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Abstract. A subset S of a topological dynamical system (X, f) containing at least
two points is called a scrambled set if for any x, y ∈ S with x 6= y one has

lim inf
n→∞

d(fn(x), fn(y)) = 0 and lim sup
n→∞

d(fn(x), fn(y)) > 0,

d being the metric on X. The system (X, f) is called Li–Yorke chaotic if it has an un-
countable scrambled set.

These notions were developed in the context of interval maps, in which the existence
of a two-point scrambled set implies Li–Yorke chaos and many other chaotic properties.
In the present paper we address several questions about scrambled sets in the context of
topological dynamics. There the assumption of Li–Yorke chaos, and also stronger ones like
the existence of a residual scrambled set, or the fact that X itself is a scrambled set (in
these cases the system is called residually scrambled or completely scrambled respectively),
are not so highly significant. But they still provide valuable information.

First, the following question arises naturally: is it true in general that a Li–Yorke
chaotic system has a Cantor scrambled set, at least when the phase space is compact?
This question is not answered completely but the answer is known to be yes when the
system is weakly mixing or Devaney chaotic or has positive entropy, all properties implying
Li–Yorke chaos; we show that the same is true for symbolic systems and systems without
asymptotic pairs, which may not be Li–Yorke chaotic. More generally, there are severe
restrictions on Li–Yorke chaotic dynamical systems without a Cantor scrambled set, if
they exist.

A second set of questions concerns the size of scrambled sets inside the space X itself.
For which dynamical systems (X, f) do there exist first category, or second category, or
residual scrambled sets, or a scrambled set which is equal to the whole space X?
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While reviewing existing results, we give examples of systems on arcwise connected
continua in the plane having maximal scrambled sets with any prescribed cardinalities,
in particular systems having at most finite or countable scrambled sets. We also give
examples of Li–Yorke chaotic systems with at most first category scrambled sets. It is
proved that minimal compact systems, graph maps and a large class of symbolic systems
containing subshifts of finite type are never residually scrambled; assuming the Continuum
Hypothesis, weakly mixing systems are shown to have second category scrambled sets.
Various examples of residually scrambled systems are constructed. It is shown that for any
minimal distal system there exists a non-disjoint completely scrambled system. Finally,
various other questions are solved. For instance, a completely scrambled system may have
a factor without any scrambled set, and a triangular map may have a scrambled set with
non-empty interior.
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1. INTRODUCTION

There have been several attempts to give a mathematical definition of
chaos. Let us only mention those of Li and Yorke in 1975 [36] and Devaney in
1988 [16], because we are addressing the first, while the second is mentioned
several times. They are not the only ones even in topological dynamics; of
course specialists from other fields have their own, different, views of chaos.
If there is a possibility of describing chaos mathematically we doubt that
this can be done in a few lines. Nevertheless, the definitions we quote, and
the ones we do not as well, have been very stimulating and still are, because
they single out properties that are relevant in their respective fields.

The Li–Yorke definition of chaos [36] consists in the existence of a so-
called scrambled set with uncountable cardinality. Scrambled sets are the
central topic of this article. While reviewing existing results about them
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and introducing new ones, we attempt to understand their significance, and
particularly that of their size, in the field of topological dynamics.

By a (discrete) dynamical system we mean a pair (X, f) where X is
endowed with the metric d and f : X → X is a continuous map. Most of
the time we assume that X is compact or at least Polish; in any case this
is supposed to be stated explicitly. A subset S of X containing at least two
points is called a scrambled set of the system (or of the map f) if for any
x, y ∈ S with x 6= y,

(1.1) lim inf
n→∞

d(fn(x), fn(y)) = 0

and

(1.2) lim sup
n→∞

d(fn(x), fn(y)) > 0.

The origin of this notion is in Li and Yorke’s article [36], where S is addition-
ally assumed to be uncountable and to satisfy lim supn→∞ d(fn(x), fn(p))
> 0 for any x ∈ S and any periodic point p (i.e., no x ∈ S is asymptoti-

cally periodic). However, it is easy to see that a scrambled set contains at
most one asymptotically periodic point, which makes the extra condition
unnecessary.

Note that we require that a scrambled set contain at least two points,
though for some authors a singleton is also a scrambled set. The system (or
the map f) is called Li–Yorke chaotic if it has an uncountable scrambled
set. This definition, implicitly contained in [36] in the setting of interval
dynamical systems, may look strange and was criticized. The first objection
is that chaos in this sense may not be “physically” observable. Still, Li and
Yorke’s idea for defining chaos makes sense at least on the interval because
it turns out to be the minimal requirement for a continuous self-map of an
interval to have “complex” behaviour: in [44] Smı́tal proved that any interval
map has one of the following two mutually exclusive properties:

(i) f is Li–Yorke chaotic.
(ii) All trajectories of f are approximable by cycles, i.e., for any x and

ε > 0 there is a periodic point p with lim supn→∞ |fn(x)−fn(p)| < ε.

The second, more formal, objection against the definition of Li–Yorke
chaos is: “why uncountable and not, say, infinite or topologically large or
something else?” Again, at least on the interval the objection fails, since
later Kuchta and Smı́tal proved that if an interval map has a scrambled set
with two points then it also has an uncountable, in fact Cantor, scrambled
set [33]. Nevertheless, for general systems the existence of a scrambled set
does not imply the existence of an uncountable scrambled set (see, e.g.,
[18, 8]). This fact is a good reason for studying the size of scrambled sets
for transformations with various properties acting on various spaces.



296 F. BLANCHARD ET AL.

So, remember that

a scrambled set contains at least two points and is defined
by (1.1) and (1.2); Li–Yorke chaos is defined as the existence
of an uncountable scrambled set.

Regardless of whether one agrees with Li and Yorke’s definition of chaos, the
size of scrambled sets of a system is definitely one of the many tools for in-
vestigating the structure of the system and perhaps evaluate its complexity.
The size can be considered in the sense of cardinality or in the topological
sense or in the measure-theoretic sense; in this article we adopt the first two
points of view only.

Results on the cardinality of scrambled sets are presented in Section 4.
The main aim of the present paper is to study the size of uncountable
scrambled sets in metric, most of the time compact, spaces from the topo-

logical point of view. To explain the situation from which we start, re-
call known results. The research in this direction was started by Bruck-
ner and Hu [12]. They showed that the tent map has a scrambled set of
Borel type Gδσ with cardinality c (cardinality of the continuum) in ev-
ery interval. Furthermore, if f is a continuous self-map of I = [0, 1] with
f2 topologically transitive then, under the Continuum Hypothesis, f has
a scrambled set which is of second category in every subinterval of I. Fi-
nally, if a scrambled set of an interval map has the Baire property then it
is first category. This implies that interval maps have no residual scram-
bled sets; their scrambled sets cannot even be residual in a subinterval
of I—Bruckner and Hu in fact considered only scrambled sets for which
lim sup = 1 in (1.2), but in [22] Gedeon extended that result to all scram-
bled sets. Recently Mai proved that on finite graphs scrambled sets have
empty interior [38].

In a different direction, as far as we know, whenever a system has been
shown to be Li–Yorke chaotic the proof implied the existence of a Cantor
or Mycielski scrambled set. A Mycielski set is a countable union of Can-
tor sets. The extra significance of a Mycielski set is that it may be dense
in X, whereas a Cantor proper subset cannot; for more on this matter see
[1]. It was shown by Kan [30] that Li–Yorke chaotic interval maps always
have a Cantor scrambled set; this result was strengthened in [33]. Apply-
ing topological theorems of Kuratowski and Mycielski [41], Iwanik proved
that when a Polish system is weakly mixing it has a dense Mycielski scram-
bled set [28]; later Huang and Ye obtained Cantor scrambled sets for com-
pact scattering or Devaney-chaotic systems [26], and Blanchard, Glasner,
Kolyada and Maass showed that there are also Cantor scrambled sets in
compact positive-entropy systems [9].

This suggests two fields of investigation.
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First, is it true in general that a Li–Yorke chaotic system has a Cantor
scrambled set, at least when the phase space is compact or Polish? Without
answering this question completely we show that, in addition to the above-
mentioned cases, this is true in several other classes, for instance among
symbolic systems, and that there are severe restrictions on Li–Yorke chaotic
Polish dynamical systems that do not possess this property.

The second set of questions concerns the size of scrambled sets inside
the space X itself. For which dynamical systems (X, f) do there exist first
category, or second category, or residual scrambled sets, or a scrambled set
which is equal to the whole space X? In the last two cases the system
is called residually scrambled and completely scrambled respectively. When
saying that a system is scrambled we simply have in mind that it has at
least one scrambled pair.

We already mentioned some negative results in the case of interval maps.
On the other hand, there are various examples of completely scrambled sys-
tems. Ceder [13] constructed a discontinuous map f : I → I having the
whole compact interval I as a scrambled set. Mai [37] then showed that
on X = (0, 1)n, n ≥ 2, one can construct a completely scrambled homeo-
morphism; he gave further examples (replacing (0, 1) by (0,∞) or (−∞,∞)
and “homeomorphism” by “C∞ diffeomorphism”, now also including the
case n = 1) in [38]. Finally, Huang and Ye [25, 27] showed that many met-
ric compacta can be equipped with completely scrambled homeomorphisms
and that the resulting dynamical systems may even be weakly mixing.

There is another interesting way of addressing the second set of questions,
by asking on which topological spaces one can find transformations having
only finite, or at most first category, scrambled sets, etc. The article mentions
or proves many results of this kind.

The main body of results concerns the second field of research. A met-
ric system which is an extension of a distal system (Y, g) with Y perfect is
shown to have at most first category scrambled sets; examples are given. We
establish sufficient conditions for some compact systems not to be residually
scrambled: for instance minimal systems, graphs maps and a large class of
symbolic systems are never residually scrambled; assuming the Continuum
Hypothesis we additionally prove that Polish weakly mixing systems have
second category scrambled sets. Various examples of residually scrambled
systems, some of them strongly mixing or with positive entropy, some with
one fixed point and some with two, are given. It turns out that positive-
entropy systems may have first category scrambled sets only, or second cat-
egory but no residual scrambled sets, or residual scrambled sets (by [10] a
completely scrambled system always has zero entropy).

A superficial glance at their definition suggests that the structure of
completely scrambled systems ought to be altogether different from that of
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minimal distal systems. But this is not true. We show that for any compact
minimal distal system one can construct a non-disjoint completely scrambled
system.

In the end we address various questions concerning factors and exten-
sions. The existence of residual scrambled sets, or the fact of being com-
pletely scrambled, are conjugacy invariants, but are they preserved under
factor maps or extensions? It is easy to find counter-examples in the case of
extensions, but what about almost one-to-one extensions? Here both ques-
tions are answered in the negative. In particular we construct a completely
scrambled system having a perfect factor without scrambled sets; this proves
simultaneously that neither the property of being completely scrambled nor
that of having residual scrambled sets are preserved under factor maps.

A related question is also answered. It is proved in [9] that if a compact
dynamical system has a scrambled set then so does any extension. We show
that this property of dynamical systems is not truly pair-wise, that is, a
scrambled pair may have no scrambled preimage in the extension. Last,
on what kinds of spaces do there exist maps with scrambled sets having
non-empty interior? We already know that this never happens on finite
graphs [38] and in particular on the interval but we give an example of a
triangular map in the square, that is, an interval extension of an interval
map, having this property.

The question of the measure of scrambled sets is out of the scope of the
present paper. Let us recall only that the first result on this topic was that
the standard tent map has no scrambled set with positive Lebesgue measure
but, under the Continuum Hypothesis, it has a scrambled set with full outer
Lebesgue measure [43]. For a survey of what is known on the Lebesgue
measure of scrambled sets of continuous maps I → I (and In → In) where
I is a real compact interval, we refer the reader to the survey paper [6].

In the literature there are also many results concerning not scrambled
sets in general but scrambled pairs. Reviewing them all would have drawn
us too far. We just mention two relevant notions, generic chaos and strong
scrambled pairs, without telling much about them.

Previous results and those that are proved here leave a host of questions
open, some of them not even mentioned in this article. Still, we may risk a
very tentative conclusion. First, a system that is not Li–Yorke chaotic can
hardly be called chaotic; this is not our discovery, but just a consequence
of previous research. So, it is important to know whether a system has an
uncountable scrambled set.

On the other hand, when a system is Li–Yorke chaotic the size of its
scrambled sets is clearly an important feature but does not give very pre-
cise information about its dynamics. When addressing Li–Yorke chaos and
scrambled sets for the first time one may have the impression that the big-
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ger its scrambled sets the more chaotic the system is. This is not completely
false but it is not true either. Completely scrambled systems have zero en-
tropy [10]. By Proposition 57 many scrambled systems are not disjoint from
all minimal distal systems. Systems like the tent map or mixing subshifts of
finite type are usually considered to be among the most chaotic ones, but
they are not residually scrambled.

The article is divided into eight sections. After some background notions
and preliminary results in Section 2, each of the sections covers one of the
points that have been emphasised above. Each one begins with an outline
of its topic; after that we develop whatever original results we have found
and finish with questions, when there are any (in Sections 2 and 6 questions
are found at the end of subsections).

The existence of Cantor scrambled sets is addressed in Section 3. Sec-
tion 4 deals with possible sets of cardinalities of all maximal scrambled sets
of a system and develops, among others, examples of systems with only fi-
nite or countable scrambled sets. Section 5 deals with systems with only
first category scrambled sets. The subject of Section 6 is systems without
residual scrambled sets. Section 7 is devoted to systems having residual
scrambled sets, among them completely scrambled systems. Finally, results
about factors and extensions, preimages of scrambled pairs, and an example
of a triangular map having a scrambled set with non-empty interior, are
gathered in Section 8.

2. PRELIMINARIES AND FIRST OBSERVATIONS

Throughout the paper by a dynamical system we mean a pair (X, f)
where X is equipped with a metric d and f is a continuous map X → X.
Whenever X is additionally required to be Polish or compact, this is explic-
itly mentioned.

The notions of distal, proximal, scrambled and asymptotic pairs, together
with derived properties, are used throughout the article. Since they are
closely related it is natural to introduce them simultaneously.

In the introduction two properties of a pair of points (x, y) in a dy-
namical system (X, f) were considered: lim infn→∞ d(fn(x), fn(y)) = 0 and
lim supn→∞ d(fn(x), fn(y)) > 0; when both are simultaneously true the
pair (x, y) is said to be scrambled. In the literature scrambled pairs are of-
ten called Li–Yorke pairs. Since a scrambled pair is just a scrambled set of
cardinality two we believe that it is simpler—and also more descriptive—to
call them scrambled pairs. The set of scrambled pairs of (X, f) is denoted by
SR(X, f). The notation corresponds to the fact that SR(X, f) is a relation
in X2; we call it the scrambled relation. Put ∆ = {(x, x) : x ∈ X} ⊆ X×X.
When SR(X, f) = X \ ∆ the system is completely scrambled.
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Other related families of pairs were studied in topological dynamics be-
fore the interest for scrambled pairs was aroused. A pair (x, y) is called distal

if
lim inf
n→∞

d(fn(x), fn(y)) > 0;

if this property holds for all x, y ∈ X, x 6= y, the system (X, f) is called
distal. On the contrary, a proximal pair (x, y) is one such that

lim inf
n→∞

d(fn(x), fn(y)) = 0;

the set of proximal pairs of (X, f) is denoted by PR(X, f), and a system for
which all pairs are proximal is called proximal. Scrambled pairs are proximal;
proximal pairs that are not scrambled, that is, pairs such that

lim
n→∞

d(fn(x), fn(y)) = 0

are called asymptotic, and the set of all such pairs is denoted by AR(X, f).
The asymptotic relation is an equivalence relation. One can thus consider the
asymptotic equivalence class W s(x) of a point x: W s(x) = {y ∈ X : (x, y) ∈
AR(X, f)}. Since ∆ ⊆ AR(X, f), asymptotic pairs (x, y) with x 6= y are
called proper asymptotic.

