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WHICH BERNOULLI MEASURES ARE GOOD MEASURES?
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Abstract. For measures on a Cantor space, the demand that the measure be “good”
is a useful homogeneity condition. We examine the question of when a Bernoulli measure
on the sequence space for an alphabet of size n is good. Complete answers are given for
the n = 2 cases and the rational cases. Partial results are obtained for the general cases.

1. Introduction. Cantor space, unique up to homeomorphism, is a
perfect, zero-dimensional, compact metrizable space. On a Cantor space,
X, we consider full, nonatomic, Borel probability measures µ. For example,
if p = (p1, . . . , pN ) is a positive probability vector on a finite set A of car-
dinality N > 1 and I is a countable index set then the Bernoulli measure

associated with p is such a measure. This Bernoulli measure, denoted β(p), is
the product measure on X = AI having independent, identically distributed
coordinate projections with distribution given by p on each factor.

Ultimately, one would like to classify these measures, up to homeomor-
phism. Some of these can be distinguished by the invariant S(µ), the clopen

values set for µ, which is the set of values µ(U) obtained as U varies over
the clopen subsets of X. The set S(µ) is always countable and dense in the
unit interval I = [0, 1] with 0, 1 ∈ S(µ). A subset D ⊂ I with 1 ∈ D is called
grouplike when D = I ∩ G with G an additive subgroup of the reals, R. In
that case, G = D + Z. Furthermore, D is called ringlike or fieldlike if D + Z

is a subring or a subfield, respectively, of R.
We call µ a good measure when for every pair of clopen subsets U, V of X

with µ(V ) ≤ µ(U) there exists a clopen subset V1 of U such that µ(V ) =
µ(V1). The label “good” for this mild-appearing homogeneity property was
introduced in Akin (2005). In fact, good measures have a number of strong
properties:

• The automorphism group H(X, µ) of a good measure µ acts transi-
tively on X. That is, given two points x1, x2 ∈ X there exists h ∈
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H(X, µ) such that h(x1) = x2. Furthermore, if U1, U2 are clopen sub-
sets of X with µ(U1) = µ(U2) then there exists h ∈ H(X, µ) such that
h(U1) = U2.

• For a good measure µ there exists h ∈ H(X, µ) such that the dynami-
cal system on X obtained by iterating h is a uniquely ergodic, minimal
system. Conversely, for any uniquely ergodic minimal homeomorphism
on a Cantor space the invariant measure is good (Glasner and Weiss,
1995).

• If µ is good then the clopen values set S(µ) is group-like. Conversely,
for every countable, dense group-like subset D of [0, 1] there is a good
measure µ on a Cantor space such that S(µ) = D. Furthermore, µ is
unique up to homeomorphism. In particular, the clopen values set is
a complete homeomorphism invariant for good measures.

Thus the good measures are exactly the measures which arise from min-
imal, uniquely ergodic systems on a Cantor space, the so-called Jewett–
Krieger measures. So the natural examples come from adding machine sys-
tems, also called odometers, and from lifts of irrational rotations on the
circle. For this reason Bernoulli measures, associated with the (far from
minimal) shift maps, were not seriously considered in Akin (2005).

Much earlier Oxtoby and his students had been examining the homeo-
morphism relation among Bernoulli measures: see, for example, Navarro-Ber-
múdez (1979) and Navarro-Bermúdez and Oxtoby (1988). This line of work
was continued by Mauldin (1990), and eventually by Dougherty et al. (2007)
where the question of our title arose. One crucial observation was that for a
Bernoullimeasureµ = β(p) the clopenvalues set is closedundermultiplication
and so S(µ) is ringlike if it is grouplike. Furthermore, the ring generated by
S(µ) is exactly Z[p1, . . . , pN ]. From this we obtain our major result:

Theorem 1.1. Let p be a positive probability vector on a finite set A. For

the associated Bernoulli measure β(p) on X = AN the following conditions

are equivalent :

(a) β(p) is a good measure on X.

(b) The clopen values set S(β(p)) is grouplike and p1, . . . , pN are units

of the ring Z[p1, . . . , pN ].
(c) The clopen values set S(β(p)) is grouplike and there exists a polyno-

mial P in N variables with integer coefficients such that

1 = p1 · . . . · pN · P (p1, . . . , pN ).

(d) The clopen values set S(β(p)) is grouplike and the automorphism

group H(X, β(p)) acts minimally on X.

(e) There exists a homeomorphism h on X such that β(p) is the unique

invariant measure for h.
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As this result suggests, the major difficulty in recognizing a good measure
is detecting whether or not the clopen values set is grouplike. The units
condition of (b) is usually easy to check, but there are many simple looking
examples where we cannot tell whether the set is grouplike and so do not
know whether the measure is good.

In the two-letter alphabet case the situation is completely understood
thanks to Dougherty et al. (2007) and Yingst’s thesis, Yingst (2008).

By Theorem 1.1 we need only consider the case where p1 = r is algebraic.
For r ∈ (0, 1) algebraic we call R(t) a minimal polynomial for r if R is a
polynomial of minimum degree among those with integer coefficients having
r as a root and if, in addition, the greatest common divisor of the coefficients
is 1. Thus, R(t) is uniquely defined up to multiplication by ±1.

Theorem 1.2. For r ∈ (0, 1) algebraic, let R(t) be a minimal polynomial

for r. Let µ = β(r, 1 − r) be the associated Bernoulli measure on X = 2N.

(a) The following conditions are equivalent :

(i) r and 1 − r are units in the polynomial ring Z[r].
(ii) 1/(r(1 − r)) is an algebraic integer.

(iii) The automorphism group H(X, µ) acts minimally on X.

(iv) The automorphism group H(X, µ) acts transitively on X.

(v) R(0), R(1) ∈ {−1, +1}.
(b) β(r, 1 − r) is a good measure iff R(0), R(1) ∈ {−1, +1} and r is the

unique root of R(t) in (0, 1).
(c) S(β(r, 1− r)) is grouplike iff R(0), R(1) ∈ {−2,−1, +1, +2} and r is

the unique root of R(t) in (0, 1).

In particular, when r is rational, β(r, 1− r) is good only for r = 1/2 and
S(β(r, 1−r)) is grouplike only for r = 1/2, 1/3 and 2/3. Thus, S(β(1/3, 2/3))
is grouplike but β(1/3, 2/3) is not good.

There exist examples which satisfy the conditions of (a) but not (b).
One is described after Corollary 6.9 below. These provide the first examples
that we know about of a minimal group action on a Cantor space with an
invariant measure which is not good.

2. Good measures and their clopen values sets. The spaces X
which we will consider are compact and metrizable, or equivalently, compact,
second countable, Hausdorff spaces. Since every clopen (= closed and open)
set is a finite union of basic open sets, such a space contains only countably
many distinct clopen sets. The space is zero-dimensional when the clopen
sets form a basis. A nonempty, perfect zero-dimensional space is called a
Cantor space and any two such are homeomorphic.
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A measure is full when every nonempty open subset has positive mea-
sure. For a full measure any isolated point is an atom. A measure has only

isolated atoms if any atom of the measure is an isolated point of the space.
In particular, if the space is perfect then such a measure is nonatomic. From
now on we assume that all of our measures are full Borel probability mea-
sures with only isolated atoms. The two cases we will use most are the full,
nonatomic measures on a Cantor space and the measures on a finite set with
each point given positive mass.

If f : X1 → X2 is a continuous map and µ1 is a measure on X1 then
f∗µ1 denotes the induced measure on X2 given by

(2.1) f∗µ1(B) := µ1(f
−1(B)).

With µ2 = f∗µ1 we say that f maps µ1 to µ2. We say that µ1 maps to µ2

if such a continuous map f exists. Since the measures are full, such a map
f is necessarily surjective. If f can be chosen to be a homeomorphism then
we say that µ1 is homeomorphic to µ2, written µ1 ≈ µ2. Of course, then f−1

maps µ2 to µ1. In general, we write µ1 ∼ µ2 if µ1 maps to µ2 and µ2 maps
to µ1. As we will see, this equivalence need not imply that the two measures
are homeomorphic.

We denote by H(X, µ) the automorphism group of the measure µ, i.e.
f ∈ H(X, µ) iff f is a homeomorphism on X with f∗µ = µ.

For a measure µ on X we define the clopen values set S(µ) to be the set
of values on the clopen subsets.

(2.2) S(µ) := {µ(U) : U ⊂ X with U clopen}.
This is always a countable subset of the unit interval and at least 0, 1 ∈ S(µ).
Of course, if X is connected these are the only clopen values, but for any
Cantor space measure (that is, full, nonatomic measure) the clopen values
set is a countable dense subset of the interval.

Since the continuous preimage of a clopen set is clopen,

(2.3) µ1 maps to µ2 ⇒ S(µ2) ⊂ S(µ1).

In particular, we have three progressively weaker equivalence relations be-
tween measures on X:

(2.4) µ1 ≈ µ2 ⇒ µ1 ∼ µ2 ⇒ S(µ1) = S(µ2).

In Mauldin (1990) it is observed that for Bernoulli measures on two
symbols, the last two statements are equivalent. This is not generally the
case, however, even for Bernoulli measures. For example, we will see that
β(1/3, 2/3) and β(1/3, 1/3, 1/3) satisfy the last statement, but not the sec-
ond (see Proposition 5.8 below).

Let D be a subset of the unit interval which contains 1. We say that D
is symmetric if α ∈ D implies 1 − α ∈ D. We say that D is multiplicative if
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it is closed under multiplication. A number δ ∈ [0, 1] is called a divisor of
D if for all α ∈ [0, 1],

(2.5) α ∈ D ⇔ α · δ ∈ D.

The set of all divisors of D is denoted Div(D).
D is called grouplike if it is the unit interval portion of a subgroup of the

reals, i.e. there exists an additive subgroup G of R such that D = G∩ [0, 1].
If G is a subring of the reals then D is called ringlike and if G is a subfield
then D is called fieldlike. As usual, we will write

(2.6) D + Z := {α + n : α ∈ D, n ∈ Z}.
Proposition 2.1. Let D be a countable subset of the unit interval with

0, 1 ∈ D.

(a) 1 ∈ Div(D), 0 6∈ Div(D) and Div(D) is a multiplicative subset of D.

If D itself is multiplicative then for δ1, δ2 ∈ D,

(2.7) δ1, δ2 ∈ Div(D) ⇔ δ1 · δ2 ∈ Div(D).

(b) The following conditions are equivalent :

(1) D is grouplike.

(2) D + Z is a subgroup of R.

(3) D is symmetric and satisfies

(2.8) α, β ∈ D and α + β ≤ 1 ⇒ α + β ∈ D.

(c) The following conditions are equivalent :

(1) D is ringlike.

(2) D + Z is a subring of R.

(3) D is grouplike and multiplicative.

(d) If D is ringlike and δ ∈ [0, 1] then δ ∈ Div(D) iff δ is a unit of the

ring D + Z, i.e. iff the reciprocal 1/δ ∈ D + Z.

(e) The following conditions are equivalent :

(1) D is fieldlike.

(2) D + Z is a subfield of R.

(3) D is grouplike, D ∩ (0, 1) 6= ∅ and Div(D) = D \ {0}.
Proof. (a) Since 1 ∈ D, δ ∈ Div(D) implies that δ = 1 · δ ∈ D. Hence,

Div(D) ⊂ D. Further, D 6= [0, 1], so there is α ∈ [0, 1] \D, but 0 · α ∈ D, so
0 6∈ Div(D).

If δ1, δ2 ∈ Div(D) then for α ∈ [0, 1],

(2.9) α ∈ D ⇔ αδ1 ∈ D ⇔ αδ1δ2 ∈ D,

and so δ1δ2 ∈ Div(D).
Now assume that D is multiplicative and that δ1, δ2 ∈ D with δ1δ2 ∈

Div(D). If α ∈ D then αδ1 ∈ D because D is multiplicative. If αδ1 ∈ D then
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because D is multiplicative, αδ1δ2 ∈ D, which implies α ∈ D since δ1δ2 is a
divisor. Thus, δ1 is in Div(D) and similarly δ2 is.

In each of (b), (c) and (e), (2)⇒(1) and (1)⇒(3) are obvious.

Now assume (b3). If β > α in D then

(2.10) β − α = 1 − ((1 − β) + α)

lies in D by (b3). For n1, n2 ∈ Z the equations

(n1 + α1) − (n2 + α2) = (n1 − n2) + (α1 − α2)(2.11)

= (n1 − n2 − 1) + (α1 + (1 − α2))

imply that D + Z is closed under subtraction and so it is a group. Thus,
(b3) implies (b2). It is easy to check that (c3) implies D + Z is closed under
multiplication, i.e. (c2).

(d) If δ ∈ [0, 1] is a unit of the ring, and αδ ∈ D for some α ∈ [0, 1], then
α = (αδ) · (1/δ) is in the intersection of the ring with [0, 1] and so α ∈ D.
Thus, δ is a divisor of D.

Conversely, if δ ∈ Div(D), then write 1/δ = n + α with α ∈ [0, 1). To
show that δ is a unit it suffices to show that α ∈ D. But αδ = 1− nδ. Since
D is grouplike, 1 − nδ ∈ D. Since δ is a divisor, α ∈ D.

(e) Assume (e3). Since Div(D) = D \ {0} is multiplicative, D is multi-
plicative and so D +Z is at least a ring. It suffices to show that any positive
element g of the ring is a unit. Choose δ ∈ D ∩ (0, 1). For some power n
the product g · δn lies in (0, 1) and so it is in D. Since it and δ are units by
assumption it follows that g is a unit.

If U is a clopen, nonempty subset of X then from a measure µ on X we
define the relative measure µU on U by

(2.12) µU (A) := µ(A)/µ(U) for A ⊂ U.

Since a clopen subset of U is a clopen subset of X we clearly have

(2.13) µ(U) · S(µU ) ⊂ S(µ) ∩ [0, µ(U)].

The question of equality here turns out to be an important issue. Fol-
lowing Akin (2005) we define a measure on a Cantor space X to be good

when equality holds for every clopen, nonempty subset of X. That is,

Definition 2.2. A full, nonatomic measure µ on a Cantor space X is
called good if for clopen subsets U, V of X, µ(V ) ≤ µ(U) implies there exists
a clopen subset V1 of U such that µ(V ) = µ(V1).

This appears to be a rather mild homogeneity condition, but in fact it
has very strong consequences. On the other hand, there are many distinct
examples. The following collects the key results from Akin (2005) concerning
such measures.
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Theorem 2.3. Let µ be a good measure on a Cantor space X. Denote

by H(X, µ) the group of µ-invariant homeomorphisms, i.e. those which map

µ to µ.

(a) The group H(X, µ) acts transitively on X. That is, given two points

x1, x2 ∈ X there exists h ∈ H(X, µ) such that h(x1) = x2. Further-

more, if U1, U2 are clopen subsets of X with µ(U1) = µ(U2) then

there exists h ∈ H(X, µ) such that h(U1) = U2.

(b) If U is a nonempty clopen subset of X then µU is a good measure

on U with

(2.14) S(µU ) = (1/µ(U)) · (S(µ) ∩ [0, µ(U)]).

(c) There exists h ∈ H(X, µ) such that the dynamical system on X
obtained by iterating h is a uniquely ergodic, minimal system. Con-

versely , for any uniquely ergodic minimal homeomorphism on a Can-

tor space the invariant measure is good.

