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Abstract. We trace the beginning of symbolic dynamics—the study of the shift
dynamical system—as it arose from the use of coding to study recurrence and transitivity
of geodesics. It is our assertion that neither Hadamard’s 1898 paper, nor the Morse–
Hedlund papers of 1938 and 1940, which are normally cited as the first instances of
symbolic dynamics, truly present the abstract point of view associated with the subject
today. Based in part on the evidence of a 1941 letter from Hedlund to Morse, we place
the beginning of symbolic dynamics in a paper published by Hedlund in 1944.

Symbolic dynamics, in the modern view [LM95, Kit98], is the dynamical
study of the shift automorphism on the space of bi-infinite sequences of sym-
bols, or its restriction to closed invariant subsets. In this note, we attempt to
trace the beginnings of this viewpoint. While various schemes for symbolic
coding of geometric and dynamic phenomena have been around at least
since Hadamard (or Gauss: see [KU07]), and the two papers by Morse and
Hedlund entitled “Symbolic dynamics” [MH38, MH40] are often cited as the
beginnings of the subject, it is our view that the specific, abstract version of
symbolic dynamics familiar to us today really began with a paper,“Sturmian
minimal sets” [Hed44], published by Hedlund a few years later. The outlines
of the story are familiar, and involve the study of geodesic flows on surfaces,
specifically their recurrence and transitivity properties; this note takes as
its focus a letter from Hedlund to Morse, written between their joint pa-
pers and Hedlund’s, in which his intention to turn the subject into a part
of topology is explicit (1). This letter (2) is reproduced on pages 235–236,
along with Morse’s reply on page 238.
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(1) In the interest of full disclosure, we should indicate our possible bias: Hedlund was
the first author’s dissertation director and hired the second author in his first job.

(2) More accurately, a carbon copy of the original provided to the first author by
Hedlund.

[227] c© Instytut Matematyczny PAN, 2008
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Our focus here is rather narrow, even when it comes to coding geodesic
flows. A recent survey by Katok and Ugarcovici [KU07] distinguishes two
approaches to such coding: a geometric method, which is our subject, and a
second, going back to Gauss and associated with Artin, Koebe and Nielsen,
which can be regarded as more arithmetic in nature. We do not propose
to consider the latter in detail. The survey [KU07] discusses technical de-
tails of both approaches as well as their subsequent development in recent
years.

We have focused here on the line of literature from Hadamard to the
Morse–Hedlund papers, and have not attempted to relate this to the con-
current development of ergodic theory, in which of course Birkhoff (who
plays a major role in our story) was very much involved. In contrast to the
present use of symbolic methods in ergodic theory, there seems to have been
little if any such connection drawn in this earlier period: for example, Hopf’s
influential book [Hop37] shows no signs of symbolic coding. Similarly, we
have not attempted to explore the contribution of the Russian school to this
development: in his 1949 survey of dynamical systems, Nemytskĭı explicitly
credits Morse with the idea of using symbolic coding for the trajectories of
a system [Nem49, p. 20 of English version] (3).

The beginnings of symbolic dynamics are often traced back to Hada-
mard’s 1898 study of geodesics on surfaces of negative curvature [Had98]. In
Part II of that work (§20), Hadamard gives a coding for the (free homotopy
classes of) closed geodesics, essentially as words (up to cyclic permutation)
in generators of the fundamental group, and in Part III (§37) he shows that
each word corresponds to a unique closed geodesic. He then goes on to study
unbounded geodesics and in Part VI (§56) shows that the initial conditions
at a point which determine geodesics staying in a bounded region form a
perfect, nowhere dense closed set (which is the closure of the conditions
yielding closed geodesics).

There are several respects in which Hadamard’s paper does not really
qualify as a beginning for symbolic dynamics. First, his coding is limited
to finite words, coding closed geodesics; he does not appear to envision a
coding system encompassing other geodesics. The bounded, non-periodic
geodesics he produces in Part VI are, in passing, seen as determined by
a sequence of closed geodesics, but this is not explicitly related to their
coding. Furthermore, Part II of the paper (where the coding is formulated),
entitled “Considérations d’Analysis situs”, is presented as follows (in a rough

(3) In fact, Nemytskĭı describes a tantalizing example from an unpublished manuscript
by Pontryagin and Shnirel’man that is essentially the shift automorphism; unfortunately,
there is neither a date nor any further bibliographic information provided for this work,
and so it is difficult to assess its historic importance.
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translation (4)):

Having established, in the preceding sections, the existence of
surfaces of negative curvature and of arbitrary connectivity (5),
we will recall the principles which govern the study of curves
on these surfaces, principles set forth by Jordan in a well-known
Memoir (2).

