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ABSOLUTELY CONTINUOUS, INVARIANT MEASURES

FOR DISSIPATIVE, ERGODIC TRANSFORMATIONS

BY

JON AARONSON and TOM MEYEROVITCH (Tel Aviv)

Abstract. We show that a dissipative, ergodic measure preserving transformation
of a σ-finite, non-atomic measure space always has many non-proportional, absolutely
continuous, invariant measures and is ergodic with respect to each one of these.

0. Introduction. Let (X,B,m, T ) be an invertible, ergodic measure
preserving transformation of a σ-finite measure space. Then there are no
other σ-finite, m-absolutely continuous, T -invariant measures other than
constant multiples of m, because the density of any such measure is T -
invariant, whence constant by ergodicity.

When T is not invertible, the situation becomes more complicated.

If (X,B,m, T ) is a conservative, ergodic, measure preserving transfor-
mation of a σ-finite measure space, then (again) there are no other σ-finite,
m-absolutely continuous, T -invariant measure other than constant multi-
ples of m (see e.g. Theorem 1.5.6 in [A]). When T is not conservative, the
situation is different.

In this note, we show (Proposition 1) that a dissipative measure preserv-
ing transformation has many non-proportional, σ-finite, absolutely continu-
ous, invariant measures.

If the dissipative measure preserving transformation is ergodic (exact),
then it is also ergodic (exact) with respect to each of these σ-finite, absolutely
continuous, invariant measures (Proposition 2).

Proposition 1 was known for certain examples: the “Engel series trans-
formation” (see [T], also [S1]); the one-sided shift of a random walk on a
polycyclic group with centered, adapted jump distribution (ergodicity fol-
lows from [K], existence of non-proportional invariant densities follows from
[B-E]); and the Euclidean algorithm transformation (see [D-N] which in-
spired this note). More details are given in §2.
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§1 is devoted to results (statements and proofs) and §2 has examples of
ergodic, dissipative measure preserving transformations.
To conclude this introduction, we consider

An illustrative example. Fix q ∈ (0, 1) and consider the stochastic matrix
p : Z × Z → [0, 1] defined by ps,s := 1 − q, ps,s+1 := q and ps,t = 0 for
t 6= s, s + 1. Let (X,B,m, T ) be the one-sided Markov shift with X := ZN,
B the σ-algebra generated by cylinders (sets of the form [a1, . . . , ak] :=
{x ∈ X : xj = aj for all 1 ≤ j ≤ k} and m : B → [0,∞] the measure

satisfying m([a1, . . . , ak]) :=
∏k−1
j=1 paj ,aj+1 . It is not hard to check that

(X,B,m, T ) is a measure preserving transformation. By random walk theory

(see §2 and [D-L]) it is exact in the sense that
⋂
n≥0 T

−nB
m
= {∅, X}. It can

be checked directly that F : X → [0,∞) defined by

F (x1, x2, . . .) =





0, N0(x) :=
∑∞
n=1 δxn,0 > 1,

1, N0(x) = 1, x1 < 0,

q, else,

is the density of a σ-finite, m-absolutely continuous, T -invariant measure.

1. Results

Wandering sets. For a measure preserving transformation (X,B,m, T )
let WT := {W ∈ B : W ∩ T

−nW = ∅ for all n ≥ 1}, the collection of
wandering sets for T . As is well known (see e.g. [A] or [Kr]), T is dissipative
iff X is a countable union of wandering sets mod m.

If T is dissipative and invertible then

• there existsWmax ∈ WT with
⊎
n∈Z
TnWmax = X mod m (see e.g. [A]

or [Kr]);
• if W ∈ WT , then

⊎
n∈Z
TnW = X mod m only if m(W ) = m(Wmax),

the reverse implication holding when m(Wmax) < ∞ (see Theorem 1
in [H-K]). We denote the constant m(Wmax) by w(T ).

Proposition 1. Let (X,B,m, T ) be a dissipative measure preserving
transformation of a standard , non-atomic, σ-finite measure space. Then
there exists c ∈ (0,∞] so that for everyW ∈ WT with m(W ) < c, there exists
a non-zero, m-absolutely continuous, T -invariant measure µ with bounded
density so that µ(W ) = 0.

Proof. By Rokhlin’s theorem (see [Ro] or Theorem 3.1.5 in [A]), there

is an invertible, measure preserving transformation (X̃, B̃, m̃, T̃ ) equipped

with a measurable map π : X̃ → X satisfying

(‡) π ◦ T̃ = T ◦ π, m̃ ◦ π−1 = m.