(d) The clopen values set S(µ) is grouplike. Conversely, for every count-

able, dense grouplike subset D of [0, 1] which contains 0 and 1 there

is a good measure µ on a Cantor space such that S(µ) = D and µ
is unique up to homeomorphism. That is, the clopen values set is a

complete homeomorphism invariant for good measures.

Proof. (a) These results are contained in Proposition 2.11(a) and Corol-
lary 2.12 of Akin (2005).

(b) Use Proposition 2.4 of Akin (2005).

(c) See Theorem 4.6 of Akin (2005). In Section 4 of that paper the
uniquely ergodic automorphisms are explicitly constructed. For the converse,
Lemma 2.5 of Glasner and Weiss (1995) implies that the invariant measure
of a uniquely ergodic minimal system on a Cantor space is good.

(d) By Proposition 2.4 of Akin (2005) the set S(µ) is grouplike when
µ is good and Theorem 2.9(a) there says that the clopen values set is a
complete invariant for good measures. That every grouplike subset occurs
as the clopen values subset for some good measure follows from Theorems
2.6 and 1.7(c) of Akin (2005).

We provide one immediate example.

Proposition 2.4. If µ is Haar measure for some topological group

structure on a Cantor space X then µ is a good measure on X.

Proof. Recall the quick proof that the identity element of X is the inter-
section of a decreasing sequence of clopen subgroups. Since X is a Cantor
space we can choose an ultrametric d on X, that is, a metric such that
d(x, z) ≤ max(d(x, y), d(y, z)) for all x, y, z ∈ X.
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Because X is compact, multiplication is uniformly continuous. Hence,
supz∈X d(zx, zy) defines an ultrametric on X which is equivalent to d. Thus,
we can assume that d is invariant under left translation. Then the ε-balls
centered at the identity are the required clopen subgroups.

For each clopen subgroup G the projection of X to the finite space X/G
maps µ to the uniform counting measure, normalized to unity, on the cosets.
Since X is the inverse limit of these coset spaces, we can choose for any pair
U, V of clopen sets a single clopen subgroup G so that each is a union of
cosets of G. To say that µ(V ) ≤ µ(U) means that the number of cosets
in U (namely µ(U)/µ(G)) is at least as large as the number of cosets in V .
Choose V1 to be a union of µ(V )/µ(G) cosets among those in U .

Remark. The measure of any coset of G is the reciprocal of the index
of G. It easily follows that for Haar measure the clopen values set is contained
in the field of rationals Q. Conversely, Theorem 2.16 of Akin (2005) says that
any good measure with clopen values set contained in Q is homeomorphic to
Haar measure for some monothetic—and hence abelian—topological group
structure on Cantor space.

For the next result of this section we change the focus of the notion of
goodness from the measure to individual clopen sets.

Definition 2.5. Let µ be a full, nonatomic measure on a Cantor
space X. A clopen subset U of X is called good for µ (or just good when the
measure is understood) if for every clopen subset V of X with µ(V ) ≤ µ(U)
there exists a clopen subset V1 of U such that µ(V ) = µ(V1). Equivalently,
U is good iff it satisfies the equation

(2.15) µ(U) · S(µU ) = S(µ) ∩ [0, µ(U)].

The empty set and the entire space are always good. It can happen that
these are the only good subsets. (See the examples in Akin (1999).)

The measure µ is good exactly when every clopen subset is good for µ.
However, it suffices to find a sufficiently rich collection of clopen sets which
are good for µ.

Recall that a partition of a clopen set U is a (necessarily finite) pairwise
disjoint collection of clopen sets with union U .

Definition 2.6. A partition basis B for a zero-dimensional space X is
a collection of clopen subsets of X such that every nonempty clopen subset
of X can be partitioned by elements of B.

It is easy to see that a partition basis is a basis for the topology but not
every basis is a partition basis. For example, suppose that µ is a good mea-
sure such that S(µ) contains some transcendental α, and all positive powers
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of α. Then the collection of clopens with measure a positive power of α is a
basis for the topology but cannot be used to partition the entire space.

Theorem 2.7. In order that a full , nonatomic measure µ on a Cantor

space X be good , it suffices that there exist a partition basis B consisting of

clopen sets which are good for µ.

Proof. Given two clopen sets U, V with µ(V ) ≤ µ(U), we have to con-
struct a clopen subset W of U with µ(W ) = µ(V ). If µ(V ) = µ(U) (or = 0)
then W can be, in fact, must be, U itself (resp. the empty set). Now assume
that 0 < µ(V ) < µ(U).

Let {B1, . . . , Bk} be a partition of U into good clopen (nonempty) sets.
Note that if k = 1, then U is good and we are done, so let us assume that
k > 1.

Our strategy will be to find a partition {V1, . . . , Vk} of V so that µ(Vi) <
µ(Bi).

Let mi = µ(Bi)µ(V )/µ(U) for 1 ≤ i ≤ k. Note that 0 < mi < µ(Bi) for

each i, and
∑k

i=1 mi = µ(V ). Choose ε > 0 so that

(2.16) kε < µ(Bk) − mk.

Since S(µV ) is dense in the unit interval, we can find a clopen set V1 ⊂ V

such that µ(V1) = p1 satisfies m1−ε < p1 < m1. Note that m2 ≤ ∑k
i=2 mi =

µ(V ) − m1 < µ(V ) − p1 = µ(V \ V1). As above, we can find a clopen set
V2 ⊂ V \ V1 whose measure p2 satisfies m2 − ε < p2 < m2. We continue in
this way, choosing Vi for i = 1, . . . , k − 1.

Conclude by letting Vk = V \⋃k−1
i=1 Vi, and pk = µ(Vk) = µ(V )−∑k−1

i=1 pi

so that

mk = µ(V ) −
k−1∑

i=1

mi < pk(2.17)

< µ(V ) −
k−1∑

i=1

mi + (k − 1)ε < mk + kε < µ(Bk).

Thus, we have µ(Vi) = pi < µ(Bi) for i = 1, . . . , k. Since each Bi is good,
we can choose a clopen set Wi ⊂ Bi with µ(Wi) = µ(Vi) for i = 1, . . . , k.

Their union W =
⋃k

i=1 Wi is the required clopen subset of U with µ(W ) =
µ(V ).

Hence, the measure is good.

Remark. The above proof actually shows that if a clopen set can be
partitioned by good clopens then it is itself good.
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Theorem 2.8. If µ is a good measure on X and ν is a good measure

on Y , then the product µ × ν is a good measure on X × Y and

(2.18) S(µ × ν)

=
{∑

i

αi · βi : αi ∈ S(µ), βi ∈ S(ν) with the sum at most 1
}
.

Proof. If U ⊂ X and V ⊂ Y are clopens then U ×V ⊂ X×Y is a clopen
set, which we will call a rectangular clopen subset of X × Y . Notice that

(2.19) (U1 × V1) \ (U2 × V2) = ((U1 \ U2) × V1) ∪ ((U1 ∩ U2) × (V1 \ V2)).

It easily follows that any union of rectangular clopens can be expressed as
a disjoint union of rectangular clopens. Hence, the rectangular clopens form
a partition basis for X × Y . By Theorem 2.7, it suffices to show that an
arbitrary nonempty rectangular clopen U × V is good for µ × ν.

Given α1, . . . , αk ∈ S(µ), β1, . . . , βk ∈ S(ν) with
∑

i αi ·βi < µ(U) ·ν(V ),
we can use density of S(µ) in the unit interval to choose γi ∈ S(µ), i =
1, . . . , k, so that αi · βi < γi · ν(V ) for all i and, in addition,

∑
i γi < µ(U).

Because the measure µ is good, we can inductively choose clopens U1 ⊂ U ,
U2 ⊂ U \ U1, . . . , Uk ⊂ U \ (U1 ∪ · · · ∪ Uk−1) so that µ(Ui) = γi. It then
suffices to find a clopen subset of Ui × V with product measure equal to
αi · βi.

Thus, we are reduced to considering a pair of nonempty rectangular
clopens U × V and R × S with µ(R) · ν(S) < µ(U) · ν(V ). We have to find
a clopen subset of U × V with measure µ(R) · ν(S). We will call the latter
value the donor measure. Let ε be the difference µ(U)ν(V )−µ(R)ν(S). We
will call ε the gap for this problem. If ε > µ(R)ν(S) then we will say that
the problem has a big gap.

Case I: µ(R) ≤ µ(U) and ν(S) ≤ ν(V ). This is the easy case. Since
the measures are both good, we can choose clopens U1 ⊂ U , V1 ⊂ V with
µ(R) = µ(U1), ν(S) = ν(V1) and U1 × V1 is the required clopen subset of
U × V .

Case II: µ(R) > µ(U). Divide to obtain the integer k ≥ 1 and remainder
0 ≤ r1 < µ(U) so that µ(R) = k · µ(U) + r1. Notice that

(2.20) r1 <
1

2
µ(R).

Next observe that, if ν(V ) ≤ k · ν(S), then kµ(U) ≤ µ(R) would imply
kµ(U)ν(V ) ≤ kµ(R)ν(S). Dividing by k we obtain a contradiction. Hence,

(2.21) k · ν(S) < ν(V ).

Furthermore, if ν(V ) ≤ (k + 1) · ν(S) then we obtain

kµ(U)ν(V ) ≤ (k + 1)µ(R)ν(S) and so k · ε ≤ µ(R)ν(S).
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Hence,

(2.22) big gap ⇒ (k + 1) · ν(S) < ν(V ).

Because the measures are good, we can choose disjoint clopens U1, . . . , Uk

⊂ R with µ(U1) = · · · = µ(Uk) = µ(U) and S1, . . . , Sk ⊂ V with ν(S1) =
· · · = ν(Sk) = ν(S). Define

(2.23) R1 := R \ (U1 ∪ · · · ∪ Uk), V1 := V \ (S1 ∪ · · · ∪ Sk).

Observe that

(2.24) µ(R1) = r1 < min

(
µ(U),

1

2
µ(R)

)
.

R×S is partitioned by R1×S, U1×S, . . . , Uk×S while U×V is partitioned
by U ×V1, U ×S1, . . . , U ×Sk. Furthermore, µ(Ui)ν(S) = µ(U)ν(Si) for i =
1, . . . , k. Thus, we have replaced the original problem by the transformation
(R, S, U, V ) 7→ (R1, S, U, V1). It is important to note that the gap ε remains
unchanged and in the transformed problem the measure of the donor is less
than half of what it was in the original problem. Notice that µ(R1) < µ(U).
If ν(S) ≤ ν(V1) then the transformed problem is in Case I. In particular, this
is true if the gap is big by (2.22), since ν(V1) = ν(V ) − k · ν(S). Otherwise,
we are in Case II with R and S exchanged.

We continue performing the Case II transformations. At each stage the
donor measure is reduced to less than half its previous value while the gap
remains unchanged. Eventually the gap is big and we move into Case I to
complete the proof.

Finally, S(µ) is contained in the set of finite sums given in (2.18) because
the rectangular clopens form a partition basis. Because the product measure
is good, the clopen values set is grouplike and so the reverse inclusion holds
as well.

Corollary 2.9. The product of a finite or infinite sequence of good

measures is a good measure.

Proof. The result for finite products follows from Theorem 2.8 by in-
duction on the number of factors. The infinite product result is reduced to
the finite case by using the observation that for any clopen subset in the
product only finitely many coordinates are restricted.

A useful weakening of the notion of a good measure was introduced by
Dougherty et al. (2007).

Definition 2.10. Let µ be a full, nonatomic measure on a Cantor space
X. A clopen U ⊂ X is called refinable for µ (or just refinable when the
measure is understood) if, whenever

(2.25) α1, . . . , αk ∈ S(µ) with α1 + · · · + αk = µ(U),
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there exists a clopen partition {U1, . . . , Uk} of U with µ(Ui) = αi for i =
1, . . . , k. The measure µ is called refinable if every clopen subset is refinable,
and µ is called weakly refinable if there exists a partition basis B for X with
X ∈ B consisting of refinable clopen subsets.

Although the weakening from good to refinable is very mild, we will
eventually see that refinability does not imply goodness. (For example, see
Theorem 6.4.)

Observe that if B is a partition basis for X then to show that the elements
of B are refinable it suffices to check that there exists a partition for those
lists of numbers which satisfy (2.25) where all the αi’s are measures of
members of B, since any list of numbers not having this additional property
can be refined into one which does.

Proposition 2.11. Let µ be a measure on a Cantor space X.

(a) If S(µ) is grouplike and a clopen U ⊂ X is refinable then U is good.

(b) If the measure µ is good then every clopen subset of X is refinable.

(c) Let U, V ⊂ X be nonempty clopens with V ⊂ U . If V is refinable (or
good) for µ then V is refinable (resp. good) for µU .

Proof. (a) Let V be a clopen subset of X with µ(V ) < µ(U). Because
S(µ) is grouplike, α2 = µ(U) − µ(V ) as well as α1 = µ(V ) are elements
of S(µ). Because U is refinable, there exists a partition {U1, U2} of U with
µ(U1) = µ(V ). Hence, the clopen U is good.

(b) We check the refinability condition by induction on the number k of
terms in (2.25). The condition holds trivially for k = 1. For any clopen U
let α1, . . . , αk satisfy (2.25). Because the measure is good, S(µ) is grouplike
and so αk−1 + αk ∈ S(µ). By inductive hypothesis, there is a partition

{U1, . . . , Uk−2, Ũ} of U with µ(Ui) = αi for i = 1, . . . , k − 2 and µ(Ũ) =

αk−1 + αk. Because the measure is good, there exists a clopen Uk−1 ⊂ Ũ

with µ(Uk−1) = αk−1. Let Uk = Ũ \ Uk−1 to define the required partition
of U .

(c) Let α = µ(U). If β1, . . . , βk ∈ S(µU ) with sum µU (V ) then β1 · α,
. . . , βk · α ∈ S(µ) with sum µ(V ). Since V is refinable for µ there exists a
partition {V1, . . . , Vk} of V such that µ(Vi) = βi · α and so µU (Vi) = βi for
i = 1, . . . , k.

Similarly, if β ∈ S(µU ) with β < µU (V ) then β · α ∈ S(µ) is less than
µ(V ). If V is good for µ then there exists a clopen V1 ⊂ V with µ(V1) = β ·α
and so µU (V1) = β.

Corollary 2.12. For a measure µ on a Cantor space X the following

are equivalent :

(a) µ is a good measure.
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(b) µ is refinable and S(µ) is grouplike.

(c) µ is weakly refinable and S(µ) is grouplike.

Proof. (a)⇒(b). If µ is good then S(µ) is grouplike and by Proposition
2.11(b) every clopen subset is refinable. Hence, µ is refinable.

(b)⇒(c). Obvious.

(c)⇒(a). If µ is weakly refinable then it admits a partition basis B of
refinable clopen sets. If, in addition, S(µ) is grouplike then by Proposi-
tion 2.11(a) all of the sets in B are good. Since B is a partition basis of good
sets, Theorem 2.7 implies that the measure is good.

Corollary 2.13. Let µ be a measure on a Cantor space X and U be a

nonempty clopen subset of X.

(a) If µ is weakly refinable and U is a refinable subset for µ then µU is

weakly refinable.

(b) If µ is refinable then µU is refinable.