Footnote (2) (“Ce journal, année 1866”) refers to the second of two back-to-
back papers published 33 years before Hadamard in the Journal de Mathé-

matiques Pures et Appliqués by Jordan [Jor66b, Jor66a]: the first concerns
the role of fundamental contours in determining the homeomorphism type
of a surface, and the second presents the notion of a “class” of contours (i.e.,
free homotopy class) subsequently used by Hadamard in [Had98]. Jordan’s
notation is that adopted by Hadamard, and he hints at the representation
of curves by words (with positive or negative exponents). Finally, it should
be noted that in Hadamard’s study, the point of view is geometric rather
than dynamic: geodesics are regarded as oriented curves, and there appears
no explicit sense of a “geodesic flow”; in particular Hadamard’s symbolic
coding is static in nature.

In an important paper [Bir12] published in 1912 (and based on a pre-
sentation to the American Mathematical Society in 1909), G. D. Birkhoff
analyzes the behavior of recurrent trajectories in a dynamical system de-
fined by a system of ordinary differential equations. The word “recurrent”
here corresponds to what we now call “minimal” (6). A collection M of
trajectories of a dynamical system is minimal if every element of M has
all elements of M in its α- and ω-limit sets; Birkhoff calls any trajectory
belonging to a minimal set “recurrent”. He proves that recurrence (in this
sense) is equivalent to (what we now call) almost-periodicity : for any ε > 0
there exists a length T such that the whole trajectory is contained in an
ε-neighborhood of any segment of length T . Obvious examples of minimal
sets are equilibria and closed orbits; Birkhoff also notes the example of dense
lines on a torus, and calls a recurrent motion continuous if the corresponding
minimal set forms a continuum of some dimension. The a priori possibility

(4) “Ayant reconnu, dans les numéros précédents, l’existence de surfaces à courbures
opposées et à connexion quelconque, nous avons à rappeler les principes qui gouvernent
l’étude des lignes tracées sur de telles surfaces : principes posés par M. Jordan dans un
Mémoire bien connu (2).”

(5) The connectivity of a surface is the maximal number of non-separating curves;
for a closed surface it equals the genus plus one [Hir76, pp. 188–189]. Of course, there
are topological restrictions on which surfaces can carry a complete metric of negative
curvature, but this does not restrict the connectivity if the surface is allowed to be non-
compact.

(6) What we now call recurrent is called stable in the sense of Poisson.
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of discontinuous recurrent trajectories is illustrated by the suspension of a
nontransitive homeomorphism of the circle with irrational rotation number,
and Birkhoff asks whether discontinuous recurrent trajectories can occur in
analytical dynamical systems.

Morse, in his 1917 dissertation under Birkhoff (published as [Mor21a]
and [Mor21b]) establishes the existence of recurrent geodesics of discontinu-
ous type on surfaces of negative curvature and negative Euler characteristic.
He considers the bounded region S obtained by cutting off any infinite “fun-
nels” using closed geodesics, and codes the geodesics entirely contained in
S by recording the order in which they cross a family of transversals (“nor-
mal segments”) that cut S into a simply-connected region—in effect lifting
the geodesic to the hyperbolic plane. He then shows that this coding dis-
tinguishes geodesics in S, and by constructing the “Morse sequence” (dis-
covered earlier and independently by Thue [Thu12]) proves the existence
of discontinuous recurrent geodesics. Furthermore, he shows by symbolic
methods that every closed geodesic in S is a limit of discontinuous recur-
rent ones. Since Hadamard had shown that every geodesic in S is a limit
of closed geodesics, it follows that the recurrent geodesics of discontinuous
type are dense in the set of all geodesics contained in S. Despite the closer
connection with dynamical ideas, the point of view in these papers remains
geometric: geodesics are still regarded as curves rather than trajectories,
and the coding is used to establish that a geodesic is recurrent (in his sense)
and not closed.

