =o'/

REMARK 6. For 1 < a < 2 (a = 2 leads to the Gaussian case) ((Y)),
turns out to be a norm in the Banach space (., ., L" ({2, P), and for each
0 < r < « there exists ¢ = ¢o, such that (Y))o = ¢.o|Y||r for each Y which
is a-stable. For 0 < a < 1 in a similar manner we obtain a Fréchet space.

The following theorem has been proved in [30, pp. 127-128|.

THEOREM 17. Assume that 0 < o < 2. Assume moreover that X =
(Xs)ses is an a-stable process. Then there exists a finite positive Borel mea-
sure (called a spectral measure of X) m on RS such that

n n
. 1 o
Eexp (z Zansj> = exp (—5 S ‘ Z a;jTs, dm(g))
j=1 RS j=1
for arbitrary ay,...,an € R and s1,...,s, € S, where x = (x5)ses.

REMARK 7. It follows that (3_7_; a; X5, )a = 5 $gs | > =105, dm(z).

«

REMARK 8. When 0 < a < 2, the measure m is not unique.

4.3. a-stable automorphisms. We say that an automorphism 7T’ of a stan-
dard probability Borel space is a-stable if there exists a linear space By of
real functions on X such that

1. B(By) = B,
2. for each 0 # f € By, f is an a-stable variable,
3. By is T-invariant.

The following criterion as well as the method of proof are very close to the
ergodicity criteria in [17] and [15].

PRrROPOSITION 18. T is ergodic iff for each f,g € B,

(foT" =g)a — (Ha+ (9)a

along a subsequence of n’s whose complement has density zero. Moreover, if
T 1s ergodic then T s weakly mizing.

4.4. Self-joinings of ergodic a-stable automorphisms. From now on we
assume that 7" is an ergodic a-stable automorphism of (X, B, 1) and B is its
a-stable subspace.

Assume that ¢ € J(T). We say that this self-joining is a-stable if the
variable F(z,y) = f(z) 4+ g(y) as a variable on (X x X, p) is a-stable for
each f,g € B.
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REMARK 9. According to the definition of o the automorphism 7" x T
acting on (X x X,B ® B, ) is a-stable with its a-stable space being the
closure of By(o) = {f(z) +g(y): f,g € B}.

In this section we will prove that each ergodic a-stable automorphism
has the ELF property.

PROPOSITION 19. Let T be an ergodic a-stable automorphism. Assume
that @ = limy_,oo Upni, @ = D,. Then o is a-stable.

Proof. Take f,g € B and s € R. We have
S e @+9W) gz, ) = S e f @) ei59W) do(2, y)

XxX XxX
= § () (y)e oW dp(y) = lim | eI e dy
—00
X
= lim S oiS(FoT™+9) _ iy e~ IsI(foT ™t +9)5
t—o00 15500

Hence for some ¢ > 0 and any s € R,

lim e—lsI°(FoT™ +9)a _ —ls|®o
t—o00

It follows easily that if o = 0 then f(x)+g(y) = 0 for p-a.e. (z,y) € X X X. n
From now on we fix Ny C N such that N\ Ny has density zero and for

each f,g € B,
(foT" =g)a— (f)a+ (9)a

as n — 00, n € Ny (which uses the fact that T is weakly mixing).
Using Proposition 18 and the definition of an a-stable self-joining we
obtain the following.

LEMMA 20. Assume that T is an ergodic a-stable automorphism with B

its a-stable subspace and Ng as above. Assume that o € J(T) is a-stable.
Then o € J¢(T) iff for each f,g,h,j € B,

(f(T"z) + 9(T"y) = h(@) = j(y))a,e = (f (@) +9(1H))a+ (h(z)+5W))a,
asn — 0o, n € Ny. n

We can now apply Lemma 2 to €'/, e, e and to €', e, e to obtain
the following.

LEMMA 21. Assume that T is an ergodic a-stable automorphism with B
its a-stable subspace and Ng as above. Assume that o € J(T) is a-stable.
Then for each f,g,h,j € B,

(10)  (f(T"z) + g(T"y) — h(x)a,, = (f (@) + 9(y))a, + (R,
1) (f(T"2) + 9(T"y) = §(y))a,e = (f(2) + 9(¥))a, + (Fa:

asn — 00, n € Npy. n
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THEOREM 22. Assume that T is an ergodic a-stable automorphism with
B its a-stable subspace and Ny as above. Assume that o € J(T) is a-stable.
Then o € Js5(T).