Proof. (a) If B is a partition basis for X of µ-refinable clopens with
X ∈ B then BU := {U} ∪ {V ∈ B : V ⊂ U} is a partition basis for U
consisting of sets which are µU -refinable by Proposition 2.11(c).

(b) Apply the proof of (a) with B the set of all clopen subsets of X.

In general, we do not know whether weak refinability and refinability are
distinct properties.

S(µ) is not a complete invariant for the homeomorphism equivalence of
measures (Proposition 5.8 will show S(β(1/3)) = S(β(1/3, 2/3)), while The-
orem 1.1 verifies that β(1/3, 2/3) is not good) but it is a complete invariant
among good measures. This result extends to weakly refinable measures.
Theorem 9 of Dougherty et al. (2007) is stated for Bernoulli measures but,
as they point out, the same proof, extended a bit below, yields the result
for weak refinabile measures in general.

Theorem 2.14. Let µ and ν be weakly refinable measures on Cantor

spaces X and Y . If S(µ) = S(ν) then µ is homeomorphic to ν. In fact ,
if X = {X1, . . . , XM} and Y = {Y1, . . . , YM} are partitions of X and Y
respectively with Y1, . . . , YM refinable and such that

(2.26) µ(Xi) = ν(Yi) for i = 1, . . . , M,

then there exists a homeomorphism h : X → Y with h∗(µ) = ν and such

that h(Xi) = Yi for i = 1, . . . , M .

Proof. Since there are only countably many clopen sets, we can index
those of X as {C0, C1, . . .} and those of Y as {D0, D1, . . .}.

The proof is a back and forth construction beginning with the partitions
X0 = X and Y0 = Y, and with ̺0 the bijection from X to Y which sends Xi
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to Yi. When no such partitions are specified we use X0 ={X}, Y0 ={Y }, and
̺0 : X 7→Y . Notice that Y is refinable, by the definition of weak refinability.

Suppose that we have defined partitions X2k and Y2k of X and Y re-
spectively, so that elements of Y2k are refinable. Suppose also that we have
defined a bijection ̺2k : X2k → Y2k so that

ν(̺2k(A)) = µ(A) for all A ∈ X2k.

Let

X̂2k = {A ∩ Ck : A ∈ X2k} ∪ {A − Ck : A ∈ X2k}.
Now let X2k+1 be a refinement of X̂2k into refinable sets, removing the empty
set if it appears. (This is possible since X is weakly refinable.)

Fix some B ∈ Y2k. Those elements of X2k+1 which are subsets of ̺−1
2k (B)

form a partition of ̺−1
2k (B). Denote this partition of ̺−1

2k (B) as {A1, . . . , An}.
Observe that µ(A1), . . . , µ(An) is a list of µ-clopen values (and hence ν-
clopen values) which sums to µ(̺−1

2k (B)) = ν(B). Since B is refinable, we
can partition B into clopen sets {B1, . . . , Bn} so that ν(Bi) = µ(Ai) for
i = 1, . . . , n. Let Y2k+1 include {B1, . . . , Bn}, and let ̺2k+1 map Ai to Bi

for i = 1, . . . , n. After doing this for each B in Y2k, we obtain Y2k+1, a
refinement of Y2k, and a bijection ̺2k+1 from X2k+1 to Y2k+1 so that

ν(̺2k+1(A)) = µ(A) for all A ∈ X2k+1.

Further, we find that every element of X2k+1 is refinable. Finally, ̺2k+1 is a
refinement of ̺2k in the obvious sense.

We are now in the same situation as before, with the roles of X and Y
reversed. We may therefore repeat the above construction to define X2k+2,
Y2k+2, and ̺2k+2, by first refining the Y side using the set Dk, then refining
into refinable sets, and finally using refinability of the sets on the X side to
produce a corresponding refinement on the X side.

We have now defined Xk, Yk, and ̺k for all k ≥ 0. For each x ∈ X,
and for each k ≥ 0, there is a unique Ak ∈ Xk so that x ∈ Ak, since Xk is
a partition of X. By construction, the sequence {Ak}k≥0 will be a nested
sequence of clopen sets. Define a map ̺ from X to Y by letting ̺(x) be an
element of

⋂∞
k=0 ̺k(Ak), another nested sequence. This element is unique

since the sets in Y2k+2 separate points in Dk from points not in Dk, and
every clopen set is one of these Dk’s. It is similarly easy to verify that this
map ̺ is a homeomorphism. Since ̺ preserves measure on a partition basis
(namely

⋃
k Xk) it must preserve the measure of every clopen set, and hence

every measurable set.

Remark. In his exposition of good measures, Glasner (2002) proved
essentially the same theorem. His Proposition 1.4 proves the result for good
measures by introducing the property of refinability without naming it.
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Corollary 2.15. Let µ be a refinable measure on a Cantor space X. If

U and V are clopen subsets of X with µ(U) = µ(V ) then there exists h ∈
H(X, µ) such that h(U) = V . In particular , µU and µV are homeomorphic

measures, and so S(µU ) = S(µV ).

Proof. Let X = {U, X \U} and Y = {V, X \ V }. By Theorem 2.14 there
exists an automorphism of (X, µ) which maps U to V . The restriction of h
defines a homeomorphism from µU to µV . Finally, homeomorphic measures
have the same clopen values sets.

3. Bernoulli type measures. The class of zero-dimensional, nonempty,
compact metrizable spaces is closed under countable products. If any one
factor is perfect or if there are infinitely many factors each with at least two
points then the product is perfect and so it is a Cantor space. The case of
products of infinite alphabets was considered by Oxtoby (1970), who showed
that any two full nonatomic probability measures on NN are homeomorphic.
We therefore restrict our attention to the finite alphabet case.

Given a finite set A = {a1, . . . , aN} with |A| = N ≥ 2, we regard A as
an alphabet with N letters and for k = 1, 2, . . . we regard the elements of
the product Ak as words of length k.

To describe a measure on A we use the probability vector p : A → (0, 1)
which lists the measures of the individual points. That is,

(3.1)
N∑

i=1

pi = 1 with pi > 0 for i = 1, . . . , N,

where we write pi for p(ai) when the alphabet A is understood.
With N = {0, 1, . . .} we call the associated product measure on the Can-

tor space AN the Bernoulli measure associated with p and denote it by β(p),
or β(p1, . . . , pN ) when it is convenient to simply list the values of p. We de-
note by β(1/N) the Bernoulli measure on AN with pi = 1/N for i = 1, . . . , N .
This is the Haar measure obtained by regarding AN as either the product of
cyclic groups of order N or the additive group of the ring of N -adic integers.

If measures on finite sets A and B are defined by probability vectors p
and q, respectively, then the product measure on A × B is defined by the
probability vector p × q : A × B → (0, 1) with

(3.2) (p × q)(a, b) := p(a) · q(b) for (a, b) ∈ A × B.

The k-fold product pk : Ak → (0, 1) defines the marginal distribution for
β(p) on the words of length k with respect to the projection π : AN → Ak.

We regard the obvious homeomorphism from AN × BN to (A × B)N as
an identification which induces the identification of measures:

(3.3) β(p) × β(q) = β(p × q).
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By grouping together runs of length k we obtain the obvious homeomor-
phism from AN to (Ak)N, which we also regard as an identification which
induces the identification of measures:

(3.4) β(pk) = β(p).

The words induce a partition basis on AN:

(3.5) BA := {[w] : w ∈ Ak with k = 1, 2, . . .}.
We call the clopen set [w] := π−1(w) the cylinder set associated with the
word w. We say that w and the associated cylinder set [w] have length k

when w ∈ Ak.

There is a natural homeomorphism between [w] and the entire space AN

given by x 7→ wx for all x ∈ AN. This homeomorphism clearly maps the
Bernoulli measure β(p) to the relative measure β(p)[w]. In particular, for

every w ∈ Ak we have

(3.6) S(β(p)[w]) = S(β(p)).

Definition 3.1. Let µ be a full, nonatomic measure on a Cantor space X.

(a) A nonempty clopen subset U of X is called a clopen set of µ type

(or just a clopen of µ type) when S(µU ) = S(µ).
(b) The measure µ is called a measure of Bernoulli type when there is a

partition basis B for X consisting of clopen sets of µ type.

Clearly, a Bernoulli measure is of Bernoulli type with the cylinder sets
providing the required partition basis. On the other hand, there exist mea-
sures of Bernoulli type which are not homeomorphic to Bernoulli measures.
For example, let µ be the good measure on a Cantor space X for which
S(µ) = Q ∩ [0, 1]. Then µ cannot be homeomorphic to β(p) for some prob-
ability vector p, as this would require that S(β(p)) = Q ∩ [0, 1], but all
elements of S(β(p)) have denominators a power of the LCD of the entries
of p.

Theorem 3.2. Let µ be a measure of Bernoulli type on a Cantor space X.

Then the clopen values set S(µ) is multiplicative and for every nonempty

clopen subset U of X we have

(3.7) S(µ) ⊂ S(µU ).

Also, if α, β ∈ S(µ) then α + β − α · β ∈ S(µ).

Proof. Let α, β ∈ S(µ) with β = µ(U) for some clopen subset U of X.
We can assume β is nonzero and so that U is nonempty. Let {B1, . . . , Bk}
be a partition of U by sets of µ type. Since α ∈ S(µ) = S(µBi

) there exists a
clopen subset Vi of Bi with relative measure α and so µ(Vi) = α·µ(Bi). With
V the union of the Vi’s we obtain a clopen set with measure equal to α · β.
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Thus, S(µ) is multiplicative. Since V is a subset of U we have µU (V ) = α.
Thus, S(µ) ⊂ S(µU ).

For the last result, observe that

(3.8) α + β − α · β = 1 − (1 − α) · (1 − β).

Remark. It is often convenient to use the above equation in the follow-
ing form: If U is a clopen subset of X and α ∈ S(µ) with µ of Bernoulli
type, then there exists a clopen V ⊂ U with µ(V ) = α · µ(U).

We will frequently use the following result, which we will call the Two

Implies Three Lemma.

Lemma 3.3. For a measure µ on a Cantor set X and a clopen subset U
of X any two of the following conditions imply the third.

(a) U is a clopen subset good for µ.

(b) U is a clopen subset of µ type.

(c) The measure of U is a divisor for S(µ), i.e. µ(U) ∈ Div(S(µ)).

Proof. This is obvious from a restatement of each of these conditions in
terms of clopen values sets:

(a) ⇔ µ(U) · S(µU ) = S(µ) ∩ [0, µ(U)];

(b) ⇔ S(µU ) = S(µ);(3.9)

(c) ⇔ µ(U) · S(µ) = S(µ) ∩ [0, µ(U)].

Theorem 3.4. Let µ be a full , nonatomic measure on a Cantor space X.

(a) If µ is a good measure then for every clopen U ⊂ X of µ type the

value µ(U) is a divisor of S(µ).
(b) If X admits a partition basis B such that each U ∈ B is of µ type

with µ(U) ∈ Div(S(µ)) then µ is a good measure of Bernoulli type.

(c) If µ is a good measure of Bernoulli type then S(µ) + Z is a subring

of R and every positive element of S(µ) + Z is a sum of positive

units of the ring.

Proof. (a) For a good measure every clopen subset is good and so if U is
a clopen of type µ its value is a divisor by the Two Implies Three Lemma.

(b) The partition basis consists of sets of µ type and so the measure is
of Bernoulli type by definition. Since the values are divisors, the members
of B are good by Two Implies Three again. Hence, the measure is good by
Theorem 2.7.

(c) Since the measure is good, S(µ) is grouplike, and since the measure
is of Bernoulli type, S(µ) is multiplicative by Theorem 3.2. By Proposi-
tion 2.1(c), S(µ) + Z is a ring. Since every clopen can be partitioned by
members of B, every element of S(µ)\{0} can be written as a sum of values
of elements of B. These are divisors of S(µ) by Two Implies Three again
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and so they are units of the ring by Proposition 2.1(d). Since 1 is a positive
unit it follows that every positive element of S(µ) + Z can be written as a
sum of positive units.

We have the following converse of Theorem 3.4(c).

Theorem 3.5. Let µ be a good measure on a Cantor space X with G =
S(µ) + Z the group generated by the clopen values set.

(a) The measure µ is of Bernoulli type, i.e. the clopens of µ type form a

partition basis for X, iff G is a subring of R such that every positive

element of G is a sum of positive units of G.

(b) Every nonempty clopen subset of X is a clopen of µ type iff G is a

subfield of R.

Proof. Since every clopen subset is good, the Two Implies Three Lemma
says that a clopen U is of µ type iff µ(U) is a divisor for S(µ) or, equivalently
when G is a ring, a unit of G. In particular, Proposition 2.1(e) implies that
every nonempty clopen is of µ type iff S(µ) is fieldlike and so iff G is a field.
This proves (b). The necessity of the units condition in (a) for a measure of
Bernoulli type is Theorem 3.4(c).

By Corollary 2.12 a good measure is refinable and so if α1, . . . , αk ∈ S(µ)
with sum equal to µ(U) then U can be partitioned by clopen sets whose
measures are exactly these values. Hence, if µ(U) is a sum of divisors then
U can be partitioned by sets of µ type. Hence, for a good measure the units
condition implies Bernoulli type.

Remarks. (a) It does not suffice in (a) above that the ring be generated
as a group by the units, i.e. that every element of the ring be a sum of units.
For example, let r be a transcendental number in the unit interval and let
G be the rational vector space generated by the powers, both positive and
negative, of r. Since r is transcendental, the powers are linearly independent
over Q. Hence, every nonzero element of the ring G can be written uniquely
as rn · P (r) where P (r) is a polynomial in r with rational coefficients and a
nonzero constant term. Under product the degrees of the polynomials add
and so the element is a unit of the ring exactly when it is a constant times
a power of r. In particular, r− r2 is a member of G∩ (0, 1) which cannot be
written as a sum of positive units. Hence, the associated good measure (see
Theorem 2.3(d)) is not of Bernoulli type.

(b) If µ is a good Bernoulli type measure but S(µ) is not fieldlike then
there will exist clopen sets U with µ(U) not a divisor. By the Two Implies
Three Lemma such a set is not of µ type and hence the inclusion S(µ) ⊂
S(µU ) proved in Theorem 3.2 is proper.

The condition that every clopen is of µ type yields some special results.
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Definition 3.6. We say that a measure µ on a Cantor space X satisfies
the Quotient Condition when every nonempty clopen subset U of X is of µ
type, that is, S(µU ) = S(µ).

Theorem 3.7. Assume that µ is a measure on a Cantor space X which

satisfies the Quotient Condition, i.e. every nonempty clopen subset of X is

a clopen of µ type. Then µ is a refinable measure of Bernoulli type and for

every nonempty clopen U ⊂ X the relative measure µU is homeomorphic

to µ. The rationals Q∩I are contained in S(µ) and if α, β ∈ S(µ)\{0} then

(3.10) (α + β)/2, α/(α + β) ∈ S(µ).

Furthermore, the following conditions on µ are equivalent :

(i) The measure µ is good.

(ii) S(µ) is fieldlike.

(iii) S(µ) is grouplike.

(iv) 1/2 ∈ Div(S(µ)) or , equivalently , for every α ∈ S(µ),

(3.11) α <
1

2
⇒ 2 · α ∈ S(µ).

