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LARGE SETS OF INTEGERS AND HIERARCHY OFMIXING PROPERTIES OF MEASURE PRESERVING SYSTEMSBYVITALY BERGELSON (Columbus, OH) andTOMASZ DOWNAROWICZ (Wro
ªaw)Abstra
t. We 
onsider a hierar
hy of notions of largeness for subsets of Z (su
h asthi
k sets, syndeti
 sets, IP-sets, et
., as well as some new 
lasses) and study them in
onjun
tion with re
urren
e in topologi
al dynami
s and ergodi
 theory. We use topo-logi
al dynami
s and topologi
al algebra in βZ to establish 
onne
tions between variousnotions of largeness and apply those results to the study of the sets Rε
A,B = {n ∈ Z :

µ(A ∩ T nB) > µ(A)µ(B)− ε} of times of �fat interse
tion�. Among other things we showthat the sets Rε
A,B allow one to distinguish between various notions of mixing and intro-du
e an interesting 
lass of weakly but not mildly mixing systems. Some of our results onfat interse
tions are established in a more general 
ontext of unitary Z-a
tions.Introdu
tion. Let (X,B, µ, T ) be an invertible ergodi
 probability mea-sure preserving system. Given ε > 0 and A,B ∈ B with µ(A) > 0, µ(B) > 0,let us de�ne the set of times of �fat interse
tion� by
RεA,B = {n ∈ Z : µ(A ∩ TnB) > µ(A)µ(B) − ε}.When A = B, the sets RεA,B are intrinsi
ally 
onne
ted with the variousenhan
ements and appli
ations of the 
lassi
al Poin
aré re
urren
e theoremand are relatively well understood. For example, the Khin
hin re
urren
etheorem ([Kh℄; see also [B1, Se
tion 5℄) says that for any, not ne
essar-ily ergodi
, probability measure preserving system (X,B, µ, T ), any A with

µ(A) > 0 and any ε > 0, the set RεA,A is syndeti
 (i.e., has bounded gaps).This result, in turn, follows from the (stronger) fa
t that RεA,A is a△∗-set, i.e.it has nontrivial interse
tions with any set of the form {ni − nj}i>j , where
(ni)i∈N is an inje
tive sequen
e in Z (see Theorem 3.1 below). Note thatwhile every △∗-set is syndeti
, not every syndeti
 set is a △∗-set (
onsiderfor example the set of all odd numbers).2000 Mathemati
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Assuming ergodi
ity, one 
an show that the setsRεA,B are always syndeti
.On the other hand, the natural question whether they are always of the form

E + k, where E is a △∗-set, k ∈ Z, has, in general, a negative answer (seeTheorem 1.7 below). One of the goals of this paper is to introdu
e and studysome new notions of largeness with the intention of better understanding thesets of times of fat interse
tion and to apply them to the study of mixingproperties of dynami
al systems.In order to formulate our main results we have �rst to introdu
e anddis
uss the pertinent notions of largeness. This is done in Se
tion 1, at theend of whi
h the formulations of our main theorems are given. In Se
tion 2we take a 
loser look at notions of largeness whi
h are intrinsi
ally relatedto topologi
al dynami
s. In parti
ular, we show that one of the notions play-ing the de
isive role in this paper, namely that of D-sets (see the de�nitionin Se
tion 1), 
an be naturally viewed as the extension of Furstenberg'snotion of 
entral sets (see [F, p. 161℄) whi
h proved to be very useful invarious appli
ations of ergodi
 theory to 
ombinatori
s (see for example [B1℄and [B-M℄). In Se
tion 3 we provide the proofs of the 
hara
terizations ofergodi
ity, weak, mild and strong mixing in terms of sets of times of fatinterse
tion. In Se
tion 4 we give an example of a dynami
al system whi
hnot only proves that two of the 
lasses under study (IP∗
+ and D∗

•) are not
ontained in one another, but also that one 
annot repla
e D∗
• by its in-terse
tion with IP∗

+ in the 
hara
terization of the weak mixing property.Finally, in Se
tion 5 we apply our notions to isolate 
ertain nonempty sub-
lass of weakly mixing but not mildly mixing transformations. The paper is
on
luded by an appendix 
ontaining an expli
it example of a topologi
aldynami
al system with spe
i�
 properties. Besides being interesting in itsown right, the existen
e of su
h a system is important in one of the proofsin Se
tion 2.A
knowledgements. We are greatful to Sarah Bailey-Fri
k, RonniePavlov and Neil Hindman for useful 
omments. We also thank the anony-mous referee for numerous pertinent remarks and suggestions.1. Notions of largeness via duality. Let F be a family of nonemptysubsets of the integers Z. We will denote by F∗ the dual family 
onsisting ofall sets G su
h that G ∩ F 6= ∅ for every F ∈ F . The family F is partitionregular if, whenever F ∈ F is represented as a union of �nitely many sets,then at least one of them belongs to F . It is not hard to verify that if F ispartition regular then its dual F∗ is a �lter: the interse
tion of two elementsof F∗ belongs to F∗. (The other requirement for a �lter, the property of being
losed under taking supersets, is obvious for F∗.) Two elementary examplesof this kind are
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1. Fix some n0 ∈ Z and let F = {F ⊂ Z : n0 ∈ F}. Then F∗ = F .2. Let F = I = {F ⊂ Z : |F | = ∞} (in�nite sets). Then F∗ = I∗ =
{F ⊂ Z : |Z \ F | <∞} (
o�nite sets).Let us now mention a more subtle example.3. A set F ⊂ Z is 
alled an IP-set if it 
ontains the set FS(S) of �nitesums of some sequen
e S = (sn)n≥1 of nonzero integers:FS(S) = {sn1

+ · · · + snk
: n1 < · · · < nk, k ∈ N}.Let IP be the family of all IP-sets. One 
an show that both IP-setsand IP∗-sets (members of the dual family IP∗) 
an be 
hara
terized(with the help of Hindman's theorem) in terms of idempotents in βZ(see De�nition 1.2 below and Theorems 1.2 and 1.5 in [B2℄).Re
all that a family of subsets of Z whi
h is both partition regular and a�lter is 
alled an ultra�lter (or a maximal �lter). Note the obvious fa
t thatthe union of any 
olle
tion of ultra�lters is partition regular. Also, whilean interse
tion of ultra�lters need not be an ultra�lter, it is always a �lter.The 
olle
tion of all ultra�lters is denoted by βZ and, endowed with anappropriate topology, be
omes the Stone��e
h 
ompa
ti�
ation of Z. Thereis a natural semigroup stru
ture in βZ extending the addition operation of

Z (for more details see [H-S℄).The above examples have the following interpretation in terms of ultra-�lters: In the �rst example, F is nothing but a so-
alled prin
ipal ultra�lter,i.e., the ultra�lter representing n0 in βZ (and so also is F∗). In the se
-ond, F is the union of all nonprin
ipal ultra�lters and F∗ is the interse
tionof all su
h ultra�lters. Finally, in the third example F is the union of allnonprin
ipal ultra�lters whi
h are idempotents for the natural semigroupstru
ture of βZ (that is, F is the union of all idempotents ex
ept zero) and
F∗ is the interse
tion of the nonzero idempotents (
f. [B2, Theorem 2.15(i),p. 20℄). The above fa
ts are spe
ial 
ases of the following more general state-ment:Lemma 1.1.(1) If F is an ultra�lter then F∗ = F .(2) If F =

⋃
αFα then F∗ =

⋂
αF

∗
α.In parti
ular , whenever F is a union of some 
olle
tion of ultra�lters, then

F∗ is the interse
tion of that 
olle
tion.Intuitively, if we have the union of a ri
h 
olle
tion of families, its dual
ontains relatively few �very large� sets, namely, sets whi
h interse
t non-trivially every member of every family in this 
olle
tion. This approa
h to�largeness� will be utilized throughout this paper: a set is �large� if it belongsto the dual of a ri
h family of sets 
ontaining a union of many ultra�lters.
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For this reason the �rst example above is not very useful: the family F isjust a single ultra�lter (and so also is F∗), moreover, F∗ 
ontains �nite sets,so being a member of F∗ 
annot be 
onsidered a 
riterion for largeness. Butleaving this ex
eptional example aside, we will investigate a whole hierar
hyof notions of largeness 
onstru
ted with the help of dual families, of whi
hthe property of being a member of I∗ is the strongest. Several importantnotions of largeness 
an be introdu
ed with the help of idempotent ultra-�lters.In order to fa
ilitate the dis
ussion we list some of the important familiesof large sets in the following de�nition. (Note that the family IP appearingin item (1) below was already introdu
ed above.)Definition 1.2.(1) The 
olle
tion IP (of IP-sets) is the union of all nonzero idempotents

0 6= p ∈ βZ. A

ordingly, IP∗ is the interse
tion of all nonzeroidempotents.(2) The 
olle
tion D (of D-sets) is the union of all idempotents p ∈ βZsu
h that every member of p has positive upper Bana
h density (1).A

ordingly, D∗ is the interse
tion of all su
h idempotents.(3) The 
olle
tion C (of C-sets or 
entral sets) is the union of all minimalidempotents (2). A

ordingly, C∗ is the interse
tion of all minimalidempotents.Sin
e every member of a minimal idempotent has positive upper Bana
hdensity (3), we have C ⊂ D, hen
e, dire
tly from the de�nitions, we obtainthe following hierar
hy:
I∗ ⊂ IP∗ ⊂ D∗ ⊂ C∗ ⊂ C ⊂ D ⊂ IP ⊂ I.As we will see below, all these in
lusions are in fa
t proper.We introdu
e two more notions of largeness de�ned via duality:Definition 1.3.(1) A subset F ⊂ Z is 
alled a △-set , or we say that F belongs to thefamily ∆, if there exists an inje
tive sequen
e S = (sn)n≥1 of integerssu
h that the di�eren
e set △(S) = {si − sj : i > j} is 
ontainedin F .

(1) The upper Bana
h density of a set E ⊂ Z is de�ned as lim supm−n→∞

1

m−n
|E ∩

[n, m − 1]|. If the 
orresponding limit exists then it is 
alled the Bana
h density of E.
(2) An idempotent is minimal if it belongs to a minimal right ideal in βZ (see [H-S℄and [B2℄ for details). See also the dis
ussion in Se
tion 2 on various equivalent de�nitionsof the notion of 
entral set.