It follows that (X̃, B̃, m̃, T̃ ) is dissipative.
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Given p ∈ L∞(X̃)+ with p ◦ T̃ = p, define µp ∈M(X,B) by

µp(A) :=
\
X

1A ◦ πp dm̃.

Evidently µp ≪ m with ‖dµp/dm‖∞ ≤ ‖p‖∞ and µp(T
−1A) = µp(A)

(A ∈ B).

Next we show, as advertised, that each wandering set of small enough
measure is annihilated by some µp.

Let c := w(T̃ ) ∈ (0,∞] and suppose that W ∈ WT has m(W ) < c. Then

π−1W ∈ W
T̃
and m̃(X̃ \

⊎
n∈Z
T̃nπ−1W ) > 0.

Set Y := X̃ \
⊎
n∈Z
T̃nπ−1W (then T̃ Y = Y ) and let µ := µ1Y . Then (as

above) µ≪ m with ‖dµ/dm‖∞ ≤ 1 and µ(T
−1A) = µ(A) (A ∈ B).

By construction, µ(W ) = m̃(π−1W ∩ Y ) = 0.

Remarks. 1) The density F in the illustrative example above can be
obtained as in the proof of Proposition 1 as\

A

F dm= m̃
(
π−1A ∩

⊎

n∈Z

T̃nπ−1[−1, 0, 1]
)

or

F =
∑

n≥0

1[−1,0,1] ◦ T
n +
∑

n≥1

T̂nm1[−1,0,1]

where T̂m denotes the transfer operator of the measure preserving transfor-
mation (X,B,m, T ), which is the operator defined on the space L(X)+ of

non-negative, measurable functions by
T
A
T̂mf dm =

T
T−1A

f dm (f ∈L(X)+,
A ∈ B).

2) Evidently, p ∈ L(X)+ is the density of an m-absolutely continuous,

T -invariant measure iff T̂mp = p. Also T̂m(f ◦ T ) = f .

If (X,B,m, T ) is a dissipative measure preserving transformation, then
∑

n≥0

f ◦ Tn <∞ &
∑

n≥0

T̂nmf <∞ ∀f ∈ L1(X), f ≥ 0.

It follows that T̂mF = F where F = F (f) :=
∑
n≥0 f ◦ T

n +
∑
n≥1 T̂

n
mf

whenever f ∈ L1. This can be used to prove a less precise version of Propo-
sition 1 without assuming standardness of (X,B,m): if A,B ∈ B are disjoint
and A ⊎B ∈ WT , then F (1A)1B = 0 mod m.

3) Let (X,B,m, T ) be a dissipative measure preserving transformation

of a standard, non-atomic, σ-finite measure space and let (X̃, B̃, m̃, T̃ ) be
its natural extension, i.e. an invertible, measure preserving transformation
(X̃, B̃, m̃, T̃ ) equipped with a measurable map π : X̃ → X satisfying (‡) and
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a minimality condition that
∞∨

n=1

T̃nπ−1B = B̃ mod m̃.

Natural extensions are unique up to isomorphism, and exist by Rokhlin’s
theorem (mentioned above). We claim that any m-absolutely continuous,
T -invariant measure µ with bounded density is of the form µp where p ∈

L∞(X̃), p ◦ T̃ = p.
To see this, let µ : B → [0,∞] be such a measure. Now define the

T̃ -invariant measure µ̃ on (X̃, B̃) as in the proof of Theorem 3.1.5 in [A].

Evidently µ̃≪ m̃, p := dµ̃/dm̃ is a bounded, measurable, T̃ -invariant func-
tion and µ = µp.

Proposition 2. Let (X,B,m, T ) be an ergodic (exact) measure pre-
serving transformation of a standard , σ-finite measure space. If µ ≪ m is
a σ-finite, T -invariant measure, then (X,B, µ, T ) also an ergodic (exact)
measure preserving transformation.

Remark. Proposition 2 applies mainly to dissipative, ergodic (exact)
measure preserving transformations of standard, non-atomic σ-finite mea-
sure spaces.

Proof. By Theorem 2 in [D], (X,B, µ, T ) is

• ergodic iff ‖n−1
∑n−1
k=0 T̂

k
µu‖L1(µ) → 0 for each u ∈ L

1(µ)0;

• exact iff ‖T̂nµ u‖L1(µ) → 0 for each u ∈ L
1(µ)0.

Here L1(µ)0 := {u ∈ L
1(µ) :

T
X
u dµ = 0}.