(v) For every α ∈ S(µ),

(3.12) α <
1

2
⇒ α

1 − α
∈ S(µ).

Proof. Since every clopen is of µ type, µ is of Bernoulli type.

Next we show that Q ∩ I ⊂ S(µ), following Akin (2005), Theorem 3.4.

Let {V1, . . . , Vn} be a partition of cardinality n by nonempty clopens.
By Theorem 3.2 and the Remark thereafter, there exist clopens Ui ⊂ Vi

with µ(Ui) = µ(V1) · . . . · µ(Vn) for i = 1, . . . , n. Now, {U1, . . . , Un} is a
partition of U = U1 ∪ · · · ∪ Un with µU (Ui) = 1/n for i = 1, . . . , n. Hence,
k/n ∈ S(µU ) = S(µ) for k = 1, . . . , n.

Furthermore, if α1, . . . , αn ∈ S(µ) then we can choose clopens Wi ⊂ Ui

with µUi
(Wi) = αi and so µU (Wi) = αi/n for i = 1, . . . , n. Let W =

W1 ∪ · · · ∪ Wn so that µU (W ) = γ/n with γ = α1 + · · · + αn. Hence,
µW (W1 ∪ · · · ∪Wk) = (α1 + · · ·+αk)/γ for k = 1, . . . , n. Since U and W are
of µ type, these ratios are in S(µ).

Applying this with n = 2 we obtain (3.10).

Now if the sum γ is itself in the multiplicative set S(µ) then α1+· · ·+αk ∈
S(µ) for k = 1, . . . , n.

To prove refinability we use induction. Assume that G is a clopen with
γ = µ(G). We may assume n > 1 and that the αi’s are nonzero. We have
just seen that α1 + α2 ∈ S(µ) and so by inductive hypothesis we can find a
clopen partition {G1,2, G3, . . . , Gn} of G with µ(G1,2) = α1 + α2 and with
µ(Gi) = αi for i > 2. Now apply (3.10) to find a clopen subset G1 of G1,2
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such that µG1,2
(G1) = α1/(α1 +α2) and so µ(G1) = α1. Let G2 = G1,2 \G1.

Thus, {G1, . . . , Gn} is the required partition.
This argument applies to every relative measure µU with U clopen and

so they are all refinable. Since they all have the same clopen values set, they
are all homeomorphic by Theorem 2.14.

Finally, (i)⇒(ii) follows from Theorem 3.5(b); (ii)⇒(iii) and (v) is obvious,
as is (iii)⇒(iv).

(iv)⇒(i). If (3.11) is true then from (3.10) we see that α, β ∈ S(µ) implies
α + β ∈ S(µ) provided that the sum is less than 1. So Proposition 2.1(b)
implies that S(µ) is grouplike and so µ is good by Corollary 2.12.

(v)⇒(iv). Assume µ(U) = α < 1/2 for some clopen U . Let V = X \U so
that µ(V ) = 1 − α. Since α/(1 − α) ∈ S(µ) = S(µV ), there exists a clopen
subset U1 of V with this relative measure and so with µ(U1) = α. The clopen
set U ∪ U1 has measure 2α.

For a measure µ on X we will denote by µn the product measure on Xn

and by µN the product measure on the infinite product XN.

Definition 3.8. We say that a measure µ on a Cantor space X satisfies
the Product Condition when the product measure µN on XN is homeomor-
phic to µ on X.

Proposition 3.9. Let µ be a measure on a Cantor space X.

(a) The product measure µN satisfies the Product Condition.

(b) Assume that the product measure µ × µ = µ2 on X × X is homeo-

morphic to µ on X. For every positive integer n the product µn is

homeomorphic to µ and S(µN) = S(µ). The clopen values set S(µ) is

multiplicative. Furthermore, if ν1 and ν2 are measures on compact

spaces Y1 and Y2, then µ maps to ν1 and to ν2 iff it maps to the

product ν1 × ν2 on Y1 × Y2.

(c) If µ satisfies the Product Condition then µ × µ is homeomorphic

to µ.

(d) If µ is a finite or countably infinite product of measures each of

which satisfies the Product Condition then µ satisfies the Product

Condition.

(e) Assume that µ is a good measure. Then µN is a good measure with

S(µN) + Z the subring of R generated by the group S(µ) + Z. Fur-

thermore, the following conditions are equivalent :

(i) µ satisfies the Product Condition.

(ii) µ × µ is homeomorphic to µ.

(iii) S(µ × µ) = S(µ).
(iv) S(µ) is multiplicative.

(v) S(µ) is ringlike.
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Proof. Clearly the product of a finite or countably infinite number of
copies of µN is a measure homeomorphic to µN. This proves (a) and (c).
Similarly, (d) is obvious.

Let h1 : X → X × X be a homeomorphism mapping µ to µ2. Define
hn = 1Xn−1×h1 : Xn → Xn+1. Clearly, the composition hn := hn◦hn−1◦· · ·◦
h1 : X → Xn+1 is a homeomorphism mapping µ to µn+1. Define the “limit”
h∞ : X → XN by h∞(x)i = hn(x)i provided n ≥ i. Thus, the composition
of h∞ with the projection to Xn agrees with the composition of hn with
the projection to Xn. It follows from compactness that h∞ is surjective.
Furthermore, it maps µ to µN. On the other hand, each coordinate projection
maps µN to µ. Hence, the two measures have the same clopen values set. It
is not clear that h∞ is injective and so we do not know whether, in general,
the Product Condition always holds whenever µ× µ is homeomorphic to µ.

Clearly, the projections map ν1×ν2 to ν1 and to ν2. If µ maps to each of
the factors then µ × µ maps to ν1 × ν2. These yield the final results in (b).

If U, V are clopens with µ(U) = α and µ(V ) = β, then (µ×µ)(U ×V ) =
αβ ∈ S(µ× µ). Hence, S(µ× µ) = S(µ) implies S(µ) is multiplicative. This
completes the proof of (b) and shows that (iii)⇒(iv) in (e) as well. Also,
(i)⇒(ii) by (c) and (ii)⇒(iii) is clear. If µ is good and so S(µ) is grouplike
then (iv)⇒(v) by Proposition 2.1(c).

If µ is good then the product µN is good by Corollary 2.9. By (i)⇒(iv)
applied to µN we see that S(µN) is ringlike and since µN projects to µ the ring
S(µN) + Z contains the group S(µ) + Z. On the other hand, the rectangular
clopens in XN form a partition basis with measures products of elements of
S(µ). Hence, S(µN) is contained in the ring generated by S(µ).

Finally, if S(µ) is ringlike then S(µ) = S(µN). As both measures are
good, they are homeomorphic because the clopen values set is a complete
invariant for good measures. Hence, (v)⇒(i).

Remark. While we do not know whether every measure of Bernoulli
type satisfies the Product Condition, it is clear that any Bernoulli measure
does satisfy the Product Condition.

Now, beginning with any measure µ on a Cantor space X, we describe
the Quotient Construction on µ which yields a measure µQ satisfying the
Quotient and Product Conditions.

Note that for each n, there are only countably many clopen subsets
of Xn, and hence the set of all pairs (n, U) with U a clopen subset of Xn

is countable. There is, therefore, a sequence U(i)∞i=1 so that each U(i) is a

nonempty clopen subset of Xn(i) for some n(i) ≥ 1, and so that for any n,
and any nonempty clopen subset U of Xn, the subset U appears in this
sequence infinitely often. For each i let µi be the relative measure (µn(i))U(i)
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on U(i). Define

(3.13) µQ :=
∏

i

µi on XQ :=
∏

i

U(i).

It is clear that a different choice of counting function results in a rear-
rangement of the factors in the product. Hence the Quotient Construction
is well-defined up to homeomorphism. In fact, it is easy to check that if each
clopen is counted only once, instead of infinitely often, then a homeomor-
phic measure results. Hint: for each clopen U ⊂ Xn consider the products
Uk ⊂ Xnk for k = 1, 2, . . . .

Theorem 3.10. Let µ be a measure on a Cantor space X.

(a) The Quotient Construction measure µQ satisfies the Product Condi-

tion and the Quotient Condition and

(3.14) S(µQ)={µn(V )/µn(U) :V ⊂U are clopens in Xn with U nonempty ,

for n = 1, 2, . . .}.
Furthermore, if µ × µ is homeomorphic to µ, e.g. if µ satisfies the

Product Condition, then

(3.15) S(µQ)={µ(V )/µ(U) : V ⊂U are clopens in X with U nonempty}.
(b) µ is homeomorphic to µQ iff µ satisfies the Product Condition and

the Quotient Condition.

(c) The Quotient Construction on µ and on µN yield homeomorphic

results. That is, (µN)Q is homeomorphic to µQ.

(d) Assume that µ is a good measure. Then µQ is a good measure with

S(µQ) + Z the subfield of R generated by the group S(µ) + Z. Fur-

thermore, the following conditions are equivalent :

(i) µ satisfies the Quotient Condition.

(ii) S(µ) is fieldlike.

(iii) µ is homeomorphic to µQ.

Proof. (a) Since each (µn)U factor occurs infinitely often in µQ, the Prod-
uct Condition is obvious.

If V is a nonempty clopen subset of XQ then there exists a positive
integer I and a clopen subset Ṽ of Ũ :=

∏I
i=1 U(i) so that V = Ṽ ×∏

i>I U(i). If N =
∑I

i=1 n(i) then Ũ is a clopen subset of XN and the

product measure
∏I

i=1 µi equals (µN)
Ũ
. Furthermore

(3.16) (µQ)V = ((µN )
Ũ
)
Ṽ
×

∏

i>I

µi.

In general, if A ⊂ B have positive ν-measure then

(3.17) νA = (νB)A.
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Hence, we have

(3.18) (µQ)V = (µN )
Ṽ
×

∏

i>I

µi,

which is clearly homeomorphic to µQ. Hence, µQ satisfies the Quotient Con-
dition.

In addition,

(3.19) µQ(V ) = µN (Ṽ )/µN (Ũ),

from which (3.14) follows. If µ × µ is homeomorphic to µ then, by Propo-
sition 3.9(b), each µN is homeomorphic to µ and so (3.15) follows in that
case.

This completes the proof of (a). A similar analysis shows that if U is a
clopen subset of (XN)n then there exists a positive integer N and a clopen

subset Ũ of XN so that, up to rearrangement of coordinates, U = Ũ × XN

and (µN)U = (µN )
Ũ
× µN. From this (c) follows easily.

If µ is homeomorphic to µQ then it satisfies the Product and the Quotient
Conditions by (a). For the converse assume first that µ×µ is homeomorphic
to µ and that µ satisfies the Quotient Condition. Each µn(i) is homeomorphic
to µ by Proposition 3.9(b). So each µi is homeomorphic to µU for U some
nonempty clopen subset of X. So by the Quotient Condition each µi is
homeomorphic to µ. (Clearly µi also satisfies the Quotient Condition. By
Theorem 3.7, both these measures are refinable. They have the same clopen
values sets, so by Theorem 2.14, they are homeomorphic.) Hence, µQ is
homeomorphic to a countably infinite product of copies of µ, i.e. to µN. If µ
satisfies the Product Condition then µN is homeomorphic to µ, proving (b).

Now assume that µ is good. By Corollary 2.9 and Theorem 2.3(b) each
µi is a good measure and so by Corollary 2.9 again the product µQ is good
as well.

Now (iii)⇒(i) by part (a), and (i)⇒(ii) follows from Theorem 3.7.

By using (i)⇒(ii) for µQ we see that S(µQ) + Z is a subfield of R which
contains the group S(µ) + Z. From (3.14) it follows that S(µQ) + Z is con-
tained in the subfield generated by S(µ).

In particular, if S(µ) is fieldlike then µ and µQ have the same clopen
values set. Since both measures are good, they are homeomorphic to each
other. Thus, (ii)⇒(iii).

In Section 6 we will use the Quotient Construction to produce a family
of measures which satisfy the Quotient and Product Conditions but which
are not good.

Lemma 3.11. Let {µ0, µ1, . . .} be a finite or infinite sequence of measures

on nonempty zero-dimensional spaces {X0, X1, . . .} with X0 a Cantor space.
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Let µ denote the product measure on the Cantor space X which is the product

of these spaces.

(a) If S(µ0) is ringlike or , equivalently , grouplike and multiplicative, and

S(µi) ⊂ S(µ0) for i = 1, . . . , then S(µ) = S(µ0).
(b) Assume that µ0 is a good measure of Bernoulli type and assume

that for i = 1, 2, . . . there exists a partition basis Bi for Xi such

that U ∈ Bi implies µi(U) ∈ Div(S(µ0)) or , equivalently , µi(U)
is a unit of the ring generated by S(µ0). The measure µ on X is

homeomorphic to µ0 on X0 and so it is a good measure of Bernoulli

type.

Proof. (a) The 0 coordinate projection maps µ to µ0 and so S(µ0) ⊂
S(µ). For i = 0, 1, . . . let Bi be any partition basis for Xi. Define the partition
basis B on the product X by choosing members of Bi for finitely many
coordinates i and then pulling back their product to X via the projection
map. Since S(µ0) is multiplicative and S(µi) ⊂ S(µ0) for all i, it follows
that the value of µ on each element of B lies in S(µ0). Since B is a partition
basis and S(µ0) is grouplike it follows that S(µ) ⊂ S(µ0).

(b) Since µ0 is of Bernoulli type we can choose a partition basis B0 for
X0 consisting of clopens of µ0 type. Since the measure is good all these
clopens are good and the Two Implies Three Lemma implies that µ0(U) ∈
Div(S(µ0)) for all U ∈ B0. By Theorem 3.4(c), S(µ0) is ringlike, and by
Proposition 2.1(d), α ∈ (0, 1] is a divisor of S(µ0) iff it is a unit of the ring
S(µ0) + Z generated by S(µ0). With the partition bases Bi (i = 1, 2, . . .)
given in the hypothesis of (b) the values, all divisors of S(µ0), lie in S(µ0)
which is grouplike, so S(µi) ⊂ S(µ0) for all i. By part (a), S(µ) = S(µ0).
Since the clopen values set is a complete invariant for good measures, we
finish the proof by showing directly that µ is good.

From the sequence {Bi : i = 0, 1, . . .} of our partition bases we construct
the product partition base B as in part (a). A typical element U ∈ B is a
product of Ui ∈ Bi for i’s in some finite set I and Ui = Xi for the remaining
factors. So µ(U) is the product of the µi(Ui) for i ∈ I and so it is a divisor
of S(µ0) = S(µ). We show that U is a clopen of µ type. By the Two Implies
Three Lemma U is good for µ. As we have a partition basis of X consisting
of clopens good for µ it follows from Theorem 2.8 that µ is a good measure.

To show that U is a clopen of µ type we must show that S(µU ) = S(µ).
The measure µU is the product measure obtained by using (µi)Ui

on the
factor Ui. For i = 0 the clopen U0 ∈ B0 is assumed to be of µ0 type and so
S((µ0)U0

) = S(µ0). For i = 1, 2, . . . the numbers in S((µi)Ui
) are obtained

by taking elements of S(µi) which are smaller than µi(Ui) and then dividing
by µi(Ui). These are elements of S(µ0) divided by a larger number which
is a divisor of S(µ0). So we have S((µi)Ui

) ⊂ S(µ0) = S((µ0)U0
) for all i.
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Applying part (a) to this product measure we obtain S(µU ) = S((µ0)U0
) =

S(µ0) = S(µ). Thus, U is a clopen of µ type.