(3) This follows from the stronger fa
t that every member of a minimal idempotent ispie
ewise syndeti
 (see [B2, Theorem 2.4 and Exer
ise 7℄).
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(2) A set F ⊂ Z is thi
k if it 
ontains arbitrarily long intervals [a, b] =
{a, a+1, . . . , b}. The 
olle
tion of all thi
k sets will be denoted by T .The dual family T ∗ is easily seen to 
oin
ide with the 
olle
tion ofall syndeti
 sets (i.e., sets having bounded gaps).The family ∆ is the union of a 
olle
tion of ultra�lters (see [B-H2, De�-nition 1.6 and Lemma 1.9℄), while that of thi
k sets is not (be
ause it is notpartition regular). It is known (and not very hard to see) that every thi
kset is an IP-set and every IP-set is a △-set, but not the other way around.In parti
ular, the 
olle
tion of ultra�lters whose union is ∆ 
ontains morethan just idempotents. The hierar
hy of notions of largeness introdu
ed sofar is as follows:
o�nite = I∗ ⊂ ∆∗ ⊂ IP∗ ⊂ D∗ ⊂ C∗ ⊂ T ∗ = syndeti
.Given a family F and k ∈ Z, the shifted family is de�ned by F + k =

{F + k : F ∈ F}, where F + k = {n + k : n ∈ F}. The extreme 
lasses inthe above diagram are shift invariant; a shifted 
o�nite set remains 
o�nite,a shifted syndeti
 set remains syndeti
. The other 
lasses fail to be shiftinvariant. This is not surprising for notions involving idempotents due tothe simple fa
t that if p is an idempotent then p + k is not (unless k = 0).To see that the family ∆∗ is not shift invariant note that it 
ontains theset of all even integers while it does not 
ontain the set of all odd integers.When F is not shift invariant, there are two natural ways of building a shiftinvariant family from it:Definition 1.4. For a given family F , F+ denotes the union ⋃
k∈Z

(F+k)while F• denotes the interse
tion ⋂
k∈Z

(F + k).When applying these operations to a dual family F∗, we will write F∗
+and F∗

• , skipping the parentheses in what should formally be (F∗)+ and
(F∗)•. This 
onvention 
omplies with the existing notation e.g. for IP∗

+-sets.We will 
all F∗
+ the extended dual family. Note that, in general, F∗

+ is nota dual family. On the other hand, by Lemma 1.1(2), the family F∗
• is thedual of F+ (it 
ould be written as (F+)∗, but we will not use this 
onfusingsymbol). The elements of F∗

• are mu
h larger than those of F∗ as they mustinterse
t every set in the family F+ whi
h is mu
h ri
her than F . If F isa union of ultra�lters, so is F+, thus F∗
• is an interse
tion of ultra�lters,and hen
e in parti
ular a �lter. It seems that the type F∗

• of shift invariantfamilies has not been su�
iently re
ognized in the existing literature. Hereis the diagram in
luding all dual and extended dual 
lasses related to thefamilies dis
ussed so far:
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I∗
• ⊂ ∆∗

• ⊂ IP∗
• ⊂ D∗

• ⊂ C∗
• ⊂ T ∗

•

|| ∩ ∩ ∩ ∩ ||

I∗ ⊂ ∆∗ ⊂ IP∗ ⊂ D∗ ⊂ C∗ ⊂ T ∗

|| ∩ ∩ ∩ ∩ ||

I∗
+ ⊂ ∆∗

+ ⊂ IP∗
+ ⊂ D∗

+ ⊂ C∗
+ ⊂ T ∗

+Now we will show that in this diagram no other in
lusions hold ex
eptthe ones that are shown and those obtained by 
omposition. First, observethe following property of all △-sets F : a 
ertain distan
e between elementsof F appears in�nitely many times. Indeed, in any di�eren
e set △(S) with
S = (sn) the distan
e |s2 − s1| o

urs between all pairs of elements sn − s1and sn − s2 (n > 2). Obviously, the same property holds for shifted △-sets.We 
on
lude that the set of powers of 2 does not 
ontain any shift of any
△-set, whi
h implies that the 
omplement of the powers of 2 is △∗

•. Hen
ethe family ∆∗
• is larger than the 
lass I∗ of 
o�nite sets. Further, the set of allodd numbers is a△∗

+-set and is not an IP-set, hen
e in the diagram it es
apesany 
lass 
ontained in C∗. Likewise, the set of all even integers is a △∗-setand not C∗
•. The 
onstru
tion of an IP∗

• but not △∗
+ is provided in Theorem2.11(1). The existen
e of a D∗

• but not IP∗
+ will follow from Theorem 1.7below. A C∗

• but not D∗
+ example is our Theorem 2.11(2). Finally, a syndeti
set whi
h is not C∗

+ is provided in [B2, Theorem 2.10℄. All other �unwanted�in
lusions are now eliminated by superposition.It is worth noti
ing that the family C+ (shifted 
entral sets) 
oin
ides with
PS, the family of pie
ewise syndeti
 or PS-sets (a set is pie
ewise syndeti
 if itis the interse
tion of a thi
k set and a syndeti
 set). The proof 
an be found in[H-S, Theorem 4.43(
)℄. Thus, C∗

• = PS∗, the dual to the family of pie
ewisesyndeti
 sets. Elements of this dual 
an be easily identi�ed as �syndeti
allythi
k�, meaning that for every E ∈ PS∗ and n ≥ 1, intervals of length nappear in E with bounded gaps (in [D℄ su
h sets have been 
alled S-sets).This paper fo
uses on the role the notions of largeness of subsets of
Z play in ergodi
 theory and topologi
al dynami
s. Re
all that (X,T ) isa (topologi
al) dynami
al system if X is a 
ompa
t Hausdor� spa
e and
T : X → X is a homeomorphism. The families de�ned as unions of 
ertainidempotents (IP-sets, C-sets and D-sets) have interpretations (and indeed
onvenient alternative de�nitions) as families of sets of the form {n ∈ Z :
(Tnx, Tny) ∈ U}, where y is a re
urrent point, the pair (x, y) is proximal (4)and U is a neighborhood of (y, y) in X ×X.While the families of IP-, C- and D-sets are useful in topologi
al dynam-i
s, their dual and extended dual families �nd appli
ations in ergodi
 theory.

(4) Two points x, y in a topologi
al dynami
al system (X, T ) are proximal if the setof pairs (T nx, T ny) has an a

umulation point on the diagonal.



HIERARCHY OF MIXING PROPERTIES 123

For example we will show how notions of largeness su
h as D∗
+, D∗

• and IP∗
•
an be used to 
hara
terize the familiar ergodi
-theoreti
 notions of ergodi
-ity, weak mixing and mild mixing. As already mentioned in the introdu
tion,in this paper we study the sets of times of fat interse
tion,

RεA,B = {n ∈ Z : µ(A ∩ TnB) > µ(A)µ(B) − ε}.In the spirit of Khin
hin's theorem we will lo
ate those sets for spe
i�
 typesof systems in our diagram of �large sets�. First of all, the Khin
hin theorem
an be strengthened: the set RεA,A is always △∗ (see Theorem 3.1). It isnot very surprising that the sets RεA,A do not form a shift invariant fam-ily. However, to 
apture the fat interse
tions for arbitrary two sets A and
B (this only makes sense in ergodi
 systems) one needs a shift invariantnotion simply be
ause Rε

A,T kB
= RεA,B + k. The most natural 
andidate,namely the 
lass ∆∗

+, turns out to be too restri
tive. The sets of times offat interse
tion are in this 
lass only for 
ertain rather spe
ial types of sys-tems, e.g. systems with dis
rete spe
trum. The smallest 
lass in our diagramthat su�
es for all ergodi
 systems is the extended dual D∗
+. However, 
uri-ously enough, we will show that for the notions of mixing under study, thesets RεA,B are �
aptured� by the more restri
tive shift invariant dual of theform F∗

• : for weak mixing this is D∗
•, for mild mixing this is IP∗

•, and formixing, dire
tly from the de�nition, this is I∗ (whi
h 
an also be writtenas I∗
• ).Let us brie�y re
all some of the ergodi
-theoreti
 notions:Definition 1.5.(1) The system (X,B, µ, T ) has dis
rete spe
trum if L2(µ) is spanned bythe eigenfun
tions of the unitary operator indu
ed by T .(2) The system (X,B, µ, T ) is weakly mixing if the produ
t system

(X ×X,B × B, µ× µ, T × T ) is ergodi
.(3) The system (X,B, µ, T ) is mildly mixing if there are no nontrivialrigid L2-fun
tions. (A fun
tion f ∈ L2(µ) is rigid if Tnkf → f in L2for some sequen
e nk → ∞.)(4) The system (X,B, µ, T ) is mixing if for any two sets A,B ∈ B onehas µ(A ∩ TnB) → µ(A)µ(B) as n→ ∞.We stress that the appropriate 
ategorization of fat interse
tions for allpairs of sets is in many 
ases equivalent to a given ergodi
-theoreti
 notion,whi
h makes the hierar
hy of largeness very useful. In the following theoremwe 
olle
t formulations of various familiar notions of mixing in terms of sets
RεA,B (see also Final remarks at the end of the paper). Some of the itemsin Theorem 1.6 below are mere reformulations of well known fa
ts (see forexample [F℄), others have relatively easy proofs provided in Se
tion 3 (seealso Remark 1 below).
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Given a system (X,B, µ, T ) we denote by R(X,B, µ, T ) the family of allsets of times of fat interse
tion in this system,R(X,B, µ, T ) = {RεA,B : ε > 0,

A,B ∈ B}.Theorem 1.6. Let (X,B, µ, T ) be an invertible probability measure pre-serving system. Then:(1) For any A ∈ B and any ε > 0 we have RεA,A ∈ ∆∗.(2) If (X,B, µ, T ) is ergodi
 and has dis
rete spe
trum then R(X,B, µ, T )
⊂ ∆∗

+.(3) (X,B, µ, T ) is ergodi
 ⇔ R(X,B, µ, T ) ⊂ D∗
+ ⇔ R(X,B, µ, T ) ⊂ C∗

+

⇔ R(X,B, µ, T ) ⊂ T ∗.(4) (X,B, µ, T ) is weakly mixing ⇔ R(X,B, µ, T ) ⊂ D∗ ⇔ R(X,B, µ, T )
⊂ D∗

• ⇔ R(X,B, µ, T ) ⊂ C∗ ⇔ R(X,B, µ, T ) ⊂ C∗
• .(5) (X,B, µ, T ) is mildly mixing ⇔ R(X,B, µ, T )⊂IP∗⇔R(X,B, µ, T )

⊂ IP∗
• (
f. Chapter 9, Se
tion 4 in [F℄).(6) (X,B, µ, T ) is mixing ⇔ R(X,B, µ, T ) ⊂ I∗ ⇔ R(X,B, µ, T ) ⊂ ∆∗

⇔ R(X,B, µ, T ) ⊂ ∆∗
• (see [K-Y℄ and Remark 1(f) below).Remark 1. Some of the equivalen
es in Theorem 1.6 are trivial or veryeasy, some others follow from known results:(a) It is 
lear that in (3) only the �rst equivalen
e needs a proof, theother two follow from in
lusions of the families of sets and from the fa
t thatin nonergodi
 systems the family R(X,B, µ, T ) 
ontains the empty set, so

R(X,B, µ, T ) 6⊂ T ∗.(b) Sin
e for any system (X,B, µ, T ) the family R(X,B, µ, T ) is shiftinvariant, it is obvious that R(X,B, µ, T ) ⊂ F ⇔ R(X,B, µ, T ) ⊂ F• forany family F .(
) Noti
e that ifR(X,B, µ, T ) ⊂ F , where F is a �lter, then, interse
tingea
h set RεA,B with the 
orresponding set RεA,Bc , we �nd that the sets of timesof a

urate interse
tion
QεA,B = {n ∈ Z : |µ(A ∩ TnB) − µ(A)µ(B)| < ε}also belong to F . In other words, Q(X,B, µ, T ) = {QεA,B : ε > 0, A,B ∈ B}

⊂ F . (Clearly, sin
eQεA,B ⊂ RεA,B , the 
onverse impli
ation also holds.) Thusstatements (4)�(6) in Theorem 1.6 are equivalent to analogous statementswith R(X,B, µ, T ) repla
ed by Q(X,B, µ, T ).(d) If the system (X,B, µ, T ) is not weakly mixing then one 
an �ndtwo sets A and B and an ε > 0 su
h that RεA,A and RεA,B are disjoint (
f.Theorem 4.31 in [F℄), and so they 
annot both be C∗-sets. Thus the 
ondition
R(X,B, µ, T ) ⊂ C∗ implies weak mixing (5). Hen
e, using remark (b) and

(5) The same fa
t is proved (by a di�erent method) in [K-Y, Proposition 5.2℄, inresponse to a question formulated in the preliminary version of this paper.
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obvious in
lusions, we 
on
lude that also in (4) only the �rst equivalen
eneeds a proof. In fa
t, the �rst impli
ation ⇒ 
an be dedu
ed (using (
))from the 
lassi
al fa
t that weak mixing is equivalent to the 
ondition
lim
n→∞