In 1920, Birkhoff published a study [Bir20] setting forth a number of ways
that the behavior of a dynamical system with two degrees of freedom can be
studied by means of the successive intersections of orbits with a transverse
surface; strictly speaking, such a surface of section is not entirely transverse
to the flow, as it is bounded by closed orbits, but its interior is transverse
to the flow. The general setup had been formulated by Poincaré in [Poi97,
Vol. III, Chap. 27], as a means of studying periodic and homoclinic orbits in
celestial mechanics. Birkhoff had used the same setup in a limited way for
similar purposes in 1917 ([Bir17]). In Chapters 5 and 6 of [Bir20], Birkhoff
goes beyond the study of periodic orbits to study, in some abstraction, the
behavior of the “Poincaré map”, defining α- and ω-limit sets, minimal sets
and his related notion of recurrence, as well as transitivity.

In 1924, Artin published a brief but influential paper [Art24] in which he
shows that the orbit space of the group of linear fractional transformations
with integer coefficients acting on the hyperbolic plane (in the half-plane
model) has a dense geodesic (in fact, the set of these has full measure). His
proof involves a coding of geodesics via the continued fraction expansion of
their “endpoints at infinity” on the real line. (His term for transitivity is
“quasiergodicity”.)
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In 1927, in the first of his papers on mapping classes [Nie27], Nielsen
formulates a similar coding geometrically, in terms of the fundamental group,
to study the axes of hyperbolic transformations on surfaces obtained as
quotients of the hyperbolic disc by a Fuchsian group. Nielsen’s approach
has some similarities to Morse’s coding of geodesics via transverse segments,
but the dynamics that comes in is that of the Fuchsian group acting on the
universal covering.

In his 1927 book, Dynamical Systems [Bir27], a broad survey of work
on dynamical systems (primarily of mechanical origin), Birkhoff included
Chapter 7, “General theory of dynamical systems”, which sets forth the
notions of wandering and non-wandering orbits, central motions, minimal
sets, and transitivity in the general context of the flow generated by a system
of differential equations. Much of this reflected ideas formulated earlier in
his 1912 paper [Bir12].

In 1935, Birkhoff summed up his work on dynamics in a long paper
[Bir35], published by the Pontifical Academy of Sciences. Chapter 3, a study
of behavior near a hyperbolic periodic orbit, is based on a detailed examina-
tion of the dynamics of a Poincaré map for a transverse section. By symbolic
methods that, several decades later, were modified and used by Smale to
prove the “Birkhoff–Smale” theorem (7) and to construct the “horseshoe”,
Birkhoff demonstrates the existence of highly complicated “first return” be-
havior for periodic orbits near any orbit homoclinic to a hyperbolic periodic
orbit or, more generally, belonging to a loop of heteroclinic connections.

This work forms the background to two papers by Morse and Hedlund,
entitled “Symbolic dynamics” [MH38, MH40], published in 1938 and 1940,
respectively.

Hedlund, in his dissertation written under Morse in 1929 [Hed32a,
Hed32b] had proved the existence of a length-minimizing closed geodesic
in each free homotopy class for any Riemannian metric on the torus; Morse
[Mor24] had proved the same result for surfaces of higher genus. Hedlund
went on to study geodesics on surfaces [Hed35b, Hed35a, Hed36b, Hed36a],
in particular proving the ergodicity of the geodesic flow on a closed surface
of constant negative curvature [Hed35b], using Nielsen’s symbolic coding
[Nie27], and transitivity of the horocycle flow [Hed36a]. In 1939 he published
a survey of results on the dynamics of geodesic flows [Hed39], in which he
formulates seven types of transitivity, elaborating on Birkhoff’s definitions in
[Bir27]: these include topological transitivity (“regional transitivity”, which
he notes is equivalent to the existence of a dense trajectory), topological
mixing (“permanent regional transitivity”), ergodicity with respect to some

(7) That every neighborhood of a transverse homoclinic point contains a “horseshoe”
[Sma65].
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invariant measure (“metric transitivity”) and mixing (“mixture”) as well as
hybrids of topological and ergodic notions of transitivity. He quotes theo-
rems establishing many of these properties for geodesic flows on surfaces of
constant negative curvature, as well as an example of a topologically mixing
but non-ergodic geodesic flow. At the end of the article he plugs the work
he had started with Morse in [MH38]:

The development of a symbolic theory apart from its dynamical
significance has recently been begun by Morse and the author
(cf. Morse [4]). This initial work includes an extensive analysis of
transitive symbolic trajectories. The full scope of these symbolic
methods in dynamics is yet to be determined.