For δ > 0, a pair (x, y) ∈ X2 is said to be δ-scrambled if

lim inf
n→∞

d(fn(x), fn(y)) = 0 and lim sup
n→∞

d(fn(x), fn(y)) ≥ δ.

By definition a scrambled pair is δ-scrambled for some δ > 0. A set S ⊆ X
with at least two points is called δ-scrambled if any pair (x, y) ∈ S \ ∆ is
δ-scrambled. A system is said to be δ-Li–Yorke chaotic if it contains an
uncountable δ-scrambled set. The situation for scrambled sets is not the
same as that for pairs, since a scrambled set is not necessarily δ-scrambled
for any δ > 0.

Some global properties of dynamical systems are especially significant
when X is compact, but they make sense in the non-compact case too. The
following ones are used in this paper, some of them repeatedly. (X, f) is said
to be

• equicontinuous if for every ε > 0 there exists δ > 0 such that d(x, y)
< δ implies that d(fn(x), fn(y)) < ε for all n > 0;

• minimal if X contains no proper closed f -invariant subset;
• transitive if whenever U, V ⊆ X are non-empty open there exists n > 0

such that U ∩ T−nV 6= ∅;
• weakly mixing when its Cartesian square (X ×X, T ×T ) is transitive;
• strongly mixing if whenever U, V ⊆ X are non-empty open there exists

n0 > 0 such that n ≥ n0 implies U ∩ T−nV 6= ∅;
• uniquely ergodic when there is a unique f -invariant Borel probability

measure on X.
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If the orbit of a point x ∈ X is dense in X the point x is called a tran-

sitive point. Transitive metric systems may not contain transitive points.
Nevertheless, if the system is separable and second category then transi-
tivity implies that transitive points form a dense Gδ set. For a surjective
continuous map on a compact metric space equicontinuity implies distality.

2.1. Basic properties of scrambled sets. Let S be a scrambled set of
a dynamical system (X, f). Then the following elementary properties hold
(the proofs are left to the reader):

(S-1) S contains at most one asymptotically periodic point.
(S-2) f |S is injective.
(S-3) For any n > 0, fn(S) is also a scrambled set of f .
(S-4) If f maps a set S∗ ⊆ X injectively into S then S∗ is also a scram-

bled set of f , provided it has at least two points.
(S-5) If f is uniformly continuous, in particular, if X is compact, then S

is also a scrambled set of fn for any n > 0. Moreover, given δ > 0
there are δn > 0, n = 0, 1, . . . , such that if S is δ-scrambled for f
then it is δn-scrambled for fn.

(S-6) Let (X, f) and (Y, g) be topologically conjugate with a conjugating
homeomorphism h. Let S ⊆ X and T ⊆ Y with h(S) = T . If h is a
uniform homeomorphism (in particular if the spaces are compact)
then S is a scrambled set of f if and only if T is a scrambled
set of g. Moreover, given δ > 0 there is δ′ > 0 such that if S is
δ-scrambled for f then T is δ′-scrambled for g.

(S-7) If X is compact then S intersects at most one minimal set of f .
(S-8) The union of any increasing sequence of scrambled sets is a scram-

bled set. The same is true for “δ-scrambled” instead of “scram-
bled”, provided δ > 0 is fixed.

Note that the existence of a scrambled set is not an invariant of topologi-
cal conjugacy if the phase spaces are not compact, as in Example 6. In other
words, in (S-6) it is important that h be uniformly continuous. Similarly,
one can easily show that in (S-5) the uniform continuity of f is essential (for
a continuous map f on the real line one may have |f2k(x) − f2k(y)| = 1,
k = 0, 1, . . . , for some x, y while limk→∞ |f2k+1(x) − f2k+1(y)| = 0; hence
{x, y} is a scrambled set for f but not for f2).

In (S-8), δ must be fixed. For instance, by [25] there is an infinite count-
able compact completely scrambled system. It is not δ-scrambled for any
δ > 0 by Proposition 5 below though it is the union of an increasing sequence
of finite sets X1 ⊆ X2 ⊆ · · · and, due to the finiteness, Xn is δn-scrambled
for some δn > 0.
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2.2. Maximal scrambled sets. Since every subset of a scrambled set
is scrambled when not a singleton, one is naturally interested in maximal
scrambled sets with respect to inclusion. Every scrambled set is a subset of
a maximal scrambled set; every δ-scrambled set is a subset of a maximal
δ-scrambled set.

A completely scrambled dynamical system has a unique maximal scram-
bled set, namely X itself. On the other hand, there are systems whose family
of maximal scrambled sets has the same cardinality as the family of all sub-
sets of the phase space. For instance

Proposition 1. Let (X, f) be a dynamical system with cardX = κ.

Suppose it has a scrambled set S with card S = κ such that the set {y ∈
f(S) : card f−1(y) ≥ 2} has cardinality κ. Then (X, f) has 2κ maximal

scrambled sets with cardinality κ. When S is δ-scrambled they are maximal

δ-scrambled sets.

Proof. Assume that S is maximal. Since f is injective on S, the set
f(S) has cardinality κ. The family {f−1(y) : y ∈ f(S)} is a decomposition
of f−1(f(S)) into κ non-empty sets. Obviously, any choice set for this de-
composition (any set containing a unique point from each of these sets) is
a scrambled set of f with cardinality κ (δ-scrambled if S is δ-scrambled).
Moreover, it is a maximal scrambled (δ-scrambled) set since S is maximal.
By the assumption, κ of the sets f−1(y), y ∈ f(S), contain at least two
points, and so there are at least 2κ such choice sets. On the other hand,
there are only 2κ subsets of X.

For the tent map f(x) = 1− |2x− 1|, x ∈ I, this implies the existence of
2c maximal δ-scrambled sets with cardinality c because it has a δ-scrambled
set with cardinality c ([30], [33]) and every point different from 1 has two
preimages. Here is another example. Let (B, ϕ) be a completely scrambled
system with cardinality κ and X = B × {0, 1}. Define f : X → X by
f(x, y) = (ϕ(x), 1). The set B × {0} is scrambled and we can apply Propo-
sition 1 to get the existence of 2κ maximal scrambled sets. Here is their list:
(A × {0}) ∪ ((B \ A) × {1}) for any A ⊆ B.

The tent map example shows that

(S-9) Two different maximal scrambled (or δ-scrambled) sets may not
be disjoint.

(S-10) A maximal scrambled (or δ-scrambled) set may not be analytic.

To get (S-10), one can simply use the fact that in a Polish space with car-
dinality c (say, in I) there are only c analytic sets. Here is another way to
check that the tent map has non-analytic maximal scrambled sets. As shown
under the Continuum Hypothesis in [43], it has a scrambled set S with outer
Lebesgue measure 1; on the other hand, every Lebesgue measurable scram-
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bled set of the tent map has measure 0. Thus a maximal scrambled set Smax

containing S is not measurable. Since analytic sets are universally measur-
able, Smax is not analytic.

It is easy to find scrambled pairs both in the one-sided and two-sided
full shifts. Later we use some elementary facts on maximal scrambled sets
of the full shift over two symbols.

Proposition 2. For the full shift over two symbols there is δ > 0 such

that all scrambled sets are δ-scrambled and every maximal scrambled set has

cardinality c.

Proof. Consider the one-sided shift (Σ2, σ); the proof for the two-sided
shift is similar. The δ-scrambledness is obvious from the definition of the
metric in Σ2: if x̄, ȳ ∈ Σ2 are not asymptotic then there are infinitely many
integers i such that xi 6= yi. To prove the claim on the cardinalities, let S
be a scrambled set of (Σ2, σ) with cardS < c. We construct a scrambled set
S∗ with S ⊆ S∗ and cardS∗ = c; since cardΣ2 = c, the result follows.

Fix a sequence N = (ni)
∞
i=0 of non-negative integers with ni ր +∞ and

ni+1 − ni → +∞. Write ā = b̄ mod N if aj = bj for all j /∈ N . Note that if
x̄, ȳ ∈ Σ2 are proximal and ū = x̄ mod N , v̄ = ȳ mod N then ū, v̄ are also
proximal.

Two elements x̄, ȳ ∈ Σ2 are asymptotic if and only if they coincide from
some coordinate on.Thus each asymptotic equivalence classW s(x) is (infinite)
countable, so there are c such classes. Call them asymptotic cells for short.

For every s̄ ∈ S put s̄|N = sn0sn1sn2 . . . . Let A be a choice set for the
family of all those asymptotic cells which do not contain any of the elements
s̄|N , s̄ ∈ S (i.e., A contains just one element from each such asymptotic cell
and no other elements). Since there are c asymptotic cells and cardS < c,
we get card A = c. Choose one element t̄ ∈ S and for every ā ∈ A denote
by t̄ā→N the element from Σ2 obtained from t̄ by replacing its n0, n1, . . . -
coordinates by the coordinates of ā (i.e., the jth coordinate of t̄ā→N is ai

if j = ni and tj otherwise). Now put S∗ = S ∪ {t̄ā→N : ā ∈ A}. Then
cardS∗ = c and it is easy to check that S∗ is scrambled.

By Propositions 2 and 1 there are 2c maximal scrambled sets in the one-
sided shift and so most of them are non-analytic. The same can also be easily
shown for the two-sided full shift (if S is a maximal scrambled set for the one-
sided shift then for instance {. . . s0s0s0ṡ0s1s2 · · · : s0s1s2 · · · ∈ S} is a maxi-
mal scrambled set for the two-sided shift). In Section 4 we use the following

Example 3. Let f : I → I be defined by

f(x) =







3x, x ∈ [0, 1/3],

1, x ∈ [1/3, 2/3],

3 − 3x, x ∈ [2/3, 1],
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respectively. The set C of all x ∈ I whose trajectories never enter the open
plateau (1/3, 2/3) is an f -invariant Cantor set. The system (C, f |C) is topo-
logically conjugate to the full one-sided shift. On the other hand, every point
from I \C is eventually mapped to the fixed point 0 and so every scrambled
set contains at most one such point and, if this is the case, if we replace it by
the point 0 ∈ C we get again a scrambled set (with the same cardinality),
now a subset of C. In view of Proposition 2 and (S-6) the system (I, f) has
scrambled sets, there is δ > 0 such that every scrambled set is δ-scrambled,
and every maximal scrambled set has cardinality c. Notice that δ = 1/3
(= the length of the plateau) works.

Question. Find conditions under which a compact system has all max-
imal scrambled sets of the same cardinality.

2.3. Scrambled systems versus δ-scrambled systems. The differ-
ences between scrambled sets and δ-scrambled sets, Li–Yorke chaos and
δ-Li–Yorke chaos, are significant. For the tent map and the full shift we
already know that there exist 2c maximal δ-scrambled sets for some δ > 0.
The same is true for any compact weakly mixing or Devaney chaotic or
positive-entropy system, as can be seen in the proofs of [28, Theorem 1],
[26, Theorem 4.1], [9, Theorems 2.1 and 2.3].

On the other hand, Floyd’s minimal system (see e.g. [5, pp. 24–27]) is
Li–Yorke chaotic but not δ-Li–Yorke chaotic for any δ > 0. Another family
of examples illustrates the difference between scrambled and δ-scrambled
sets. Mai [38], and later Huang and Ye [25], showed that various spaces,
among them compact ones, admit completely scrambled homeomorphisms.
The resulting dynamical systems can be δ-Li–Yorke chaotic, but the maximal
δ-scrambled sets are always smaller than the set X. Before proving this in
Proposition 5, one must recall some results about proximality.

For a dynamical system (X, f), U ⊆ X and y ∈ X let N(y, U) = {n ∈ N :
fn(y) ∈ U} be the set of times at which the orbit of y hits U . A subset of
N is called thick when it contains arbitrarily long intervals. By B(q, ε) we
denote the open ball with radius ε centred at q.

Proposition 4. Let (X, f) be a compact dynamical system.

(1) If (x, f(x)) ∈ PR(X, f) for some x ∈ X, there is a fixed point in X.

(2) (X, f) is proximal if and only if X contains a fixed point q which is

its unique minimal subsystem. In this case the set N(x, B(q, ε)) is

thick whenever x ∈ X and ε > 0.

Part (1) is easy. The proof of (2) can be found in [4].

Proposition 5. Let (X, f) be a compact dynamical system. Then X is

not a δ-scrambled set for any δ > 0.
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Proof. Suppose that X is δ-scrambled for some δ > 0. Then by the defi-
nition of scrambled sets X has at least two points and (X, f) is completely
scrambled, hence proximal. By Proposition 4, X contains a fixed point q
and for any x ∈ X and any ε > 0 the set N(x, B(q, ε)) is thick.

Set U = B(q, δ/2) and let y ∈ X with y 6= q. We know that N(y, U) =
{n ∈ N : fn(y) ∈ U} is thick but since lim supn→∞ d(fn(y), q) ≥ δ the
set N(y, U c) is infinite. This implies that there exists a sequence {lk} ⊆
N(y, U c) such that {lk + 1, lk + 2, . . . , lk + k} ⊆ N(y, U). Without loss of
generality assume that limk→∞ f lk(y) = y0. Then obviously y0 ∈ U c, while
fn(y0) = limk→∞ f lk+n(y) ∈ cl(U), and so d(fn(y0), q) ≤ δ/2 for each n ≥ 1.
Thus

lim sup
n→∞

d(fn(y0), f
n(q)) = lim sup

n→∞
d(fn(y0), q) ≤ δ/2 < δ,

so (y0, q) is not δ-scrambled, which contradicts the initial assumption.

Example 6. The assumption of compactness in Proposition 5 is essen-
tial. There is a continuous self-map f : R → R such that R is a δ-scrambled
set for any δ > 0. Let {ai}i∈Z satisfy:

(1) · · · < a−2 < a−1 < a0 < a1 < a2 < · · · (set Ij = [aj , aj+1] for j ∈ Z).
(2) limi→−∞ ai = −∞ and limi→∞ ai = +∞.
(3) In the sequence I0, I1, I2, . . . there are arbitrarily long intervals, as

well as, for any n ∈ N, a block of n consecutive intervals whose total
length is less than 1/n.

Let f : R → R be the map which sends aj to aj+1 for any j ∈ Z and is
linear on each Ij . Then f is an increasing homeomorphism and it is not
hard to verify that for any x 6= y we have lim infn→∞ |fn(x) − fn(y)| = 0
and lim supn→∞ |fn(x) − fn(y)| = +∞. Hence R is a δ-scrambled set of
(R, f) for any δ > 0. Notice that the system is topologically conjugate to
the translation x 7→ x + 1 which has no scrambled sets at all.