Suppose that p ∈ L(X)+, T̂mp = p. We will show that (X,B,m, T )
exact implies that (X,B, µ, T ) is also exact where dµ = pdm. The proof for
ergodicity is analogous. We note first that

T̂µf = 1[p>0]
1

p
T̂m(fp).

Suppose that u ∈ L1(µ)0. Then up ∈ L
1(m)0, and ‖T̂

n
m(up)‖L1(m) → 0 by

exactness of (X,B,m, T ). Thus

‖T̂nµ u‖L1(µ) =
\
X

1[p>0]|T̂
n
m(up)| dm ≤ ‖T

n
m(up)‖L1(m) → 0

and (X,B, µ, T ) is exact.

2. Examples of ergodic, dissipative measure preserving

transformations

The Engel series transformation. This is the piecewise linear map T :
(0, 1]→ (0, 1] defined by T (x) := ([1/x]+1)x−1 considered with respect to
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Lebesgue measure. Dissipation follows from Tnx ↓ 0 for each x ∈ (0, 1) \Q,
ergodicity was shown in [S2] and invariant densities were given explicitly
in [T]. This material is also in the book [S1].

Dissipative, ergodic, random walks. The (left) random walk on LCP
group G with jump probability p ∈ P(G) (RW(G, p)) is (X,B, µ, T ), the sta-
tionary, one-sided shift of the Markov chain on G with transition probability
P (g,A) := p(Ag−1) (A ∈ B(G)) defined by

X := GN, B := B(X), T (x1, x2, . . .) = (x2, x3, . . .)

and

µ([A1, , . . . , AN ]) :=
\
G

Px([A1, . . . , AN ]) dm(x)

where m is a left Haar measure on G and for A1, . . . , AN ∈ B(G),

[A1, . . . , AN ] := {x = (x1, x2, . . .) ∈ X : xk ∈ Ak for all 1 ≤ k ≤ N};

Px([A1]) := 1A1(x),

Px([A1, A2, . . . , AN ]) := 1A1(x)
\
G

Pgx([A2, . . . , AN ]) dp(g).

For an Abelian group G it is shown in [D-L] (using [F]) that RW(G, p) is

ergodic iff 〈spt p〉 = G, and exact iff 〈spt p− spt p〉 = G. An exact random
walk on Zd can be conservative or dissipative when d = 1, 2 but is always
dissipative when d ≥ 3.

Dissipative, exact inner functions. By Herglotz’s theorem, any analytic
endomorphism F : R2+ := {x+ iy ∈ C : y > 0} → R2+ has the form

(2) F (z) = αz + β +
\
R

(
1 + tz

t− z

)
dµ(t)

where α ≥ 0, β ∈ R and µ is a positive measure on R. The limits
limy→0+ F (x + iy) exist for a.e. x ∈ R. The analytic endomorphism F :
R2+ → R2+ is called an inner function if T (x) := limy→0+ F (x + iy) ∈ R

for a.e. x ∈ R, equivalently: µ is a singular measure on R. A (referenced)
discussion of inner functions can be found in Chapter 6 of [A].

It is known that the real restriction T of an inner function is Lebesgue
non-singular: m(T−1A) = 0 ⇔ m(A) = 0 (A ∈ B(R)) where m is Lebesgue
measure on R (see e.g. Proposition 6.2.2 in [A]) and that m◦T−1 = m when
α = 1 in (2) (see e.g. Proposition 6.2.4 in [A]). If β = 0 and µ is a symmetric
measure (µ(−A) = µ(A)), then the real restriction T is odd, and exact by
Theorem 6.4.5 in [A].

If, in addition, µ([−x, x]c) ∝ 1/xα for some 0 < α < 1, then by Lemma
6.4.7 in [A], T is dissipative.
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Dissipative, ergodic, number theoretical transformations. The Euclidean
algorithm is the transformation T : R2+ → R2+ defined by

T (x, y) =

{
(x− y, y), x > y,

(x, y − x), x < y.

It is shown in [D-N] that (R2+,B(R
2
+), µ, T ) is an ergodic, dissipative, mea-

sure preserving transformation where dµ(x, y) = dxdy/xy. Exactness does
not seem to be known.

The Rauzy induction transformations considered in [V] are also known
to be ergodic, dissipative measure preserving transformations.

Dissipative S-unimodal maps. These are discussed in [B-H] in terms of
their attractors. Conditions are given for ergodicity, exactness, dissipativity
and existence of σ-finite invariant densities.
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