Proof. All we need to show is that (see Lemma 20)
(12) (Fo(TxT)" = (H+J))a, = (F)ae+ (H+ D)o,

as n — 00, n € Ng, where F(x,y) = f(z) + g9(y), H(z,y) = h(z), J(z,y) =
j(y) and f,g,h,j € B. In view of Lemma 21 we already have

(13) (Fo(TxT)" £ H)g,— (F)a,+ (H)a,
(14) (Fo(TxT)" £ J)a, = (Fla,e+ (a0

as n — 00, n € Ny. In particular, for 1 < a < 2 we have
(15)  (Fo(T'xT)"—=H))g ,+(Fo(TxT)"+H))g ,— 2((F)a o+ (H)a,):
(16)  (Fo(T'xT)"=J)g o+ (Fo(TXT)"+J)g , = 2((F)a,o+(I)ae);
asn — 0o, n € Ng.
Let S =Z U {a,b} and put
Fo(TxT)" ift=necZ,
Xe=q H if t =a,

J if t =0b.
We hence obtain a process (X;)ses with variables defined on (X x X, 0). Note
that each finite linear combination of these variables has an a-stable law. It

follows from Theorem 17 that there exists a finite positive Borel measure m
on RS = RZ x R, x R, such that

P o 1 P o
(o)), =31 [Sun [ ante
]:1 0 RS le
where z € RY, 51,...,8p € Sand ay,...,a, € R.

For 1 < a < 2, using Lemma 15, we obtain

V @Uzal™ + 2a]) = (|20 — za|™ + |20 + 7a|*)) dm()
RS
> const S min(|z,|%, |z.|*) dm(z),
RS
while for 0 < a < 1, using Lemma 15 we obtain
| (2nl® + |2al® = |20 + 2al®) dm(z) > const | min(|a,|®, [za|*) dm(z).
RS RS

Note that both these inequalities are also true if we replace the function
x — x4 by x — xp, and moreover the left hand sides tend to zero as n — oo,
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n € Ny (by (15) and (16)). Thus
(17) S min(|x,|%, |24|Y) dm(z) - 0 asn— oo, n € Ny
RS
and similarly
(18) S min(|z,|Y, |2p|*) dm(z) — 0 as n — oo, n € Ny.
RS
Set
Al,n = {i € RS : |$n| < |$a|}7
Ay ={z €RY : |4] < |zn] and |z, | < |23},
Az = {z € RY : |z4] < |zp] and |zp| < |zn|}.
In view of (17),
S |zp|“dm(z) — 0 as n — oo, n € Np.
Al,n

Using Lemma 16 with A,, = A1 ,, fo(z) = 2, and g,(z) = —(zq + ) We
obtain
J (1o — (@ + 2)[° = |20+ 2/%) dim(z) — 0,
Al,n

whence
(19) V (2 = (2 + 20) = (Jon]® + |za + a3]%)) dm(z) — 0
Al,n
as n — 00, n € Ny.
Using (18) we find that SAM |zn|“dm(z) — 0, and it follows by the
argument as above that
(20) V (2 = (2 + 20) = (J2n]® + 2o + a3]%)) dm(z) — 0
A2,n

as n — 00, n € Ny.
Applying (17) and (18) once more we see that

S |zq|* dm(z) — 0 and S |xp|“ dm(z) — 0,
A3’n A3,n
hence, in view of (9),{,, |z +zp|* dm(z) — 0 as n — oo, n € Ng. We now
use Lemma 16 with A, = A, 3, fn(z) = —(xq + xp) and gp(z) = z,. We

hence obtain

| (2 — (@a + @) — |2a]®) din(z) — 0,
A3,n



102 Y. DERRIENNIC ET AL.

whence

(21) V (on = (@0 +2)|* = (Jon]® + |20 + 25|%)) dm(z) — 0
A3,n
as n — 00, n € Ny.
Putting together (19), (20) and (21) we conclude that

| (20 = (20 + )" = (J2n]® + €0 + 25]%)) dm(z) — 0
RS
as n — 00, n € Ng. Thus (12) holds and our proof is complete. m