2.4. New scrambled systems from old ones via retraction. It
is probably hopeless to try to characterize all spaces that admit maps with
scrambled sets or Li–Yorke chaotic maps. However, the question is significant
and what follows is worth mentioning.

Let (J, f) be a compact system with a scrambled set S such that J is an
absolute retract (e.g., an n-dimensional closed cube In, the Hilbert cube or a
dendrite). Assume that a compact metric space X contains a homeomorphic
copy J∗ of J and denote by h the homeomorphism J → J∗. Then X admits
a continuous self-map g for which S∗ = h(S) is a scrambled set. In fact, it
is sufficient to take g = (h ◦ f ◦ h−1) ◦ r where r : X → J∗ is a retraction.
Since h is a uniform homeomorphism, the set S∗ is really a scrambled set
for g (δ′-scrambled if S is δ-scrambled for f).
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In particular, taking into account Example 59, a triangular map in the
square with an open scrambled set, we can see that the following is true: if a
compact metric space X contains a homeomorphic copy U of an open two-
dimensional disk such that U is an open set in X, there exists a continuous
self-map g of X such that (X, g) has an open scrambled set ∅ 6= V ⊆ U . For
instance, all surfaces admit systems with open scrambled sets. This should
also work in dimensions greater than 2 since one can probably find analogues
of Example 59 in higher dimensions.

3. EXISTENCE OF CANTOR SCRAMBLED SETS

In many situations a system with an uncountable scrambled set actually
contains a Cantor scrambled set. This is the case for all interval maps [33].
Moreover, when proving that weakly mixing systems [28], Devaney chaotic
systems [26] or positive-entropy systems [9] are Li–Yorke chaotic, one ex-
hibits a Cantor scrambled set.

Then it is natural to ask whether in every system with an uncountable
scrambled set there is also a Cantor scrambled set. Here we show that the
answer is yes for further classes of systems, for instance subshifts and systems
having no proper asymptotic pairs. The general question is still unsolved,
which means that no counter-example is known; finding one does not look
an easy task, supposing it is possible. Regarding the space, the only thing we
know is that a Li–Yorke chaotic interval map always has a Cantor scrambled
set.

A complete separable metric space is called Polish. In this section dy-
namical systems are usually assumed to be Polish.

We must recall several definitions and properties that are more or less
classical in topological dynamics, and prove technical results.

Definition 7. Let (X, f) be a dynamical system and ε > 0. A closed
subset K ⊆ X is called ε-sensitive if for any x, y ∈ K and δ > 0, there exist
x′, y′ ∈ K such that

d(x, x′) < δ, d(y, y′) < δ and lim sup
n→∞

d(fn(x′), fn(y′)) ≥ ε.

Sensitivity is usually defined as Lyapunov instability at all points, in
the following way: for ε > 0, a closed subset K of X is called classically ε-
sensitive if for any x ∈ K and δ > 0 there exists y ∈ K such that d(x, y) < δ
and d(fnx, fny) > ε for some n ∈ Z+. Definition 7, which concerns pairs of
points, is equivalent to the classical definition of sensitivity. It is clear that
an ε-sensitive closed subset of X is also ε′-sensitive in the classical sense for
any ε′ < ε/2. Conversely, we have the following

Fact. In a Polish dynamical system, a classically ε-sensitive closed set

K is ε/2-sensitive in the sense of Definition 7.



TOPOLOGICAL SIZE OF SCRAMBLED SETS 307

Here is why. Let K(ε, N) = {(x, y) ∈ K × K : d(fn(x), fn(y)) ≤ ε/2
∀n ≥ N}. Then K(ε, N) is a nowhere dense closed subset of K × K. It is
clear that K(ε, N) is closed. If there exist non-empty open subsets U, V of
K such that U × V ⊆ K(ε, N), then for any x1, x2 ∈ U and x3 ∈ V ,

d(fnx1, f
nx2) ≤ d(fnx1, f

nx3) + d(fnx2, f
nx3) ≤ ε ∀n ≥ N.

In particular, diam(fn(U)) ≤ ε for n ≥ N . Restricting oneself to some
smaller non-empty open subset of U if necessary, one can assume that
diam(fn(U)) ≤ ε for all n ≥ 0. But this contradicts the classical ε-sensitivity
of K since for any x, y ∈ U and n ≥ 0, d(fnx, fny) ≤ ε.

Then
⋃∞

N=1 K(ε, N) is first category in K × K, so its complement is
second category in the Baire space K ×K. The complement is contained in
{(x, y) ∈ K × K : lim supn→∞ d(fn(x), fn(y)) ≥ ε/2}. This implies that K
is ε/2-sensitive.

A closed set without isolated points is called perfect. It is easy to see that
an ε-sensitive set, being closed by definition, must be perfect. Let (X, f) be
a dynamical system, ε > 0 and K ⊆ X be a closed set. Put

R(K, ε) = {(x, y) ∈ K × K : lim sup
n→∞

d(fn(x), fn(y)) ≥ ε}.

Proposition 8. Let (X, f) be a Polish dynamical system, ε > 0 and let

K ⊆ X be a closed set. Then:

(1) R(K, ε) is a Gδ subset of K × K.

(2) K is ε-sensitive if and only if R(K, ε) is a dense Gδ subset of K×K.

Proof. For m, l ∈ N, let

R(K, m, l; ε) =

{

(x, y) ∈ K × K : sup
n≥m

d(fn(x), fn(y)) >
l

l + 1
ε

}

.

Then R(K, m, l; ε) is an open subset of K × K. Thus their intersection
R(K, ε) =

⋂∞
l,m=1 R(K, m, l; ε) is a Gδ subset of K × K. So (1) is true; (2)

is obvious by (1) and the definition of ε-sensitive sets.

Definition 9. A dynamical system (X, f) is called positively expansive

if there exists δ > 0 such that supn≥0 d(fn(x), fn(y)) ≥ δ for any x 6= y ∈ X;
δ is called the expansive constant of (X, f).

Proposition 10. Let (X, f) be a positively expansive Polish system with

expansive constant δ > 0 and let K be a perfect subset of X. Then K is

δ/2-sensitive.

Proof. Since R(K, δ/2) =
⋂∞

l,m=1 R(K, m, l; δ/2), by Proposition 8 we
need only prove that R(K, m, l; δ/2) is dense in K ×K for each m, l ∈ N . If
this is not true, there exist non-empty open subsets U, V of K and m, l ∈ N
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such that (U × V ) ∩ R(K, m, l; δ/2) = ∅. For x ∈ U ,

sup
n≥m

d(fn(x), fn(y)) ≤
l

l + 1

δ

2

for any y ∈ V , hence supn≥m diam(fn(V )) ≤ lδ/(l + 1). Given y0 ∈ V ,
by continuity of f there exists a smaller neighbourhood Vy0 ⊆ V of y0 in
K such that supn≥0 diam(fn(Vy0)) ≤ lδ/(l + 1). Since K is perfect, there
exists y1 ∈ Vy0 \ {y0}. Then supn≥0 d(fn(y1), f

n(y0)) ≤ lδ/(l + 1), which
contradicts δ-expansiveness.

Definition 11. Let (X, f) be a dynamical system. A subset K ⊆ X
is called regionally proximal if lim infn→∞ d(fn(U), fn(V )) = 0 for any two
non-empty sets U, V ⊆ K that are open in the relative topology of K.

Given (X, f) and a (not necessarily f -invariant) set K⊆X, put PR(K, f)
:= PR(X, f) ∩ (K × K).

Proposition 12. Let (X, f) be a Polish dynamical system and K ⊆ X
be a non-empty closed set. The following statements are equivalent :

(1) K is regionally proximal.

(2) For any x, y ∈ K and δ > 0, there exist x′, y′ ∈ K and n ∈ N such

that d(x, x′) < δ, d(y, y′) < δ and d(fn(x′), fn(y′)) < δ.
(3) PR(K, f) is a dense subset of K × K.

(4) PR(K, f) is a dense Gδ subset of K × K.

Proof. The implications (4)⇒(3)⇒(1)⇒(2) are obvious. To prove
(2)⇒(4) assume (2) and note that in this case the open sets

R(K, n, f) = {(x, y) ∈ K × K : there exists k ∈ N such that

d(fk(x), fk(y)) < 1/n}

are dense for all n. Then the set PR(K, f) =
⋂∞

n=1 R(K, n, f) is a dense Gδ

in the Baire space K × K.

Every separable metric space, hence every Polish space, has cardinality
at most c = 2ℵ0 . Now an uncountable Polish space has cardinality c: indeed,
a Polish space X can be uniquely written as a disjoint union X = P ∪ S
where S is countable and P is closed (hence Polish) and perfect (it is the
perfect kernel of X). Since any non-empty perfect Polish space contains a
Cantor set, this implies that any uncountable Polish space contains a Cantor
set, so its cardinality is at least c.

Let X be a Polish space. A Mycielski set is the union of countably many
Cantor sets. A Mycielski subset of X always contains a Cantor subset, but
it may be dense in X. The following lemma is a rewriting of Mycielski’s
theorem [41, Theorem 1].
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Lemma 13. Let X be a perfect Polish space. For any dense Gδ subset

R of X × X, there exists a dense Mycielski set M ⊆ X having the property

that whenever x1, x2 are distinct elements of M one has (x1, x2) ∈ R, i.e.,
M × M \ ∆ ⊆ R.

Proposition 14. Let (X, f) be a Polish dynamical system and δ > 0.
If a closed subset K of X is δ-sensitive and regionally proximal , then there

exists a Mycielski set S ⊆ K such that S is δ-scrambled and dense in K.

Proof. If the closed subset K of X is δ-sensitive and regionally proximal,
then R(K, δ) and PR(K, f) are dense Gδ subsets of K ×K by Propositions
8 and 12. This implies that R := R(K, δ)∩PR(K, f) is a dense Gδ subset of
K ×K. Since K is Polish and, being δ-sensitive, also perfect, by Lemma 13
there is a dense Mycielski set S ⊆ K such that S×S ⊆ R∪{(x, x) : x ∈ K}.
As every pair (x, y) ∈ R is δ-scrambled, S is a δ-scrambled set.

Let X be Polish. For a non-trivial weakly mixing system (X, f) the set of
scrambled pairs is dense in X ×X; in [28] this is shown to imply that (X, f)
is Li–Yorke chaotic, that the uncountable scrambled set is dense in X and
δ-scrambled for some δ > 0. These facts can also be deduced from the last
result: Since (X ×X, f × f) is non-trivial and transitive, we infer that X is
perfect, regionally proximal and δ-sensitive for δ = diam(X) > 0. So (X, f)
is δ-Li–Yorke chaotic by Proposition 14. That a Polish Devaney chaotic
system is δ-Li–Yorke chaotic for some δ > 0 is shown in [39]; Proposition 14
also provides another proof.

For any set D ⊆ X we denote by Du the set of condensation points of
D, i.e.,

Du = {x ∈ X : Vx ∩ D is uncountable for any neighbourhood Vx of x}.

Lemma 15. If D is an uncountable subset of the Polish space X, then

(1) Du is a non-empty closed subset of X;
(2) (Du ∩ D)u = Du and Du is perfect.

Proof. Use the well known fact that if D is a subset of a separable space
(hence D itself is separable) then all but countably many points of D are
condensation points of D. Hence (1) follows.

Now we show (2). (Du ∩ D)u ⊆ Du is obvious. Conversely, for x ∈ Du

and ε > 0, L = D ∩ B(x, ε) is an uncountable subset of X, so L ∩ Lu is
uncountable by what was said above; thus (D ∩ Du) ∩ B(x, ε) ⊃ L ∩ Lu is
uncountable too, which implies by the way that Du is perfect. Since ε is
arbitrary, it follows that x ∈ (D ∩ Du)u.

Theorem 16. Let (X, f) be a Polish dynamical system and δ > 0. If

(X, f) is δ-Li–Yorke chaotic, then there exists a Cantor δ-scrambled set

S ⊆ X.
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Proof. Let C ⊆ X be an uncountable δ-scrambled set. Then, by Lem-
ma 15, Cu is a perfect subset of X and (Cu∩C)u = Cu; in particular Cu∩C
is a dense subset of Cu. Since (Cu∩C)×(Cu∩C)\∆ ⊆ R(Cu, δ)∩PR(Cu, f)
and (Cu∩C)×(Cu∩C)\∆ is dense in Cu×Cu, Cu is δ-sensitive and regionally
proximal by Propositions 8 and 12. By Proposition 14, there exists a Cantor
δ-scrambled set S ⊆ Cu.

Corollary 17. If (X, σ) is a subshift there exists δ > 0 such that every

scrambled set S ⊆ X is δ-scrambled. In particular , if (X, σ) is Li–Yorke

chaotic, then it contains a Cantor δ-scrambled set.

Proposition 18. Let (X, f) be a positively expansive Polish system with

expansive constant δ > 0. If (X, f) is Li–Yorke chaotic, then it contains a

Cantor δ/2-scrambled set.

Proof. Let C be an uncountable scrambled set of (X, f). Then Cu is a
perfect set and (Cu ∩ C)u = Cu. Since (Cu ∩ C) × (Cu ∩ C) ∈ PR(Cu, f)
and (Cu ∩C)× (Cu ×C) is dense in Cu ×Cu, Cu is regionally proximal. By
Proposition 10, Cu is δ/2-sensitive. Then by Proposition 14 there exists a
Cantor δ/2-scrambled set S ⊆ Cu.

Let (X, f) be a dynamical system and K be a closed subset of X. Define

Eq(K, f) = {x ∈ K : ∀ε > 0 ∃ neighbourhood Vx of x such that

sup
n≥0

diam(fn(Vx ∩ K)) ≤ ε}.

Eq(K, f) is the set of all points of K that are equicontinuous in K (not
necessarily in X!). We remind the reader that the asymptotic class of x is
W s(x) = {y ∈ X : limn→∞ d(fn(x), fn(y)) = 0}.

Lemma 19. Let (X, f) be a dynamical system and K be a closed subset

of X. Then:

(1) Eq(K, f) is a Gδ subset of K.

(2) If there exists x ∈ X such that Eq(K, f) ⊆ W s(x), then for any

compact subset S of Eq(K, f) one has limn→∞ diam(fn(S)) = 0.

Proof. Put

Eq(K, f ; m) = {x ∈ K : ∃ neighbourhood Vx of x

such that sup
n≥0

diam(fn(Vx ∩ K)) ≤ 1/m}.

Then (1) results from the facts that Eq(K, f ; m) is open in K and Eq(K, f)
=

⋂∞
m=1 Eq(K, f ; m).

Let us show (2). Fix some ε > 0; for any y ∈ Eq(K, f) there is an open
neighbourhood Vy of y such that supn≥0 diam(fn(Vy ∩ K)) ≤ ε/2. If S is a
compact subset of Eq(K, f), there is a finite subset {x1, . . . , xl} of S such
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that
⋃l

i=1(Vxi ∩S) = S. By the assumption of (2), {x1, . . . , xl} ⊆ W s(x), so

lim
n→∞

diam(fn({x1, . . . , xl}) = 0.