The first of the Morse–Hedlund papers [MH38] sets forth a general the-
ory of what we now call shift spaces, focusing on recurrence and transitivity
properties of sequences. The motivation in the introduction refers primar-
ily to geodesic flows on surfaces of negative curvature, but after that the
treatment is quite abstract. The authors’ view of the place of their study in
dynamics as a whole is stated as follows [MH38, pp. 816–817]:

Symbolic dynamics as the authors conceive it forms one of the
three divisions

(1) representation theory,
(2) symbolic dynamics,
(3) existence of space forms,

of the whole theory. The representation theory is concerned with
the conditions on space forms under which trajectories admit a
one-to-one symbolic representation in terms of which the recur-
rence or transitivity of the trajectory can be determined. These
conditions will involve the Poincaré fundamental group of the
space and differential conditions such as that of uniform insta-
bility (cf. Morse [4] (8), p. 64). In (3) one is concerned with
the existence of space forms satisfying the conditions discov-
ered in (1). The questions involved are rather deep extensions
of the Hilbert, Koebe theory of spaces of negative curvature (cf.
Hilbert [1] (9), and Koebe [1] (10)). A simple typical theorem is
that there exists no two-dimensional Riemannian manifold of the
topological type of the torus satisfying the condition of uniform
geodesic instability. The bearing of such studies on questions of

(8) This reference is our [Mor21a].

(9) [Hil01].

(10) [Koe31].
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topological and metric transitivity will be made clear in later
papers.

Clearly, Morse and Hedlund view their paper as initiating a new branch of
the theory of dynamical systems. However, it does not seem to us that the
shift dynamical system is as yet considered as an object of study.

Beginning with a finite alphabet, Morse and Hedlund define an I-tra-
jectory to be a two-sided indexed sequence of letters; a symbolic element

E(r, a) is an I-trajectory a = . . . a−1a0a1 . . . together with a choice of a
distinguished position r on it. The space of all symbolic elements is given
the metric

d(E(r, a), E(s, b) = 1/m

when ar−m . . . ar+m and bs−m . . . bs+m are the longest symmetric words cen-
tered on the distinguished positions which agree termwise (elements whose
distinguished positions have different values are at infinite distance). They
establish that this gives the space of symbolic elements the topology of a
Cantor set. The space of I-trajectories is given the metric

[a, b] = lim sup
n→∞

1

2n + 1

n∑

i=−n

δ(ai, bi)

(where δ(ai, bi) = 1 or 0 according as ai and bi are the same or different),
which they view as an analogue of the sup metric on functions, as used by
Besicovitch in his treatment of almost-periodic functions [Bes32]—in fact,
their notation closely follows his (11). They define an I-trajectory a to be
almost-periodic if for every ε > 0 the iterates Dr of the shift automorphism
which satisfy

[Dr(a), a] < ε

form a relatively dense set of integers (that is, there is an integer N =
N(a) such that any set of N consecutive integers intersects the set). They
consider subsets of the space of trajectories defined by admissible blocks;
their admissibility rules appear to be of finite type, although they state
a family of conditions [MH38, p. 823] which are far more restrictive, and
appear to be motivated by Nielsen’s formalism, to which they explicitly
refer as an example. Again, they show that the subspace so defined has the
topology of a Cantor set. They then study limit trajectories and minimal
sets of trajectories from a symbolic point of view, and present the Morse
sequence. The last 60% of the paper (pp. 833–864) is taken up with a number
of functions that measure the “speed” of recurrence; these need not occupy
us in detail here. It should be noted that, despite the dynamical background,

(11) Besicovitch’s treatment, which is the one cited by Morse and Hedlund, was ex-
plicitly a generalization of earlier work by Bohr and Bochner.
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and the appearance of the shift automorphism in two places (pp. 817 and
822), it is used in a way analogous to Besicovitch’s use of translations to
study almost-periodic functions (in fact, as we have noted, their notation is
the same); there is no sense of a dynamical system generated by iteration
of the shift.

Morse and Hedlund’s second paper [MH40] concerns a specific class of
subshifts, which they explain characterize the geodesics on a flat torus. These
are built on an alphabet of two symbols and are defined by the condition
that for each symbol, any two maximal blocks of consecutive appearances
of the symbol differ in length by at most one. At the end of their previous
paper, they had noted the relation of this condition to the Sturm Separation
Theorem concerning the distribution of zeros of any non-constant solution
of the differential equation

y′′ + f(x)y = 0

where f(x) is periodic with period one: one symbol represents the loca-
tions of zeros, the other the locations of integers (it is assumed without
loss of generality that the solution has no integer zeros). They call such
trajectories Sturmian trajectories. This paper is a detailed algebraic study
of various combinatorial functions that characterize a Sturmian trajectory.
Again, there is no explicit dynamical system here.