1

n

n−1∑

i=0

|µ(A ∩ T iB) − µ(A)µ(B)| = 0 for any sets A,B ∈ B.(e) The �rst equivalen
e in (5) (in terms of a

urate interse
tions) isProposition 9.22 of [F℄, the se
ond follows from (b).(f) The �rst equivalen
e in (6) applied to a

urate interse
tions be
omesmerely the de�nition of mixing. The se
ond equivalen
e in (6) (formulatedfor a

urate interse
tions) is nontrivial and has re
ently been proved in [K-Y,Theorem 4.4℄ (see also [K-Y, Proposition 5.1℄, formulated in response to aquestion in the preliminary version of our paper).To summarize the 
ontent of the above remark, only (1), (2) and portionsof (3) and (4) require proofs (see Theorems 3.1, 3.2, 3.8 and 3.9 in the nextse
tion, respe
tively). For 
ompleteness we will also provide a proof of (5)using the language of idempotents (see Theorem 3.10).The following two results (whi
h are proved in Se
tions 4 and 5) isolatea new 
lass of systems de�ned in terms of fat interse
tions and situatedstri
tly between weak and mild mixing. A priori it 
ould happen that forweakly mixing systems the sets RεA,B always belong to the interse
tion of
IP∗

+ and D∗
•. The following theorem shows that this is not always so. (Italso provides a proof that the family D∗

• \ IP
∗
+ is nonempty.)Theorem 1.7. There exists a weakly mixing probability measure preserv-ing system (X,B, µ, T ), sets A,B ∈ B and ε > 0 su
h that the set RεA,B isnot IP∗

+.On the other hand, the requirement that all sets RεA,B are IP∗
+ is insuf-�
ient for mild mixing (in parti
ular D∗

• ∩ IP∗
+ \ IP∗ is nonempty):Theorem 1.8. There exists a weakly mixing but not mildly mixing prob-ability measure preserving system (X,B, µ, T ) su
h that all the sets RεA,B areIP∗

+ (but not all of them are IP∗).
Questions.(a) Does there exist a mildly mixing system for whi
h not all sets RεA,Bbelong to ∆∗

+ (
f. Theorem 2.11(1))?(b) Does there exist a mildly mixing nonmixing system for whi
h all sets
RεA,B belong to ∆∗

+? (Here we do not even know whether the family
IP∗

• ∩∆
∗
+ \∆∗ is nonempty.)(
) More generally, what is the dynami
al 
ondition equivalent to

R(X,B, µ, T ) ⊂ ∆∗
+?
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The following �gure gives an overview of the 
lasses of systems understudy and in
lusions between them. The symbol R(F) stands for the 
lassof systems (X,B, µ, T ) su
h that R(X,B, µ, T ) ⊂ F .

2. IP-sets, 
entral sets and D-sets in topologi
al dynami
s. Re-
all that βZ is the Stone��e
h 
ompa
ti�
ation of Z 
onsisting of ultra�lters,whi
h has a natural semigroup stru
ture. On βZ there is also the naturala
tion τ whi
h extends the map n 7→ n+ 1 on Z.If p ∈ βZ is an ultra�lter then the p-limit of a sequen
e xn of elementsof a 
ompa
t spa
e is de�ned by the rule
p-limxn = x ⇔ (∀ open U ∋ x) {n ∈ Z : xn ∈ U} ∈ p.The following fa
t will be used repeatedly in our paper: if p is an idempo-tent and T is a 
ontinuous self-map of a 
ompa
t spa
e then p-limTnx = yimplies p-limTny = y (see Proposition 3.2 in [B2℄).Every transitive topologi
al dynami
al system (X,T ) (with a transitivepoint x0) is a topologi
al fa
tor of (βZ, τ) via the map p 7→ p-limTn(x0)(see e.g. Proposition 7.3 in [E℄).The orbit 
losure of a point x in a topologi
al dynami
al system (X,T )is the set O(x) = {Tnx : n ∈ Z}. A point x in (X,T ) is re
urrent if for everyneighborhood Ux ∋ x there exists n 6= 0 su
h that Tnx ∈ Ux.It is known ([F, Theorem 2.17℄) that the set F of return times of are
urrent point x, F = {n ∈ Z : Tnx ∈ Ux}, is an IP-set. We also haveTheorem 2.1. A set E ⊂ Z is IP if and only if there exist a 
ompa
tmetrizable dynami
al system (X,T ), a pair of points x, y ∈ X su
h that y
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is re
urrent and (y, y) belongs to the orbit 
losure of (x, y) in the produ
tsystem (X ×X,T × T ), and an open neighborhood U(y,y) of (y, y) su
h that
E = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}.Remark 2. Note that if (y, y) belongs to the orbit 
losure of (x, y) then
x and y are proximal. In general, the 
onditions that y is re
urrent and x isproximal to y do not imply (y, y) ∈ O(x, y). For example, x 
an be a �xpointin the orbit 
losure of a re
urrent point y 6= x. In order that (y, y) ∈ O(x, y)the re
urren
e of y and the proximality of x and y must be realized along a
ommon sequen
e of times.Proof of Theorem 2.1. Let y and x be su
h that y is a re
urrent pointin X with (y, y) ∈ O(x, y) and let U(y,y) be an open neighborhood of (y, y).Consider the set E′ = {n ∈ Z : (Tnx, Tny) ∈ Uy × Uy}, where Uy × Uyis a produ
t neighborhood of (y, y) 
ontained in U(y,y). It is 
lear that theset E′ is in�nite, so it 
ontains some s 6= 0. Suppose E′ 
ontains FS(S),where S is some �nite set not 
ontaining zero. Let Vy ⊂ Uy be an openneighborhood of y su
h that T s(Vy) ⊂ Uy for all s ∈ S. We 
an �nd 0 6=

s′ /∈ S for whi
h (T s
′

x, T s
′

y) ∈ Vy × Vy. Then (T s
′

x, T s
′

y) ∈ Uy × Uy and
(T s

′+sx, T s
′+sy) ∈ Uy×Uy for every s ∈ S. We have shown that E′ ⊃ FS(S′),where S′ = S ∪ {s′}. By indu
tion, we will obtain a set FS(S) (where S isin�nite) 
ontained in E′, whi
h proves that E′ (as well as E) is an IP-set.To prove the 
onverse, 
onsider an arbitrary IP-set E and let x = (x(n))n∈Zbe the 
hara
teristi
 fun
tion of E viewed as an element of the shift system

X = {0, 1}Z. De�ne y = p-limTnx, where p is an idempotent su
h that
E ∈ p (see De�nition 1.2(1)). Following the proof of Theorem 3.6 in [B2℄,we 
laim that the sequen
e y starts with the symbol 1: y(0) = 1. By thede�nition of p-lim, the set R = {n ∈ Z : (Tnx)(0) = y(0)} belongs to p.So, the interse
tion R ∩E is nonempty (it belongs to p), whi
h implies thatthere exists n ∈ E with x(n) = y(0). But x(n) = 1 if and only if n ∈ E,so y(0) = 1. This implies that E = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}, where
U(y,y) is de�ned as U1 × X, where U1 is the 
ylinder of elements startingwith 1.We will now introdu
e C-sets and D-sets in a similar way, by imposingadditional 
onditions on the re
urren
e of y.A point y 
ontained in a dynami
al system (X,T ) is uniformly re
urrentif, for any neighborhood U of y, the set of return times {n ∈ Z : Tny ∈ U}is syndeti
. It is well known that y is uniformly re
urrent if and only if theorbit 
losure O(y) of y is minimal.Central sets have been de�ned by H. Furstenberg ([F, Def. 8.3℄) as follows:Definition 2.2. A set C ⊂ Z is 
entral if there exists a 
ompa
t metriz-able dynami
al system (X,T ), a point x ∈ X proximal to a uniformly re
ur-
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rent point y ∈ X and an open neighborhood Uy of y su
h that

C = {n ∈ Z : Tnx ∈ Uy}.One 
an show that C is 
entral if and only if C is a member of a minimalidempotent in βZ (see [B-H1, Corollary 6.12℄ and [B2, Theorem 3.6℄). Wehave already used this equivalen
e in Se
tion 1 (De�nition 1.2).Central sets 
an also be 
hara
terized with the help of produ
t systems:Theorem 2.3. A set C ⊂ Z is 
entral if and only if there exist a 
ompa
tmetrizable dynami
al system (X,T ), a pair of points x, y ∈ X where y isuniformly re
urrent and (y, y) belongs to the orbit 
losure of (x, y) in theprodu
t system (X × X,T × T ), and an open neighborhood U(y,y) of (y, y)su
h that
C = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}.Proof. As mentioned in Remark 2, even if y is re
urrent and x is proximalto y, (y, y) does not have to belong to the orbit 
losure of (x, y). Neverthe-less, it is easy to see that if y is uniformly re
urrent then proximality of

x and y does imply that (y, y) belongs to the orbit 
losure of (x, y). Thisobservation is 
ru
ial to the proof. Let C be 
entral, and let x and y beas in De�nition 2.2. Then (y, y) belongs to the orbit 
losure of (x, y), and
C = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}, where U(y,y) = Uy × X. Conversely, if
C = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)} with assumptions on x and y as in theformulation of the theorem, then C is 
entral dire
tly by De�nition 2.2, using
(x, y) and (y, y) as a pair of points in the dire
t produ
t (X × X,T × T ).Noti
e that (y, y) is uniformly re
urrent in the produ
t system.Now we fo
us on D-sets. In the introdu
tion we have de�ned them analo-gously to C-sets by repla
ing minimal idempotents by a wider 
lass of idem-potents all of whi
h have positive upper Bana
h density, so that the 
lass
D of D-sets is (stri
tly) intermediate between IP and C. We are interestedin obtaining a 
hara
terization of D-sets, analogous to those of IP-sets andC-sets (in terms of visits of (Tnx, Tny) to U(y,y)) by imposing on y an ap-propriate re
urren
e 
ondition, as de�ned below.Definition 2.4. A point y in a (not ne
essarily metrizable) dynami
alsystem (X,T ) is essentially re
urrent if for any neighborhood Uy of y the setof visits {n ∈ Z : Tny ∈ Uy} has positive upper Bana
h density.Obviously, sin
e every syndeti
 set has positive upper Bana
h density,every uniformly re
urrent point is essentially re
urrent. A 
hara
terizationof essentially re
urrent points in terms of the properties of their orbit 
losuresis provided below.Definition 2.5. A dynami
al system (Y, T ) will be 
alled measure satu-rated if the union of the topologi
al supports of all invariant probability
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measures (6) 
arried by Y is dense in Y . In other words, for every nonemptyopen set U there exists an invariant measure µ su
h that µ(U) > 0.Note that every minimal system is measure saturated.Theorem 2.6. A point y is essentially re
urrent if and only if the orbit
losure O(y) is measure saturated.Proof. First let us show that if a point y is essentially re
urrent thenits orbit 
losure is measure saturated. Let Uy ∋ y be an open set and let
U ∋ y be open and su
h that U ⊂ Uy. Sin
e y is essentially re
urrent, theset A = {n ∈ Z : Tny ∈ U} has positive upper Bana
h density d. Let Inbe a sequen
e of intervals in Z with |In| → ∞ (as n → ∞) su
h that theratios |A ∩ In|/|In| 
onverge to d. Let µn (n = 1, 2, . . . ) be the normalized
ounting measures supported by the sets {T iy : i ∈ In}, and let µ be a weak∗a

umulation point (7) of µn. Clearly, µ is T -invariant, supported by O(y)and satis�es µ(U) > 0, and thus µ(Uy) > 0. We have proved that the 
losure
M of the union of the supports of all invariant measures 
arried by O(y)
ontains y. Sin
e M is a 
losed invariant set, it follows that M = O(y), i.e.,
O(y) is measure saturated.Conversely, assume that O(y) is measure saturated. Let Uy ∋ y be anopen set. Then there exists an invariant measure µ supported by O(y) su
hthat µ(Uy) > 0. The ergodi
 theorem ensures that the fun
tion

f(x) = lim
n→∞

1

n

n∑

i=1

1Uy(T i(x))

satis�es Tf dµ = µ(Uy) > 0. Thus there exists y′ ∈ O(y) with f(y′) = d > 0.In other words, the set R = {n ∈ Z : Tny′ ∈ Uy} has natural density d, i.e.,
limn |R ∩ [1, n]|/n = d. Note that for any m ∈ N there exists n ∈ Z su
h thatfor any i ∈ [0,m], Tn+i(y) ∈ Uy if and only if T i(y′) ∈ Uy. It follows thatthe set {n ∈ Z : Tny ∈ Uy} has positive upper Bana
h density (at least d)and hen
e y is essentially re
urrent.Definition 2.7. Let p be an idempotent in βZ. We will 
all p essentialif every member of p has positive upper Bana
h density.We are in a position to provide a dynami
al de�nition of D-sets, whi
his 
ompletely analogous to the 
hara
terizations of IP-sets and 
entral sets.