Combining this fact and supn≥0(f
n(Vy ∩ S)) ≤ ε/2 for any y ∈ S, one gets

lim sup
n→∞

diam(fn(Vxi ∩ S)) ≤ ε, i = 1, . . . , l.

Since ε was arbitrary, limn→∞ diam(fn(S)) = 0.

Before we prove the main result of this section, Theorem 21, the reader
must be reminded of the Kuratowski–Ulam theorem (see [1, 34, 42]):

Proposition 20. If X, Y are two Polish spaces and R is a dense Gδ set

in X ×Y , then there exists a dense Gδ set A ⊆ X such that for every x ∈ A
the set Ax := {y ∈ Y : (x, y) ∈ R} is a dense Gδ set.

Theorem 21. Let (X, f) be a Polish dynamical system. If (X, f) is Li–

Yorke chaotic, then at least one of the following properties holds:

(1) There exists a Cantor scrambled set K ⊆ X.

(2) There exist an uncountable scrambled set S of (X, f) and x0 ∈ X
such that cl(S) = Su, Eq(cl(S), f) ⊆ W s(x0) and Eq(cl(S), f) is a

dense Gδ subset of cl(S).

Proof. Let C be an uncountable scrambled set of (X, f). By Lemma 15,
Cu is a non-empty perfect subset of X and (Cu ∩ C)u = Cu. For m, n ∈ N

put

Um,n = {(x, y) ∈ Cu × Cu : ∃k ≥ m such that d(fk(x), fk(y)) > 1/n}.

As a union of open subsets of Cu × Cu, Um,n is open in Cu × Cu. Put
Fm,n = cl(Um,n), Vn =

⋂∞
m=1 Um,n and Fn =

⋂∞
m=1 Fm,n. Since Fm,n \ Um,n

is a nowhere dense closed subset of Cu × Cu for each n, m ∈ N, Fn \ Vn ⊆
⋃∞

m=1(Fm,n \ Um,n) is a first category Fσ subset of Cu ×Cu for each n ∈ N.

Put

NA(Cu, f) = {(x, y) ∈ Cu × Cu : lim sup
n→∞

d(fn(x), fn(y)) > 0},

AR(Cu, f) = {(x, y) ∈ Cu × Cu : lim
n→∞

d(fn(x), fn(y)) = 0}.

Then NA(Cu, f) =
⋃∞

n=1 Vn and AR(Cu, f) = Cu × Cu \ NA(Cu, f).

Let W = Cu ×Cu \
⋃∞

n=1 Fn and A = cl(W ). Then W ⊆ AR(Cu, f) and
W =

⋂∞
n=1(Cu × Cu \ Fn) is a dense Gδ subset of A. There are two cases:

Case 1: A is a nowhere dense closed subset of Cu×Cu, i.e., A considered
as a subset of Cu × Cu has no interior points.

In this case, let D0 = Cu×Cu \(A∪
⋃∞

n=1(Fn \Vn)). Since A and Fn \Vn,
0 < n < ∞, are first category Fσ subsets of Cu×Cu, D0 is a dense Gδ subset
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of Cu × Cu. Note that

Cu × Cu \ NA(Cu, f) =
(

Cu × Cu \
∞
⋃

n=1

Fn

)

∪
(

∞
⋃

n=1

Fn \
∞
⋃

m=1

Vm

)

⊆ A ∪
∞
⋃

n=1

(Fn \ Vn) = Cu × Cu \ D0,

so that D0 ⊆ NA(Cu, f); in other words, lim supn→∞ d(fn(x), fn(y)) > 0
for any (x, y) ∈ D0.

Set R = D0 ∩ PR(Cu, f); then R is a dense Gδ subset of Cu × Cu by
Proposition 12. By Lemma 13, there exists a Cantor set S such that S×S ⊆
R ∪ {(x, x) : x ∈ Cu}. Since (x, y) is a scrambled pair for any (x, y) ∈ R, S
is a scrambled set.

Case 2: intCu×Cu(A) 6= ∅, i.e., there exist non-empty open subsets U, V
of Cu such that

cl(U) × cl(V ) ⊆ A.

Obviously cl(U) × cl(V ) ∩ W is a dense Gδ subset of cl(U) × cl(V ). For
x ∈ cl(U) put

E(x; U, V ) = {y ∈ Cu : (x, y) ∈ cl(U) × cl(V ) ∩ W}.

Applied to cl(U) × cl(V ) ∩ W , the Kuratowski–Ulam theorem (Proposi-
tion 20) implies that there exists x0 ∈ cl(U) such that E(x0; U, V ) is a dense
Gδ subset of cl(V ).

Since (Cu ∩ C)u = Cu and V ⊆ Cu, we have (V ∩ C)u = cl(V ). Then
S = V ∩C is an uncountable scrambled set of (X, f) and cl(S) = cl(V ) = Su.
Since W ⊂ AR(Cu, f), it follows that E(x0; U, V ) ⊆ W s(x0) ∩ cl(S).

Next we show that E(x0; U, V ) ⊆ Eq(cl(S), f); this directly implies that
Eq(cl(S), f) is a dense Gδ subset of cl(S) because E(x0; U, V ) is dense in
cl(S) and by Lemma 19(1). The reason is the following. Fix y ∈ E(x0; U, V ).
For k ∈ N, since

(x0, y) ∈ W ⊆ Cu × Cu \ Fk =
∞
⋃

m=1

(Cu × Cu \ Fm,k),

there exists m(y, k) ∈ N such that (x0, y) ∈ Cu ×Cu \Fm(y,k),k. As Fm(y,k),k

is closed we can find an open neighbourhood Vy,k of y in Cu such that
{x0} × Vy,k ⊆ Cu × Cu \ Fm(y,k),k.

Note that supn≥m(y,k) d(fn(x0), f
n(y′)) ≤ 1/k for y′ ∈ Vy,k, so

sup
n≥m(y,k)

diam(fnVy,k) ≤ 2/k.

Then by continuity one can choose a smaller neighbourhood V ′
y,k of y in Cu

such that
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sup
n≥0

diam(fnV ′
y,k) ≤ 2/k.

Since k is arbitrary, y ∈ Eq(cl(S), f).

It remains to show that Eq(cl(S), f) ⊆ W s(x0). We have already proved
that E(x0; U, V ) ⊆ W s(x0). Let y ∈ Eq(cl(S), f). For any ε > 0, there exists
a neighbourhood Vy of y in cl(S) such that supk≥0 diam(fk(Vy)) ≤ ε. Since
E(x0; U, V ) is dense in cl(S), E(x0; U, V )∩Vy 6= ∅. Take y′ ∈ E(x0; U, V )∩Vy.
Then limk→∞ d(fk(y′), fk(x0)) = 0. Moreover,

lim sup
k→∞

d(fk(y), fk(x0)) ≤ lim sup
k→∞

(d(fk(y), fk(y′)) + d(fk(y′), fk(x0))

≤ lim sup
k→∞

d(fk(Vy)) + lim
k→∞

d(fk(y′), fk(x0)) ≤ ε.

Since ε was arbitrary, limk→∞ d(fk(y), fk(x0)) = 0, i.e., y ∈ W s(x0).

We do not know any dynamical system for which property (2) above
holds. Let us point out that for a discrete dynamical system (X, f) satisfying
(2), cl(S) = Su is a perfect subset of X, there exists a set K =

⋃∞
n=1 Cn,

where each Cn is a Cantor set, such that K ⊆ Eq(cl(S), f) ⊆ W s(x) and K
is dense in cl(S). Moreover, by Lemma 19, limk→∞ diam(fk(

⋃m
n=1 Cn)) = 0

for any m ∈ N.

Corollary 22. Let (X, f) be a Li–Yorke chaotic Polish dynamical sys-

tem. If W s(x) is countable for every x ∈ X, then there exists a Cantor

scrambled set in (X, f).

For a transitive non-sensitive system (X, f), Eq(X, f) is just the set of
all transitive points of (X, f) and there exists a sequence {ni} of natural
numbers such that

lim
i→∞

sup
x∈X

d(fni(x), x) = 0.

This is proved in [24, 2] (in [24] the standing hypothesis is that the set X is
compact metric but the proof does not use compactness). This implies that
W s(x) = {x} for x ∈ X. So if a transitive, non-sensitive, Polish dynamical
system is Li–Yorke chaotic it contains a Cantor scrambled set. The same
remark applies to a larger class of systems introduced in [46]. Call (X, f)
doubly recurrent if (X × X, f × f) is recurrent (a system is recurrent if all
points are recurrent). In a doubly recurrent system, unless x = y the pair
(x, y) is never asymptotic, because there must exist a subsequence (kn) such
that (fkn(x), fkn(y)) → (x, y) as n → ∞. So W s(x) = {x}.

Another result is obtained by the same methods:

Theorem 23. Let (X, f) be a Polish dynamical system, C be a scrambled

set of (X, f) and P be a perfect subset of X. If cl(C ∩P ) = P , then at least

one of the following two cases happens:
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(1) There exists a Mycielski scrambled set K ⊆ P with cl(K) = P .

(2) There exist a non-empty open subset V of P (in the relative topology)
and x ∈ X such that Eq(cl(V ), f) ⊆ W s(x) and Eq(cl(V ), f) is a

dense Gδ subset of cl(V ).

Proof. The proof is the same as that of Theorem 21, replacing Cu by P .

Corollary 24. Let (X, f) be a transitive Polish dynamical system

which does not reduce to a periodic orbit. If there exists a scrambled set

C of (X, f) with int(cl(C)) 6= ∅, then there exists a Mycielski scrambled set

K of (X, f) with cl(K) ⊇ int(cl(C)).

Proof. Let W = int(cl(C)) and P = cl(W ). Since (X, f) is a non-periodic
transitive system, X is perfect. Hence P is also perfect and cl(P ∩ C) = P .
By Theorem 23, if there does not exist any Mycielski scrambled set K ⊆ P
with cl(K) = P , then there exist a non-empty open subset V of P and x ∈ X
such that Eq(cl(V ), f) ⊆ W s(x) and Eq(cl(V ), f) is a dense Gδ subset of
cl(V ).

Since V is an open subset of P , we can find an open subset U of X such
that U ∩ P = V . Let W1 = U ∩W . Clearly, W1 is a non-empty open subset
of X, W1 ⊆ V and cl(W1) = cl(V ). Let Tran(f) be the set of all transitive
points of (X, f). Since W1∩Tran(f) is a dense Gδ subset of W1, W1∩Tran(f)
is also a dense Gδ in cl(W1) = cl(V ). Thus W1 ∩Tran(f)∩Eq(cl(V ), f) is a
dense Gδ in cl(V ). Fix x0 ∈ W1 ∩ Tran(f) ∩ Eq(cl(V ), f), x0 6= x.

For any m ∈ N, there exists an open neighbourhood U ′
m of x0 in X

such that supn≥0 diam(fn(U ′
m ∩ cl(V ))) ≤ 1/m, as x0 ∈ Eq(cl(V ), f). Let

Um := U ′
m ∩ W1. Since x0 ∈ W1, Um is an open neighbourhood of x0 and

supn≥0 diam(fn(Um)) ≤ 1/m. Since x0 ∈ Tran(f), there exists im ≥ m such

that f imx0 ∈ Um. Hence supn≥0 d(f im+n(x0), f
n(x0)) ≤ 1/m. Moreover,

supz∈X d(f im(z), (z)) ≤ 1/m, as cl({x0, f(x0), . . . }) = X. Letting m → ∞,
one gets limm→∞ supz∈X d(f im(z), z) = 0. Since limm→∞ im = +∞, every
point z ∈ X is recurrent whence W s(y) = {y} for any y ∈ X. In particu-
lar W s(x) = {x}. This contradicts the fact that x 6= x0 ∈ Eq(cl(V ), f)
⊆ W s(x).

Corollary 24 implies for instance that whenever a non-periodic Polish
system is transitive and contains a dense scrambled set, it contains a dense
Mycielski scrambled set. Known examples of this situation are Polish weakly
mixing systems [28] and compact transitive systems with a fixed point [26].

The existence of an uncountable scrambled set may imply that of a Can-
tor scrambled set for the same system. Nevertheless, the following propo-
sition shows that if S is an uncountable scrambled set of (X, f), then
in general there is no chance to find a Cantor scrambled set as a subset

of S.
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For proving this let us recall the notion of a Bernstein set. A set B in a
space X is called a Bernstein set if neither B nor X\B contains a non-empty
perfect subset of X. Hence neither B nor X \ B contains a Cantor set. A
theorem due to Bernstein (see [31] or, for a stronger result, [35, p. 261]) says
that the Axiom of Choice implies the existence of a Bernstein set B with
card(B) = card(X \ B) = c in every uncountable Polish space X.

Proposition 25. Let X be Polish and let S be an uncountable scrambled

set in (X, f).

(i) If S is analytic then it contains a Cantor set.

(ii) There exists an uncountable scrambled set S∗ ⊆ S which does not

contain any Cantor set.

Proof. (i) In a Polish space every uncountable analytic set contains a
Cantor set.

(ii) Suppose that S contains a Cantor set C. Since C is a Polish space,
it contains a Bernstein set B (in C). Put S∗ = B.

So, a Polish system contains a Cantor scrambled set if and only if it
contains an analytic uncountable scrambled set.

Questions. 1. Let X be a Polish or a compact metric space, and let
(X, f) be a dynamical system. Can one prove that if (X, f) is Li–Yorke
chaotic then X contains a Cantor scrambled set?

2. It is shown in [33] that for interval maps, the existence of just one
scrambled pair is enough to imply the existence of a δ-scrambled Cantor
set. Is this also true for graph maps?

4. CARDINALITIES OF SCRAMBLED SETS. SYSTEMS WITH ONLY

FINITE OR COUNTABLE SCRAMBLED SETS

Of course a system may have no scrambled pairs at all. Compact metric
surjective systems having no scrambled pairs are called almost distal. Distal
systems obviously belong to this class. Some properties of almost distal
systems, established in [9], are similar to those of distal systems: they have
entropy 0 and they are minimal when transitive; moreover, minimal almost
distal systems are disjoint from all weakly mixing systems (disjointness is
defined below). Examples are given in the same article.

In [3] the authors introduced a striking generalization of almost distal
systems; a pair (x, y) is said to be strong Li–Yorke, or, consistently with our
nomenclature, strong scrambled, if it is scrambled and recurrent (meaning
that (x, y) is in the closure of its own positive orbit); a subset S of X
containing at least two points is called a strong scrambled set of the system
if for any x, y ∈ S with x 6= y, (x, y) is a strong scrambled pair; a system
is called semi-distal if it contains no strong scrambled pairs, and a system
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is called strong Li–Yorke chaotic if it has an uncountable strong scrambled
set. Semi-distal systems have the same three properties we mentioned for
almost distal systems; in addition they form a more natural class from the
point of view of topological dynamics. Floyd’s system [5] is semi-distal but
not almost distal, actually it is Li–Yorke chaotic. So it turns out that the
features of the set of strong scrambled pairs may be at least as significant
as those of the set of scrambled pairs in the theory of chaos. It seems to
us that this point should be given some attention in future research. Here
is an example: since the set of all recurrent points of a dynamical system
is Gδ, when a Polish dynamical system (X, f) is strong Li–Yorke chaotic it
contains a Cantor strong scrambled set. The proof relies on the results of
the previous section.