The journal lists [MH40] as received June 19, 1939. Two years later,
Hedlund wrote to Morse (Figures 1 and 2).

Several features of this letter deserve comment. The first thing that
strikes one is the penultimate paragraph, in which Hedlund wonders whether
by a different choice of metric the space of symbolic elements could be made
connected. Of course, on closer reading this is modified by the comment
that this might be accomplished by identifying a countable number of pairs
of points. Anachronistically, one could view this as a precursor of the con-
struction of Markov partitions [Par66, Ber67, AW67, AW70]. Of course, the
fact that the shift space itself has the topology of a Cantor set is these days
taken for granted, and not viewed as problematic: the coding is a map from
an initially given dynamical system to the shift dynamical system. Second,
Hedlund is fully aware of the idea of a discrete dynamical system, and sees
it as fundamentally equivalent to the idea of a flow. He is also completely
aware of the interplay of topological and dynamical features of the system,
something that is not clear in the earlier joint papers. Finally, the implied
distinction between dynamics and topology has been somewhat erased in
more recent years.

Perhaps a comment on the interests of “a number of topologists” men-
tioned in the first sentence of Hedlund’s letter is in order. A search of the
Mathematical Reviews (which began only a year before Hedlund’s letter, in
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Fig. 1. Hedlund’s letter to Morse: page 1

1940) and Zentralblatt (begun about ten years earlier, in 1931) of that period
reveals a large number of works concerning periodic and fixedpoint behav-
ior of iterated transformations on manifolds and metric spaces. Of course,
there were some more sophisticated precursors: Brouwer’s characterization
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Fig. 2. Hedlund’s letter to Morse: page 2

of fixedpoint-free transformations of the plane (the “Brouwer translation
theorem” [Bro12]), Denjoy’s work on flows on the torus or, equivalently,
diffeomorphisms of the circle [Den32b, Den32a] (see also [vK35]), and the
work of Fatou [Fat06, Fat19, Fat20] and Julia [Jul18] on iteration of rational
functions.
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Hedlund’s reference to “the last issue of Mathematical Reviews” may
give the impression that his acquaintance with the work of “some topolo-
gists” was second-hand. The paper trail suggests otherwise. The review in
question, a one-paragraph review of [Sch40] by Ayres: Math. Rev. 2, 179b
(MR 3198), begins by referring to a paper by Hall and Schweigert [HS38]
which is being generalized by Schweigert in the paper under review. Hall was
no stranger to Hedlund. A paper by Hall and Kelley [HK41] which appears
in Hedlund’s bibliography to [Hed44], was published in 1941, based on a pre-
sentation to the American Mathematical Society in September 1939. This
paper concerns variants of periodicity for an iterated self-homeomorphism
of a compact metric space, including uniform and non-uniform versions of
almost-periodicity. Hall and Kelley formulate the notion of a minimal set
(which they call “irreducibly fixed”) and show that this is equivalent to ev-
ery orbit being dense, and that either such a set is a single periodic orbit,
or every orbit in it is almost periodic. In a footnote, they acknowledge that
“It has been pointed out to the authors that...[these results]...are precisely
analogous to certain results of G. D. Birkhoff for continuous flows...” In an
earlier footnote, they acknowledge

This paper was started when the authors were in residence at
the University of Virginia, the first named author as a National
Research Fellow.

Recall that Hedlund’s letter was written in Charlottesville, Virginia, where
he had joined the University of Virginia faculty in 1939.

In any case, Morse failed to respond to Hedlund’s letter in any substantial
way (Figure 3).

Hedlund wrote a new article, “Sturmian minimal sets” [Hed44], sub-
mitted to the journal in January, 1944. The minimal sets of the title are
addressed in the second half of the paper. Hedlund begins boldly, explicitly
introducing the notion of an orbit (note: not “trajectory”) and semi-orbit
for a discrete dynamical system. He formulates discrete dynamical system
versions of the definitions in [Bir27] of α- and ω-limit sets, invariant sets,
minimal sets, recurrent orbit (in the sense of being contained in a mini-
mal set), and almost-periodic orbit, and notes the equivalence of the last
two notions. Then he comments that the dual terminology “recurrent” and
“almost-periodic” for equivalent notions is redundant; he argues that the
latter is the better terminology for this notion, and suggests that “recur-
rent” be saved for “Poisson stable” (our current meaning of “recurrent”).
He then repeats the definitions of symbolic trajectory and symbolic element
from [MH38], and introduces a modified version of the metric on symbolic
elements (replacing m with m + 1, so that elements which agree only at the
distinguished position are at distance 1), noting that this gives the space of
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Fig. 3. Morse’s response
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symbolic elements the topology of a Cantor set—apparently abandoning his
concerns in the letter about this.