COROLLARY 23. Assume that T is an ergodic a-stable automorphism.
Then T has the ELF property. m

REMARK 10. In the recent PhD thesis [36], E. Roy considers automor-
phisms given by stationary infinitely divisible (ID) processes (for simplicity
of notation here and below we assume that such a process has no Gauss-
ian part), hence in particular the class containing all symmetric a-processes
(0 < @ < 2). He then studies ID-joinings of such automorphisms and proves
ergodicity of such joinings whenever the joined ID-automorphisms are er-
godic. It follows that ergodic ID-automorphisms have the ELF property. His
method of studying ergodic properties of ID-automorphisms is completely
different from the method presented in this section, and is based on a deep
theorem of Maruyama (see [31]): each ID-process can be represented as a
stationary process given by a certain stochastic integral in the Poisson sus-
pension given by the Lévy measure of the original process. A study of the
Poisson suspension automorphism over the Lévy measure is then the main
tool of [36]. In particular, it follows from [36] that ID-automorphisms are
factors of Poisson suspension automorphisms.

5. 2-fold simplicity and the ELF property. In this section we will
compare the 2-fold simplicity property and the ELF property. Clearly, the in-
teresting case is when automorphisms under consideration are weakly mixing
but not mixing. In this case we will show a disjointness result.

Some auxiliary facts are needed.

LEMMA 24. Assume that T is an ergodic automorphism of (X, B, u).
Assume moreover that the closure of the set of powers of T in the weak
operator topology satisfies

(22) {I":neZ}Cc C(T)U{llx}.
Then either
{Tn:neZ}cC(T)

and T has discrete spectrum, or T" — Ilx and T is mizing.



ELF AUTOMORPHISMS 103

Proof. Put
G:={T":neZ}nC(T),

which is a topological monothetic group (recall that on C(T') the weak and
strong topologies coincide). Since G is monothetic, it is either compact, or
isomorphic to Z, or not locally compact. In the first case it is well-known
that T has discrete spectrum. Suppose that 7" is not mixing. Then there is a
weak limit point of powers of T' different from ITx. In view of (22) this limit
point must be a graph joining, and therefore G is not isomorphic to Z. Now,
note that by adding ITx to G we obtain a one-point compactification of G,
so (G is locally compact, a contradiction. m

The assumptions of Lemma 24 are always satisfied for 2-fold simple ELF
maps and therefore we have proved the following.

LEMMA 25. Assume that T is weakly mizing. If T is 2-fold simple and
has the ELF property, then T is mizing. m

Next we turn to factors of a 2-fold simple automorphism. Recall
(see |21], [49]) that a 2-fold simple map is a compact group extension of
any of its non-trivial factors.

LEMMA 26. Assume that T s a weakly mizing, but non-mizing, 2-fold
stmple automorphism. Then no non-trivial factor of T is an ELF automor-
phism.

Proof. Suppose that {, X} € A C B and A is an ELF factor. Note
that A is still not mixing by Veech’s theorem (|49]). Let T'| 4 be the quotient
action of T on (X/A, A, u|l4). It is an ELF automorphism, so in view of
Proposition 4, each self-joining A in the weak closure of powers of T'| 4 is
relatively weakly mixing with respect to the two marginal o-algebras.

On the other hand, by Lemma 25, T| 4 is not 2-fold simple, and what
is more, in view of Lemma 24, in the weak closure of the powers of T'| 4 we
must find a self-joining different from the product measure and from any
graph measure. However, since this joining is ergodic, it is the image of a
graph joining of T acting on B. In other words, this joining, as an action, is
isomorphic to the action of T on AV RA for some R € C(T'). However, since
B — A is a compact group extension, AV RA — A is a non-trivial isometric
extension, so it cannot be relatively weakly mixing, a contradiction. =