A joining J between two dynamical systems (X, f) and (Y, g) is a closed
f × g-invariant subset of the Cartesian product X × Y such that its projec-
tions to X and Y are onto. (X, f) and (Y, g) are said to be disjoint if X×Y is
their unique joining. The significance of the disjointness results mentioned
above for almost distal and semi-distal systems is that minimal compact
metric systems which have no scrambled pairs, or even no strong scram-
bled pairs, share with minimal distal systems the property of being remote
from weakly mixing systems structurally. If we consider weak mixing as a
chaotic property, and distality as a deterministic property, this heuristically
means that the existence of scrambled pairs is a kind of basic requirement
for chaoticity.

Among the self-maps of a real compact interval, all maps of Sharkovsky
type 2n for all n ∈ {0} ∪ N and also some of those of type 2∞ have no
scrambled pairs. On the other hand, some of the maps of type 2∞ and all
the maps of type greater than 2∞ have Cantor scrambled sets. But when
the space X is not an interval, the situation is far from being so clear-cut.

If a system has a scrambled set with two points then, in contrast to the
interval case, it may happen that it has no scrambled set with three points.
An example of a triangular map in the square with this property is found in
[18]. In [21] it was shown that the Cantor set and the Warsaw circle also ad-
mit continuous self-maps with this property. Examples of systems with only
boundedly finite, or countable, scrambled sets were given in [8]: symbolic
systems generated by primitive constant-length substitutions have at most
finite scrambled sets; some have no scrambled sets at all and others have fi-
nite scrambled sets. Systems with infinite but only countable scrambled sets
are obtained as inverse limits of a sequence of constant-length substitution
systems.

To complete this picture of systems having only finite or countable scram-
bled sets, we further develop an idea from [21] to answer a question posed
there, what are possible (sets of) cardinalities of (maximal) scrambled sets
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of compact dynamical systems. Theorem 27 states that these sets of cardi-
nalities may be arbitrary subsets of {2, 3, . . . } ∪ {ℵ0} ∪ {c}. This provides
new examples of systems with only finite or countable scrambled sets. We
start with the following

Lemma 26. For every δ > 0 and every cardinal number 2 ≤ m ≤ ℵ0

there is a compact system (Xm, fm) such that it has scrambled sets, all being

δ-scrambled , and all its maximal scrambled sets have cardinality m. More-

over , Xm can be chosen to be an arcwise connected one-dimensional planar

continuum, a subset of a rectangle with height 2 whose left and upper sides

belong to Xm and all their points are fixed for fm. Finally , the horizontal

size of the rectangle can be made arbitrarily small and the map fm can be,
in the metric of uniform convergence, as close to the identity as we wish.

Proof. It is sufficient to prove this for δ = 1. Call a sequence s = (si)
∞
i=1

of positive real numbers admissible if si ց 0 and
∑

si = +∞. Given such a
sequence, put h(0) = 0, h(1) = 1+s1, . . . , h(1+

∑n
i=1 si) = 1+

∑n+1
i=1 si, . . . ,

and let h be affine on each of the intervals [0, 1], [1 +
∑n

i=1 si, 1 +
∑n+1

i=1 si],
n = 0, 1, . . . . Then obviously h is a homeomorphism of [0,∞), 0 is a fixed
point of h and the trajectory of 1 is 1, 1 + s1, 1 + s1 + s2, . . . . Notice that
̺sup(h, Id) = s1, ̺sup being the supremum metric. It is not difficult to show
that in the dynamical system ([0,∞), h) any two positive real numbers are
asymptotic and their nth images tend to +∞. This is in fact true for any
continuous h such that h(0) = 0, h(x) > x for all x > 0, limx→∞(h(x) − x)
= 0 and h is increasing on some interval [x0,∞).

Consider the zigzag curve G in the plane determined uniquely by the
following set of conditions:

• G is a subset of the rectangle [0, 1] × [−1, 1].
• G =

⋃∞
n=0 Jn where each Jn is a straight line segment with length 2.

• J0 has endpoints 〈1, 1〉 and 〈1,−1〉.
• For k = 1, 2, . . . , the segments J2k−1 and J2k have one endpoint in

common, the other endpoint of J2k−1 (resp. J2k) being 〈1/(2k−1),−1〉
(resp. 〈1/(2k),−1〉).

The segments Jn are called laps of G. The endpoints of laps whose second
coordinate is −1 are called lower turning points of G and the other endpoints
of laps upper turning points of G.

There is a unique homeomorphism h∗ of the ray [0,∞) onto G such that
for any x, y ∈ [0,∞), x 6= y, one has |x − y| = ̺(h∗(x), h∗(y)), where ̺(a, b)
denotes the length of the arc in G with endpoints a, b. Now carry over the
dynamics from ([0,∞), h) onto G via this homeomorphism h∗. Then add
the arc of fixed points formed by two straight line segments: the vertical
segment V with endpoints 〈0,−1〉 and 〈0, 1〉 and the horizontal segment H
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with endpoints 〈0, 1〉 and 〈1, 1〉. We thus get a system (W, g) where W =
G ∪ V ∪ H is homeomorphic to the so-called Warsaw circle and g is such
that if we put G◦ = G \ {〈1, 1〉}, then all points from W \ G◦ are fixed
and all points x, y ∈ G◦ are asymptotic and have as their ω-limit sets the
vertical segment V . Under h the point 1∗ := h∗(1) makes “jumps” with
lengths s1, s2, . . . along the zigzag curve G, towards the segment V . Call 1∗

the distinguished point of the system.

We have thus assigned a system (W, gs) to the admissible sequence s =
(si)

∞
i=1. Notice that any point from G◦ forms a scrambled pair with any

point from V and there are no other scrambled pairs in this system.

Since s is admissible, the sequences s(k), k = 0, 1, . . . , defined by s(k) =
(si/2k)∞i=1 are also admissible (here s(0) = s) and so for any k = 0, 1, . . . we
can make the same construction as above, to get a system (W, gs(k)) with a
distinguished point 1∗k making jumps with lengths s1/2k, s2/2k, . . . . Instead
of G use now the symbol Gk. For k → ∞ the maps gs(k) uniformly converge
to the identity on W .

We can now define a system (Xℵ0 , fℵ0) with the required properties but,
for the moment, in the 3-dimensional Euclidean space (with coordinates
x, y, z) rather than in the plane. Put

Xℵ0 := (W0 ∪ W1 ∪ · · · ) ∪ W∞

where W0 := W × {0} (W being the Warsaw circle defined above) and for
k = 1, 2, . . . the set Wk is the image of W0 under rotation of (π/2)(1−1/2k)
around the y-axis, and W∞ is that of W0 under rotation of π/2 around the
y-axis (so all the points from W∞ have zero x-coordinates and nonnegative z-
coordinates). Note that any two of the sets W∞, W0, W1, . . . intersect just in
the segment {0}×[−1, 1]×{0} = V ×{0}. Obviously, Xℵ0 is one-dimensional
and arcwise connected.

Endow the phase space Xℵ0 with a dynamics. Let fℵ0 be the identity on
W∞ and let fℵ0 |Wk

be just the isometric copy of gs(k) (i.e., (Wk, fℵ0 |Wk
) is

topologically conjugate to (W, gs(k)) via the isometry between Wk and W ).

Now put S := {1∗k : k = 0, 1, . . . } ∪ {p} where p ∈ V × {0}, say p =
〈0, 1, 0〉. We show that S is a maximal 1-scrambled set of fℵ0 . For any k,
the points p and 1∗k form obviously a 2-scrambled pair. Now fix nonnegative
integers a < b. The points 1∗a and 1∗b move along different curves Ga and Gb

(subsets of Wa and Wb, respectively). Since Ga and Gb are isometric to G
and both the points 1∗a and 1∗b approach the same segment V ×{0} (which is
their ω-limit set), to show that they form a 1-scrambled pair it is obviously
sufficient to show that they would form a 1-scrambled pair if they moved
along the same curve G. So, without changing the notation we think of 1∗a
and 1∗b as points moving along G (one phase space, two different dynamics).
The two points start from the same position (at time zero 1∗a = 1∗b) and they
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make jumps of si/2a and si/2b respectively (i = 1, 2, . . . ). Thus each jump
of 1∗a is 2b−a times longer than the corresponding jump of 1∗b . Denote by ai

and bi the position of the faster point 1∗a and that of the slower point 1∗b at
time i, respectively.

We are ready to show that 1∗a and 1∗b form a 1-scrambled set in the
plane. It is easy to see that lim infi→∞ ̺euc(ai, bi) = 0 where ̺euc denotes
the Euclidean distance. In fact, for all i large enough we have the following
situation: the points ai and bi are already in a very small neighbourhood of
V and when looking at their projections on V , each of these points makes
very small jumps along V , say up several times, then down several times,
again up several times etc. Thus one can see that there are times when the
projections on V are very close to each other. Since our points are also close
to V , it follows that their Euclidean distances at these times are also very
small.

To prove that lim supi→∞ ̺euc(ai, bi) ≥ 1, it is sufficient to show that
lim supi→∞ |π2(ai)−π2(bi)| ≥ 1, π2 being the projection onto V . Let i0 ∈ N

be given. We may assume that bi0 (hence also ai0) is in that part of G (very
close to V ) where the laps of G have second projections with lengths very
close to 2, the length of V . It is now sufficient to show that there exists i ≥ i0
such that |π2(ai) − π2(bi)| ≥ 1 or at least |π2(ai) − π2(bi)| ≈ 1. Take j ≥ i0
such that sj/2a (hence also sj/2b) is very small and π2(bj) < π2(bj+1) ≈ −1,
i.e., the slower of our two points is very close to a lower turning point and
goes up. If π2(aj) ≥ 0 one can put i = j. So let π2(aj) < 0. Since the jumps
of the faster point are 2b−a times as long as the jumps of the slower point,
we have the following: when the slower point reaches the small vicinity
of the closest upper turning point (i.e., when its 2nd projection increases
approximately by 2), the 2nd projection of the faster point approximately
does not change, i.e., it is approximately the same as the 2nd projection of
aj (we use the fact that 2b−a is an even positive integer). Hence there is a
time i > j with |π2(ai) − π2(bi)| > 1 or ≈ 1.

We have thus proved that the infinite countable set S is 1-scrambled
for fℵ0 , and Xℵ0 is arcwise connected. On the other hand, in the system
(Xℵ0 , fℵ0) there is no uncountable scrambled set since every scrambled set
contains at most one fixed point and for any k it intersects the set G◦

k in at
most one point (any two points from G◦

k being asymptotic). This argument
also shows that S is a maximal scrambled set.

The first claim of the lemma is proved for m = ℵ0. When m ≥ 2 is finite
it is sufficient to take the subsystem (Xm, fm) where Xm = W0∪· · ·∪Wm−2

and fm = fℵ0 |Xm .

Further, it is not hard to check that there is a homeomorphism of the
set Xℵ0 (or Xm) into the plane z = 0 which fixes the segment V × {0} and
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also gives all the required geometry of the planar image of our set (the fact
that Xm can be as “narrow” as we wish is obvious since only the length of
the vertical segment V is important for 1-scrambledness). Finally, we may
assume that ̺sup(fm, Id|Xm) is as small as we wish: just take an admissible
sequence s with sufficiently small first term s1.

Theorem 27. For every non-empty subset A of the set {2, 3, . . . } ∪
{ℵ0}∪{c} there is a compact system (X, f) such that the set of cardinalities

of all maximal scrambled sets of this system coincides with A. Given any

δ > 0, all scrambled sets of (X, f) may be assumed to be δ-scrambled. Fi-

nally , X can be chosen to be an arcwise connected one-dimensional planar

continuum.

Proof. It is sufficient to prove this for δ = 1. Given a cardinality α, a
system (Y, g) is said to be a standard α-system in the rectangle [p, q]×[u, v] if
Y is an arcwise connected one-dimensional planar continuum in [p, q]×[u, v],
all the points in ({p}× [u, v])∪ ([p, q]×{v}) are fixed points of g, the set of
cardinalities of all its maximal scrambled sets coincides with {α} and all its
scrambled sets are 1-scrambled.

Let A 6= ∅. We show how to construct the system for A = {2, 3, . . . } ∪
{ℵ0} ∪ {c}; after that the construction for smaller sets A is obvious. By
Lemma 26, for every finite m ≥ 2 in the rectangle [1/(2m + 1), 1/(2m)] ×
[−1, 1] there exists a standard m-system (Xm, fm). Again by Lemma 26 we
may assume that the supremum distance between fm and the identity on
Xm goes to zero as m → ∞; so when later adding to our picture the vertical
segment {0} × [−1, 1] of fixed points, we do not destroy continuity. Again
by Lemma 26, in the rectangle [1/3, 1/2] × [−1, 1] there exists a standard
ℵ0-system (Xℵ0 , fℵ0) and, by Example 3, in the segment Xc = {1}× [−2, 1]
one can define a continuous map fc such that one of the endpoints, say
〈1, 1〉, is fixed, the system has scrambled sets, all being 1-scrambled, and
all its maximal scrambled sets have cardinality c (the segment has length 3
since in Example 3 we had only δ = 1/3). Construct (X, f) as the union of
all the systems described and add two segments {0}× [−1, 1] and [0, 1]×{1}
of fixed points of f to make X arcwise connected. The system (X, f) has all
the required properties.

Question. Does the conclusion of Theorem 27 hold if X is required/
additionally required to be a locally connected continuum?

5. SYSTEMS WITH ONLY FIRST CATEGORY SCRAMBLED SETS

We have just addressed the case of dynamical systems that are not Li–
Yorke chaotic. Among those that are Li–Yorke chaotic, can one find systems
having uncountable scrambled sets, all of which are first category? In this
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short section we gather some common-sense observations around this ques-
tion.

First, the answer to the question is yes—the system from Example 3
has uncountable scrambled sets, all being nowhere dense. Another trivial
example of a Li–Yorke chaotic system with only nowhere dense scrambled
sets is the direct product of a system with uncountable scrambled sets and
the system given by the identity on an interval. Floyd’s system [5] also has
the required properties. The next result is inspired by it.

A set A is called somewhere dense if it is not nowhere dense, i.e., if its
closure has non-empty interior. A system is called trivial if it is a singleton.

Proposition 28. Let X be a metric space and (X, f) be a dynamical

system. Let φ : (X, f) → (Y, g) be a factor map.

(1) Suppose (Y, g) is distal but not trivial. Then (X, f) has no dense

scrambled set.

(2) Suppose that (X, f) is transitive, (Y, g) is distal and Y has no iso-

lated point. Then every scrambled set of (X, f) is nowhere dense,
thus first category.

Proof. (1) Obviously a factor map can project a scrambled pair to a
proximal pair only, and there are no proximal pairs in the distal system
(Y, g) except diagonal ones, so if (x, x′) ∈ SR(X, f) one has φ(x) = φ(x′).
This implies that if S is scrambled it is contained in one fibre of φ, in other
words, there is y ∈ Y such that S ⊆ φ−1(y). But the set φ−1(y) is not dense
unless Y = {y}.