Given any measure µ on a Cantor space, let G = G(µ) be the group
generated by S(µ), so that

(3.20) S(µ) + Z ⊂ G(µ)

with equality iff S(µ) is grouplike. Since G∩ [0, 1] is grouplike, Theorem 2.3
implies there is a good measure µg, unique up to homeomorphism, such that
S(µg) = G ∩ [0, 1]. We call µg a good measure envelope of µ.

Theorem 3.12. Let µ be a measure of Bernoulli type on a Cantor space

X and let µg be a good measure envelope of µ. That is, µg is a good measure

whose clopen values set generates the same group G(µ) as does µ. Then

G(µ) is a ring and so S(µg) is ringlike. The product measure µ×µg satisfies

(3.21) S(µ) ⊂ S(µg) = S(µ × µg).

If the measure µg is of Bernoulli type or , equivalently , if the ring G(µ) is

such that every positive element of G(µ) is a sum of positive units, then the

following conditions are equivalent :

(a) µ × µg is homeomorphic to µg.

(b) µ × µg is a good measure of Bernoulli type.

(c) µ × µg is a good measure.

(d) For every clopen U ⊂ X of µ type the value µ(U) is a unit of the

ring G(µ).
(e) X admits a partition basis B such that each U ∈ B is of µ type with

µ(U) a unit of the ring G(µ).

When these conditions hold then µ is homeomorphic to µg iff S(µ) is group-

like.

Proof. G(µ) is a ring because S(µ) is multiplicative by Theorem 3.2.
The equation between clopen values sets then follows from Lemma 3.11(a).
Since all Cantor spaces are homeomorphic we can assume that the measure
µg is on X. The equivalence between the ring condition and the assumption
that µg is of Bernoulli type comes from Theorem 3.5(a).

(b)⇒(c) is obvious. (c)⇔(a) because µg is good and the clopen values
set is a complete invariant for good measures.

(c)⇒(d). If U is a clopen subset of X of µ type then S(µU ) = S(µ)
generates the group G(µ) and so µg is a good measure envelope for µU .
Since (µ × µg)(U×X) = µU × µg, the above equation applied to µU implies
that U ×X is a clopen subset of X ×X of µ×µg type. By (c) the latter is a
good measure and so Two Implies Three shows that µ(U) = (µ×µg)(U×X)
is a divisor of S(µ × µg) and so it is a unit of the ring G(µ).

(d)⇒(e) is obvious.
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(e)⇒(b). This is where we need the assumption that the measure µg is
of Bernoulli type. Since µg is a good measure of Bernoulli type, X admits
a partition basis Bg of clopens of µg type. The measures of the elements
of Bg are all divisors of the ring G(µ) by Two Implies Three. Consider the
partition basis B×Bg on X×X. A typical clopen U×V has relative measure
µU × (µg)V . Because µg is good, (µg)V is good, and since V is of µg type,
(µg)V is homeomorphic to µg. As in the proof of (c)⇒(d), U ∈ B of µ type
implies that µg and hence (µg)V are good measure envelopes for µU . Hence,
S(µU×(µg)V ) = S((µg)V ) = S(µg) = S(µ×µg). Thus, each U×V is a clopen
of µ × µg type. Furthermore, (µ × µg)(U × V ) = µ(U) · µg(V ) is a product
of units of the ring G(µ) and so it is itself a unit. As S(µ × µg) = S(µg) is
ringlike these are divisors of the clopen values set. By Theorem 3.4(b), the
product measure is a good measure of Bernoulli type.

Finally, if S(µ) is grouplike and hence ringlike then condition (e) and
Proposition 2.1(d) imply that µ satisfies the conditions of Theorem 2.3(c)
and so it is a good measure. Since S(µ) = S(µg) in the grouplike case, µ is
homeomorphic to µg.

We conclude with a little result sharpening the notion of weak refinability
for measures of Bernoulli type.

The definition of a weakly refinable measure includes the requirement
that X be a refinable set. This addition is necessary, for example, in the proof
of Theorem 2.14. For measures of Bernoulli type this demand is superfluous.

Lemma 3.13. Let µ be a measure on a Cantor space X with S(µ) mul-

tiplicative, e.g. a measure of Bernoulli type. If there exists a partition of X
by refinable clopen sets then X is refinable.

Proof. Let {U1, . . . , UN} be a partition of X by refinable clopen sets and
let α1, . . . , αk ∈ S(µ) with α1 + · · · + αk = 1. Since S(µ) is multiplicative,
αiµ(Uj) ∈ S(µ) for i = 1, . . . , k and j = 1, . . . , N . Since Uj is refinable, there
exists a partition {U1j, . . . , Ukj} of Uj with µ(Uij) = αiµ(Uj) for i = 1, . . . , k
and j = 1, . . . , N . Let Vi =

⋃
j Uij for i = 1, . . . , k to define the required

partition of X.

4. Bernoulli measures. Recall that a Bernoulli measure is defined via
a probability vector p : A → (0, 1) on a finite alphabet A = {a1, . . . , aN}
with cardinality |A| = N at least 2. That is, the p(a)’s are positive real
numbers which sum to 1. When we list the elements we will write pi for
p(ai).

The Bernoulli measure β(p) on AN is the product of copies of the measure
associated with p on A, which we will call the p-measure on A. If q : B →
(0, 1) is another such probability vector, we will say that f : A → B maps p
to q if p = q ◦ f . This is equivalent to saying that f maps the p-measure on
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A to the q-measure on B. If µ is a measure on a space X then a p-partition
on (X, µ) is a clopen partition {U1, . . . , UN} of X with N = |A| such that

(4.1) µ(Ui) = pi for i = 1, . . . , N.

Proposition 4.1. If p : A → (0, 1) and q : B → (0, 1) are probability

vectors on finite alphabets, then the following conditions are equivalent :

(1) The measure β(p) maps to the measure β(q).
(2) For some positive integer k the probability vector pk on Ak maps

to q.
(3) There exists a q-partition of (AN, β(p)).

Proof. (1)⇒(3). The words of length one, i.e. the letters of B, define a
cylindrical q-partition of (BN, β(q)). If f : AN → BN maps β(p) to β(q) then
the preimage under f of any q-partition is a q-partition.

(3)⇒(2). Assume that {U1, . . . , UN} is a q-partition of (AN, β(p)). There
exists a positive integer k such that each Ui is a union of cylindrical sets of
length k. Map the words in Ui to bi to define the map f : pk → q.

(2)⇒(1). If f : pk → q then the product of copies of f is a map from
(Ak)N → BN taking β(pk) to β(q). Furthermore, β(pk) is naturally homeo-
morphic to β(p) by grouping the words in AN into blocks of length k.

Remark. While it follows from Proposition 3.9(b), it is easy to check
directly that for probability vectors q1 and q2, the measure β(p) maps to
β(q1) and to β(q2) iff it maps to the product β(q1 · q2) ≈ β(q1) × β(q2).

We obtain special results in the two letter case (|A| = 2). We will always
use the alphabet 2 = {0, 1} for this case. The probability vector is deter-
mined by the value r on 0 with 1−r the value on 1. We will write β(r, 1−r)
for the Bernoulli measure on 2N.

Corollary 4.2. Let p : A → (0, 1) be a probability vector and r ∈ (0, 1).
The following conditions are equivalent :

(1) r ∈ S(β(p)).
(2) S(β(r, 1 − r)) ⊂ S(β(p)).
(3) β(p) maps to β(r, 1 − r).

In particular , if r, s ∈ (0, 1) we have

(4.2) β(r, 1 − r) ∼ β(s, 1 − s) ⇔ S(β(r, 1 − r)) = S(β(s, 1 − s)).

Proof. (3)⇒(2)⇒(1) is clear. If r ∈ S(β(p)) then there exists a clopen
set U with β(p)(U) = r. Hence, {U, AN \ U} is an (r, 1 − r)-partition for
(AN, β(p)). By the above proposition β(p) maps to β(r, 1 − r).

Remark. In general, S(β(q)) ⊂ S(β(p)) implies qi ∈ S(β(p)) for i =
1, . . . , |B|. However, as we will see below, the converse need not hold.

The above corollary is a special case of a more general result.
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Theorem 4.3. Let µ be a measure of Bernoulli type on a Cantor space

X and let r ∈ (0, 1). The following conditions are equivalent :

(1) r ∈ S(µ).
(2) S(β(r, 1 − r)) ⊂ S(µ).
(3) µ maps to β(r, 1 − r).

Proof. Again (3)⇒(2)⇒(1) is clear.

If r ∈ S(µ) then there exists a clopen set U0 with µ(U) = r. Hence,
{U0, U1} is an (r, 1 − r)-partition for (X, µ). With A = {0, 1} this defines
a map, π1 : X → A. Inductively, we define coherent maps πk : X → Ak

such that for every word w ∈ Ak the preimage Uw := π−1
k (w) is a clopen

set with µ(Uw) = ra(1 − r)b where a, b are the numbers of occurrences of
0, 1 respectively in the word w. At the next stage, for each such w ∈ Ak,
Theorem 3.2 implies that S(µ) ⊂ S(µUw

) and so there exists an (r, 1 − r)-
partition {Uw0, Uw1} of (Uw, µUw

). These partitions define the map πk+1.
From this inverse system of maps we get the inverse limit map π : X → AN

such that the preimage of every cylinder set has µ-measure its β(r, 1 − r)-
value. This directly constructs the map from µ to β(r, 1 − r).

Notice that the values of β(p) on the cylinder sets are all products of the
p(a)’s. Hence, the subring of R generated by {p(a) : a ∈ A} contains S(β(p))
and so it is the ring generated by S(β(p)). We will denote this subring Z[p] or
Z[p1, . . . , pN ]. Of course, Z[p] contains S(β(p)) + Z with equality iff S(β(p))
is grouplike. When N = 2 and p1 = r, the ring is just Z[r], the ring of
polynomials in r with integer coefficients.

Now we apply the results of the preceding section to Bernoulli measures.

Theorem 4.4. Let p : A → (0, 1) be a positive probability vector on a

finite alphabet and let β(p) be the associated Bernoulli measure on AN. The

following conditions are equivalent :

(a) β(p) is a good measure.

(b) For each a ∈ A, p(a) ∈ Div(S(β(p))).
(c) The clopen values set S(β(p)) is grouplike and for each a ∈ A, p(a)

is a unit in the ring Z[p].

Proof. (a)⇒(c). For a good Bernoulli measure Theorem 3.4(c) implies
that S(µ) is ringlike and values of the measure on the cylinders are divi-
sors by the Two Implies Three Lemma and hence are units of the ring by
Proposition 2.1(d).

(c)⇒(b). As the measure is Bernoulli, Theorem 3.2 implies that the
clopen values set is multiplicative and so by Proposition 2.1(c) it is ringlike
when it is grouplike. By Proposition 2.1(d) the values p(a) are divisors of
S(β(p)) when they are units of the ring.
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(b)⇒(a). The measure of every cylinder set is a product of the p(a)’s
which are assumed to be divisors. Since Div(S(β(p))) is multiplicative, the
cylinder sets are clopens of µ type with divisor values. By Two Implies Three
again the cylinders are good clopens. By Theorem 3.4(b), the measure is
good.

In particular, we obtain the following for the 2-letter alphabet case.

Corollary 4.5. For r ∈ (0, 1), r and 1− r are units of the ring Z[r] iff

1/(r(1 − r)) is an algebraic integer. The measure β(r, 1 − r) is good iff the

clopen values set S(β(r, 1− r)) is grouplike and 1/(r(1 − r)) is an algebraic

integer.

Proof. Recall that a complex number is an algebraic integer iff it is the
root of a monic polynomial equation with integer coefficients. Furthermore,
the algebraic integers are a subring of C.

The number r is a unit for Z[r] iff the reciprocal is in the ring, that is, iff
there exists a polynomial P (r) with integer coefficients such that 1−r ·P (r)
= 0. If the polynomial is of degree d then we can divide by rd+1 to obtain a
monic polynomial with root 1/r. This argument is reversible and so if 1/r is
an algebraic integer then r is a unit. Similarly, for 1−r. So if r and 1−r are
units, 1/(r(1 − r)) is a product of algebraic integers and so it is an algebraic
integer.

On the other hand, if 1/(r(1 − r)) is an algebraic integer, then just as
before there is a polynomial such that 1 − r(1 − r) · P (r(1 − r)) = 0. Since
P (r(1−r)) is a polynomial in r it follows that r(1−r) is a unit for the ring.
But if the product of two ring elements is a unit then each factor is a unit.
Hence, r and 1 − r are units.

The ring generated by S(β(r, 1 − r)) is just Z[r] = Z[1 − r] and so the
final result follows from Theorem 4.4.

Thus, the problem of deciding whether a Bernoulli measure is good is
split into two pieces. As we will see in the examples below, it is usually easy
to compute the ring generated by the p(a)’s and hence to decide whether or
not the p(a)’s are units in the ring. The hard part is to decide whether the
clopen values set is grouplike. By the following result, it is usually enough
to recognize divisors.

Theorem 4.6. Let µ be a measure of Bernoulli type on a Cantor space X.

If there exist two disjoint clopen sets U1, U2 ⊂ X such that µ(U1), µ(U2) ∈
Div(S(µ)) then S(µ) is grouplike.

Proof. Let δ1 = µ(U1), δ2 = µ(U2). By Proposition 2.1(b) it suffices to
show that if α, β ∈ S(µ) with α + β < 1 then α + β ∈ S(µ). Because the
measure is of Bernoulli type, Theorem 3.2 implies that α · δ2 ∈ S(µU1

) and
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β · δ1 ∈ S(µU2
). Thus, we can choose clopen subsets V1 ⊂ U1 and V2 ⊂ U2

such that

(4.3) µ(V1) = α · δ2 · δ1, µ(V2) = β · δ1 · δ2.

The union V has measure (α+β)δ1δ2. Since α+β < 1 and the product δ1δ2

is a divisor, it follows that α + β ∈ S(µ).

This does not help too much in practice because while it is not too hard
to recognize ring units, the equivalence between ring units and divisors only
works after we know that the clopen values set is grouplike. However, we do
have the following amusing result:

Corollary 4.7. Let µ be a measure of Bernoulli type on a Cantor

space X. Assume that there exists a clopen set U ⊂ X with µ(U) = 1/2.
The clopen values set is grouplike iff the following condition holds:

(4.4) α ∈ S(µ) and α < 1/2 ⇒ 2α ∈ S(µ).

Proof. The existence of U simply says 1/2 ∈ S(µ) and the latter condi-
tion says that that 1/2 ∈ Div(S(µ)). Hence, U and its complement will do
as the disjoint clopens required to apply Theorem 4.6.

We conclude by considering the action of H(X, β(p)), the automorphism
group, on the space X. Recall that if a group H acts on a space X then the
action is called minimal if for every x ∈ X the orbit Hx = {h(x) : h ∈ H}
is dense in X. The action is called transitive if Hx = X for every x ∈ X, or
equivalently, the entire space consists of a single orbit.

If ξ is a permutation of N then ξ∗ is the homeomorphism on X = AN

defined by permuting the coordinates using ξ:

(4.5) ξ∗(x)i := xξ(i) for all i ∈ N.