We are now able to prove a disjointness result.
PROPOSITION 27. Assume that T is a weakly mizing 2-fold simple au-

tomorphism which is not mizing. Then T s disjoint from an arbitrary ELF
automorphism.
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Proof. Let S be an ELF automorphism acting on (Y,C, ). Assume that
@ : L*(X,B,u) — L*(Y,C,v) is a non-trivial (& # IIxy) indecomposable
Markov operator intertwining 7" and .S. Consider the subalgebra

span{®*(g1) - ... - P*(gn) : gs € L>=(Y,C,v),i=1,...,n,n > 1}
of L*°(X, B, ). By a result of Zimmer ([53]) there exists A C B such that
L*(A) =span{®*(g1) - ... - D*(gn) : g: € L°(Y,C,v),i=1,...,n,n> 1}

and since the function algebra is T-invariant, A is a factor of T'. Since @ is
non-trivial, A is a non-trivial factor of T'. By Veech’s theorem ([21], [49]),
A is given as the fixed points of the action of a compact group H = H(A) :=
{ReC(T): R|4=1d} on B.

We will now show that the action of T" on A has the ELF property, which
is in conflict with Lemma 26. Take any sequence (n;) and suppose that 7"
(weakly) converges to a self-joining different from ITx. We have

T —a | RdP(R)+ (1-a)llx,
o(T)

where a > 0. By passing to a further subsequence if necessary we obtain

bo (a | rarP(R)+ (1 —a)HX) — W od,
C(T)

where by Proposition 5, Wo@ is still indecomposable (that is, it corresponds
to an ergodic joining). Since

b o (a, | RaP®)+(1- a)HX> —a | $oRAP(R)+ (1 - a)llxy,
Cc(T) c(1)
we have ¢ =1 and
| #oRAP(R)=W oo
c(T)
It follows that for (Ri, R2) belonging to a subset of C(T") x C(T') of full
P ® P-measure we have

PoRioR, L= o,
or equivalently
Ryo Ryt od* = &~
But Ry o R1_1 preserves the product of functions, and therefore Ry o R1_1| A

is the identity map, i.e. Ry 0 Rl_l € H. It follows that there exists R’ € C(T)
such that

P(R'H) = 1.
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If now f,g € L>(A) then
(forg)—(( § RaP(R)fig)= | (Rf.g)dP(R) = (R[.g).

a(T) o(T)
We know that the image on A® A of the measure determined by the Markov
operator { R dP corresponds to E( | A)oR’ and since the latter is the restric-
tion of pr to A® A, it is indecomposable. Hence A has the ELF property. =

REMARK 11. T. de la Rue [39] has shown that Gaussian automorphisms
are never of rank 1. Gaussian automorphisms enjoy the ELF property. We
conjecture that no weakly mixing, non-mixing rank 1 automorphism has the
ELF property.

Let us recall that if 7" is rank 1 then by a result of Ryzhikov (|40,
Thm. 3.1]) for each ergodic self-joining ¢ of T' there exists a sequence (n;)
such that

T — a®, + (1 — a)®Py,

where a > 0 (n € Jo(T)). It follows that if T is rank 1 and has the ELF
property, then (by Proposition 4) T is semisimple (in the sense of [20]).

We finish this section by showing that the minimal self-joinings (MSJ)
automorphisms (see [37] for the definition) which are not mixing are con-
tained in the class of multipliers of ELFL. The proof is similar in spirit to
the proof of Theorem 5.3 in [41].

PROPOSITION 28. Let T be an MSJ automorphism which is not mizing.
Then T belongs to M(ELFYL).

Proof. Since T has the MSJ property, by the basic lemma on multi-
pliers (|28]) all we need to show is that the Cartesian square 7' x T is dis-
joint from any ELF automorphism. Using now the criterion for disjointness
from [29] (and the fact that 7" has the MSJ property) it is enough to show
that no factor of T has the ELF property. A factor of T can be ob-
tained only from permutations of finitely many coordinates ([37]), that is,
it is of the form T** acting on X x --- x X /S, for some k > 1, where Sy

stands for the group of all permutatior’:s of k coordinates. Suppose now that
such a factor has the ELF property (recall that a factor of an ELF automor-
phism remains an ELF automorphism). Denoting by F the factor o-algebra,
we seek a contradiction.