(2) Let S be a scrambled set of (X, f). We already know from the proof
of (1) that S ⊆ φ−1(y) for some y. Suppose that φ−1(y) is somewhere dense.
Then, being a closed set, it contains an open set U 6= ∅. By transitivity
there is n > 0 such that U ∩ f−n(U) 6= ∅, so U ∩ fn(U) 6= ∅; considering the
fact that φ(U) = {y} and φ(fn(U)) = {gn(y)} this implies that gn(y) = y.
Moreover, one easily checks that y is a transitive point of (Y, g) because
its preimage contains a non-empty open set of X and (X, f) is transitive.
As (Y, g) contains a transitive periodic point, it reduces to a periodic orbit,
which contradicts the fact that it contains no isolated points. Then φ−1(y),
hence S, is nowhere dense in X.

A by-product of the above proposition is that a transitive system having
a somewhere dense scrambled set has a maximal distal factor which is a
single periodic orbit. When the system has a dense scrambled set its maximal
distal factor is trivial.

Before proving a stronger result for minimal compact systems, let us
remind the reader of a classical result (McMahon’s proof can be found for
instance in [5]).
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Proposition 29. A minimal compact system is weakly mixing if and

only if its maximal equicontinuous factor is trivial.

The regionally proximal relation RPR(X, f) of (X, f) is defined as fol-
lows: (x, y) ∈ RPR(X, f) if for any ε > 0 one can find x′, y′ ∈ X and a natu-
ral integer n such that d(x, x′) < ε, d(y, y′) < ε and d(fn(x′), fn(y′)) < ε. In
a compact system the maximal equicontinuous factor is obtained by collaps-
ing RPR(X, f), which in the minimal case is a closed equivalence relation [5].
Also recall that a minimal equicontinuous system is distal.

Proposition 30. Let (X, f) be a minimal compact system. The follow-

ing statements are equivalent :

(1) There exists a scrambled set S which is somewhere dense (i.e.,
int(cl(S)) 6= ∅).

(2) There exists a Mycielski scrambled set S which is somewhere dense.

(3) The maximal distal factor of (X, f) is periodic and (X, f) is not

periodic.

(4) There exist n ∈ N and pairwise disjoint closed subsets X0, . . . , Xn−1

of X such that
⋃n−1

i=0 Xi = X, f(Xi) = Xi+1 (mod n) and fn|Xi is

non-trivial weakly mixing.

Proof. By Corollary 24, (1) is equivalent to (2). (2)⇒(3) results from
Proposition 28.

Now if (3) is true the maximal equicontinuous factor (Y, g) of (X, f),
which is a factor of the maximal distal factor, is also periodic. Let φ :
(X, f) → (Y, g) be the corresponding factor map. Set n = cardY and y =
φ(x) for some x ∈ X. Then Y = {y, g(y), . . . , gn−1(y)}. Let Xi = π−1(gi(y))
for i = 0, 1, . . . , n − 1. Then X0, X1, . . . , Xn−1 are pairwise disjoint closed
subsets of X,

⋃n−1
i=0 Xi = X and f(Xi) = Xi+1 (mod n). It is not hard to

check that the system (Xi, f
n) is minimal for i = 0, 1, . . . , n − 1. Its max-

imal equicontinuous factor is trivial; by the assumption the sets Xi are
the equivalence classes of RPR(X, f). Now RPR(X, fn) = RPR(X, f), so
RPR(Xi, f

n) = Xi; it follows that the maximal equicontinuous factor of
(Xi, f

n) is trivial, so it is weakly mixing by Proposition 29. Since (X, f) is
not periodic, (Xi, f

n) is non-trivial, and (4) is true.

Finally, (4)⇒(1) because a non-trivial Polish weakly mixing system con-
tains a dense scrambled set (see the remarks after Proposition 14).

There are classical examples of minimal Li–Yorke chaotic extensions of
distal systems that are not Cartesian products, for instance among Toeplitz
symbolic systems. Some of them have positive entropy [47, 23, 14, 45]. By
the above proposition these systems have only nowhere dense scrambled
sets.
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Question. The scrambled sets of a minimal compact system are some-
where dense when its maximal distal factor is periodic, and of course not
conjugate to the whole system; on the other hand, its scrambled sets are
nowhere dense whenever its maximal distal factor is not periodic. Is the
situation as clear-cut when the system is not minimal? Or else, can one
construct transitive compact systems with uncountable but at most first
category scrambled sets, having a trivial maximal distal factor?

6. NON-RESIDUAL SCRAMBLED SETS AND

SECOND CATEGORY SCRAMBLED SETS

Given a compact metric space X, a set S ⊆ X is called residual in an
open set U ⊆ X if the set S ∩ U is residual in U (in the relative topology).
A set S is said to be nowhere residual if there is no open set U 6= ∅ such
that S is residual in U .

It has been known since 1987 that when an interval map is Li–Yorke
chaotic its scrambled sets are nowhere residual [12, 22]. In this section
we prove that various other assumptions on dynamical systems imply that
scrambled sets cannot be residual, or even are nowhere residual. In the whole
section we are considering compact spaces, except in Subsection 6.4 where
X is only assumed to be Polish.

In Subsection 6.1 assumptions concern the dynamics of the map f on X,
with compactness as a standing hypothesis. The main result is that for a
large class of compact systems, including minimal systems, scrambled sets
are nowhere residual.

In Subsection 6.2 the space X is a graph, f being arbitrary. Our result
simply generalizes Bruckner’s and Hu’s and Gedeon’s results on interval
maps [12, 22]: scrambled sets of graph maps are nowhere residual.

The two assumptions in Subsection 6.3 are of a mixed nature: the space
is a Cantor set but there are also dynamical conditions. When the system
is symbolic an assumption on so-called contexts implies that scrambled sets
are not residual (sometimes even nowhere residual). This concerns a wide
class of non-minimal subshifts. When the system is a cellular automaton, an
assumption on the rule permits to prove the same property. In both cases
X is a symbolic space, but there are further conditions on the dynamics.

In the last subsection, assuming the Continuum Hypothesis (CH), we
show that a generically chaotic system (one with a residual set of scrambled
pairs in X × X) on a Polish space has a scrambled set which is everywhere
second category, i.e., second category in every open ball. This has several
applications, always assuming CH: all weakly mixing graph maps and all
non-trivial weakly mixing subshifts of finite type have everywhere second
category nowhere residual scrambled sets. Furthermore, for non-trivial com-
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pact minimal systems, weak mixing is equivalent to the existence of an ev-
erywhere second category scrambled set. Finally, the maximal possible size
of scrambled sets in minimal compact systems is completely characterized:
nowhere dense when their maximal distal factor is not periodic, second cat-
egory (but nowhere residual) otherwise. Let us emphasize the fact that the
nowhere residuality of scrambled sets for compact minimal systems and for
graph maps is proved without assuming CH.

6.1. General non-residuality results. Recall that Proposition 28
above implies that a compact system having a non-trivial distal factor can-
not be residually scrambled.

The first result in this subsection provides a necessary condition for a
class of compact dynamical systems (including all invertible ones) to be
residually scrambled. This condition implies that various compact systems
are never residually scrambled. In particular, the scrambled sets of minimal
systems are nowhere residual.

Proposition 31. Let (X, f) be a compact dynamical system with f such

that the preimage of any residual set is second category. If X contains a

residual scrambled set it also contains a fixed point.

Proof. Let S ⊆ X be a residual scrambled set. According to the as-
sumption, f−1(S) is second category and so S∩f−1(S) 6= ∅. In other words,
there is x ∈ S such that f(x) ∈ S too. Since S is scrambled, the pair
(x, f(x)) is proximal. By compactness there exists an increasing sequence
(kn), n ∈ N, such that the sequences (fkn(x)) and (fkn+1(x)) converge to
the same point p, which must then be fixed.

We do not know whether the existence of a residual scrambled set im-
plies the existence of a fixed point; all known examples contain one. At
least Example 54 below shows that a residually scrambled system may have
more than one (by Proposition 4 this implies that the system is not proxi-
mal).

Proposition 31 implies that on compact spaces homeomorphisms without
fixed points, for instance minimal ones, have no residual scrambled sets. We
now derive a deeper consequence from the same observations. A map is called
feebly open if the image of any non-empty open set has non-empty interior
(such maps are sometimes called semi-open or quasi-interior). The following
characterization proves useful. It seems to be folklore (see the preprint [40]
for stronger results) and at least in one direction it was already used in
dynamics [32]; here is a short proof for completeness.

Lemma 32. A continuous self-map f of a compact metric space X is

feebly open if and only if the f -preimage of every residual set is residual.
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Proof. Let f be a feebly open continuous self-map of a space X; in this
direction compactness is not required. Let S be residual in X, i.e., X \ S
is a union of countably many nowhere dense sets. To prove that f−1(S) is
residual it is therefore sufficient to show that the preimage of any nowhere
dense set A is nowhere dense. Moreover, since the closure of a nowhere dense
set is nowhere dense, assume that A is closed. Then, by continuity, the set
f−1(A) is closed and since f is feebly open, this set has empty interior.
Hence f−1(A) is nowhere dense.

Conversely, let X be compact metric and let f be a transformation of X
such that any residual set has residual preimage. If U is a non-empty open
set of X, let V be a non-empty open set such that V ⊆ cl(V ) ⊆ U . By
compactness f(cl(V )) is closed in X. Since f−1(X \ f(cl(V ))) ⊆ X \ cl(V )
and the last set is not residual, X \ f(cl(V )) is not residual in X. So the
closed set f(cl(V )) has non-empty interior, and the same is true for f(U).
This shows that f is feebly open.

Thus Proposition 31 applies in particular to all feebly open maps. Since
a singleton is not considered to be a scrambled set and, by [5, 32], any
minimal self-map of a compact metric space is feebly open, the scrambled
sets of minimal systems cannot be residual, even when the map is not a
homeomorphism. Proposition 33 tells more: the scrambled sets of a minimal
dynamical system on a compact metric space are nowhere residual.

Recall that a system (X, f) is non-wandering or regionally recurrent if
for every non-empty open set U ⊆ X there exists k ≥ 1 with fk(U)∩U 6= ∅
(equivalently, U ∩ f−kU 6= ∅). In such a case we also say that the map f
itself is non-wandering.

Proposition 33. Let (X, f) be a compact dynamical system with the

following three properties:

(1) f is feebly open;
(2) f is non-wandering ;
(3) f has no periodic points.

Then any scrambled set of (X, f) is nowhere residual. In particular minimal

compact dynamical systems have only nowhere residual scrambled sets (if
any).

Proof. By (1) and Lemma 32 the preimage of a residual set of X is
residual in X; f−1(A) is also residual in f−1(B) whenever B is open and
A ⊆ B is residual in B.

Suppose U is a non-empty open subset of X, and S ⊆ U is residual in
U and scrambled. Since f is non-wandering, there exists k > 0 such that
U ∩ f−kU 6= ∅. It follows that f−kS is residual in f−kU , hence also residual
in the non-empty open set U ∩ f−kU . Since S is also residual in this set,
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S ∩ f−kS 6= ∅. Thus there is a point x ∈ S such that fk(x) ∈ S. Then using
(S-5) from Subsection 2.1 and by Proposition 4(1) applied to fk the set X
contains a fixed point of fk, which contradicts (3).

When (X, f) is minimal, f is feebly open by [5, 32]; this implies that the
preimage of a residual set is residual. A minimal system is non-wandering.
Finally, a minimal system may contain a periodic point but then X con-
sists of just one periodic orbit and so has no scrambled set. The conclusion
follows.

Notice that (2) implies the surjectivity of f when X is compact. Transi-
tivity implies (2).

In the way of examples, some transitive non-minimal systems satisfy all
the assumptions of Proposition 33.

Example 34. Suppose (X, f) is minimal and infinite and (Y, g) is a
weakly mixing, non-minimal system with g feebly open (say, the tent map
on the interval). The Cartesian product (X×Y, f×g) is also feebly open and
contains no periodic points because its factor (X, f) contains none. Being
the product of a minimal system and a weakly mixing system, it is transitive
and so non-wandering. Finally, since Y is not minimal neither is X × Y .

The interval map f(x) = min{1, 2x} on the compact interval [0, 1] does
not satisfy any of these conditions and still all its scrambled sets are nowhere
residual (it has none). Thus none of the conditions (1), (2) and (3) is nec-
essary. One can also consider less trivial examples. Say, Example 49 shows
that a non-feebly open system may have only nowhere residual scrambled
sets. Full shifts have dense periodic points; nevertheless their scrambled sets
are nowhere residual.

Thus, for a better understanding of Proposition 33 it is important to
know whether it remains true when dropping one of the three assumptions.
We can answer this question only partially, which means that the status of
the proposition is still far from clear.

There are examples showing that Proposition 33 is no longer true in
general when (1) and (2) hold but not (3). For instance (X, σ) in the proof
of Proposition 55 is residually scrambled; σ is invertible, hence open, and
the system is transitive, but X contains one periodic point. The situation is
similar when (1) and (3) hold but not (2):

Example 35. Let Σ =
∏∞

i=1{0, 1, 2} be equipped with the standard to-
tally disconnected product topology. If x = (x1, x2, . . . ) and y = (y1, y2, . . . )
are two elements of Σ their sum x ⊕ y = (z1, z2, . . . ) is defined as follows.
If x1 + y1 < 3, then z1 = x1 + y1 and the carry is 0; if x1 + y1 = 3, then
z1 = x1 + y1 − 3 = 0 and we carry 1 to the next position. The other terms
z2, . . . are successively determined in the same fashion. Let T : Σ → Σ be
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defined by T (z) = z ⊕ 1 for z ∈ Σ, where 1 = (1, 0, 0, · · · ). T is known to be
minimal. It is called an adding machine.

For x ∈ Σ, let n(x) = #{i ∈ N : xi 6= 1} and h(x) = 2−n(x), assuming
2−∞ = 0. Put X =

⋃

x∈Σ{x} × [0, h(x)]. Then X is a closed subset of
Σ × [0, 1]. Now define f : X → X by

f(x, th(x)) = (Tx, th(Tx)) for any x ∈ Σ and t ∈ [0, 1].

As a homeomorphism, f is feebly open; (3) holds because there exists
a non-trivial minimal factor. The set U = {(1, 1, 1, · · · )} × (1/2, 1] of X is
open. It is a scrambled set of (X, f): the iterates of f map it to intervals of
positive length over points of Σ, but the lengths oscillate between 0 and 1/4.
On the other hand, (2) does not hold since no point z ∈ U ever returns to
its neighbourhood U under the action of f .

Question. Will Proposition 33 work if one removes the assumption (1)?
Note that Example 54 is residually scrambled but none of (1), (2) and (3)
holds.

6.2. Graph maps. Recall that on a real compact interval only nowhere
residual scrambled sets may exist [12, 22]. What is the situation on graphs?
By [38] scrambled sets have empty interiors. Using this result we prove a
stronger result, Theorem 45: on graphs scrambled sets are nowhere residual.
In contrast, recall that it is shown in [25] that there exists a completely
scrambled compact dynamical system (X, f) with X a dendrite.

First recall that a graph is a metric continuum which can be written
as the union of finitely many arcs any two of which are either disjoint or
intersect only in one or both of their endpoints; in other words, it is a
1-dimensional compact connected polyhedron.

