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THE M/M/1 QUEUE IS BERNOULLI

BY

MICHAEL KEANE (Middletown, CT) and NEIL O’CONNELL (Cork)

Abstract. The classical output theorem for the M/M/1 queue, due to Burke (1956),
states that the departure process from a stationary M/M/1 queue, in equilibrium, has the
same law as the arrivals process, that is, it is a Poisson process. We show that the associated
measure-preserving transformation is metrically isomorphic to a two-sided Bernoulli shift.
We also discuss some extensions of Burke’s theorem where it remains an open problem to
determine if, or under what conditions, the analogue of this result holds.

1. Introduction. The classical output theorem for the M/M/1 queue,
due to Burke [1], states that the departure process from a stationary M/M/1
queue, in equilibrium, has the same law as the arrivals process, that is, it is
a Poisson process. To be more precise, let A and S be Poisson processes on
R with respective intensities λ < ξ and define, for t ∈ R,

Q(t) = sup
s≤t

(A(s, t] − S(s, t]).

For each t, Q(t) should be interpreted as the number of customers in the
queue at time t. Customers arrive according to the Poisson process A (the
arrivals process) and at times given by the points of S, if the queue is
non-empty, a customer is served and departs from the queue. The departure
process D is defined to be the point process of times at which customers
depart from the queue. More precisely, we define, for s < t,

D(s, t] = Q(s) + A(s, t] − Q(t).

Burke’s theorem states that D is a Poisson process with intensity λ, and
moreover that (D(0, t], t > 0) is independent of Q(0). The standard proof
of this fact, due to Reich [10], is a reversibility argument which exploits
the dynamical symmetry of the queue and the fact that Q is a stationary,
reversible Markov chain. For more background on queueing theory, see, for
example, Kelly [5].

The nature of Burke’s theorem suggests that there may be a measure-
preserving transformation somewhere nearby. It is not immediately obvious
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how to find it, since D is not only a function of A, it also depends on S.
However, it was shown in [8] that, if we define R = A + S − D, then the
pair (D, R) has the same joint law as (A, S), thus exhibiting a measure-
preserving transformation; moreover, the restriction of (D, R) to (−∞, 0]2

is independent of Q(0). We can restate this as follows. For t ∈ R, set

X(t) =

{

S(0, t] − A(0, t], t > 0,

A(t, 0] − S(t, 0], t ≤ 0,

and

Y (t) =

{

R(0, t] − D(0, t], t > 0,

D(t, 0] − R(t, 0], t ≤ 0.

Note that we can write

Y (t) = 2M(t) − X(t) − 2M(0), M(t) = sup
−∞<s≤t

X(s).

Then X is a two-sided continuous-time simple random walk with positive
drift ξ−λ, and the transformation which maps X to Y is measure-preserving;
moreover, (Y (t), t ≤ 0) is independent of Q(0) ≡ M(0).

This statement can be further simplified by considering only the times
at which events occur (i.e. the times at which the random walk X jumps).
Denote these times (which are almost surely distinct) by

· · · < τ−2 < τ−1 < 0 < τ1 < τ2 < · · ·

and set xn = X(τn) and yn = Y (τn) for n ∈ Z. Note that, for n ∈ Z,

yn = 2sn − xn − 2s0, sn = sup
m≤n

xm.

Then (xn, n ∈ Z) is a two-sided, discrete-time simple random walk, as is
(yn, n ∈ Z), and (yn, n ≤ 0) is independent of s0. Finally, let Ω = {−1, 1}Z

be equipped with Bernoulli product measure with parameter p = ξ/(λ + ξ).
Set εn = xn−xn−1 and σn = yn−yn−1. Then we can write σ = Tε, where T ,
defined almost everywhere on Ω, is a measure-preserving transformation.

The fact that (σn, n ≤ 0) is independent of s0 can now be interpreted
as saying that T has a factor which is Bernoulli, that is, a factor which is
metrically isomorphic to a two-sided Bernoulli shift (see Section 2 for de-
tails). The main result of this paper is that T is, in fact, Bernoulli. This will
be presented in Section 2. In Section 3 we discuss the Brownian analogue
of Burke’s theorem where it is only possible to show that the correspond-
ing transformation has a Bernoulli factor. The difficulty here is similar to
that encountered in the open question, posed by Marc Yor, of determining
whether Lévy’s transformation of Brownian motion is ergodic. Dubins and
Smorodinsky [3] proved that there is a discrete version of Lévy’s transfor-
mation which is isomorphic to a one-sided Bernoulli shift. In Section 4 we
describe a natural extension of Burke’s theorem to the more general setting
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of iterated random functions, and leave it as an open problem to determine
under what conditions the corresponding transformation is Bernoulli.