Since T is not mixing, there exists a sequence (n;) such that

o
™ — q Z a,T" 4+ (1 —a)Ilx,
n=-—00

where 0 < a <1, a,>0,> > a, = 1 and either

n=—oo
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(A) a <1 and then a;,, # 0 for some my, or
(B) a =1 and then there are m; # mg such that ap,, 7# 0 # am,.

We now continue the proof assuming (B). We have
(Tx--xT)" — & :=d"af, T @ - @T™ +d"af, T™ @ - @T™ +b0,

where @ is a Markov operator. Since (T x --- x T')™ preserves the subspace
L?(F), so does the weak limit @, and since the first two summands of the
limit also preserve L2(F), so does ©. Therefore,

Dlr2r) = T’”l@ QT | 2(5)+a amQT’”?@ @T™| 207 +0O| 27

Since T restricted to F has the ELF property, the Markov operator
®|r2(f) is indecomposable in Jo(T7°|x). It follows that all summands on
the right hand side of the above equality are equal. In particular,

T - QT™|r=T"Q - QT"|f,

so T2 @ ... @ T™27™| x = Id, which is not possible.
In case (A) we proceed in the same way working in the weak limit with
the operators a*af, T™0 @ -+ @ T™ and (1 — a)*IIxx. =

6. Disjointness of interval exchange transformations from ELF
automorphisms. In this section we will study disjointness of interval ex-
change transformations from the class of ELF automorphisms.

6.1. Interval exchange transformations. Rauzy induction. Recall that
(see e.g. [3, Chapter 5|) an m-interval exchange transformation is a Lebesgue
measure-preserving automorphism of [0,1) given by a probability vector
(A1,..., Am) together with a permutation 7 of {1,...,m}. The unit inter-
val [0, 1) is partitioned into m subintervals of lengths A1, ..., A\, which are
rearranged according to the permutation 7. For some basic properties of in-
terval exchange transformations (IET) we refer the reader to [3, Chapter 5]|.
Katok [22]| proves that IET’s have no mixing factors. In fact, an analysis of
Katok’s proof shows that IET’s are disjoint from all mixing automorphisms
(cf. [8]). An IET can be weakly mixing, and the problem of “how many”
IET’s are weakly mixing was one of the most important ones in this theory
(see [51]). Quite recently, in a deep paper [2] Avila and Forni give a posi-
tive answer to Veech’s conjecture: under some necessary restrictions on the
permutation, for almost all choices of probability vectors, the correspond-
ing IET is weakly mixing. Recall also that some IET’s can be even 2-fold
simple automorphisms (see [18], [4], [5]). In this section we will prove that
for some special permutations almost all IET’s are disjoint from all ELF
automorphisms.
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Fix m > 1, and let &Y, denote the set of all irreducible permutations of
{1,...,m}, i.e. such that 7{1,...,k} = {1,...,k} implies kK = m. Set
A ={AeR™:X\; >0,1<j<m}.
Given A € A, put
J
i=1

A =D N I =810, 8;(\) € I = [0, A,
i=1

for 1 < j < m. We also define a vector A", where AT = A -1, 1 < j <m.
With the notation as above, given (\, ) € A, X ng denote by T' =T )
the corresponding interval exchange transformation of I, i.e.

Tiam™ =T + Briy—1(AT) = Bi—1(A)

whenever = € I{\, 1<i<m.

We will now recall the Rauzy induction (see the original papers [34],
[48], [50], [51]). Let Z(A\,7) = [0, max(Bm—1(A), Bm—-1(A"))). Then the in-
duced transformation Ty ) : Z(A,7) — Z(A, ) is an m-interval exchange
transformation determined by a pair J(\,7) € A,, x &%. This defines the
transformation J : A, x 8% — A, x &Y (see [34]).

For each k =1,...,m define a permutation 7, by

J for 1 <j <k,
(j) =49 j+1 fork<j<m,
k+1 forj=m.