Clearly, ξ∗ preserves every Bernoulli measure, so it is in every H(X, β(p)).
If x ∈ AN and a ∈ A we define

(4.6) N(x, a) := {i ∈ N : xi = a}
and, with X = AN,

(4.7) X∞ = {x ∈ X : |N(x, a)| = ∞ for all a ∈ A},
where |N | ∈ N ∪ {∞} denotes the cardinality of the set N .

Thus, x ∈ X∞ iff every letter of A occurs infinitely often in x. Clearly,
if x, y ∈ X∞ then there exists a permutation ξ such that ξ∗(x) = y. Hence,

(4.8) x ∈ X∞ ⇒ H(X, β(p))x ⊃ X∞.

By Theorem 2.3(a) the automorphism group H(X, µ) of a good measure
µ acts transitively on X. Conversely, Theorem 2.15 of Akin (2005) says that
a measure µ on a Cantor space X is a good measure if Hµ(X) acts minimally
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on X and, in addition, if for every nonempty clopen U ⊂ X the clopen values
set S(µU ) is grouplike. For Bernoulli measures we obtain sharper results.

If a is a letter in a finite alphabet A then we will write a for the point
of AN all of whose coordinates equal a.

Theorem 4.8. Let p : A → (0, 1) be a positive probability vector on a

finite alphabet , A = {a1, . . . , aN}, and let β(p) be the associated Bernoulli

measure on X = AN. The following conditions are equivalent :

(1) The group H(X, β(p)) acts transitively on X.

(2) The group H(X, β(p)) acts minimally on X.

(3) For i, j = 1, . . . , N there exists hij ∈ H(X, β(p)) such that

(4.9) hij(ai) ∈ [aj].

Proof. (1)⇒(2). Obvious.
(2)⇒(3). A minimal action takes the point ai into the nonempty clopen

cylinder [aj ].
(3)⇒(1). By (4.8) all of the points of X∞ are contained in a single or-

bit. So it suffices, given x ∈ X, to construct h ∈ H(X, β(p)) such that
h(x) ∈ X∞. At least one of the sets Ni := N(x, ai) is infinite. Without
loss of generality suppose N1 is infinite. We will construct h by using the
automorphisms h1j of (4.9) with the choice h11 = identity. Notice that the
letter aj occurs in h1j(a1) at least once.

Since we have assumed N1 is infinite, N1 can be partitioned into a count-
able class of infinite subsets. Letting Z be a countably infinite index set, we
may first partition N1 into infinite sets, {Izj : z ∈ Z, j = 1, . . . , N}, and
then fixing some e ∈ Z, we adjust the set Ie1 by adding in all elements of
N \ N1. The result of this is that {Izj : z ∈ Z, j = 1, . . . , N} is a partition
of N, so that each Izj is an infinite set, and each of them except Ie1 consists
only of coordinates at which x has the symbol a1. Using this partition of N

we can identify:

(4.10) X = AN =
∏

z,j

AIzj ,

and this identification relates the Bernoulli measure β(p) on AN to the prod-
uct of the Bernoulli measures β(p) on AIzj . Use the natural bijection from
N to Izj obtained by counting the elements of the latter subset of N and we
can define hzj ∈ H(AIzj , β(p)) to be a copy of h1j via this identification. Let

(4.11) h :=
∏

z,j

hzj.

In an obvious way, h contains infinitely many copies of each h1j and at x
each of these except for e1 is acting on a copy of a1. Hence, h(x) contains
infinitely many copies of each letter aj . That is, h(x) ∈ X∞.
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Corollary 4.9. If the group H(AN, β(p)) acts minimally on the space

AN then for each a ∈ A, p(a) is a unit in the ring Z[p]. If , in addition, the

clopen values set S(β(p)) is grouplike then the measure β(p) is good.

Proof. By (4.9) there exist automorphisms hij such that hij(ai) ∈ [aj]
for i, j = 1, . . . , N . By continuity, there exists a positive integer M such
that for all i, j, hij([a

M
i ]) ⊂ [aj] where aM is the word of length M with

all entries equal to a. Since the measure of [aM
i ] equals pM

i it follows that
pM

i /pj ∈ S(β(p)[aj ]) = S(β(p)).

When we expand the right side of the equation 1 = (p1 + · · ·+pN )MN by
using the Binomial Theorem we see that every term contains some pi raised
to a power at least M . Hence, it follows that 1/pj is in the group generated
by S(β(p)), which is the ring generated by p1, . . . , pN . Thus, each pj is a
unit of the ring.

If, in addition, the clopen values set is grouplike then the measure is
good by Theorem 4.4.

Proposition 4.10. Let a ∈ A. If h(a) 6= a for some h ∈ H(AN, β(p)),
then for some b ∈ A with b 6= a and some positive integer M ,

(4.12) p(a)M/p(b) ∈ S(β(p)).

Proof. If h(a) 6= a then some coordinate of h(a) is a letter b ∈ A distinct
from a. By composing with a permutation of coordinates we can assume
that the first coordinate is b. That is, h(a) ∈ [b]. As shown in the proof of
Corollary 4.9, this implies that for some positive integer M , (4.12) holds.

Theorem 4.11. Let p : A → (0, 1) be a positive probability vector on a

finite alphabet , A = {a1, . . . , aN}, and let β(p) be the associated Bernoulli

measure on X = AN. If the measure β(p) is refinable then the following

conditions are equivalent :

(1) The group H(X, β(p)) acts transitively on X.

(2) The group H(X, β(p)) acts minimally on X.

(3) For i, j = 1, . . . , N there exists Mij > 0 such that

(4.13) pj − p
Mij

i ∈ S(β(p)).

(4) There exists M0 > 0 such that for all M ≥ M0 and for all i, j =
1, . . . , N, pj − pM

i ∈ S(β(p)).

Proof. (1)⇔(2). Apply Theorem 4.8.

(2)⇒(4). As in the proof of Corollary 4.9 there exists M0 such that for
M ≥ M0, hij([a

M
i ]) ⊂ [aj]. The measure of the complementary set is pj−pM

i

and so this number is a clopen value.

(4)⇒(3). Obvious.
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(3)⇒(2). By Theorem 4.8 it suffices for each i, j = 1, . . . , N to construct
a homeomorphism hij satisfying (4.9). For i = j we can use the identity and
so we assume that i 6= j. Let M = Mij be chosen to satisfy (4.13).

Let X1 = [aM
i ], which has measure pM

i . Note that pM
i and pj − pM

i

are clopen values which sum to pj , which is the measure of [aj]. Since
β(p) is refinable by assumption, there exists a clopen subset X2 of [aj]
with β(p)(X2) = pM

i = β(p)(X1). Let X3 = X \ (X1 ∪ X2) so that X =
{X1, X2, X3} is a partition of X. Now exchange X1 and X2. Let Y1 = X2,
Y2 = X1 and Y3 = X3. Hence, Y = {Y1, Y2, Y3} is a clopen partition
with β(p)(Xk) = β(p)(Yk) for k = 1, 2, 3. Since the measure is assumed
to be refinable, all clopen sets are refinable. By Theorem 2.14 there exists
hij ∈ H(X, β(p)) such that hij(Xk) = Yk for k = 1, 2, 3. Since ai ∈ X1 and
Y1 = X2 ⊂ [aj] we obtain (4.9).

5. Rational Bernoulli measures. Now we consider the special case of
a Bernoulli measure associated with a probability vector p : A → (0, 1) such
that all the values p(a) are rational. Recall that when A = {a1, . . . , aN} we
write pi for p(ai), i = 1, . . . , N .

For any integer n > 1 we define the set

(5.1) S(n) := {i/nk : i = 0, . . . , nk and k = 0, 1, . . .}.
Recall that β(1/n) denotes the Bernoulli measure obtained by using uniform
weights on an alphabet of n symbols. That is, β(1/n) = β(p) where p =
(1/n, . . . , 1/n). This is a Haar measure and so it is good. Clearly,

(5.2) S(n) = S(β(1/n)).

In particular, S(n) is ringlike. The associated ring, S(n) + Z, is just Z[1/n],
the ring of rationals which can be written with denominator a power of n.

In considering these sets there is a useful partial order on the positive
integers.

Definition 5.1. Given positive integers a, b we say that a semi-divides

b (and write a ≺ b) if every prime which divides a also divides b, or equiv-
alently, if a divides some positive power of b. Thus, a has the same prime

divisors as b iff each semi-divides the other (in which case we write a ≃ b).

For subsets A, B of R we write A · B = {a · b : a ∈ A, b ∈ B}, just the
products, not the sums of products. In particular, if A and B are multi-
plicative then A · B is. However, even if A and B are ringlike, A · B need
not be grouplike. For example, if A2 and A3 are the subgroups generated by
{1,

√
2} and {1,

√
3}, which are subrings, then the subgroup (and subring)

generated by the products consists of all numbers which can be written as
(1

√
2)K(1

√
3)T with K any 2× 2 integer matrix. It is easy to check that

the products, i.e. the elements of A2 ·A3, are exactly those with det(K) = 0.
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Lemma 5.2. Let a, b, n, n1, n2 be positive integers.

(a) If a and b are relatively prime and with a < b then a/b ∈ S(n) iff b
semi-divides n.

(b) S(n1) ⊂ S(n2) iff n1 semi-divides n2. In particular , S(n1) = S(n2)
iff n1 and n2 have the same prime divisors.

(c) If n = n1 · n2 then S(n1) · S(n2) = S(n).

Proof. (a) Clearly, the fraction in lowest terms a/b lies in S(n) iff b
divides some power of n.

(b) Obvious from (a).

(c) Since S(n) is multiplicative, we get the inclusion S(n1) ·S(n2) ⊂ S(n)
from (b).

If S(n1) = S(n2) then by (b) this common set is S(n) as well and the
equality is clear. If this is not true then by (b) the ratio

(5.3) r := log(n2)/log(n1)

is irrational and so by Kronecker’s Theorem translation by r on the reals
mod 1 is a minimal homeomorphism.

Given a/nk < 1, choose ε positive but small enough that nk/a > nε
1. By

Kronecker’s Theorem we can choose positive integers k1, k2 larger than k so
that

(5.4) k1 < k2r < k1 + ε,

and so

(5.5) 1 < nk2

2 /nk1

1 < nε
1.

Thus, we have

(5.6) a/nk = α · β with α = (a/nk)(nk2

2 /nk1

1 ) and β = nk1

1 /nk2

2 .

By construction 0 < α, β < 1 and β is clearly in S(n2). Since k2 > k the
nk

2 factor in nk is canceled out in α and so α ∈ S(n1).

We will call a probability vector p : A → (0, 1) rational when the values
p(a) are rational for all a ∈ A. We will call the associated Bernoulli measure
β(p) a rational Bernoulli measure.

Proposition 5.3. If p : A → (0, 1) is a rational probability vector with

A = {a1, . . . , aN} then there exist unique positive integers n, m1, . . . , mN

such that

• pi = mi/n for i = 1, . . . , N ,
• the greatest common divisor of {m1, . . . , mN} is 1.

We then say that (m1/n, . . . , mN/n) is p in reduced form with LCD n.
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The measure β(1/n) maps to β(p) and so S(β(p)) ⊂ S(n). The additive

group generated by S(β(p)), which is the ring generated by {mi/n : i =
1, . . . , N}, is Z[1/n] and so S(β(p)) = S(n) iff S(β(p)) is grouplike.

A positive fraction a/b with a and b relatively prime is an element of

the ring Z[1/n] iff b semi-divides n and it is then a unit of the ring iff a
semi-divides n as well.

Proof. The number n is the LCD of the fractions pi, i = 1, . . . , N . Since

(5.7)
N∑

i=1

mi = n,

any common divisor of m1, . . . , mN would be a divisor of n and so n would
not be the least common denominator. Hence, the additive subgroup of Z

generated by m1, . . . , mN is Z itself and so the additive subgroup generated
the pi’s is (1/n) ·Z and the associated subring is Z[1/n] = S(n) + Z. Hence,
S(β(p)) = S(n) iff S(β(p)) is grouplike.

In any case, since the Haar measure β(1/n) is good and its clopen values
set S(n) contains the fractions mi/n, it admits a p-partition and so maps
to β(p) by Proposition 4.1.

By Lemma 5.2(a), a fraction in lowest terms is in Z[1/n] iff the denomi-
nator semi-divides n. It is a unit, i.e. its reciprocal is in the subring, iff the
numerator semi-divides n as well.

Definition 5.4. Let p = (m1/n, . . . , mN/n) be a probability vector in
reduced form. We say that p satisfies the Divisibility Condition when mi

semi-divides n for i = 1, . . . , N . We say that p satisfies the Weak Divisibility

Condition when for every prime z there exist a, b with 1 ≤ a < b ≤ N such
that z is not a factor of either ma or mb.

To check the Weak Divisibility Condition we need only consider primes
x which divide some mi, because N ≥ 2.

Lemma 5.5. The Divisibility Condition implies the Weak Divisibility

Condition.

Proof. We prove the contrapositive. Let z be a prime for which the
Weak Divisibility Condition fails. Because m1, . . . , mN are relatively prime,
there must be some ma which does not have z as a factor. Since the Weak
Divisibility Condition fails for z we must have z |mj for all j 6= a. Since n is
the sum of the mi’s, it then follows that n is congruent to ma mod z. Thus,
the mj with j 6= a do not semi-divide n, so the Divisibility Condition does
not hold.

Failure of the Weak Divisibility Condition for any prime greater than 2
implies that the clopen values set of the associated Bernoulli measure is not
grouplike.
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Theorem 5.6. Let p = (m1/n, . . . , mN/n) be a probability vector in

reduced form. Assume that z is a prime number such that z |mj for j =
2, . . . , N . The measure β(p) does not map to β(1/M) for any positive in-

teger M . If z > 2 or if 4 |mj for j = 2, . . . , N then the clopen values set

S(β(p)) is not grouplike.

Proof. As shown in the proof of Lemma 5.5, z is not a divisor of m1 and
m1 ≡ n mod z. In particular, n is a unit in the field Zz of integers mod z.
Hence, the projection map from Z to Zz extends to a ring homomorphism
π from Z[1/n] onto Zz.

If a is the letter of the alphabet A with weight m1/n then except for
the word ak every word of length k has weight a fraction with numerator
congruent to zero mod z. On the other hand, ak has weight a fraction with
numerator congruent to the denominator mod z. It follows that the image
under π of the clopen values set S(β(p)) is exactly {0, 1} ⊂ Zz. If z > 2 then
this is a proper subset of Zz. Since π is surjective on S(n) = Z[1/n] ∩ I it
follows that S(β(p)) is a proper subset of S(n). By Proposition 5.3, S(β(p))
is not grouplike.

For any clopen partition U of X = AN there exists a positive integer k
such that the partition by cylinder sets of length k refines U. So the measure
of the element of U which contains the cylinder set [ak] is mapped to 1 by π.
The measures of the remaining members of U are mapped to 0 by π. In
particular, the measure β(p) does not admit a (1/M, . . . , 1/M) partition for
any positive integer M . Proposition 4.1 implies that β(p) does not map to
β(1/M).

If 4 |mj for j = 2, . . . , N then we obtain a ring homomorphism π from
Z[1/n] onto the ring Z4 because n is a unit of Z4 which is congruent to
m1 mod 4. Again π maps S(β(p)) to {0, 1}, a proper subset of Z4, and so
S(β(p)) is not grouplike.