2. The main result. Let µ be a Bernoulli product measure on Ω =
{−1, 1}Z with

µ{ω ∈ Ω : ω0 = 1} = p > 1/2.

Define a two-sided simple random walk x = (xn, n ∈ Z) by x0 = 0,

xn =

{

xn−1 + ωn, n > 0,

xn+1 − ωn+1, n < 0.

For n ∈ Z, set sn = supm≤n xm and Ω′ = {s0(ω) < ∞}. Note that µ(Ω′) = 1.
Write y = 2s − x and define T : Ω′ → Ω by setting (Tω)n = yn − yn−1 for
each n ∈ Z. In order to discuss the inverse transformation we further define

Ω′′ = {ω ∈ Ω′ : lim inf
n

(sn − xn) = 0}

and note that µ(Ω′′) = 1. Let R : Ω → Ω be the “time-reversal” operator
defined by (Rω)n = ω−n for n ∈ Z, and set ̺ = p−1(1 − p). We first recall
the analogue of Burke’s theorem in this discrete setting.

Theorem 2.1.

(i) µ ◦ T−1 = µ.

(ii) For x ≥ 0, µ{ω : s0(ω) = x} = (1 − ̺)̺x.

(iii) The random variable s0 is independent of ((Tω)n, n ≤ 0).
(iv) If ω ∈ Ω′′ then ω = (RTR)(Tω).

Proof. The measure-preserving property (i) is essentially equivalent to
the output theorem for the stationary M/M/1 queue, as discussed in Sec-
tion 1, which follows easily from the fact that the Markov chain q = s − x
is stationary and reversible. Property (ii) is well-known. Properties (iii) and
(iv) follow from (i) and the fact that, for ω ∈ Ω′′, sn = minl≥n yl for all n.

An immediate consequence of (iv) is that there exists Ω∗ ⊂ Ω with
µ(Ω∗) = 1 and on which T k is defined for all k ∈ Z. Define a mapping
ϕ : Ω∗ → N

Z by putting (ϕω)k = s0(T
kω) for each k ∈ Z. Denote the shift

operator on N
Z by θ and let γ be the θ-invariant product measure on N

Z

with
γ{α ∈ N

Z : α0 = x} = (1 − ̺)̺x, x ≥ 0.

Theorem 2.2.

(i) µ ◦ ϕ−1 = γ.

(ii) Almost every ω ∈ Ω∗ is uniquely determined by ϕω.

(iii) T = ϕ−1 ◦ θ ◦ ϕ almost everywhere.

Proof. Claim (i) follows from Theorem 2.1(iii). To prove (ii) we first
note that ω0 = (−1)N where N = min{k ≥ 0 : s0(T

kω) = 0}. Indeed,
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if s0(T
kω) > 0, then (T k+1ω)0 = −(T kω)0, whereas if s0(T

kω) = 0, then
(T kω)0 = 1. By the same reasoning, for any k ≥ 0, we have (T kω)0 =
(−1)Nk , where Nk = min{l ≥ 0 : s0(T

k+lω) = 0}. Thus, we can recover
((T kω)0, k ∈ Z) from ϕω. In exactly the same way, for any n ∈ Z, we can
recover ((T kω)n, k ∈ Z) from the sequence (qn(T kω), k ∈ Z), where q = s−x.
Combining this observation with the identity

qn−1(T
kω) = max{qn(T kω) + (T k+1ω)n, 0}

we see that, for any n ≤ 0, we can recover ((T kω)n, k ∈ Z) from ϕω. In
particular, we recover (ωn, n ≤ 0) from ϕω. A similar argument works in
the other direction, starting with the observation that, if s0(T

kω) > 0, then
(T k+1ω)1 = −(T kω)1, whereas if s0(T

kω) = 0, then (T k+1ω)1 = 1; this
leads to the conclusion that {ωn, n ≥ 1} can be recovered from ϕω, which
completes the proof of (ii), and (iii) follows.

3. Brownian version. Let (X(t), t ∈ R) be a two-sided standard Brow-
nian motion with drift ν > 0 and with X(0) = 0. For t ∈ R, set

Y (t) = 2M(t) − X(t) − 2M(0), M(t) = sup
−∞<s≤t

X(s).