(6) The 
lassi
al Bogolyubov�Krylov theorem guarantees the existen
e of at least oneinvariant probability measure. The topologi
al support of a probability measure is thesmallest 
losed set of measure 1.
(7) A sequen
e of measures µn 
onverges to µ weak∗ if Tf dµn →

T
f dµ for every
ontinuous fun
tion f on the spa
e Y .



130 V. BERGELSON AND T. DOWNAROWICZ
Theorem 2.8. A set D ⊂ Z is a D-set if and only there exists a 
ompa
tmetrizable dynami
al system (X,T ), points x, y ∈ X with y essentially re
ur-rent for whi
h the orbit 
losure of (x, y) in the produ
t system (X×X,T×T )
ontains (y, y), and an open neighborhood U(y,y) of (y, y) su
h that

D = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}.Before we prove the theorem we need a series of lemmas.Lemma 2.9. An idempotent q ∈ βZ is an essentially re
urrent point in
(βZ, τ) if and only it is essential.Remark 3. Glasner [G℄ introdu
es a set Z in βZ de�ned as the 
losureof the union of the supports of all invariant measures on βZ and he provesthat it is a so-
alled kernel for the family of sets of positive upper Bana
hdensity. In fa
t one impli
ation of the above lemma 
ould be dedu
ed fromthat result, but we 
hoose to give an independent proof.Proof of Lemma 2.9. Let q be essentially re
urrent and let E be anyelement of q. The 
losure E of E in βZ 
an be interpreted as a neighborhoodof q. There exists an invariant measure µ su
h that µ(E) > 0. Sin
e µ issupported by the orbit 
losure of 0, the set of visits of 0 to this neighborhood(whi
h is E) has positive upper Bana
h density (by the same argument as inthe proof of Theorem 2.6). The 
onverse is also true. The map p 7→ p+q is afa
tor map from βZ onto O(q), and both 0 and q map to q. A neighborhood
Uq of q in O(q) lifts to a neighborhood Vq of q in βZ and the set Rq of timesof visits of q in Uq 
ontains the set R0 of times of visits of 0 in Vq. But R0 isa member of q (be
ause its 
omplement is not). Sin
e q is assumed to be anessential idempotent, all members of q have positive upper Bana
h density(see De�nition 2.7). It follows that R0 has positive upper Bana
h densityand hen
e, by De�nition 2.4, q is essentially re
urrent.It is obvious that if π : X → Y is a topologi
al fa
tor map and y ∈ Yis uniformly re
urrent then there exists a uniformly re
urrent π-lift x ∈ Xof y (be
ause the preimage of O(y) is invariant and any one of its minimalsubsets must map onto O(y)). The lemma below is an analogous statementfor essentially re
urrent points.Lemma 2.10. Let π : X → Y be a topologi
al fa
tor map (surje
tion)between dynami
al systems (X,S) and (Y, T ). If y is an essentially re
urrentpoint in Y then there exists an essentially re
urrent π-lift x of y. Moreover ,we 
an �nd su
h an x with O(x) 
ontaining no proper 
losed invariant subsetmapped by π onto O(y).Proof. Applying Zorn's lemma to the family of all lifts of O(y), i.e., of
losed invariant sets mapped by π onto O(y), we 
an �nd a minimal su
hlift X0 ⊂ X. Let x be any lift of y 
ontained in X0. Sin
e O(x) ⊂ X0 and it
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maps onto O(y), by minimality O(x) = X0. On the other hand, sin
e everyinvariant measure 
arried by O(y) lifts to at least one invariant measure
arried by O(x), the 
losure X1 of the union of the supports of all invariantmeasures 
arried by O(x) maps onto a 
losed set 
ontaining the union ofthe supports of all invariant measures 
arried by O(y). Sin
e y was assumedto be essentially re
urrent, X1 maps onto O(y) and hen
e, being a 
losedinvariant subset of X0, it also equals X0. This proves that x is essentiallyre
urrent, and that its orbit 
losure is a minimal lift of O(y), as required.Proof of Theorem 2.8. Let D = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}, where
x and y are as in the formulation of the theorem. Consider a fa
tor map
π : βZ → O(x, y) de�ned by p 7→ π(p) := p-lim(Tnx, Tny). By assump-tion, O(y, y) ⊂ O(x, y). Sin
e O(y, y) is 
ontained in the diagonal, it istopologi
ally 
onjugate to O(y) and hen
e (y, y) is essentially re
urrent. ByLemma 2.10, we 
an �nd in βZ an essentially re
urrent π-lift p1 of (y, y)whose orbit 
losure is a minimal lift of O(y, y). We will show that p1 
an berepla
ed by an idempotent. Consider the set

I = {p ∈ O(p1) : π(p) = (y, y)}.By an elementary veri�
ation, I is a 
losed semigroup of βZ, so it 
ontainsan idempotent q. Sin
e q maps to (y, y), its orbit 
losure maps onto O(y, y).By minimality of the lift O(p1), q has the same orbit 
losure as p1, and hen
eis essentially re
urrent.Finally, D ∈ q follows from two fa
ts: 1) (Tnx, Tny) does not belong tothe neighborhood U(y,y) of (y, y) for all n ∈ Dc; 2) q-lim(Tnx, Tny) = (y, y).This implies Dc /∈ q, so that D must belong to q. We have 
ompleted theproof of one impli
ation.To prove the 
onverse, let D be a D-set (i.e., a member of an essentiallyre
urrent idempotent). Identify the 
hara
teristi
 fun
tion of D with a point
x in {0, 1}Z and denote the shift transformation by T . De�ne y = q(x) :=
q-limTnx. Sin
e q is an idempotent, q(y) = y, so q(x, y) = (y, y), i.e., theorbit of (x, y) a

umulates at (y, y), as required. Now we repeat the argumentused in the proof of Theorem 2.1: The set R = {n ∈ Z : (Tnx)(0) = y(0)}belongs to q, so R∩D 6= ∅. Sin
e x(n) = 1 for n ∈ D, we have y(0) = 1. As a
onsequen
e, D = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}, U(y,y) = U1×X, U1 denotesthe 
ylinder of elements starting with 1, and X denotes the full shift spa
e.The last thing we need to verify is that y is essentially re
urrent. But thisis immediate, be
ause y is the image of q via the fa
tor map π : βZ → O(x)given by p 7→ p(x), and it is elementary to see that any fa
tor map preservesessentially re
urrent points.Remark 4. Note that if y is an essentially re
urrent point in the orbit
losure of x and x, y are proximal, then the set {n ∈ Z : Tnx ∈ Uy} need
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not be a D-set. For example, let y = (y(n)) be a forward transitive point inthe full shift on three symbols 0, 1, 2 (su
h a y is essentially re
urrent) with
y(0) = 0 and let x be as follows: x(n) = 1 whenever y(n) = 1 (this makes xand y proximal), x[m,n] = y[0, n−m] if y[m,n] = 2 . . .2 and y(m− 1) 6= 2(then x is forward transitive, hen
e its orbit 
losure 
ontains y), and x(n) = 2whenever y(n) = 0. Then the set {n ∈ Z : Tnx ∈ Uy} is not even an IP-set:If p-limTn(x) = y then p-limTn(y) 6= y (p-limTn(y) has the symbol 2 atthe zero 
oordinate), and hen
e p is not an idempotent.We now fo
us on the dual families, more pre
isely, on proving the �non-
ontainment� 
laims formulated in the introdu
tion below the main diagram.Theorem 2.11.(1) There exists an IP∗

•-set whi
h is not △∗
+.(2) There exists a C∗

•-set whi
h is not D∗
+.Proof. A set of integers enumerated in
reasingly as (an) (over n ∈ Z or

n ∈ N) is said to have progressive gaps if it 
ontains a subsequen
e ank
(wewill 
all ea
h �nite subset {ank+1, ank+2, . . . , ank+1

} a 
hunk) su
h that for
nk+1 < i ≤ nk+1 one has ai−ai−1 > ank+1

−ai (inside ea
h 
hunk every gapis larger than the distan
e to the right end of the 
hunk) and ank+1−ank
→ ∞(the gaps between the 
hunks tend to in�nity). The stru
ture of a set withprogressive gaps is shown below:

.... • .. • •.............. • ... • . • ....................................


hunk︷ ︸︸ ︷
•................ • ... • • ....

an1
an2

an3A typi
al example of a set with progressive gaps is the di�eren
e set △(S)for a rapidly (for example exponentially) in
reasing sequen
e S.It is not hard to see that in su
h a set, for any �xed d, the set of elements
ai su
h that there exists j > i with aj − ai = d is either �nite or has gapstending to in�nity (be
ause the distan
e d 
an eventually o

ur only insidethe 
hunks and then only on
e in every 
hunk).Noti
e the following property of all IP-sets F : a 
ertain distan
e d be-tween elements of F appears along an IP-set. Indeed, if F 
ontains the setof �nite sums FS(S) with S = (sn) then the distan
e |s1| o

urs betweenall pairs b and s1 + b for every b ∈ FS(A′), where A′ = (sn)n≥2. Clearly,an analogous statement holds for shifted IP-sets: a 
ertain distan
e d o

ursalong a shifted IP-set. In parti
ular, the gaps between pairs with distan
e ddo not tend to in�nity. We 
on
lude that a set with progressive gaps doesnot 
ontain any shifted IP-set.Let (rk)k≥1 be a sequen
e 
ontaining all integers. Using the above ob-servation we will now des
ribe how to 
onstru
t a set E as the union overall integers k of △-sets Ek shifted by rk su
h that E has progressive gaps,
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hen
e 
ontains no shifted IP-sets. Clearly, the 
omplement of su
h a set E isIP∗
• and not △∗

+. Begin with the di�eren
e set of a rapidly growing sequen
e,so that it has progressive gaps. Let E1 be this di�eren
e set shifted by r1.Indu
tively, suppose a union of k shifted (by r1, . . . , rk) di�eren
e sets makesa set Ek with progressive gaps. We will now 
reate a new di�eren
e set △(S)with progressive gaps, whose 
hunks ��t into the large gaps� of Ek − rk+1 insu
h a way that Ek+1 de�ned as Ek ∪ (△(S) + rk+1) maintains progressivegaps. Let s1 = 1. Suppose we have de�ned s1, . . . , sn ∈ S. This determines apart of △(S) and the �shape� of the next 
hunk {sn+1 − sn, . . . , sn+1 − s1}.The next element sn+1 of S determines only the shifting of this new 
hunk.By an appropriate 
hoi
e of sn+1 we 
an position this 
hunk in the 
entralpart of some very large gap between the 
hunks of Ek − rk+1. In the union
(Ek − rk+1)∪△(S) this gap splits into two gaps about half the original sizewith a new 
hunk in the middle. Similarly we 
hoose sn+2, and so on, untilthe whole sequen
e S is de�ned. It is 
lear that (Ek − rk+1) ∪ △(S) (andhen
e Ek ∪ (△(S) + rk+1)) maintains progressive gaps. We 
an pass to step
k + 2 and further steps. If in ea
h step k we split only gaps larger thansome in
reasing (with k) threshold value, the set E =

⋃
k Ek will maintainprogressive gaps, and it is a union of shifted △-sets, as needed to 
ompletethe proof of statement (1).We now des
ribe the 
onstru
tion of a C∗