A number of examples for the exceptional prime z = 2 case can be
obtained from the following.

Proposition 5.7. Let (m1, . . . , mN ) be a vector of positive integers.

For k = 1, . . . , N + 1 define nk =
∑

i<k mi with the empty sum n1 = 0 and

n = nN+1 =
∑N

i=1 mi. The following two conditions are equivalent :

(i) For i = 1, . . . , N, ni ≥ mi − 1.
(ii) For k = 2, . . . , N +1, every integer j with 0 ≤ j ≤ nk can be written

as a sum using each mi with i < k at most once, i.e. for i < k we

can choose εi equal to 0 or 1 so that j =
∑

i<k εi · mi.

If (m1, . . . , mn) satisfies these conditions then p = (m1/n, . . . , mN/n) is a

probability vector in reduced form with S(β(p)) = S(n) and so S(β(p)) is

grouplike.
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Proof. (i)⇒(ii). From (i) we have 1 = n1 + 1 ≥ m1 and so m1 = 1 and
n2 = m1 = 1. So condition (ii) is obvious for k = 2. Proceed by induction
on k. If 0 ≤ j ≤ mk − 1 then, by (i), j ≤ nk and so by induction hypothesis
j =

∑
i<k εi · mi. Choose εk = 0. If mk ≤ j ≤ nk+1 = mk + nk then by

induction hypothesis j − mk =
∑

i<k εi · mi. Choose εk = 1.

(ii)⇒(i). If (i) fails because ni < mi−1 then j = mi−1 satisfies 0 ≤ j ≤
ni+1 but if we try to write j =

∑
a<i+1 εa · ma then εi = 0 because j < mi.

Then
∑

a<i+1 εa · ma ≤ ni < j. Hence, (ii) fails.

Now suppose that (r1, . . . , rM ) is a vector of positive integers with sm =∑
j<m rj for m = 1, . . . , M+1. If both (r1, . . . , rM ) and (m1, . . . , mN ) satisfy

the above conditions then we construct the product vector of length NM
with entries mi · rj ordered lexicographically. That is, the predecessors of
mi · rj are all ma · rb with either a < i or a = i and b < j. In particular the
sum of the predecessors is

ni · sM+1 + mi · sj ≥ ni + mi · sj(5.8)

≥ mi − 1 + mi · (rj − 1) = mi · rj − 1.

Thus, the product vector so ordered satisfies condition (i).

By induction the vector (m1, . . . , mN )k ordered lexicographically satisfies
condition (i) and so condition (ii) as well. This implies that by using only
cylinders of length k we see that {j/nk : 0 ≤ j ≤ nk} ⊂ S(β(p)). Thus,
S(β(p)) = S(n) and so it is grouplike. Notice that m1 = 1 implies that the
probability vector is in reduced form.

It is easy to check condition (i) for (1, 2, 2, . . . , 2), for (1, 2, 22, 23, . . .
. . . , 2N−1) and for (1, 2, 2, 6). These yield probability vectors for which the
Weak Divisibility Condition fails, but only for the prime z = 2. Nonetheless,
the associated clopen values set is grouplike.

We illustrate these results by describing the N = 2 case.

Proposition 5.8.

(a) β(1/2) is a good measure.

(b) S(β(1/3, 2/3)) = S(3) but β(1/3, 2/3) does not map to β(1/3).
(c) If p = (m1/n, m2/n) is a probability vector in reduced form with

n > 3 the S(β(p)) is not grouplike.

Proof. Let p = (m1/n, m2/n) be a probability vector in reduced form.
We can assume that m1 ≤ m2.When n = 2, m1 = m2 = 1. The vector
satisfies the Divisibility Condition and β(p) is the good measure β(1/2).

Now assume n > 2. Since m1 and m2 are relatively prime, we have
m1 < m2. The Weak Divisibility Condition fails for any prime divisor of m2.
If n = 3 then m1 = 1 and m2 = 2 and (b) follows from Theorem 5.7.
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If n > 3 then m2 ≥ 3. Thus, either 4 or an odd prime divides m2 and so,
by Theorem 5.6, S(β(p)) is not grouplike.

Remark. We have S(β(1/4, 3/4)) ⊂ S(4) = S(β(1/4)) but the inclu-
sion is strict because the first set is not grouplike. On the other hand,
1/4 ∈ S(β(1/4, 3/4)) and so this does not suffice to yield S(β(1/4)) ⊂
S(β(1/4, 3/4)). This is an example which justifies the remark after Corol-
lary 4.2. Notice also that β(1/2) = β(1/4) but 1/2 6∈ S(β(1/4, 3/4)).

Our major result in this section is a strong converse of Theorem 5.6.

Theorem 5.9. Let p = (m1/n, . . . , mN/n) be a probability vector in re-

duced form. The vector p satisfies the Weak Divisibility Condition iff β(p) ∼
β(1/n), i.e. each measure maps to the other. In particular , if p satisfies the

Weak Divisibility Condition, then the clopen values set S(β(p)) equals S(n)
and so it is grouplike.

Proof. By Proposition 5.3, β(1/n) always maps to β(p). If β(p) maps to
β(1/n) then by Theorem 5.6 the Weak Divisibility Condition holds.

It remains to show that if p satisfies the Weak Divisibility Condition
then β(p) maps to β(1/n). By Proposition 4.1 and the remark thereafter it
suffices to find for each prime divisor z of n a positive integer k such that
the vector pk maps onto (1/z, . . . , 1/z). With z fixed we will construct the
map for a suitable k.

Each word of length k has weight a fraction with denominator nk. The
numerator is a monomial of the form me1

1 ...meN

N with exponents e1, . . . , eN

nonnegative integers which sum to k, which we call a monomial of type

e1, . . . , eN . A power monomial has some ei = k and so the remaining ex-
ponents are 0. Otherwise, we call the expression a nonpower monomial.
Observe that two monomials are of the same type exactly when the expo-
nents all agree. So monomials of different types may nonetheless have the
same value. For example, even if m1 = m2 we still regard the power mono-
mials mk

1 and mk
2 to be of different type. With this convention the number

of words of length k with weight n−k times the monomial of type e1 . . . eN is
given by the multinomial coefficient

(
k

e1...eN

)
. We will regard these as differ-

ent monomials of the same type. Recall that for each nonpower monomial
type e1 . . . eN we have

(5.9)

(
k

e1 . . . eN

)
≥ k and z

∣∣∣∣
(

k

e1 . . . eN

)
when k is a power of z.

Eventually, we will choose k to be a large power of z. Our task is to
distribute the Nk monomials of degree k into z different boxes so that each
box has the same weight. All of the power monomials will be put in the first
box. Then the trick is to balance this weight by placing monomials in each
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of the remaining z − 1 boxes in a way which uses up exactly a multiple of
z of each type required. By (5.9) any types which remain occur with some
multiple of z. Hence, we can distribute each of the remaining types equally
among the z boxes.

Our procedure will require a small initial normalization.

Assume that the values are written in nonincreasing order,

(5.10) m1 ≥ m2 ≥ · · · ≥ mN .

We will need to assume that the maximum value is unique, i.e.

(5.11) m1 > m2.

Suppose instead that m1 = m2 and that this common value is associated
with letters a and b of the alphabet A of size N . Consider the probability
vector p2 on the alphabet A × A of size N2. Let B be the alphabet (A ×
A \ {ab, ba}) ∪ {∗}. Let q be the probability vector which assigns weight
2m1m2/n2 to the new symbol ∗ and which otherwise agrees with p2. Clearly,
p2 maps to q. If a prime w does not divide mi and mj then it does not divide
m2

i and m2
j . So the Weak Divisibility Condition for p implies the same for q,

which is also, therefore, in reduced form with denominator n2. Furthermore,
the new maximum value, 2m2

1, occurs uniquely at the symbol ∗. Since z is
a prime factor of n2 our construction below will apply to q. If qk maps to
(1/z, . . . , 1/z) then so does p2k.

Our construction will use the following Successive Divisions Lemma:

Lemma 5.10. Assume that a1, . . . , as are positive integers with greatest

common divisor equal to 1. Let r be a positive integer and for i = 0, . . . , r−1
and u = 2, . . . , s let aui be a positive integer which semi-divides au. For every

integer t there exist integers cui for i = 0, . . . , r− 1 and u = 2, . . . , s and an

integer tr such that

(5.12) t = tr · ar
1 +

r−1∑

i=0

( s∑

u=2

cui · aui

)
ai

1

with 0 ≤ cui < a1 for i = 0, . . . , r − 1 and u = 2, . . . , s.

Proof. For each i, the gcd of a1, a2i, . . . , asi is 1. So any integer can be
written as a sum of integer multiples of these. Hence, there exist integers
c20, . . . , cs0 such that t − ∑

u cu0au0 is congruent to 0 mod a1. Since this
remains true when each cu0 is varied within its congruence class, we can
assume that each cu0 is between 0 and a1 − 1. Now let t1 be the integer
(t−∑

u cu0au0)/a1 and similarly choose cu1 so that t2 = (t1−
∑

u cu1au1)/a1

is an integer. Iterate this procedure r times (or use induction on r).

At last we are ready.
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First, choose d a positive integer such that

(5.13) (m2/m1)
d < (m1 − m2)/(zN2m2

1).

Next, choose j a positive integer such that

(5.14) (j + d)Nmd+1
2 < (m1/m2)

j .

These use conditions (5.10) and (5.11).
Let r = j +d. By the Weak Divisibility Condition gcd(m2, . . . , mN ) = 1.

Apply the Successive Divisions Lemma with t = mj
1 to obtain

(5.15) mj
1 = tr · mr

2 +
r−1∑

i=0

( N∑

u=3

cui · mr−i
u

)
mi

2

with 0 ≤ cui < m2 for i = 0, . . . , r − 1 and u = 3, . . . , N . By (5.10) the
double sum is bounded by rNmr+1

2 . By assumption (5.14) this is smaller

than mj
1. Hence, the remaining coefficient tr is positive as well.

Let M0 = max(tr, m2 − 1). We have written mj
1 as a sum of monomials

of degree j + d each with exponent e1 = 0 and such that each type is used
at most M0 times.

Now let

(5.16) M1 = m1 + M0Nmd
1.

Let k be a power of z such that k > d + j.
By Fermat’s Little Theorem a ≡ az mod z for any integer a. Hence,∑

i mk
i ≡ ∑

i mi = n ≡ 0 mod z. That is,

(5.17) T :=

∑N
i=1 mk

i

z
is a positive integer.

By the Weak Divisibility Condition again the set {m1} ∪ {ma · mb : 2 ≤
a < b ≤ N} has gcd equal to 1.

Let R = k − d. We apply the Successive Divisions Lemma again to this
list to obtain

(5.18) T = tR · mR
1 +

R−1∑

i=0

( ∑

2≤a<b≤N

cabi · mk−i−1
a mb

)
mi

1

with 0 ≤ cabi < m1 for i = 0, . . . , r − 1 and 2 ≤ a < b ≤ N . Notice that
the monomials in the double sum have degree k while the initial term has
degree R = k − d. The double sum is bounded by

N2m1m
d
2

(R−1∑

i=0

mR−i
2 mi

1

)
< N2m1m

d
2m

R
1 (1 − (m2/m1))

−1(5.19)

= mk
1 · (m2/m1)

d · (N2m2
1/(m1 − m2)).
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On the one hand, T > mk
1/z. So by our choice of d in (5.13), the coeffi-

cient tR is positive. On the other hand, T < Nmk
1 implies

(5.20) 0 < tR < Nmd
1.

Recall that we have expressed mj
1 as a sum of monomials of degree j + d

each with exponent e1 = 0 and such that each type is used at most M0

times. By assumption k > d + j and so R > j. When we multiply the sum

by tRmR−j
1 and substitute into (5.18) we achieve our goal: We have written

T as a sum of nonpower monomials of degree k and each monomial is used
at most M1 = Nmd

1M0 + m1 times.
We choose k to be the first power of z which is greater than d + j and

which is also greater than z(z − 1)M1. By (5.9) each nonpower monomial
type occurs in pk at least k times.

Now we proceed as described at the beginning. Place all of the power
monomials in the first box. Then select a list of types of degree k nonpower
monomials which sum to T taking care to use any one type at most M1 times.
Now repeat this same list z(z − 1) times. In each of the z − 1 boxes after
the first, place z copies of the list. Thus, each of these contains monomials
which sum to z · T =

∑N
i=1 mk

i . Furthermore, we have used up the power
monomials and a multiple of z from each nonpower type. The remaining
types each occur as a multiple of z. Hence, each remaining type can be
equally distributed among the z boxes.

Theorem 5.11. Let p = (m1/n, . . . , mN/n) be a probability vector in

reduced form for an alphabet A of size N . Let X = AN. The following

conditions are equivalent :

(i) The vector p satisfies the Divisibility Condition.

(ii) The group H(X, β(p)) acts minimally on X.

(iii) The group H(X, β(p)) acts transitively on X.

(iv) The measure β(p) is good.

(v) The measure β(p) is homeomorphic to β(1/n).

Proof. (v)⇒(iv). The measure β(1/n) is good.
(iv)⇒(iii). See Theorem 2.3(a).
(iii)⇒(ii). Obvious.
(ii)⇒(i). By Corollary 4.9 each mi/n is a unit in the ring Z[1/n]. Suppose

mi/n = a/b with a, b relatively prime. By Proposition 5.3, a semi-divides n.
We obtained a from mi by canceling some common factors with n. Hence,
mi semi-divides n as well. Thus, p satisfies the Divisibility Condition.

(i)⇒(v). By Proposition 5.3 each mi/n is a unit of the ring Z[1/n],
and Z[1/n] = Z[p], the group generated by S(β(p)). By Lemma 5.5 and
Theorem 5.9, S(β(p)) is grouplike. By Theorem 4.4 the measure β(p) is
good. By Proposition 5.3, β(p) is homeomorphic to β(1/n).
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Thus, the question of whether β(p) is good reduces to the easy-to-answer
question of whether p satisfies the Divisibility Condition, in which case
β(p) ≈ β(1/n). The question of whether S(β(p)) is grouplike (or equiv-
alently, whether S(β(p)) = S(n)) is in general somewhat harder. We do
know β(p) ∼ β(1/n) iff p satisfies the Weak Divisibility Condition. Also, if
the Weak Divisibility Condition fails for some odd prime then S(β(p)) is not
grouplike and so it is a proper subset of S(n). The remaining cases are when
the Weak Divisibility Condition fails only for the prime 2, and these may or
may not produce grouplike clopen values sets. For example, Proposition 5.8
implies that S(β(1/3, 2/3)) is grouplike, but S(β(1/5, 4/5)) is not.

The simplest illustrations of good measures generated by the above the-
orem have N = 3 and n = 2q + 1 so that

(5.21) β

(
1

2
,

1

2n
,
2q−1

n

)
≈ β

(
1

2n

)
= β

(
1

2

)
× β

(
1

n

)
.

For example, with q = 8,

(5.22) β

(
1

2
,

1

514
,
128

257

)
≈ β

(
1

514

)
= β

(
1

2

)
× β

(
1

257

)
.

6. Bernoulli measures on 2N. The rational case is almost completely
described by the results of the previous section. Thanks to Dougherty et al .
(2007) and Yingst (2008) the case N = 2 is also very well understood. We
will describe here (mostly without proof) the relevant results.