G. Rauzy [34] has defined useful maps a,b: &Y — &9 by
a(r)=mo T;_ll(m), b(7) = Tr(m) o 7.

These maps generate a group of maps of &Y | any orbit of which is called a
Rauzy class. We associate to m and ¢ = a or b the m x m matrices A(m, c)
such that
A(?T, a))\ = ()\1, s ATy A1y T )\Wflm_i_l, )\Wflm_i_g, ey A, )\ﬂ.flm_;'_l),
AT, D)A= (A1, s A1, A+ A1)
Define . \
a 1 Ay < Ap—1p,

e ) = {b i A > A1,

Then
I\, m) = (A_l)" c(m)),
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where ¢ = c(\,7) and A = A(m,c). Let (A, ) € Ay, x &Y. Then J*(\, ) =
(A 7)) where

7 =cpoc, 10--0ci(n) with ¢ = cx(\ ) = (T, 7))
and
A=APNM  with  A™ = A(r,e)A(mD, ¢g) - - AV ¢).
Set A1 = {\€ A, : |A| =1}, and define P: A, x G — A, g x &Y
by
B0 = (o).

where ¢ = ¢(A\,7) and A = A(m,c). Then P is essentially two-to-one and
non-singular. Moreover, the inverses of 3 are given by

gy (AL N
w00 = ({3 e ™)

where ¢ € {a,b}.

PROPOSITION 29 (Veech [49]). Let R C &Y be a fized Rauzy class.
On Ap—1 X R there exists a smooth positive o-finite P-invariant measure
M = M, with respect to which P is ergodic and conservative.

Given (A, m) € Ayym1 x &), and v € (0,1), for 3 € [0,1) define
Tourmy(8) = max{k < 0: T 1, (8) € [0,7)}.

Since for a.a. (A\,7) € A,_1 x 8% the transformation T\ is ergodic,
for a.a. (\,7) € A1 x &Y the measurable function Tovrn) 0,1) —
—N U {—o0} is almost everywhere finite. Let us consider the skew product

Po: A1 x 8 x [0,1) — Apo1 x GY x [0,1) given by

Toum iz, (8)

T ®)
Bl ) = <W’”)’ ST )

Then
T dcam)-1a &

. (8)
P\, B) = (%n()‘aﬂ)v G, )‘(A(”))_l)\| )

Let R C &Y be a fixed Rauzy class. Then, as shown in [48, §3], there
exist n > 1, mp € Rand ¢ = (¢1,...,¢,) € {a,b}™ such that

B = A(mg, c1)A(my,¢2) -+ A(Tp—1, Cn)
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is a positive m x m matrix, where m; = cjocj_10---0 c1(mp), 1 <j<n.If
we now put ‘Bgl = ‘,]36’11 0...0 ‘B;} then

P (Ap1 x {mn}) = {(%,m),)\ € Aml}.

Indeed, it is easy to check that P (\,m,) = (BN/|BA|,mo) for every
A€ A_1.

For each 0 < € < 1 denote by Y. C A, x {m,} the set of all (A, m,)
such that A\; > (1 —¢)|A|. Let A | denote the set of all elements from
A1 such that the only rational relations between A1, ..., Ay, are multiples
of Ay +---+ A\, = 1. Set

Wx = (A% | x R x [0, 1))
0 ) U U8 (Y1) ¢ 0.1) NP (Vs x [1/3,2/3)).
seENEk>sl>s

Let myg 1) stand for the Lebesgue measure on [0, 1).

LEMMA 30. The set W has full MM & myg 1)-measure.
Proof. By the ergodicity and conservativity of 3 the set

W= (An xR0 () U UB 8 V)

seENk>sl>s

has full M-measure because M(P- Y] /&) > 0 for every k € N. Since W' is
the projection of W on A,,_1 xR, it suffices to show that for each (A, 7) € W’
the section

W()\,ﬂ) = {B € [07 1) : (Avﬂ-vﬂ) S W}

has full Lebesgue measure.
Fix 0 < ¢ < 1 and [ > 1 and suppose that (\,7) € P~ (P,'Y:) and
A€ AL L Then (N, 7,) := 3" (\,7) € Yz and

A=A = AD(BN).