Recall that a point x in a graph G is called a branch point or endpoint if
its order satisfies ordG(x) ≥ 3 or ordG(x) = 1, respectively. Let x ∈ G with
ordG(x) = v. Then a closed neighbourhood Ux of x is said to be a canonical

neighbourhood of x if it is of the form J1 ∪ · · · ∪ Jv where for every i the
set Ji is an arc for which x is an endpoint, Ji does not contain any branch
point of G different from x (x may or may not be a branch point), and for
i 6= j, Ji ∩ Jj = {x}. In other words, if v ≥ 3 or v ≤ 2 then, respectively, Ux

is just a simple v-od with vertex x or an arc which is a neighbourhood of x;
in both cases Ux must be sufficiently small not to contain any branch point
different from x.

The sets Ji are called x-rays (of Ux). If J is an x-ray there is a (surjective)
homeomorphism J → [0, 1] sending x to 0. When f : G → G, f(x) = y and
an x-ray J is mapped by f into an y-ray, the claim that f |J is strictly
increasing has the obvious sense (think of x-rays as linearly ordered sets
with x being their minimum).
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Obviously there are arbitrarily small canonical neighbourhoods of x. In
the family of all x-rays of all canonical neighbourhoods of x define the re-
lation J ∼ J ′ ⇔ J ⊆ J ′ or J ′ ⊆ J . This is an equivalence relation with
v = ordG(x) classes of equivalence which will be called directions from x.
The direction from x containing the x-ray J is denoted by [J ]. So, given a
canonical neighbourhood J1 ∪ · · · ∪ Jv of x, the directions from x are the
classes [J1], . . . , [Jv].

Let f : G → G, p, q ∈ G and f(p) = q. Let P be a direction from p
and Q be a direction from q. We say that P is mapped by f to Q and we
write f(P ) = Q if there are canonical neighbourhoods Up and U q of p and
q, respectively, such that the p-ray of Up belonging to the direction P is
mapped onto that q-ray of U q which belongs to the direction Q. Moreover,
if the p-ray is mapped onto the q-ray in a strictly increasing way we say that
the direction P is mapped to the direction Q in a strictly increasing way.

It may happen that a direction is not sent by f to any direction; however,
f never sends a direction to two or more different directions. So f induces
a function (denoted again by f) defined on a (possibly empty) subfamily of
all directions, whose values are directions.

Let f : G → G, p, q ∈ G and f(p) = q. It is possible that no direction
from p is mapped to a direction from q. We say that p is mapped to q regu-

larly if every direction from p is mapped to a direction from q in a strictly
increasing way and different directions from p are mapped to different di-
rections from q. Note that in such a case ordG(q) ≥ ordG(p) and there are
canonical neighbourhoods Up and U q such that f |Up

is a homeomorphism

Up → f(Up) ⊆ U q.
The next two results concern graph maps that are one-to-one on residual

subsets. Observe that a map is always one-to-one on a scrambled set.

Lemma 36 ([12]). Let I, J be real compact intervals and f : I → J be

continuous. If f is one-to-one on a residual set S ⊆ I then f(S) is residual

in f(I) and f is strictly monotone on I (hence a homeomorphism I → f(I)).

Proof. The first part is proved in Proposition 4.1 in [12], the second
part is then trivial (see the beginning of the proof of Theorem 4.2 in [12] or
Lemma 3 in [22]).

Of course this still holds when replacing the intervals by homeomorphic
images, i.e., arcs. We still refer to Lemma 36 when having this analogue in
mind.

Lemma 37. Let H, H ′ be two graphs and let f : H → H ′ be continuous.

Let f be one-to-one on a residual set S ⊆ H. Then:

(1) If I1 and I2 are two non-overlapping arcs in H then f(I1) ∩ f(I2)
has empty interior in H ′.



TOPOLOGICAL SIZE OF SCRAMBLED SETS 329

(2) f(I) is an arc in H ′ whenever I is an arc in H with sufficiently

small diameter. In such a case f |I is a homeomorphism I → f(I).
(3) f(S) is residual in f(H).

Proof. (1) If the interior of f(I1) ∩ f(I2) is nonempty then it contains
an arc J such that for some (non-overlapping) arcs J1 ⊆ I1 and J2 ⊆ I2 one
has f(J1) = f(J2) = J . By Lemma 36, the sets f(S ∩ J1) and f(S ∩ J2) are
residual in J and hence intersect in a residual subset of J . This contradicts
the injectivity of f on S.

(2) By uniform continuity of f , if diam I is small enough then f(I) does
not contain any circle and does not contain more than one branch point
of H ′. Then f(I) is an arc or an n-od, n ≥ 3. In the latter case some subarc
J of that n-od is covered at least twice, i.e., there are non-overlapping arcs
I1, I2 ⊆ I with f(I1) = f(I2) = J ; a contradiction with (1).

(3) By (2), one can cover H by finitely many arcs I1, . . . , Ik such that for

every i, f |Ii : Ii → f(Ii) is a homeomorphism. Then f(S) =
⋃k

i=1 f(S ∩ Ii)

is residual in
⋃k

i=1 f(Ii) = f(H).

Lemma 38. Let H, H ′ be two graphs and let f : H → H ′ be continuous.

Then:

(1) If f is one-to-one on a set S which is residual in a neighbourhood V
of a point p, then p is mapped to f(p) regularly and so, in particular ,
ordH(p) ≤ ordH′(f(p)).

(2) If H = H ′ and f is one-to-one on a set S which is residual in the

whole graph H then the function ordH : H → N is nondecreasing

along the trajectories of f .

(3) If f is one-to-one on a set S which is residual in the whole graph H
then even, for every y ∈ H ′,

∑

x∈f−1(y)

ordH(x) ≤ ordH′(y);

it follows that f is only finite-to-one.

Proof. (1) Write q = f(p) and consider canonical neighbourhoods Up

⊆ V and U q of p and q respectively such that f(Up) ⊆ U q. Let J be a
p-ray of Up. Since f is one-to-one on S, f(J) is a nondegenerate connected
subset of U q containing the point q. In fact f(J) is an arc with endpoint q,
hence a subarc of one of the q-rays. To see this, suppose that f(J) contains
points b1, b2 different from q and lying in two different q-rays of U q. Then,
moving with an argument along J , we start at the point p (which is mapped
to q), then we get to a point which is mapped to, say, b1 and then to a
point which is mapped to b2. Hence one can find two non-overlapping arcs
A1, A2 in J which are mapped onto the same arc B (a subset of a q-ray).
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This contradicts Lemma 37(1). Therefore f(J) is a subset of a q-ray. By
Lemma 36, f is strictly increasing on J .

(2) trivially follows from (1).
(3) Note first that by (1) any preimage of y is mapped to y regularly.

Further, let x1 6= x2 be preimages of y and Ux1 , Ux2 and Uy be their
canonical neighbourhoods with Ux1 ∩ Ux2 = ∅ and f(Uxi) ⊆ Uy, i = 1, 2.
Let J1 be any of the x1-rays and J2 be any of the x2-rays in Ux1 and Ux2 ,
respectively. Then we already know that f(J1) and f(J2) are subsets of y-
rays in Uy. Moreover, these two y-rays are different; otherwise there would
be two disjoint arcs with the same image, which would create a contradiction
as in the proof of (1).

Easy examples show that if f : H → H ′ and H 6= H ′ the assumptions of
Lemma 37 do not imply that f is a homeomorphism. Nevertheless, we have

Lemma 39. Let G be a graph and f : G → G be continuous. Let f be

one-to-one on a residual set S ⊆ G. Then f is a homeomorphism of G
onto f(G).

Proof. It is sufficient to show that some iterate of f (hence also f itself)
is injective on G.

If G is an arc use Lemma 36. If G is a simple closed curve then the
injectivity of f follows from the inequality in Lemma 38(3) (in this case f
is a homeomorphism of G onto f(G) = G since the circle does not contain
a homeomorphic image different from itself).

Finally, suppose that G has branch points. By Lemma 38(2) the function
ord is non-decreasing along the trajectories of f . Therefore every branch
point is mapped to a branch point and, as there are only finitely many
branch points, eventually periodic. Since ord is constant along a periodic
orbit, by Lemma 38(3) no periodic point has a preimage outside its orbit
and so all branch points are in fact periodic. Thus there exists k ≥ 1 such
that all branch points are fixed for g = fk. Fix a branch point b. The map g
is injective on S and by Lemma 38(1), g maps b to b regularly. This means
that f permutes the directions from b. Since there are only finitely many
branch points and each of them has finite order, there is n such that all
branch points and also all directions from all branch points are fixed under
the map h = gn.

We show that the map h = fkn which is injective on S is in fact injective
on G.

Let B be the non-empty set of branch points of G. Each point of B
is fixed for h and so h(B) = B. Applying the inequality in Lemma 38(3)
to points of B it follows that h(G \ B) ⊆ G \ B. Let K be a connected
component of G \ B. Since K \ K consists of one or two branch points and
every branch point is mapped by h regularly to itself, h(K) ∩ K 6= ∅. This
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together with the fact that h(K) is a connected subset of G \ B implies
that h(K) ⊆ K and h(K) ⊆ K. The set K is an arc (at least one of whose
endpoints is a branch point) or a simple closed curve (containing exactly one
branch point) and so, by what we have already proved at the very beginning
of this proof, h maps K homeomorphically to (not necessarily onto) itself.
Since branch points are fixed, K is also mapped homeomorphically to itself
by h. Therefore h is injective on G; hence so is f .

Lemma 40. Let G be a finite graph and f : G → G be continuous. Then

no scrambled set of (G, f) is residual in G.

Proof. By [22] this is true if G is an arc. Assume that G is a simple closed
curve, say the circle S

1, and that f has a residual scrambled set, on which it
is one-to-one. By Lemma 39, f is a homeomorphism of S

1 onto itself and by
Proposition 31 it has a fixed point. Then f2 is a degree 1 homeomorphism
with a fixed point and so it can be considered to be an interval map. Now
homeomorphisms on the interval do not have scrambled sets.

If the set B of branch points of G is not empty, let K be a component
of G \ B. By Lemma 39, f is a homeomorphism and as in the proof of
Lemma 39 one has fn(K) ⊆ K for an appropriate iterate. Since K is an arc
or a simple closed curve, no scrambled set of fn can be residual in K.

We want to strengthen Lemma 40 by proving that scrambled sets on
graphs are in fact nowhere residual. To do this we use two weaker results:
Lemma 40 and Mai’s result that scrambled sets on graphs have empty in-
teriors [38]. Without them it does not seem easy to find a direct proof. We
start by proving that a scrambled set of a graph map cannot be residual in
a circle. Equivalently, we have

Lemma 41. Let G be a finite graph and f : G → G be continuous. Let

W be a subgraph of G such that the graph W has no endpoint. Then no

scrambled set of (G, f) is residual in W .

Proof. Consider the (obviously finite) sets

A = {W : W is a subgraph of G and W has no endpoint as a graph},

As = {W ∈ A : there is a scrambled set R of (G, f)

such that R ∩ W is residual in W}.

Assume on the contrary that As 6= ∅. Fix W ∈ As. Then there is a resid-
ual set S in W which is scrambled for (G, f). Hence the set f(W ) is non-
degenerate and obviously it is a subgraph of G. Since ordW (x) ≥ 2 for all
x ∈ W , it follows from Lemma 38(1) applied to f |W : W → f(W ) that
f(W ) ∈ A. By Lemma 37(3) the set f(S) is residual in f(W ) and since
f(S) is scrambled for (G, f), we see that f(W ) ∈ As. This shows that As is
a non-empty finite f -invariant set, and there exist V ∈ As and n ∈ N such
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that fn(V ) = V . Then (V, fn|V ) is a residually scrambled system, which
contradicts Lemma 40.

We must still show that a scrambled set of a graph map cannot be
residual in an arc. First we prove the following lemma (notice that it is not
sufficient to assume that f is one-to-one on S):

Lemma 42. Let G be a finite graph and f : G → G be continuous. Let I
be an arc in G and let the scrambled set S ⊆ I be residual in I. Then f(I)
is an arc and f |I : I → f(I) is a homeomorphism.

Proof. We may think of I as the interval [0, 1]. Applying Lemma 37(2)
to the map f |I : I → G we find that if δ > 0 is small enough then f |[0,δ]

maps [0, δ] homeomorphically onto an arc in G. Let δ0 be the supremum of
all such δs. Then f is one-to-one on [0, δ0] \ {δ0}. If f is one-to-one on [0, δ0]
the lemma follows; if f(δ0) = f(x) for some 0 ≤ x < δ0 then f([x, δ0]) is a
circle K in G and by Lemma 37(3) the set f(S)∩K is residual in K. Since
f(S) ∩ K is a scrambled set of f , this contradicts Lemma 41.

Lemma 43. Let C be a circle and g : C → C be a homeomorphism. Then

g has no scrambled pair.

Proof. It is sufficient to show that f := g2 has no scrambled pair. Here f
is an orientation-preserving, i.e., degree one, homeomorphism. If its rotation
number is rational it is known that every non-periodic point is asymptotic to
a periodic point and so there is no scrambled pair. If the rotation number of f
is irrational then by Poincaré’s classification theorem either f is topologically
conjugate to an irrational rotation (hence without scrambled pairs), or f has
a factor which is an irrational rotation; the factor map can be chosen to be
monotone. In the latter case there is a nowhere dense set E such that f |E is
conjugate to an irrational rotation and the lengths of contiguous (wandering)
intervals go to zero under iterates of f . This shows that, again, there is no
scrambled pair.

Lemma 44. Let G be a finite graph and f : G → G be continuous. Let J
be an arc in G with endpoints c, d. Suppose that a scrambled set S of f is

residual in J . Then for any increasing sequence (ni)i∈N of natural numbers,
if limi→∞ d(fni(c), fni(d)) = 0 then limi→∞ diam(fni(J)) = 0.

Proof. Since S is scrambled also for all iterates of f , by Lemma 42 fn|J :
J → fn(J) is a homeomorphism for any n ∈ N. Hence

(1) for any n ∈ N, fn(J) is an arc with endpoints fn(c) and fn(d) and
contains a scrambled set of f residual in fn(J),

(2) for every r, s = 0, 1, 2, . . . , the map f s|fr(J) : f r(J) → f r+s(J) is a
homeomorphism.
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To prove the lemma, assume that diam(fni(J)) does not converge to
zero. Passing to a subsequence if necessary, assume that there exists ε > 0
such that diam(fni(J)) ≥ ε for all ni. On the other hand, note that for the
distances of the endpoints of the arcs fni(J) we have d(fni(c), fni(d)) → 0.
The last two properties are contradictory if G is a tree. So G contains circles
and it is not hard to see that for i large enough there exist circles Ci ⊆ G
with

(3) Ci ∩ fni(J) is an arc,
(4) limi→∞ diam(Ci \ fni(J)) = 0.

Without loss of generality suppose that this holds for all i (and not only for
i large enough). Obviously

(5) the set fni(S) is residual in Ci ∩ fni(J) and scrambled for f .

Since there are only finitely many circles in G, again by passing to a subse-
quence of (ni) if necessary, we may assume that C1 = C2 = · · · . By (2), for
any m ∈ N the map fm, when restricted to any of the arcs C1 ∩ fni(J), is
a homeomorphism onto its range. We claim that

(6) there exists a circle D such that it contains a scrambled set of f
which is residual in some arc on this circle, and moreover, for all m,
fm is one-to-one on D (hence a homeomorphism D → fm(D)).