Throughout this section we will use A = 2 = {0, 1} so that X = 2N.
With p = (r, 1 − r) we have p(0) = r and p(1) = 1 − r.

We have seen that as U varies over the clopen subsets of X, the numbers
β(r, 1 − r)(U) constitute the clopen values set S(β(r, 1 − r)). Instead, if we
fix the clopen set U and vary r then we obtain the restriction to (0, 1) of a
polynomial function P (r) with integer coefficients. For example, if U = [w]
for some word w ∈ 2k then P (r) = rm(1 − r)k−m where m is the number
of 0’s in the word w. Following Austin (2007) we will call these the partition

polynomials.

The cylinder set [w] of length k is the union of the two cylinder sets
[w0] and [w1] of length k + 1. By using this splitting, any clopen set U can
be written as a union of cylinders all of the same length. Thus, a partition
polynomial is exactly a polynomial P with integer coefficients which can be
expressed, for some k ≥ 0, as

(6.1) P (t) =
k∑

i=0

cit
i(1 − t)k−i with 0 ≤ ci ≤

(
k

i

)
.

We will call (6.1) the partition expression of degree k for P .
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By further splitting we can write U as the union of cylinders with com-
mon length any integer greater than k. In polynomial terms this corresponds
to multiplying by 1 = (r + (1 − r))m for some positive m. Thus, P admits
a partition expression of any degree greater than k as well. However, since
the set of polynomials {ti(1 − t)k−i : i = 0, . . . , k} is linearly independent,
the partition expression for any given degree is unique.

Using a theorem of Hausdorff, Dougherty et al. provide an elegant and
useful characterization of partition polynomials:

Theorem 6.1. A polynomial P is a partition polynomial iff it is either

the constant 0 or 1, or a polynomial with integer coefficients such that

(6.2) 0 < t < 1 ⇒ 0 < P (t) < 1.

Proof. See Dougherty et al. (2007), Theorem 6, or Yingst (2008), Theo-
rem 2.6.

Notice that this criterion allows us to recognize a partition polynomial
even when it is not written in the form (6.1). For example, the polynomial
3t(1−t) and its complement 1−3t(1−t) = t2−t(1−t)+(1−t)2 are partition
polynomials with partition expressions of degree 3 obtained by multiplying
through by 1 = t + (1 − t).

Define the group

(6.3) H(2N, β) :=
⋂

0<r<1

H(2N, β(r, 1 − r)).

So H(2N, β) consists of the homeomorphisms which preserve every Bernoulli
measure on 2N. For example, the homeomorphism ξ∗ obtained from a per-
mutation ξ of N lies in H(2N, β).

Clearly, if U is a clopen subset of 2N and h ∈ H(2N, β) then U and h(U)
have the same associated partition polynomials. The converse is true as well.

Theorem 6.2. Let U be a clopen subset of 2N with associated partition

polynomial P .

(a) If V is a clopen subset of 2N with associated partition polynomial P ,
then there exists h ∈ H(2N, β) such that h(V ) = U .

(b) If Q is a polynomial with integer coefficients such that 0 < Q(r) <
P (r) for all r ∈ (0, 1), then there exists a clopen set V contained in

U with associated partition polynomial Q.

Proof. (a) There is a positive integer k large enough that U and V can
each be expressed as a union of cylinders corresponding to words of length k
and P has a partition expression of degree k. The coefficient of ri(1− r)k−i

in P is the number of words in U (and in V ) with exactly i 0’s. Hence, there
is a bijection ̺ on 2k which maps the words of V to those of U and such
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that for every word w ∈ 2k, N(0, w) = N(0, ̺(w)). Define h on 2N = 2k ×2N

by h = ̺ × id2N . Then h is an element of H(2N, β) which maps V to U .

(b) By Theorem 6.1, Q and P − Q are partition polynomials. Choose k
so that P, Q and P −Q all have partition expressions of degree k and so that
U is a union of cylinders of length k. Arguing as in (a) we can select words
among those which are contained in U to get terms which add up to Q.
The associated cylinders define V . For details see Dougherty et al. (2007),
Theorem 7.

From this theorem it follows that we can describe the property of refin-
ability (see Definition 2.10) in terms of partition polynomials.

Proposition 6.3. Let U be a clopen subset of 2N with associated par-

tition polynomial P and let r ∈ (0, 1). The clopen set U is refinable for

the measure β(r, 1 − r) iff whenever Q1, . . . , Qk are partition polynomials

such that P (r) = Q1(r) + · · ·+ Qk(r), then there exist partition polynomials

H1, . . . , Hk such that Hi(r) = Qi(r) for i = 1, . . . , k and P = H1 + · · ·+Hk.

Proof. One direction is clear and the other easily follows from Theo-
rem 6.2(b).

In describing Bernoulli measures on 2N we first consider the case when
r is transcendental.

Theorem 6.4. If 0 < r < 1 is transcendental , then

(6.4) H(2N, β(r, 1 − r)) = H(2N, β).

That is, a homeomorphism which fixes β(r, 1−r) fixes every Bernoulli mea-

sure.

If h ∈ H(2N, β(r, 1 − r)) and x ∈ 2N then

(6.5) N(0, h(x)) = N(0, x), N(1, h(x)) = N(1, x).

That is, if x has only finitely many 0’s (or 1’s) then h(x) has the same finite

number of 0’s (resp. 1’s). In particular , the points 0 and 1 are each fixed by

every element of the group and the action of the group H(2N, β(r, 1− r)) is

not minimal.

The measure β(r, 1 − r) is refinable but not good. S(β(r, 1 − r)) is not

grouplike.

Proof. If P and Q are polynomials with integer coefficients and P (r) =
Q(r) with r transcendental then P = Q. So if two clopen sets have the same
β(r, 1 − r) measure then they have the same partition polynomial and so
have the same β(s, 1− s) measure for all s ∈ (0, 1). Applying this to U and
h(U) for h ∈ H(2N, β(r, 1 − r)) we obtain (6.4). Refinability follows from
Proposition 6.3 using Hi = Qi for all i.
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Now let r ∈ (0, 1), h ∈ H(2N, β(r, 1−r)) and x ∈ 2N. Suppose that x has
exactly k 1’s and that h(x) has more than k 1’s. Permuting to move the 1’s to
the front we can assume that for some M > 0, h maps the cylinder set [1k0M ]
into the cylinder set [1k+1] (compare with the proof of Proposition 4.10).
This implies that there exists a partition polynomial P such that

(1 − r)krM = (1 − r)k+1P (r)

and hence rM = (1 − r)P (r). This equation is not a polynomial identity
since 1 is not a root of tM . Hence, r is algebraic. The contrapositive and the
analogous argument for the 0’s yield (6.5) for r transcendental. Since the
action has fixed points it is not minimal. Since the action is not minimal the
measure is not good.

Since the measure is refinable but not good, S(β(r, 1− r)) is not group-
like, but this is easy to prove directly.

To prove that the clopen values set is not grouplike it suffices to show
that

(6.6) 2min(r, 1 − r) 6∈ S(β(r, 1 − r)).

Observe that 2min(r, 1 − r) < 1.

By interchanging r and 1 − r if necessary, we can assume r < 1 − r and
so min(r, 1− r) = r. We show that 2r ∈ S(β(r, 1− r)) implies r is algebraic.

If there is a clopen set U with measure 2r then let P be the partition
polynomial associated with U . We must have P (1) ∈ {0, 1}. (This follows
from Theorem 6.1 or by noting that P (1) = β(1, 0)(U), where β(1, 0) is
defined as expected, resulting in a single point mass.) Then P (1) 6= 2 ·1 and
the equation P (r) = 2r is not a polynomial identity, so r is algebraic.

Using the transcendental case, we obtain via the Quotient Construction
of Theorem 3.10 a class of examples of nearly—but not quite—good mea-
sures.

Theorem 6.5. With r ∈ (0, 1) transcendental , let µ = β(r, 1 − r)Q be

the measure obtained on X = (2N)Q by applying the Quotient Construction

to the Bernoulli measure β(r, 1 − r). The measure µ is refinable and every

nonempty clopen subset of X is of µ type, but µ is not a good measure.

Proof. By choosing the labeling we can assume that r < 1/2. Otherwise,
replace r by 1 − r. By Theorem 3.10 the measure µ satisfies the Product
and the Quotient Conditions and so by Theorem 3.7 it is refinable. To show
that µ is not good we will show that r/(1 − r) 6∈ S(µ).

Since the Bernoulli measure β(r, 1 − r) satisfies the Product Condition
it follows from (3.15) that S(β(r, 1 − r)Q) is
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(6.7)

{
β(r, 1 − r)(V )

β(r, 1 − r)(U)
: V ⊂ U are clopens in X with U 6= ∅

}

= {1} ∪ {P (r)/Q(r) : P, Q are partition polynomials

with P < Q on (0, 1) and Q 6= 0}.
Since r is transcendental,

(6.8)
r

1 − r
=

PV (r)

PU (r)
⇒ t

1 − t
=

PV (t)

PU (t)

for all t 6= 1. However, PV ≤ PU on (0, 1) implies that the ratio PV (t)/PU (t)
is bounded by 1 as t approaches 1. On the other hand, t/(1− t) approaches
infinity as t approaches 1. This contradiction shows that r/1−r 6∈ S(µ) and
so µ is not good, again by Theorem 3.7.

When p is a positive distribution on a finite alphabet A we can give a
fairly explicit description of the result of the Quotient Construction applied
to the Bernoulli measure β(p).

As described in the proof of (3.15), we need only consider nonempty
clopen subsets U of AN. Such a set can always be described via a nonempty
set B ⊂ An of words of length n for some n = 1, 2, . . . , for coordinates
up to n, and a copy of AN for the coordinates larger than n. The product
distribution pn on An induces a distribution on the set B which we will
denote by pB . The relative measure β(p)U is just the product of the measure
pB on B with a copy of β(p). In the Quotient Construction we use this factor
infinitely often yielding the product β(pB) × β(p).

It follows that the quotient measure is just the product of Bernoulli
measures:

(6.9) β(p)Q =
∏

{β(pB) : ∅ 6= B ⊂ An for n = 1, 2, . . .}.
On the other hand, beginning with r transcendental, the group generated

by S(β(r, 1 − r)) is the polynomial ring Z[r] which is isomorphic to the
polynomial ring Z[t] in the variable t. There is a unique—up to homeo-
morphism—good measure µr with S(µr) = Z[r] ∩ I. By Proposition 3.9,
µr satisfies the Product Condition. Since the polynomial ring has no units
other than ±1, the only divisor of S(µr) is 1. Since every clopen subset is
good, the Two Implies Three Lemma implies that X itself is the only clopen
subset of µr type. A fortiori , the measure µr is not of Bernoulli type.

Equation (6.4) says that β(r, 1 − r) has very few automorphisms when
r is transcendental. We turn now to the much richer algebraic case. If r is
an algebraic number then there exists a polynomial R of minimum degree
among those with integer coefficients having r as a root and with the greatest
common divisor of the coefficients equal to 1. By the Euclidean Algorithm,
R divides any rational polynomial with root r. Hence, R is uniquely de-
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fined up to multiplication by ±1. Ignoring the sign ambiguity, we call R the
minimal polynomial for r.

In Yingst (2008) there is a useful description of the clopen values set in
the algebraic case.

Theorem 6.6. If r is an algebraic number in (0, 1), and R is its minimal

polynomial , then S(β(r, 1 − r)) is the set of all values Q(r) where Q varies

over the integer polynomials satisfying Q(0) ≡ 0 or 1 modulo R(0), Q(1) ≡ 0
or 1 modulo R(1), and 0 < Q(r̃) < 1 for each root r̃ of R in (0, 1).

Proof. See Yingst (2008), Corollary 6.12.

Remark. Notice that if R(0), R(1) ∈ {−2,−1, 1, 2} then the congruence
requirements hold for any integer polynomial Q.

Theorem 6.7. If r is an algebraic number in (0, 1), and R is its minimal

polynomial , then S(β(r, 1 − r)) is grouplike iff R(0), R(1) ∈ {−2,−1, 1, 2}
and , in addition, r is the only root of R in (0, 1).

Proof. See Yingst (2008), Corollary 6.13. Notice that sufficiency of these
conditions for grouplikeness follows easily from Theorem 6.6 and the Remark
thereafter.

Theorem 6.8. If r is an algebraic number in (0, 1), and R is its minimal

polynomial , then the following conditions are equivalent :

(1) The measure β(r, 1 − r) is refinable.

(2) r and 1 − r are units in the polynomial ring Z[r].

(3) 1/(r(1 − r)) is an algebraic integer.

(4) The automorphism group H(2N, β(r, 1 − r)) acts minimally on 2N.

(5) The automorphism group H(2N, β(r, 1 − r)) acts transitively on 2N.

(6) R(0), R(1) ∈ {−1, 1}.
Proof. (5)⇒(4). Obvious.

(4)⇒(2). Use Corollary 4.9, noting that Z[r] = Z[r, 1 − r].

(2)⇔(3). See Corollary 4.5.

(2)⇒(6). If r and 1−r are both units, then r(1−r) is a unit. Hence, there
is some polynomial Q with integer coefficients so that r(1 − r)Q(r) = 1. If
S(t) = 1−t(1−t)Q(t), then r is a root of S and so R divides S with quotient
an integer polynomial by Gauss’ Lemma. Hence, R(0) divides S(0) = 1 and
R(1) divides S(1) = 1. Since R(0) and R(1) are integers they are each equal
to ±1.

(6)⇒(1). See Dougherty et al. (2007), Theorem 10, or Yingst (2008),
Theorem 6.4.

(1)⇒(5). By Theorem 4.11, it suffices to show that for sufficiently large N,
the numbers 1−r−rN and r−(1−r)N are in S(β(r, 1−r)). By Theorem 6.6
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and the Remark thereafter, it suffices to choose N large enough that

(6.10) 1 − r̃ − r̃N > 0 and r̃ − (1 − r̃)N > 0

at each of the (finitely many) roots of R in (0, 1).

Corollary 6.9. If r is an algebraic number in (0, 1), and R is its mini-

mal polynomial , then β(r, 1−r) is a good measure iff {R(0), R(1)} ⊂ {−1, 1}
and , in addition, r is the only root of R in (0, 1).

Proof. By Corollary 2.12 a measure is good iff it is both refinable and has
a grouplike clopen values set. So the result follows from the characterizations
in Theorems 6.7 and 6.8. See also Dougherty et al. (2007), Theorem 15.

In Dougherty et al. (2007) the authors observe that

(6.11) R(t) = 14t6 − 21t4 + 8t2 + t − 1

defines an irreducible polynomial with R(0) = −1, R(1) = 1 and with three
roots in the interval (0, 1). If r is any of these roots then β(r, 1−r) is refinable
but not good. Hence, S(β(r, 1−r)) is not grouplike but nonetheless the group
H(2N, β(r, 1 − r)) acts transitively on 2N.

Finally, the rational case with N = 2 is rather trivial. The only good mea-
sure is the Haar measure β(1/2). Both β(1/3, 2/3) and its complementary
isomorph β(2/3, 1/3) have grouplike clopen values sets but do not satisfy
the Divisibility Condition and so are not refinable. By Proposition 5.7 the
rest are not refinable and do not have grouplike clopen values sets.
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