•-set whi
h is not D∗
+. The ideais the same as in the pre
eding argument, ex
ept that we will use di�erentproperties of sets. Suppose there exists a non-pie
ewise syndeti
 set E su
hthat E + k is a D-set for ea
h k ∈ Z. Su
h an E 
ontains no shifted C-sets(re
all that C+ = PS). Thus the 
omplement of E is a C∗

•-set, and sin
eevery shift of E misses a D-set, it is not a D∗
+-set.It remains to 
onstru
t a non-pie
ewise syndeti
 set E. Consider a topo-logi
ally weakly mixing (8) and measure saturated system (X,T ) with theproperty that the 
losure of the union of all minimal sets is smaller than

X. An expli
it 
onstru
tion of su
h an example is provided in the appendix(the example is in fa
t topologi
ally mixing, with an invariant measure hav-ing full support, and with a �xpoint as the unique minimal set). Anotherexample with the same properties was indi
ated by F. Blan
hard: it is thesubstitution 0 7→ 001, 1 7→ 1 (see [B-H-S, Proposition 55℄). Let U be an openset disjoint from another open set V 
ontaining the union of all minimal sets.Noti
e that the orbit 
losure of y is 
onjugate to that of (y, y) in the produ
tsystem. If y is a transitive point then it is essentially re
urrent, and hen
eso is (y, y). There exists a pair (x, y) transitive in X ×X with both x and y
(8) A topologi
al dynami
al system (X, T ) is said to be topologi
ally weakly mixing(resp. mixing) if for any nonempty open sets A, B ⊂ X the set {n ∈ Z : T nA ∩ B 6= ∅} isthi
k (resp. 
o�nite).
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ontained in U . Then, for any integer k, the pair (T kx, y) is also transitive,hen
e its orbit 
losure 
ontains (y, y). Thus the set {n − k : Tnx ∈ U} is aD-set (write it as {j : (T jT kx, T jy) ∈ U ×X}). This implies that any shiftof the set E = {n ∈ Z : Tnx ∈ U} is a D-set, as required. This set E is notpie
ewise syndeti
; if it were we 
ould easily 
onstru
t a uniformly re
urrentpoint in the 
losure of U , whi
h is impossible, sin
e all su
h points are in V .3. Appli
ations of the dual families to unitary and measure pre-serving a
tions. This se
tion 
ontains proofs of the nontrivial impli
ationsin Theorem 1.6. We begin with the role of the △∗- and △∗

+-sets.Theorem 3.1 (see Theorem 1.6(1)). In every measure preserving systemthe set RεA,A of times of fat interse
tion for one set A is △∗.Proof (
f. [B1, p. 49℄; see also [K-Y, Proposition 4.1℄). First observe thatif An is any sequen
e of sets of equal measure α in a probability spa
e, thenfor every ε > 0, the inequality µ(Ai ∩ Aj) > α2 − ε holds for at least onepair of indi
es i < j. Indeed, suppose otherwise and 
onsider the fun
tion∑n
i=1 1Ai

. Its inner produ
t with 1 equals nα, while the square of its L2-normis easily seen to be at most n2(α2 − ε) + n. For large n this 
ontradi
ts theCau
hy�S
hwarz inequality.On
e this is established, take any inje
tive sequen
e S = (sn) and let
An = T snA. Then µ2(A) − ε < µ(T siA ∩ T sjA) = µ(A ∩ T sj−siA) for atleast one pair of indi
es i < j, proving that RεA,A interse
ts △(S).Remark 5. We remark that the above proof a
tually shows that RεA,Ahas nonempty interse
tion with every large enough �nite di�eren
e set.Theorem 3.2 (see Theorem 1.6(2)). Let (X,B, µ, T ) be an ergodi
 ro-tation of a 
ompa
t abelian group (where µ is the Haar measure). Then forany A,B ∈ B and ε > 0 the set RεA,B is △∗

+.Proof. The proof is based on a simple observation that for group rotationsKhin
hin's theorem takes on a stronger form. Namely, if (X,B, µ, T ) is a (notne
essarily ergodi
) 
ompa
t abelian group rotation, then for any C ∈ B and
ε > 0, one a
tually sees that the set

RεC = {n ∈ Z : µ(C ∩ T−nC) ≥ µ(C) − ε}is △∗ (note that in the displayed formula we have µ(C) rather than µ(C)2).Indeed, let△(S) = {si−sj} where S = (si). Finding a subsequen
e sik → ∞su
h that T sik (e) 
onverges we obtain a uniformly 
onvergent sequen
e ofmaps T sik . Thus T sik
−sil 
onverges to the identity uniformly (hen
e strong-ly in L1(µ)), whi
h implies that µ(C ∩ TnC) ≥ µ(C) − ε for some n ofthe form sik − sil (belonging to △(S)). Returning to the ergodi
 
ase andtwo sets A,B ∈ B, let us �rst �nd (by ergodi
ity) an integer n0 su
h that
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µ(A ∩ T−n0B) > µ(A)µ(B) − ε/2. Setting C = A ∩ T−n0B one easily seesthat RεA,B ⊃ R
ε/2
C + n0, whi
h implies the assertion.We will now dis
uss the 
onne
tions between essential idempotentsand unitary a
tions. Consider a unitary operator U on a separable Hilbertspa
e H. We will use the orthogonal de
omposition H = Hc ⊕Hwm, where

Hc = {x ∈ H : {Unx}n∈Z
is 
ompa
t in the norm topology},

Hwm =

{
x ∈ H :

1

N

N−1∑

n=0

|〈Unx, x〉| → 0

}

(see [Kr, Se
tion 2.4℄ and [B2, Theorem 4.5℄). Re
all that in a Hilbert spa
ethe norm 
onvergen
e limxn = y is equivalent to the 
onjun
tion of theweak 
onvergen
e of xn to y and the 
onvergen
e of norms lim ‖xn‖ = ‖y‖.Sin
e any unitary operator U is an isometry, the relation p-limUnx = x forsome p ∈ βZ holds in the weak topology if and only if it holds in the strongtopology.Lemma 3.3. If p ∈ βZ is an idempotent then p-limUnx = x for any
x ∈ Hc.Proof. By de�nition ofHc, U a
ts on the 
ompa
t metri
 spa
e {Unx}n∈Zwhere it is distal (it is a
tually an isometry). In distal systems one has
p-limUnx = x for any idempotent (if p-limUnx = y for an idempotent pthen also p-limUny = y, hen
e x and y are proximal, and so, by distality,
x = y).The above statement 
an be reversed for essential idempotents:Lemma 3.4. If p ∈ βZ is an essential idempotent and p-limUnx = x forsome x ∈ H then x ∈ Hc.Proof. For ε > 0 
onsider the set E = {n ∈ Z : ‖Unx − x‖ < ε/2}.Clearly E ∈ p. Note that for any n1, n2 ∈ E one has

‖Tn1−n2x− x‖ = ‖Tn1x− Tn2x‖ ≤ ‖Tn1x− x‖ + ‖Tn2x− x‖ < ε.Sin
e E ∈ p, it has positive upper Bana
h density, whi
h implies that E−Eis syndeti
 (see [F, Prop. 3.19(a)℄ or [B1, p. 8℄), i.e., �nitely many shifted
opies of E − E 
over Z. This in turn implies that �nitely many preimagesof the ε-ball around x 
over the orbit of x. Sin
e U is an isometry we have
overed the orbit by �nitely many ε-balls, hen
e the orbit of x is pre
ompa
t,i.e., x ∈ Hc.Lemma 3.5. If p ∈ βZ is an essential idempotent then p-limUnx = 0weakly for any x ∈ Hwm.Proof. By 
ompa
tness of the ball of radius ‖x‖ around zero in the weaktopology, there exists some y su
h that p-limUnx = y weakly. Sin
e Hwm is
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invariant and 
losed, y ∈ Hwm. On the other hand, p is an idempotent, so
p-limUny = y. By Lemma 3.4, y ∈ Hc. This implies y = 0.Re
all that a unitary operator U a
ting on a Hilbert spa
e H is 
alledweakly mixing if it has no nontrivial eigenve
tors. One 
an show that U isweakly mixing if and only if in the de
omposition H = Hc ⊕Hwm one has
Hc = {0} (see [Kr, Thms. 3.4 and 4.4℄). Let now (X,B, µ, T ) be an invertibleweakly mixing system. It is not hard to 
he
k that in this 
ase the unitaryoperator indu
ed by T on L2(µ) is weakly mixing in the above sense onthe ortho
omplement of the spa
e of 
onstant fun
tions. This leads to thefollowing 
orollary of Lemmas 3.4 and 3.5:Corollary 3.6. An invertible probability measure preserving system
(X,B, µ, T ) is weakly mixing if and only if for every f ∈ L2(X) and anyessential idempotent p ∈ βZ,

p-limTnf =
\
f dµ (in the weak topology).Equivalently , (X,B, µ, T ) is weakly mixing if and only if for any A,B ∈ Band any essentially re
urrent idempotent p, p-limµ(A ∩ TnB) = µ(A)µ(B).We now turn our attention to the D∗-sets. It was proved in [B2, Theo-rem 4.4℄ that a unitary operator U a
ting on a Hilbert spa
e H is weaklymixing if and only if for any ε > 0 and any pair x, y ∈ H the set Rεx,y =

{n ∈ Z : 〈Unx, y〉 > −ε} is C∗. We will show that a slight modi�
ation ofthat proof provides a somewhat stronger result.Theorem 3.7. A unitary operator U a
ting on a Hilbert spa
e H isweakly mixing if and only if for any ε > 0 and any pair x, y ∈ H the set Rεx,yis D∗.Proof. If U is weakly mixing then Hc = {0} and the result follows fromLemma 3.5. Assume now that for any ε and x, y ∈ H the set Rεx,y is D∗. If
U is not weakly mixing then there exists x ∈ Hc, x 6= 0. By Lemma 3.3,
p-limUnx = x for any essential idempotent p. Then p-lim 〈Unx, x〉 = ‖x‖2,whi
h implies that Rεx,−x is not D∗ for ε > 0 small enough.We 
an now 
ontinue with proving the statements of Theorem 1.6:Theorem 3.8 (see Theorem 1.6(3)). An invertible probability measurepreserving system (X,B, µ, T ) is ergodi
 if and only if for any A,B ∈ B and
ε > 0 the set RεA,B belongs to D∗

+.Proof (
f. [B2, Theorem 4.11℄). Assume that (X,B, µ, T ) is ergodi
. Set
f = 1A and g = 1B. De
ompose g = g1 + g2, g1 ∈ Hc, g2 ∈ Hwm. Note that
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g1 dµ = µ(B). By the von Neumann ergodi
 theorem,

1

N

N−1∑

n=0

\
f(Tnx)g1(x) dµ(x) →

\
f dµ

\
g1 dµ = µ(A)µ(B),hen
e there exists n0 satisfying Tf(Tn0x)g1(x) dµ(x) > µ(A)µ(B)− ε. Let pbe an essential idempotent. Applying our Lemmas 3.3 and 3.5, we 
an write

p-limµ(Tn0A ∩ TnB) = p-lim\f(Tn0x)g(Tnx) dµ(x)

= p-lim\f(Tn0x)g1(T
nx) dµ(x) + p-lim\f(Tn0x)g2(T

nx) dµ(x)

=
\
f(Tn0x)g1(x) dµ(x) + 0 > µ(A)µ(B) − ε.This implies that RεA,B − n0 ∈ p, whi
h proves that RεA,B is D∗

+.The 
onverse is obvious: if the sets RεA,B are all D∗
+ then they are non-empty, whi
h implies ergodi
ity.Theorem 3.9 (see Theorem 1.6(4)). The system (X,B, µ, T ) is weaklymixing if and only if for any A,B ∈ B and ε > 0 the set RεA,B is D∗.Moreover , if (X,B, µ, T ) is weakly mixing then RεA,B has Bana
h density 1.Proof. Assume that (X,B, µ, T ) is weakly mixing. Then, by Corollary3.6, for any A,B ∈ B and any essential idempotent p we have the equality

p-limµ(A ∩ TnB) = µ(A)µ(B), and hen
e RεA,B is a D∗-set. Re
alling thatweak mixing 
an be 
hara
terized by the relation
lim

N−M→∞

1

N −M

N−1∑

n=M

|µ(A ∩ TnB) − µ(A)µ(B)| = 0,we see that the set RεA,B has Bana
h density 1.To prove the 
onverse, assume that (X,B, µ, T ) is not weakly mixing.If µ is ergodi
 then there exists an eigenfun
tion f whi
h takes values in anontrivial subgroup G of the unit 
ir
le and sends the measure µ (via the
onjugate map f∗(µ)(A) = µ(f−1A)) to the Haar measure λ on G. Thereexists a sequen
e of trigonometri
 polynomials Wk de�ned on the unit 
ir
leand 
onverging in L2(λ) to the 
hara
teristi
 fun
tion of, say, the uppersemi
ir
le {z : |z| = 1, 0 ≤ arg(z) < π}. Clearly, f assumes values in theupper (half-
losed) semi
ir
le with probability α ∈ [1/2, 2/3]. The fun
tions
Wk◦f 
onverge in L2(µ) to the 
hara
teristi
 fun
tion of a set A of measure α.Sin
e the powers fk are also eigenfun
tions, all eigenfun
tions belong to Hc,and sin
e Hc is a 
losed linear spa
e, 1A ∈ Hc (9). If µ is not ergodi
,the fa
t that Hc 
ontains a nontrivial 
hara
teristi
 fun
tion is immediate.