Write J = J;; = If‘/ and ¢ =g =Y i Agw) Since A € Al | we have
IN| = [(ATD)=1\| — 0 as | — oo. As shown in [51], J and ¢ satisfy the
following conditions:

o JNTY T =0for1<j<q,
® Ty ) is linear on T(j )J for 0 < j < g,
° \JﬂTq J\ > (1—25)\J!

o UL 1T] o> 1—v(B)1=

1—¢>
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where v(B) = maxi<; j k<m Bij/Bik- Next consider the tower

; 1 2
= (T 5150)
€ ( A2 3 0<j<q

Notice that if 3 € =, then
1) 2|1y 1 2
23 " EYex |z s | cYax|z(1-2),2).
Now suppose that (A\,7) € W'. Then there exist increasing sequences

(ks)sen, (Is)sen of natural numbers such that (A, 7) € Pl (‘BleI/ks). By
the preceding observation, T{) r) has rank 1, hence is ergodic. Moreover, as

liminfm[071)(51/ks,ls) = 1/6
S—00

and T{y ) is ergodic, there exists a set Oy ) C I* = [0,1) of full mo,1)
measure such that for each 5 € ©, ;) there exist infinitely many s such that
B € 21k, (see King [23, Lemma 3.4 and remark after it]). Then using (23)
we obtain Oy ) C W ), which completes the proof. m

6.2. Disjointness theorem. Denote by &”, (resp. &) the set of all w €

&Y such that 7(j) +1# 7(j + 1) for any 1 < j < m and
m(r Y m) +1)=xa(m)+1 (resp. n(x (1) — 1) = n(1) — 1).

In this section we will prove that if 7 € &7, U &l then for almost every
A € Ay, the interval exchange transformation 7() ) is disjoint from all ELF
automorphisms.

Suppose that (A, 7, 3) € Wy (see Section 6.1) and let f:[0,1) — R be a
positive function of bounded variation. For short, we will write T" for T{ ).
In view of the proof of Lemma 30, we can choose a sequence (J,,) of intervals

whose left end-point equals 0 and an increasing sequence of natural numbers
(gn) such that

e the intervals {T'.J,,,0 <[ < g} are pairwise disjoint,

e T is linear on T'J, for 0 <1 < ¢y,

o |J,NT!J,|/|Jn] — 1,

o [Ulg ' T'| — 1,

o Be Ul T'(1/4)|Tul, (3/4)]Jnl)-
Therefore T is ergodic and (g,,) is a rigidity time for T'. Set C), := ?ial T,
and by, := |J,|™! Scn f(z)dz. Putting I, := J, N T~ % J, (which is also an
interval) we obtain

e T'I, are intervals for 1 <[ < 2gy,

o TR, NTHH I, =0 for 0 <k < gn and 1 <1 < gy,

e T is linear on T'I,, for 0 < < 2q,,

o [I,NT™I,|/|I,| — 1,
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o Ul TH,| -1,
o B¢ Uq"_l THE[(1/5)| 1), (4/5)|1,]) for every 0 < k < gy.

IfzeC = ?;0_1 T'I,,, then each element of the orbit Tz, 0 <1 < gy, lies
in exactly one interval T%.J,, 0 < k; < ¢y. Therefore

gn—1 1
RS S e I CL

1=0 kg,
gn—1 1

<> A | 1A(T) = f(6)|dt
1=0 """ kg
qn—1

< Z Varpw, ; f < Var f.
1=0

Assume again that (\,7,3) € W and suppose that g € Ik+1’ where
0 <k <m — 1. Consider the function f =1+ xg,(x),3) and put a, := [bn].

LEMMA 31. Let P be a weak limit measure of ((f() — an)«(Mmo,1)))n-
Then P is concentrated on Z N [—2,2] and has at least two atoms.

Proof. Since |f4)(z) — a,| < Var f +1 =3 for z € C', ) — q,, takes
only integer values and |C},| — 1, P is concentrated on Z N [—2,2].

Fix n > 1 and take 0 < j < g,. Then B,(\) ¢ UPy' Tl(Int Ti1,)
and € an—l TIH(1/5)|1,], (4/5)|1,]). Tt follows that T7I,, splits into two
subintervals K, K;r of size at least |I,,|/5 such that f(%) —a,, is constant
on each of them and the values which f() — a,, takes on K i and K;' differ
by 1. Since f(4) — a,, on C, takes values only from the set {—2,—1,0,1,2}
there exists a € {—2,—1,0,1,2} such that the cardinality of A, = {0 <
J< qn s (fln) — an)(K; ) = {a}} is at least g,/5 for infinitely many n.
Moreover, there exists ¢ = #1 such that #{j € A, : (f{%) —a )(KJ‘F) =
{a+ (3} > #4,,/2 > ¢,/10 for infinitely many n. Since |K; |, |Kj+| > |1,|/5
and gp|l,| — 1, we conclude that P({a}) > 1/25 and P({a + (}) > 1/50,
which completes the proof. m