The continuous analogue of Burke’s theorem (see, for example, [9] and ref-
erences therein) states that Y has the same law as X and, moreover, that
(Y (t), t ≤ 0) is independent of M(0), which is exponentially distributed
with parameter 2ν. It follows that the measure-preserving transformation T ,
which maps X to Y , has a factor which is metrically isomorphic to the
shift operator on R

Z
+, equipped with the product measure ε⊗Z, where ε is

the exponential distribution on R+ with parameter 2ν. However, it is not
clear in this setting whether or not X can be recovered from the sequence
(sup−∞<s≤0(T

kX)(s), k ∈ Z), so we cannot conclude that T is Bernoulli.
The recovery map for the discrete case, defined in the proof of Theorem 2.2,
does not have an obvious continuous analogue. It is thus an open problem to
determine whether or not this transformation is Bernoulli, or even ergodic.

This is reminiscent of a (still open) question, originally posed by Marc
Yor, in relation to the following transformation of Brownian motion. Let
(Bt, t ≥ 0) be a standard one-dimensional Brownian motion. It is a classical
result, due to Paul Lévy, that the process

(|Bt| − L0
t (|B|), t ≥ 0)

is also a standard Brownian motion, where L0
t (|B|) denotes the local time

at zero of |B| up to time t. Is this an ergodic transformation? Dubins and
Smorodinsky [3] proved that there is a discrete version which is metrically
isomorphic to a (one-sided) Bernoulli shift.
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4. Iterated random functions. The classical output theorem for the
M/M/1 queue extends quite naturally to the more general setting of iter-
ated random functions. Loosely following [2], let S be a topological space
equipped with its Borel σ-algebra, {fθ, θ ∈ Θ} a family of continuous
functions that map S to itself and µ a probability distribution on Θ. Let
(θn, n ∈ Z) be a sequence of random variables with common law κ. Consider
the Markov chain x = (xn, n ≥ 0) with state space S defined by x0 = s and

(1) xn = fθn
(xn−1) = (fθn

◦ · · · ◦ fθ1
)(s), n > 0.

We will assume that this Markov chain has reversible transition probabilities
with respect to a unique invariant probability measure. Now consider the
backward iterations:

um = (fθ1
◦ · · · ◦ fθm

)(s).

Under certain regularity conditions, as discussed in [2], the sequence um

converges almost surely, as m → ∞, to a limiting random variable u∞ which
does not depend on s and which realises the invariant distribution of x. We
will assume that this property holds. It follows that, for each n ∈ Z, the
limit

(2) zn = lim
m→∞

(fθ1+n
◦ · · · ◦ fθm

)(s)

exists almost surely and does not depend on s. By continuity, these random
variables satisfy

(3) zn = fθn+1
(zn+1), n ∈ Z,

from which it follows, recalling that x is has reversible transition probabil-
ities, that the sequence z = (zn, n ∈ Z) is a two-sided stationary version
of x.

Now suppose that, for each s ∈ S, the map θ 7→ (s, fθ(s)) is injective,
and define F (r, s) = θ whenever s = fθ(r). Then we can write

(4) θn = F (zn, zn−1), n ∈ Z.

Define a sequence of random variables η = {ηn, n ∈ Z} by setting

(5) ηn = F (zn−1, zn), n ∈ Z,

so that

(6) zn = fηn
(zn−1), n ∈ Z.

Reversibility ensures that η is well-defined.

Theorem 4.1. In the above context , η has the same distribution as θ
and the sequence η1, η2, . . . is independent of z0.

Proof. The first claim follows from (4) and (5), and the fact that z is
stationary and reversible. By (6) we can write, almost surely,
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z0 = fη0
(fη

−1
(fη

−2
(· · · ,

which is independent of η1, η2, . . . as required.

This defines a measure-preserving transformation (mapping θ to η) which
has a Bernoulli factor. When is it Bernoulli? The M/M/1 queue corresponds
to the special case where Θ = {−1, 1}, 1 − κ{−1} = κ{1} = q < 1/2
and fθ(x) = max{x + θ, 0}. Examples of iterated random functions where
Theorem 4.1 applies can be found in [4] and [7]. Further examples which
arise from taking products of random matrices, and for which the invariant
measure is known explicitly, are discussed in the paper [6]; note however
that not all of these are reversible.
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