(9) The existen
e of a nontrivial 
hara
teristi
 fun
tion in Hc 
an also be dedu
ed usingthe 
lassi
al fa
t that an ergodi
 non-weakly mixing system has a nontrivial Krone
kerfa
tor isomorphi
 to an ergodi
 rotation on a 
ompa
t abelian group.
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Now, by Lemma 3.3 one has, for any essential idempotent, p-lim1T−nA =
p-lim(Tn1A) = 1A, and hen
e p-limµ(A∩TnAc) = p-limµ(T−nA∩Ac) = 0,so that RεA,Ac is not D∗.Theorem 3.10 (see Theorem 1.6(5), see also Proposition 9.22 in [F℄).The system (X,B, µ, T ) is mildly mixing if and only if for any A,B ∈ B and
ε > 0 the set RεA,B is IP∗.Proof. Assume that (X,B, µ, T ) is mildly mixing. Then for every nonzeroidempotent p ∈ βZ one has p-limµ(A ∩ T−nB) = µ(A)µ(B). To see this itsu�
es to verify that p-limTnf = 0 in L2 for every f with zero integral(and then apply this to f = 1B − µ(B)). Indeed, if p-limTnf = g 6= 0 then
p-limTng = g (be
ause p is an idempotent), hen
e g is a rigid fun
tion. Thisimplies RεA,B ∈ p, hen
e RεA,B is IP∗.To prove the 
onverse, assume that the system is not mildly mixing. Let
f ∈ L2(µ) be a non
onstant real rigid fun
tion. For some t ∈ R and ε > 0both A = {x : f(x) < t} and B = {x : f(x) ≥ t+ ε} have positive measure.It is easy to see that the set {n ∈ Z : ‖Tnf − f‖ < ε2} is an IP-set, and onthe other hand it is disjoint from RεA,B. Thus RεA,B is not an IP∗-set.4. An example of a weakly mixing system for whi
h RεA,B is notIP∗

+. Let U be a unitary operator on a separable Hilbert spa
eH. Let x ∈ H.It is known that the sequen
e an = 〈Unx, x〉 is positive de�nite, whi
h implies
an =

T
zn dν for some probability measure ν (depending on x) supported bythe unit 
ir
le T = {z : |z| = 1}. The a
tion of U on the 
losed 
y
li
subspa
e Span{Unx : n ∈ Z} is unitarily isomorphi
 to the multipli
ationby the identity fun
tion z on L2(ν). Temporarily we restri
t our attentionto su
h a
tions only, i.e., H will denote L2(ν) and U will stand for themultipli
ation by the element z. Re
all that the Bana
h�Alaoglu theoremasserts that the unit ball B of L2(ν) is weakly 
ompa
t.Clearly, U is a self-homeomorphism of B in the weak topology, hen
e weobtain a topologi
al dynami
al system (B,U).Let C be a subset of T of positive measure ν. Suppose that p-lim zn = 1C(in the weak topology) for some ultra�lter p ∈ βZ. We will now show thatthere exists an idempotent with the same property. First of all, noti
e thatthen p-lim zn1C = 1C be
ause the weak 
onvergen
e holds when restri
tedto C and outside of C we have 
hanged all fun
tions to zero. This easilyimplies that the set of ultra�lters p for whi
h p-lim zn = 1C is a semigroup.It is also 
losed, so it does 
ontain an idempotent. A
tually one easily showsthat the 
onverse also holds: p-lim zn is the 
hara
teristi
 fun
tion of a setfor any idempotent p, but we will not need this.Now assume that ν0 is a nonatomi
 measure supported by a Krone
kerset Λ ⊂ T (see [C-F-S, Appendix 4℄; in parti
ular, Λ is a topologi
al Cantor
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set). By de�nition, the sequen
e of fun
tions (zn) restri
ted to Λ is uniformlydense in the set of all 
ontinuous unimodular fun
tions on Λ, whi
h easilyimplies that this sequen
e is also weakly dense in the (weakly 
ompa
t) set
B0(ν0) ⊂ L2(ν0) de�ned as the set of all fun
tions f satisfying |f | ≤ 1.The system (B0(ν0), U) is now topologi
ally transitive (with the 
onstantfun
tion 1 as a transitive point), and every measurable subset C of Λ (modulothe measure ν0) 
orresponds to at least one idempotent p via the relation
p-limUn1 = 1C in this system.For some of the 
onstru
tions below we will need a symmetri
 measure ν,i.e., a measure satisfying ν(C) = ν(C∗), where C∗ = {z : z ∈ C}. Re
all thatfor Krone
ker sets Λ∩Λ∗ = ∅. Let K = Λ∪Λ∗ and let ν = 1

2(ν0 +ν∗0), where
ν∗0 is a measure on Λ∗ symmetri
 to ν0. For f0 ∈ B0(ν0) de�ne f ∈ B0(ν)by the rule f(z) = f0(z) for z ∈ Λ and f(z) = f0(z) for z ∈ Λ∗. Themap f0 7→ f establishes a topologi
al 
onjuga
y between (B0(ν0), U) and
(B̃0(ν), U), where B̃0(ν) now denotes the interse
tion of B0(ν) with the
olle
tion of all fun
tions satisfying the symmetry 
ondition f(z) = f(z) (ineither spa
e, U is the operator of multipli
ation by z). It is essential that thefun
tion z itself satis�es the above symmetry 
ondition, so U is well de�nedon B̃0(ν).We now pro
eed with further details of the 
onstru
tion of the example.Consider k ∈ Z. There are two possible 
ases:
(1) ν{z : |Re zk| > 1/2} > 1/3and (2), the opposite. It follows immediately from the de�nition of a Kro-ne
ker set that both 
ases are represented by nonempty sets of k's. An el-ementary (but key) observation is that if k and k0 satisfy (2) then k + k0ne
essarily satis�es (1). We now �x one representative k0 satisfying (2). If ksatis�es (1) then either

ν{z : Re zk > 1/2} ≥ 1/6 or ν{z : Re zk < −1/2} ≥ 1/6.For k satisfying (1) let Ck denote the larger of the above two sets (
hooseany one if their measures are equal). For k satisfying (2), Ck is de�ned asthe larger of the sets {z : Re zk+k0 > 1/2} or {z : Re zk+k0 < −1/2}. Thefollowing fa
ts are obvious for ea
h k:
Ck = C∗

k ,∣∣∣
\
Ck

zk dν
∣∣∣ ≥

1

12
(in 
ase (1)),

∣∣∣
\
Ck

zk+k0 dν
∣∣∣ ≥

1

12
(in 
ase (2)).

For uni�ed notation, de�ne r(k) = 0 if k satis�es (1) and r(k) = k0 if k
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satis�es (2). We 
an now write

∣∣∣
\
Ck

zk+r(k) dν
∣∣∣ ≥

1

12
.Clearly, by symmetry, all the above integrals are real.Let pk be an idempotent 
orresponding to the set Ck, i.e., su
h that

pk -lim zn = 1Ck
(weakly). Then

pk -lim∣∣∣
\
zn+k+r(k) dν

∣∣∣ =
∣∣∣
\
p-lim zn+k+r(k) dν

∣∣∣ =
∣∣∣
\
Ck

zk+r(k) dν
∣∣∣ ≥

1

12
.

Obviously, be
ause the inequality |
T
g dν| > 1/13 holds on a weakly open setof fun
tions, the set of n's for whi
h |
T
zn+k+r(k) dν| > 1/13 belongs to theidempotent ultra�lter pk, hen
e 
ontains an IP-set Mk. We have proved thefollowing statement:Lemma 4.1. Let U be a unitary operator on a Hilbert spa
e H. If x ∈ Hhas spe
tral measure ν symmetri
 and 
on
entrated on the union K of aKrone
ker set Λ and its 
omplex 
onjugate re�e
tion Λ∗ then for every kthere exists an IP-set Mk su
h that for every n ∈Mk,

|〈Un+k+r(k)x, x〉| >
1

13
,where r(k) assumes only two values: 0 and some k0 ∈ Z. This implies thatfor E = {n ∈ Z : |〈Unx, x〉| < 1/13}, the interse
tion E∩(E+k0) is not IP∗

+.The above 
onstru
tion 
an be applied to weakly mixing measure pre-serving transformations, with an interpretation in terms of fat interse
tions(announ
ed in the introdu
tion as Theorem 1.7):Theorem 4.2. There exists a weakly mixing invertible measure preserv-ing transformation (X ′,B′, µ′, T ′), two sets A′, B′ ∈ B′ and ε > 0 su
h thatthe set RεA′,B′ of times of ε-fat interse
tion is not IP∗
+. In parti
ular , the set

Rεx,y dis
ussed in Theorem 3.7 need not be IP∗
+.The 
onstru
tion will involve spe
tral theory of Gauss�Krone
ker sys-tems, namely the fa
t that there exists a weakly mixing measure preservingtransformation (X,B, µ, T ) and a fun
tion f ∈ L2(µ) with zero integral (wewill write f ∈ L2

0(µ)) su
h that the spe
tral measure ν of f with respe
t tothe unitary operator UT indu
ed by T is supported by a set K ⊂ T as de-s
ribed in Lemma 4.1 (see e.g. [C-F-S, Chapter 8, Se
tion 2 and Chapter 14,Se
tion 4).De�ne J = {n ∈ Z : |〈UnT f, f〉| > 1/13}. By Lemma 4.1, this set 
ontainsfor ea
h k the shifted IP-set Mk + k + r(k). Outside a small set A0 ⊂ Xof measure 1/p (p ∈ N) the fun
tion f 
an be uniformly, up to some 1/q,approximated by a simple zero integral fun
tion g 
onstant on elements of
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some partition A = {Ai : i = 1, . . . , p} of X into sets of equal measure 1/p.By 
hoosing q and p large enough we 
an thus ensure that |〈UnT g, g〉| > 1/14for all n ∈ J . Denote by G = (gi)i=1,...,p the ve
tor with gi = g(Ai). Theformula
F (A) = GAG

Tde�nes a 
ontinuous fun
tion on p × p matri
es A = [ai,j ], assuming value0 at the matrix with all entries equal to 1/p2. Thus there exists a positive
onstant δ su
h that |GAG
T| > 1/10 implies |ai,j − 1/p2| > δ for at leastone pair of indi
es (i, j). For given n let An denote the matrix with entries

ai,j = µ(TnAi ∩Aj). As is easily veri�ed,
〈UnT g, g〉 = F (An),so for n ∈ J we dedu
e that