Then, significantly, Hedlund introduces the shift map S and proves that
it is a one-to-one, continuous transformation of the space of symbolic el-
ements to itself. He notes that the symbolic trajectories are in one-to-one
correspondence with the orbits of S, with periodic trajectories correspond-
ing to periodic orbits, and recalls the existence of the Morse sequence and
Sturmian minimal trajectories of [MH40] as examples of almost-periodic
non-periodic orbits. He then proceeds to construct Sturmian minimal sets
by coding orbits of a rotation of the circle by β radians, where β is an ir-
rational multiple of π, using a partition into arcs of length β and 2π − β,
respectively (12). He associates to each orbit two symbolic elements, cor-
responding to making the atoms of the partition right- or left-open. He
proceeds to prove first that the symbolic sequences which arise this way
correspond to almost-periodic orbits of the rotation, and then that this cor-
responds to being minimal under S. He proves that the minimal set (for
S) so obtained is compact, perfect and totally disconnected, and contains
a pair of doubly asymptotic orbits. He then defines the notion of an orbit-
preserving transformation with respect to a given discrete dynamical system
(this is our notion of a self-conjugacy) and proves that in his minimal sets
it is not always possible to find an orbit-preserving transformation taking
one orbit in the set to an arbitrarily designated second orbit in the set.
He attributes the corresponding question for flows to Birkhoff. He defines
a notion of almost-periodicity for a transformation (as opposed to a single
orbit) and shows that the restriction of S to his minimal sets does not have
this property. However, he then defines a notion of local almost-periodicity,
and shows that his minimal sets do have this property. Finally, he defines a
minimal set to be powerfully minimal (13) if it is minimal under all non-zero
iterates of the discrete dynamical system, and proves that his minimal set
has this property.

While the focus in this paper is on a specific class of minimal sets (the
“Sturmian” ones), Hedlund’s letter suggests that these are now a case study
for a more general, abstract study of minimal sets and dynamical properties
of the discrete dynamical system defined by S on the space of symbolic
elements, and thus open the door to the branch of topological dynamics we
now call “symbolic dynamics”.

(12) Hedlund here works with translation on the real line, but his coding depends only
on the mod 1 positions of points.

(13) Now called totally minimal.
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[Jul18] G. Julia, Mémoire sur l’itération des fonctions rationnelles, ibid. 4 (1918),

47–245.
[vK35] E. R. van Kampen, The topological transformations of a simple closed curve

into itself, Amer. J. Math. 57 (1935), 142–152.
[KU07] S. Katok and I. Ugarcovici, Symbolic dynamics for the modular surface and

beyond, Bull. Amer. Math. Soc. 44 (2007), 87–132.
[Kit98] B. P. Kitchens, Symbolic Dynamics: One-Sided, Two-Sided and Countable

State Markov Shifts, Springer, 1998.
[Koe31] P. Koebe, Riemannsche Mannigfaltigkeiten und nichteuklidische Raumforme,

Stizungsber. Preuss. Akad. Wiss. 1927, 345–442; 1928, 414–457; 1929, 304–364,
1930, 505–541; 1931, 506–534.

[LM95] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding,
Cambridge Univ. Press, 1995.

[Mor21a] M. Morse, A one-to-one representation of geodesics on a surface of negative

curvature, Amer. J. Math. 43 (1921), 33–51; reprinted in [Mor81, pp. 1–20].
[Mor21b] —, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math.

Soc. 22 (1921), 84–100; reprinted in [Mor81, pp. 21–38].
[Mor24] —, A fundamental class of geodesics on any closed surface of genus greater

than one, Trans. Amer. Math. Soc. 26 (1924), 25–60.
[Mor81] —, Selected Papers, Springer, 1981, ed. by R. Bott.
[MH38] M. Morse and G. Hedlund, Symbolic dynamics, Amer. J. Math. 60 (1938),

815–866; reprinted in [Mor81, pp. 443–494].
[MH40] —, Symbolic dynamics II. Sturmian trajectories, ibid. 62 (1940), 1–42.
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