PROPOSITION 32. Suppose that (\,7,3) € Wiz and (3 € I i1 for some
0 < k < m — 1. Then there exists an increasing sequence (a,) of natu-
ral numbers and a non-trivial (i.e. with at least two non-zero frequencies)
trigonometric polynomial p such that

(Ty)* — p(Ty)
weakly, where f =1+ X(g,(\),3)- Moreover, Ty is weakly mizing and it is
disjoint from all ELF automorphisms.
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Proof. By Theorem 6 in [8] and Lemma 31, passing to a subsequence of
(ay) if necessary we have

(T7)a, — p((T1)1),

where p(z) = 3.2, P({i})z~% and at least two of the numbers P({i}),
—2 < i < 2, are positive. By Lemma 3, (77)* — p(T). Moreover, by
the proof of Lemma 31 there is i € {—2,—1,0,1} such that P({i}) and
P({i+ 1}) are positive. It now follows from an argument used in the proof
of Proposition 6 that T is weakly mixing. Using Proposition 6 again, we
conclude that T is disjoint from all ELF automorphisms. =

Since IET’s associated to permutations from 6£n are isomorphic via the
symmetry x — 1 —x to IET’s associated to permutations from &;,, we focus
on the latter family. It is easy to see that if (A, ) € Ap,—1 x &7, then Tip(y 1) is
an m — l-interval exchange transformation. Indeed, for each j =1,... ,m—1
define i; : {1,...,m—1} = {1,...,m}and p; : {1,...,m} — {1,...,m—1}
by

<k<gy
sw={3, st
+1 forj<k<m-1

and

k for 1 <k <y,
pj<k>={

k—1 forj<k<m.

Then Tm(/\ﬂ") = TE(A,W)? where £ : Am—l X an — Am_g X ng,—l is given by

()\1,...,/\',1,)\'—)\m,)\'+1+)\m,/\‘+2,...,)\m_1) .
( . . 1i/\m . s Dy © T O Um—1), Am < Aj,

LA\, m)=
yPm—10 T © 2.jfl)) >\m > )\]a

( AN -1 N 1,242, Adm—1,Am =)
Aj

with j = 771(m). Moreover, by the definition of 3, T\ 1s isomorphic to

the integral transformation (T x)) where

feeonm,Bnm)?
Jorp =1+ X100, Whenever b e Il-)‘ = [Bi—1(N), Bi(N)

and
AL+ + >‘7r*1(m)

if Ay, < Aﬂ.—l(m),

N 1—Am
ﬂ( ,7T) o )\1+"‘+)\ﬂ.—1(m) ) A

Consider the map £, : A1 X &), — Apy_2 X 670n—1 x [0,1) with
L\ 7m) = (L, m), B\, T)).
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Since £, is essentially one-to-one and its inverse is piecewise smooth,

g, (Am_1 x &,,Leba, , ® Y 57r)

Tedn,
— (S*(Am,1 X 6%),LebAm72 X Z 5Tr & m[OJ))
Te&d

is non-singular. Recall that | Jy W has full Leba,, , ® ZWGG%,l Oz @My 1)-

measure. Therefore W = £71({Jgp Wan) has full Leby,, , ® > reey, Or-mea-
sure.

THEOREM 33. If m € &, UG then for Leba, ,-almost every X in
Ap—1 the interval exchange transformation Ty ry 1s disjoint from all ELF
transformations.

Proof. First notice that it suffices to show that if (A, 7) € W then Tiam
is disjoint from all ELF transformations. Assume that (\,7) € W. Then
L.(\,7) = (N,7',8) € Wa, where R is the Rauzy class of 7’. By Proposi-
tion 32, the integral transformation (T()‘lv”/))f(k’nr’,ﬁ) is disjoint from all ELF
transformations. On the other hand, (T()\’,W’))fw,w/,m is isomorphic to Ty ),
which completes the proof. m
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