(∗) µ(TnAi ∩Aj) di�ers from µ(Ai)µ(Aj) = 1/p2 by at least δfor at least one pair of sets Ai, Aj (depending on n).The �nal step is a 
onstru
tion of a pair of sets whi
h satis�es a similar�fault of independen
e� (perhaps with a smaller 
onstant) for all n in theunion of Mk + k. These sets will be found in the dire
t 2p2-fold Cartesianprodu
t (X ′, µ′, T ′) = (X×2p2 , µ×2p2, T×2p2) as des
ribed below. Note that
(X ′, µ′, T ′) remains a weakly mixing system. The desired sets are:
A = (A1 × · · · ×A1) × (A2 × · · · ×A2) × · · · × (Ap × · · · ×Ap)×

×(T k0A1×· · ·×T k0A1)×(T k0A2×· · ·×T k0A2)×· · ·×(T k0Ap×· · ·×T k0Ap),with p repetitions in ea
h parenthesis, and
B = (A1 × · · · ×Ap) × · · · × (A1 × · · · ×Ap),with 2p repetitions of A1 × · · · ×Ap. Now observe that

µ′(T ′n+k
A′ ∩B′) =

∏

i,j

µ(Tn+kAi ∩Aj) ·
∏

i,j

µ(Tn+k+k0Ai ∩Aj).Both produ
ts are of p2 nonnegative numbers whose sum is 1. It is an ele-mentary exer
ise that among su
h produ
ts the largest is (1/p2)p
2 a
hievedonly if all terms are equal to 1/p2. Otherwise it is stri
tly smaller. So, by
ontinuity, whenever at least one term of this produ
t di�ers from 1/p2 by

δ (in either dire
tion), then the whole produ
t is smaller than (1/p2)p
2

− γ,where γ is some �xed positive number (depending only on δ).Now let n ∈Mk. Then either n+k or n+k+k0 belongs to J . So, by (∗),at least one term in at least one of the above produ
ts di�ers from 1/p2by δ, and, as a 
onsequen
e, one of the produ
ts is smaller than (1/p2)p
2

−γ.Sin
e the other produ
t is still at most (1/p2)p
2 , the dis
ussed measure of
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interse
tion does not ex
eed

(
1

p2

)2p2

−

(
1

p2

)p2

γ.The �rst term 
oin
ides with µ′(A′)µ′(B′). The se
ond term is a positive
onstant ε. We have proved that the set RεA′,B′ misses all the shifted IP-sets
Mk + k, so is not IP∗

+.5. An intermediate 
lass of weakly mixing transformations. Thisse
tion 
ontains the 
onstru
tion announ
ed in Theorem 1.8.Theorem 5.1. There exists a nonempty 
lass of weakly mixing rank-onerigid transformations (X,B, µ, T ) su
h that the set RεA,B of times of ε-fatinterse
tion is IP∗
+ for every ε > 0 and any measurable sets A,B, but it isnot always IP∗.Proof. In the argument below we will skip the tedious but relativelyobvious spe
i�
ation of �epsilons� and �deltas�.The 
onstru
tion of (X,B, µ, T ) follows the standard s
heme of �
uttingand sta
king with spa
ers� (see e.g. [P, Se
tion 4.5℄). We start with theinterval [0, 1] whi
h we 
all tower ∆1 of height h1 = 1. Having 
onstru
teda tower ∆2m−1 (with an odd index) of height h2m−1 we 
hoose an integer

q2m−1 su
h that h2m−1/q2m−1 is small, 
ut the tower into 2q2m−1 equalwidth 
olumns and add single spa
ers above the left q2m−1 
olumns (see�gure below).
−−−−−

−−−−−−−−−−

−−−−−−−−−−

−−−−−−−−−−Then we sta
k, 
reating the tower ∆2m whose height equals
h2m = 2q2m−1h2m−1 + q2m−1.Next, we 
ut this tower into q2m (whi
h is larger than h2m) 
olumns andwe sta
k them, this time without adding any spa
ers. This gives us a tower

∆2m+1 of height h2m+1 = q2mh2m. Continuing in this manner (note that weinsert spa
ers only when 
onstru
ting towers with even indi
es) we arriveat a spa
e with a bounded measure and a measure preserving transforma-tion. After normalizing we obtain a probability measure preserving rank-onesystem (X,B, µ, T ).Let L2
0(µ) denote the subspa
e of L2(µ) 
onsisting of fun
tions with zerointegral. Let f ∈ L2

0(µ) be a 
omplex-valued fun
tion of norm 1, whi
h is
onstant on levels of the tower ∆2m0−1 for some m0 ∈ N and zero on thespa
ers added in the later steps. We are interested in the sequen
e µ̂f (n) =
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〈Tnf, f〉. Fix some n ∈ N. Choose m > m0. Let x be a �typi
al� point in
X. We are going to observe how the orbits of x and Tnx pass through thetower ∆2m. Let n1 be the smallest k ≥ 0 su
h that Tn+kx belongs to the baseof the tower, and n2 be the smallest k ≥ n1 su
h that T kx belongs to thebase of the tower. De�ne n0 = n2 − n1. Clearly, independently of our 
hoi
eof n, 0 ≤ n0 < h2m. Consider �rst the 
ase when n0 < h2m/2. We 
ontinueour dis
ussion with the help of the �gure below. The top and bottom linesrepresent the orbits of Tnx and x, respe
tively; any three dashes 
orrespondto a passage through the tower ∆2m−1; zeros 
orrespond to the visits in thespa
ers; verti
al lines separate the passages through the tower ∆2m−1 notseparated by spa
ers; and the question marks indi
ate possible spa
ers addedat later stages of our 
onstru
tion.

· · · 0−−− 0−−− 0−−− 0 −−−|−−−|−−−|−−−|−−−?

next passage︷ ︸︸ ︷
−−−0−−− 0 · · ·

−−− 0 −−− 0−−− 0−−− 0 −−− 0 −−−|−−−|−−−|−−−|−−−?

| shift 1 | mixing | shift 2 | mixing |We distinguish four 
onse
utive intervals on the time axis appearing in the�gure:
• The �rst one, denoted in the �gure as �shift 1�, roughly of length
h2m/2 − n0, where spa
ers appear in both orbits, so that the pairsof �simultaneous� passages through the tower ∆2m−1 for x and Tnxare all shifted in time by the same amount.

• The se
ond one, denoted as �mixing�, roughly of length n0, with spa
ersin the orbit of x and without spa
ers in the orbit of Tnx, so that theshifts of �simultaneous� passages through ∆2m−1 
hange progressivelyby a unit.
• The third one, denoted as �shift 2�, roughly of the same length as the�rst one, without spa
ers in both orbits, with all shifts the same butperhaps di�erent from shift 1.
• The fourth one, whi
h is again of the �mixing� type (in this interval Tnxstarts its next passage through ∆2m); the possible spa
ers appearing atthe question marks will not 
hange the mixing type of this last interval.If h2m/2 ≤ n0 < h2m then one has to interpret the top line as the orbitof x and the bottom line as the orbit of Tnx.Assuming that the mixing intervals are not too short they 
an be dividedinto some number of intervals of length (h2m−1 + 1)h2m−1 whi
h we 
all�
y
les�, and short �remainders� at both ends. In every 
y
le the orbit of oneof the points x, Tnx passes h2m−1+1 times through the tower ∆2m−1 without�hitting� the spa
ers, while the other orbit passes through this tower h2m−1times �hitting� the spa
ers (in the �gure we have roughly one 
omplete 
y
le;
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the pi
ture is too small to show real proportions). Noti
e that the averagevalue of f(T i+nx)f(T ix) along a 
omplete 
y
le equals 0 (sin
e ea
h �xedlevel of the tower ∆2m−1 for x �meets� all levels of the same tower for Tnxthe same number of times, f is 
onstant on su
h levels with average value 0).Every time the orbit of x passes through ∆2m we observe a �pattern� offour intervals: shift 1/mixing/shift 2/mixing. Su
h patterns will be repeatedthroughout the orbit, ea
h with its own parameter n0. (This parameter will
hange from one pattern to another only when a higher order spa
er appearsat a pla
e indi
ated by a question mark either in the orbit of x or in theorbit of Tnx but not in both.)These observations lead us to the following 
on
lusions:(a) If, in a signi�
ant fra
tion of all patterns, the mixing intervals arenot too short (i.e., when the parameters n0 are not too 
lose to 0or to h2m), then the 
ontribution of the 
omplete 
y
les 
auses thevalue of 〈Tnf, f〉 to be of modulus essentially smaller than 1.(b) If the mixing intervals �dominate� (i.e., in most patterns, n0 is 
loseto h2m/2), then the value of 〈Tnf, f〉 is 
lose to zero. (We assumethat q2m−1 is so large in 
omparison with h2m−1 that in a patterndominated by its two mixing intervals, the length of the mixing in-terval 
ontains so many 
omplete 
y
les that we 
an safely ignorethe 
ontribution of the �remainders�).Now suppose the value of 〈Tnf, f〉 is 
lose to 1. By (a), this impliesthat n0 is either small or 
lose to h2m in most of the patterns shift 1/mix-ing/shift 2/mixing. In this 
ase we repla
e n by n+h2m/2, and we will havethe domination of mixing intervals, as des
ribed in 
ase (b). Then, not onlyfor f but also for any other normalized fun
tion f ′ ∈ L2

0(µ) whi
h is 
onstanton the levels of ∆2m0−1, the following holds:(
) 〈Tn+h2m/2f ′, f ′〉 is 
lose to zero.This is true for every m > m0. For �xed m and any k ∈ Z with |k| relativelysmall 
ompared to h2m (still very large if m is large), n + k is not mu
hdi�erent from n in the above arguments, hen
e the 
ondition that 〈Tnf, f〉is 
lose to 1 implies that(d) 〈Tn+k+h2m/2f ′, f ′〉 is 
lose to zero.In parti
ular, this proves that T is weakly mixing, sin
e, for f ′ approximatingan eigenfun
tion, the values of 〈Tnf ′, f ′〉 whi
h are 
lose to 1 appear withbounded gaps, while the parameter k in (d) 
an range through arbitrarilylong intervals of integers.Our 
onstru
tion produ
es a rank-one system and it is known that arank-one transformation has simple spe
trum (see [C-N℄ for more details on
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rank-one systems), so there exists a 
y
li
 ve
tor fc in L2
0(µ). Fix a pair offun
tions φ and ψ in L2

0(µ). These fun
tions 
an be approximated by �nite
ombinations of the fun
tions of the form T kfc.Now 
onsider a nonzero idempotent p ∈ βZ. The weak limit p-lim(Tng)exists for every g ∈ L2
0(µ) and equals some g′ ∈ L2

0(µ) su
h that p-lim(Tng′)
= g′. Suppose g′ 6= 0 for some g. Then we 
an normalize g′ and denote it g′′.We 
an now approximate g′′ by f ∈ L2

0(µ) 
onstant on the levels of sometower ∆2m0−1 and zero on spa
ers added in later stages of the 
onstru
tion.Clearly, p-lim〈Tnf, f〉 is a number 
lose to 1. This implies that every IP-set
M belonging to p 
ontains a sequen
e M ′ along whi
h n does not satisfy (a)(i.e., n0 is small or 
lose to h2m in most patterns), and hen
e satis�es (
)and (d).If m is large enough, the hypotheses (
) and (d) hold (with slightly worseerror terms) also for f ′ = fc. Sin
e every term 〈Tn+h2m/2φ, ψ〉 splits into a�nite 
ombination of terms of the form 〈Tn+k+h2m/2fc, fc〉 (with 
oe�
ientsand k's not depending on n), for su�
iently large m1 every su
h term with
n ∈ M ′ is 
lose to zero. This proves that Rεφ,ψ interse
ts M + h2m1

/2. The
hoi
e of m1 is independent of the idempotent p satisfying g′ 6= 0 for some g(it only depends on φ and ψ).Now assume that p is su
h that g′ = 0 for all g ∈ L2
0(µ). In parti
ular thisis true for g = Tn+h2m1

/2φ so p-lim〈Tn+h2m1
/2φ, ψ〉 = 0, hen
e again Rεφ,ψinterse
ts M + h2m1

/2. We have proved that Rεφ,ψ is IP∗
+. This immediatelyimplies an analogous statement for sets A,B.Finally, observe that the system is rigid along the sequen
e h2m (be
auseof the many 
onse
utive passages through ∆2m without spa
ers in the nexttower). Thus it is not mildly mixing, hen
e at least one set RεA,B is not IP∗.This 
on
ludes the proof.Appendix

Theorem A.1. There exists an invertible topologi
ally mixing symboli
dynami
al system (X ′, T ′) with a �xpoint as a unique minimal set and havingan invariant measure with full topologi
al support.Sket
h of proof. (The 
onstru
tion is an adaptation of one appearing inTheorem 1 of [D-Y℄.) Start with an aperiodi
 stri
tly ergodi
 (minimal withunique invariant measure µ) subshift (X,T ) on two symbols {a, b}. Fromea
h point x ∈ X we will 
reate un
ountably many points (sequen
es) x′over three symbols {a, b, c}, whi
h will 
onstitute our new desired subshift
(X ′, T ′). Namely, �x a sequen
e of 
losed and open sets (e.g., 
ylinders)
Uk ⊂ X shrinking to a point x∗ so fast that ∑∞

k=1 µ(Uk) < ∞. For x =
. . . , x−1, x0, x1, . . . let (ni)i∈Z be the times of the visits of x in U1, and let
ki denote the depth of ea
h visit, i.e., the maximal k su
h that Tnix ∈ Uk.
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Let c be a new (third) symbol and let ck = [c, . . . , c] stand for the blo
kof k symbols c. Now, from x we 
reate the sequen
es x′ by inserting into x,between xni−1 and xni

, either the blo
k cki or cki+1 (all su
h possible 
hoi
eslead to un
ountably many sequen
es x′ made from one x). For example, oneof the points x′ will be
. . . , xn−1−1, c

k−1+1, xn−1
, . . . , xn0−1, c

k0+1, xn0
, . . . , xn1−1, c

k1 , xn1
, . . .The points in the orbit of x∗ will produ
e ex
eptional sequen
es x′�eitherending or beginning with in�nitely many symbols c. Let X ′ be the 
losureof the set of all sequen
es x′ so 
onstru
ted from all x ∈ X. To verify theproperties 
laimed in the formulation of the theorem noti
e the following:(1) In ea
h x′ and for ea
h k, the blo
ks ck appear with bounded gaps.This implies that the �xpoint c∞ = . . . ccc . . . is the only minimal set in X ′.(2) We now prove that there exists a �nite invariant measure whosesupport is X ′. Viewing the symbols c as �spa
ers�, the system (X ′, T ′) 
anbe thought of as a �skys
raper�: The base is the set {x′ : x′0 6= c}, the levels(for k > 0) are {x′ : x′

−k 6= c, [x′
−k+1, . . . , x

′
0] = ck}. We do not in
lude inthis skys
raper the points x′ obtained from points x belonging to the orbitof x∗, but as we will explain, su
h points form a set of measure zero. The�rst return time map indu
ed on the base 
onsists in shifting ea
h x′ by thedistan
e to the nearest symbol di�erent from c, so that (at 
oordinate zero)it merely reads the 
onse
utive entries of the original sequen
e x ∈ X. Notethat ea
h point x′ is determined by two sequen
es: x and a {0, 1}-valuedsequen
e y = (yi) governing the (binary) de
isions made while insertingeither cki or cki+1. All (un
ountably many) di�erent points obtained fromone x remain di�erent in the system indu
ed on the base of the skys
raper,hen
e this indu
ed system is not isomorphi
 to (X,T ). It is however anextension of (X,T ) and it is not hard to see that this extension has the formof a skew produ
t TS of (X,T ) (minus the orbit of x∗) with the full shift

(Y, S) on two symbols {0, 1} de�ned by
TS(x, y) = (Tx, S1U1

(x)y),i.e., we apply the shift on the se
ond 
oordinate if x ∈ U1, otherwise theentry on the se
ond 
oordinate remains un
hanged. Clearly, the produ
tmeasure µ× λ is TS-invariant (where λ denotes the homogeneous Bernoullimeasure on the two-shift Y ), and has full topologi
al support in the produ
tspa
e. Also, we note that the ex
eptional points 
reated from the orbit of
x∗ form a set of measure zero for the produ
t measure (this set is the liftof a 
ountable set and µ is nonatomi
). Observe that the �rst level of theskys
raper extends above a dense subset of U1 × Y and for k ≥ 2 the kthlevel extends above a dense subset of Uk−1 × Y . Sin
e ∑

k µ(Uk) < ∞, theprodu
t measure µ × λ on the base �lifts� to a �nite invariant measure on
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the whole skys
raper with full topologi
al support in the skys
raper. By anobvious approximation argument, this measure has full support also in X ′.The desired probability measure is obtained by normalization.(3) We will show that under additional assumptions, (X ′, T ′) 
an be madetopologi
ally mixing. Let us impose a stronger requirement on the speed ofde
ay of the sets Uk: the smallest gap between visits in Uk (k ≥ 2) is largerthan 2k times the largest gap between visits in U1. This implies that betweenany two visits in Uk ea
h point visits U1 at least 2k times (of 
ourse this
an be done by 
hoosing Uk to be 
ontained in balls around x∗ of rapidlyde
reasing radii).Let x′ ∈ X ′ be 
reated from a point x ∈ X not belonging to the or-bit of x∗, and let B′ be the �nite blo
k x′[−m′,m′]. (Note that every blo
kappearing in X ′ 
an be obtained this way.) Let B = x[−m,m] be a blo
k(possibly mu
h longer than B′) whose appearan
e at any element z ∈ X(with 
oordinate zero at the 
enter) ensures that for a su�
iently long time(forward and ba
kward) the orbit of z visits the sets Uk at exa
tly the sametimes as x does, so that among the points z′ 
reated from z there existsone with z′[−m′,m′] = B′. By minimality, B appears at a positive 
oor-dinate in x∗, say B = x∗[r − m, r + m]. Sin
e, for ea
h k, x∗ belongs to
Uk, its return to Uk is pre
eded by at least 2k visits in U1. Begin 
reat-ing the sequen
e x∗′ from x∗ by insertions. Its negative part is �lled with
. . . , c, c, c, and positive with the positive part of x∗ with appropriate inser-tions. The insertions into x∗[r−m, r+m] may be arranged so that x∗′[r′−m′,
r′ +m′] = B′. In order to prove the mixing property we need to show thatthe 
onstru
tion of x∗′ 
an then be 
ontinued to the right in so many waysthat any blo
k C ′ possible in X ′ will appear in these 
ontinuations at alldistan
es larger than some 
onstant. Fix one su
h C ′ and let C be a blo
kappearing in X making the 
reation of C ′ possible (just like B was 
hosenfor B′). Noti
e that C appears in x∗ with bounded gaps. Let x∗1′, x∗2′, . . .denote the sequen
e of 
ontinuations of x∗′ su
h that in x∗n

′ all insertionsto the right of r + m are of the smaller type (i.e., cki) ex
ept inside onesele
ted (nth after position r+m) o

urren
e of C, where the insertions areadjusted to 
reate the blo
k C ′. Let dn be the distan
e between the blo
k
B′ (made from the 
opy of B 
entered at position r) and C ′ (the one madefrom the nth 
opy of C) in x∗n′. We 
an now enlarge ea
h distan
e dn by one,two, or more units, repla
ing one, two, or more insertions between position
r + m and the nth 
opy of C 
onsidered, by insertions of the larger type
cki+1. The last thing to show is that for n large enough there are at least
dn+1 − dn su
h �regulating insertions� available, so that enlarging the dis-tan
e dn we 
an rea
h dn+1. This will prove that it is possible to obtain C ′ atany su�
iently large distan
e following B′. This is the essen
e of topologi
almixing.
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Let g denote the maximal gap between the o

urren
es of C in x∗. Let

k0 be su
h that the distan
e between two visits of the orbit of x∗ in Uk0+1ex
eeds g, so that at most one visit in Uk0+1 is possible between two blo
ks C.If n is su
h that between the nth and (n+1)st 
opy of C (
ounting fromthe right end r + m of B) the orbit of x∗ visits Uk0+1 with some depth
k > gk0 + r +m + g, then the distan
e dn+1 − dn does not ex
eed gk0 + k(there are at most g insertions of size k0, and k is the size of the uniquelarger insertion). In that 
ase this unique visit to Uk is pre
eded by at least
2k > k+ gk0 + r+m+ g visits in U1, of whi
h at least k+ gk0 > dn+1 − dnfall between B and the nth 
opy of C, allowing equally many �regulatinginsertions�, as required. If n is su
h that between the nth and (n + 1)st
opies of C there is no visit of depth larger than gk0 + r + m + g then
dn+1 − dn is bounded (for instan
e, by g(gk0 + r + m + g)). So, in either
ase, if n is large enough, the nth 
opy of C is pre
eded by su�
iently manyvisits in U1 allowing su�
iently many �regulating insertions�.Final remarks. We would like to indi
ate one natural way of extendingstatements (4) and (5) of Theorem 1.6. Let k ∈ N. For i = 1, . . . , k let
Pi(n) be non
onstant polynomials satisfying Pi(Z) ⊂ Z. Given a measurepreserving system (X,B, µ, T ), sets Ai ∈ B (i ∈ [0, k]) and ε > 0, de�ne
RεA0,A1,...,Ak

= {n ∈ Z : µ(A0 ∩ T
P1(n)A1 ∩ · · · ∩ TPk(n)Ak) > µ(A0)µ(A1) · · ·µ(Ak) − ε},

QεA0,A1,...,Ak

= {n ∈ Z : |µ(A0∩T
P1(n)A1∩· · ·∩TPk(n)Ak)−µ(A0)µ(A1) · · ·µ(Ak)| < ε}.Denote byRk(X,B, µ, T ) andQk(X,B, µ, T ) the family of all sets of the form

RεA0,A1,...,Ak
and the family of all sets of the form QεA0,A1,...,Ak

, respe
tively(note that both Rk(X,B, µ, T ) and Qk(X,B, µ, T ) depend on the 
hoi
e ofthe polynomials Pi(n)). Then one 
an show that:(i) (X,B, µ, T ) is weakly mixing i� Rk(X,B, µ, T ) ∈ D∗ for any k ≥ 1and any �xed system of integer-valued polynomials P1(n), . . . , Pk(n).(ii) (X,B, µ, T ) is mildly mixing i� Rk(X,B, µ, T ) ∈ IP∗ for any k ≥ 1and any �xed system of integer-valued polynomials P1(n), . . . , Pk(n).Also, it is easy to see that in (i) the family D∗ 
an be equivalently repla
edby D∗
•, C∗ or C∗

• , while in (ii) the family IP∗ 
an be equivalently repla
ed by
IP∗

•. Additionally, all resulting statements hold if Qk(X,B, µ, T ) is used inpla
e of Rk(X,B, µ, T ) (
f. Remark 1).The main ingredient in proving the statements (i) and (ii) is provided bymultiple re
urren
e theorems along ultra�lters (see Theorems 4.8 and 5.1(v)in [B2℄).
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With regard to mixing, it is proved in [K-Y℄ that(iii) (X,B, µ, T ) is mixing i� for any three sets A,B,C ∈ B all sets ofthe form
QεA,B,C = {n ∈ Z : |µ(A ∩ Tα1nB ∩ Tα2nC) − µ(A)µ(B)µ(C)| < ε}belong to ∆∗.Obviously, an analogous statement involving the sets

RεA,B,C = {n ∈ Z : µ(A ∩ Tα1nB ∩ Tα2nC) > µ(A)µ(B)µ(C) − ε}is also true. As before, the family ∆∗ 
an be repla
ed by ∆∗
•. No extensionof this result to more general sets of polynomials is known.
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