Let us prove (6). The sets C1 \fni(J), i = 1, 2, . . . , are arcs in C1 by (2) and
their diameters tend to zero by (4). Again passing to a subsequence, assume
that these arcs converge to a point x0 ∈ C1. In view of (2) this implies
that all the iterates fm are one-to-one at least on C1 \ {x0}: any two points
different from x0 belong to a set C1 ∩ fni(J) for some i. Now distinguish
two cases.

Case 1. For infinitely many of the numbers ni the set C1 ∩ fni(J)
contains x0. Then the same simple argument as above shows that all the
iterates fm are one-to-one on the whole circle C1 and we are done by putting
D = C1 and taking (1) into account.

Case 2. The set C1 ∩ fni(J) contains x0 for finitely many i only. Then
we may assume that none of the sets C1 ∩ fni(J) contains x0. When i
tends to infinity, the arc fni(J) covers C1 except a smaller and smaller
neighbourhood of x0. The branch points different from x0 (x0 may or may
not be a branch point) have positive distance from x0 and so for i large
enough fni(J) ⊆ C1 (because fni(J) is an arc). We may assume that this is
the case for all i.

Suppose that for some m0, the map fm0 is not injective on C1. Since it
is injective on C1 \ {x0}, fm0(x0) = fm0(x) =: z for some x ∈ C1 \ {x0}.
Notice that fm0(C1) is a figure eight, i.e., two circles having in common just
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the point z. Let D be one of these two circles. Now we come to the key
point: since all the iterates of f are injective on C1 \ {x0}, all the iterates
of f are injective on D (for if fk were not injective on D then fm0+k would
not be injective on C1 \ {x0}). To show that D contains a scrambled set of
f which is residual in some arc on D, use (1). This proves (6).

A consequence is that D, f(D), f2(D), . . . are circles containing some-
where residual scrambled sets of f . Since there are only finitely many circles
in G, there exist m1 < m2 such that fm1(D) = fm2(D) =: C. This implies
fk(C) = C for k = m2 −m1. Let g = fk|C . Then C is a circle, g is a home-
omorphism of C, and there exists a scrambled set E of g that is residual in
some arc on C. This contradicts Lemma 43.

At last we are ready to prove

Theorem 45. Let G be a finite graph and f : G → G be continuous.

Then any scrambled set of (G, f) is nowhere residual.

Proof. Suppose on the contrary that there exist a scrambled set S of
(G, f) and a non-empty open set U of G such that S is residual in U . Let
B be the set of branch points of G. Then there exists an arc I such that
I ⊆ U \B and the two endpoints c, d of I belong to S. The set S is obviously
residual in I.

Since c, d ∈ S form a proximal pair of (G, f), by Lemma 44 any two
different points in I are proximal. On the other hand, two different points
x, y ∈ I cannot be asymptotic: otherwise again by Lemma 44 any two differ-
ent points between x and y would also be asymptotic, which contradicts the
residuality of S in I. Then I is a scrambled set of (G, f). This is impossible:
graph maps may only have scrambled sets with empty interior (see [37]).

6.3. Symbolic systems and cellular automata. We show that a
large class of invertible symbolic systems are not residually scrambled; in
many transitive cases scrambled sets are nowhere residual. The class contains
subshifts of finite type, sofic systems, synchronising systems and more. Re-
sults are easy to transpose to the one-sided versions of the subshifts. This is
not completely surprising, considering the fact that the tent map is an inter-
val map but has a very satisfactory coding by the one-sided full 2-shift. What
could not be foreseen is that the result extends to a considerably larger class.

In the end we show that some cellular automata are not residually scram-
bled. The arguments are essentially the same as for subshifts, with one major
difference: distality is used instead of asymptoticity.

Here are some definitions and notation for symbolic systems. Let A be
a finite alphabet, and let A∗ be the set of all finite sequences of symbols
of A, or words on A, including the empty word; denote by A+ the set of all
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non-empty words; write |w| for the length of the word w. If x ∈ AZ or AN

is a symbolic sequence on A, denote by xi the ith coordinate of x; by xi,j

the block formed by the coordinates of x from i to j, −∞ ≤ i < j ≤ +∞
(0 ≤ i < j ≤ +∞ if x ∈ AN). The shift σ is defined on AZ or AN by
(σ(x))i = xi+1 for i belonging to the suitable set of indices. AZ and AN are
called the two-sided and the one-sided full shifts on A respectively.

A subshift on A is a closed shift-invariant subset of the compact spaces
AZ or AN. If X is a subshift define L(X) as the set of words occurring as
blocks of coordinates in elements of X. Given a word u ∈ L(X) one defines
the cylinder set associated to u starting at i as [u]i = {x ∈ X : xi,i+|u| = u};
by the definition of L(X) this subset of X is not empty.

Let X ⊆ AZ be a subshift and let w ∈ L(X). Given x, y ∈ AZ denote
by z = x−∞,0.(w)0.y|w|,+∞ the point of AZ such that z−∞,0 = x−∞,0,
z0,|w|−1 = w and z|w|,+∞ = y|w|,+∞. A context of w is a pair of infinite blocks
(x−∞,0, y|w|,+∞) with x, y ∈ X such that the point x−∞,0.(w)0.y|w|,+∞ be-
longs to X. In other words, a context of w consists of one left-infinite string
and one right-infinite string such that if one inserts w between them, the
result forms a point of X. Denote by C(w) the set of all contexts of w; the
cylinder set [w] is equal to the set {x−∞,0.(w)0.y|w|,+∞ : (x−∞,0, y|w|,+∞)
∈ C(w)}. The set C(w) depends on X, but in this article there is no risk of
confusion.

When X ⊆ AZ, a right (left) context of u is defined analogously as a
right-infinite (left-infinite) string that can be concatenated to u in X. So
are the sets Cr(u) and Cl(u) of right and left contexts of u. Right contexts
can be defined for X ⊆ AN, which is not the case of contexts.

The proof of the following result contains the basic tools for this subsec-
tion.

Proposition 46. Let (X, σ) be a subshift of AZ (resp. AN). If there

are two distinct words u, v ∈ L(X) with |u| = |v| and C(u) = C(v) (resp.
Cr(u) = Cr(v)), then a scrambled set cannot be residual in [u] and [v], and

(X, σ) is not residually scrambled.

Proof. The proof is given for a two-sided subshift; there is hardly any
difference in the one-sided case.

Define a map φ : X → X as follows: when x ∈ [u] change x0,|u| = u
to v, if x ∈ [v] change x0,|u| = v to u, and leave all other coordinates of x
unchanged; outside these two cylinder sets let φ be the identity. Because u
and v have the same sets of contexts, φ(x) ∈ X on [u] ∪ [v]. The map φ
depends only on a finite set of coordinates, which implies that it is contin-
uous; as an involution it is a homeomorphism; finally, when x ∈ [u] ∪ [v],
φ changes finitely many coordinates and at least one, so that in this case
the pair (x, φ(x)) is properly asymptotic.
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Suppose A ∈ X is residual. Then it is residual in the two open sets
[u] and [v]; because φ is a homeomorphism, φ(A ∩ [v]) is residual in [u],
so that it intersects A ∩ [u]. Let x belong to the intersection; then x =
x−∞,0.(u)0.x|u|,+∞ and φx = x−∞,0.(v)0.x|v|,+∞ both belong to A. They are
properly asymptotic, so A is not scrambled.

Proposition 46 is the most general result we could obtain with the present
method. Its assumption holds for a large class of subshifts, a claim we illus-
trate presently.

Let X ⊂ AZ be a subshift. The word w ∈ L(X) is said to be a synchro-

nising word for X if

∀u, v ∈ L(x) such that uw ∈ L(X) and wv ∈ L(X), one has uwv ∈ L(X);

this definition is also valid for one-sided subshifts. In the full shifts AZ and
AN any word is synchronising.

Assuming again X ⊆ AZ, by compactness this property is equivalent to

∀x− ∈ Cl(w), y+ ∈ Cr(w), one has x−wy+ ∈ X.

A symbolic system is said to be a synchronising system if it is transitive
and has a synchronising word. Full shifts, transitive subshifts of finite type,
transitive sofic systems are synchronising, but there are many more.

Here by a periodic symbolic system we mean a finite union of periodic
orbits. It is not hard to check that a synchronising system has a dense set
of periodic points, and that if it is not periodic it has positive topological
entropy. These properties imply that a non-periodic synchronising system is
Li–Yorke chaotic.

Corollary 47. Let (X, σ) be a non-periodic synchronising subshift , and

let A ⊆ X be scrambled. Then A is nowhere residual.

Proof. The proof is given for a two-sided subshift; it is also valid for
a one-sided subshift. We have to prove that A cannot be residual in any
cylinder set [u]j for u ∈ L(X) and j ∈ Z. So suppose that there exist
u ∈ L(X) and j ∈ Z such that A ∩ [u]j is residual in [u]j.

Let w be a synchronising word of (X, σ). Since (X, σ) is transitive, there
exists v ∈ L(X) such that wvw ∈ L(X). Set l = |vw|. Put x ∈ X with
xkl,kl+l−1 = vw for any k ∈ Z. Then σl(x) = x, i.e., orb(x, σ) is a periodic
orbit. Let L(X, x) = {xi,j : −∞ < i ≤ j < ∞}. Since (X, σ) is non-periodic,
L(X)\L(X, x) 6= ∅. Take e ∈ L(X)\L(X, x). Since (X, σ) is transitive, there
exist c1, c2, c3 ∈ L(X) such that wc1uc2ec3w ∈ L(X). Put v1 = c1uc2ec3 and
k = |v1w|. Then v1 ∈ L(X) \ L(X, x) and wv1w ∈ L(X).

Since w is synchronising and wvw, wv1w ∈ L(X), the two words a :=
wv1w(vw)k and b := wv1w(v1w)l belong to L(X). Obviously |a| = |b|, [a]i ∪
[b]i ⊆ [u]j, where i = j−(|w|+|c1|). Since v1 6∈ L(X, x) and (vw)k ∈ L(X, x),
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a 6= b. Since |a| = |b| and the synchronising word w appears at both ends
of a and b, C(a) = C(b). Since A is residual in [u]j, A is also residual in
both non-empty open sets [a]i and [b]i. As C(a) = C(b) and a 6= b, one can
define an involution φ on [a]i ∪ [b]i as in the proof of Proposition 46. Then
A ∩ [a]i and φ(A) ∩ [a]i have non-empty intersection, and this implies that
A contains a proper asymptotic pair. Therefore a scrambled set A cannot
be residual in [u]j.

The synchronising property is much stronger than the assumption of
Proposition 46. Obviously transitivity is not necessary: when X is the union
of two non-periodic synchronising systems its scrambled sets are nowhere
residual; with the help of elementary techniques from symbolic dynamics it
is not hard to prove that scrambled sets of non-transitive subshifts of finite
type or sofic systems are also nowhere residual. A deeper reason is that the
existence of two different words having the same length and contexts is a
weaker assumption than that of a synchronising word that connects to itself
in two different ways after n iterations. Together, the following statement
and example illustrate this fact.

Proposition 48. The shift action on a one-sided synchronising sub-

shift X ⊆ AN is feebly open (so, the preimage of a residual set under σ is

residual).

Proof. Let u = au′ ∈ L(X), where a ∈ A. By assumption there exist
v and a synchronising word w with uvw ∈ L(X); this implies in particular
that the set of points y ∈ X that can be concatenated to uvw is the same
as the corresponding set for u′vw, in other words, σ([uvw]) = [u′vw], which
means that σ([u]) contains the non-empty open set [u′vw].

In contrast with this result, there are Li–Yorke chaotic subshifts having
no residual scrambled sets, while in general the preimage of a residual set
under the map is not residual. Not being feebly open, these systems are not
synchronising.

Example 49. The construction is in two steps. We first construct a
one-sided subshift XE on {0, 1}, containing a residual subset whose preimage
under σ is not residual (in view of Lemma 32 this is equivalent to finding an
open set having an image with empty interior; in this case it is easy to find
one). Then we construct a symbolic extension YE of XE having the same
property, and which contains no residual scrambled sets. Both XE and YE

are Li–Yorke chaotic because they are weakly mixing.

For E ⊆ N put

XE = {x ∈ {0, 1}N : xi = 1, xj = 1, i < j ⇒ j − i ∈ E}.

(XE , σ) is a dynamical system because XE is closed and shift-invariant.
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Observe that XE is never empty (it always contains the fixed point 0); the
shift acts surjectively on XE (if x ∈ XE then 0.x ∈ XE is in the preimage
of x); and that L(XE) = {w ∈ {0, 1}∗ : wi = 1, wj = 1, i < j ⇒ j − i ∈ E},
since if w satisfies this condition, the cylinder set [w]0 contains the point
w.0∞. Let us mention without details that if E is thick, i.e., contains intervals
of unbounded length, then XE is weakly mixing. This relies upon a well-
known characterization of weak mixing in [19].

Suppose E is thick, i.e., contains intervals of unbounded length, but
its complement Ec is infinite. We construct a dense open subset U of XE ,
the preimage of which is of course open but not dense. This means that
the preimage of at least one residual subset of XE under the shift is not
residual.

Consider w ∈ L(XE) and let N be the right endpoint of a finite interval
I ⊆ E such that |I| ≥ |w|, that is, N ∈ E but N + 1 /∈ E; such intervals
I and endpoints N always exist because E is thick but not cofinite. Then
w′ = w0N−|w|1 ∈ L(XE), because the distance between any occurrence of 1
in the prefix w of w′ and its final 1 is always in I. But 1w′ /∈ L(XE) since
N +1 /∈ E. This means that σ−1([w′]0)∩ [1]0 = ∅. Now let w vary in L(XE).
Put U =

⋃

w∈L(XE)[w
′]0. All the sets [w′]0 are open and so is their union

U . The density of U results from the facts that [w′]0 ⊆ U ∩ [w]0 is never
empty for w ∈ L(XE), and that the sets [w]0 form a base of neighbourhoods
for XE . On the other hand,

σ−1(U) ∩ [1]0 = [1]0 ∩
⋃

w∈L(XE)

σ−1[w′]0 =
⋃

w∈L(XE)

(σ−1[w′]0 ∩ [1]0) = ∅,

which implies that σ−1(U) is not dense. This completes the first step.
Let again E ⊆ N be thick but not cofinite and consider the one-sided

subshift (YE , σ) on the alphabet {r, b, 1} with the following properties: col-
lapsing r and b to 0 sends YE onto XE , so (XE, σ) is a factor of (YE, σ) and
all preimages of forbidden cylinders of XE are forbidden in YE ; moreover
the words rb and br are forbidden in YE . Thus to obtain a point of YE, one
takes a point of XE and paints each of its strings of 0s uniformly red (r) or
blue (b) in an arbitrary way. The two cylinder sets [1ri1] and [1bi1] are not
empty whenever i + 1 ∈ E, and one easily checks that C([1ri1]) = C([1bi1])
so that Proposition 46 applies and (YE , σ) is not residually scrambled (it
is not hard to adapt the proof to deduce that scrambled sets are nowhere
residual). On the other hand, YE contains a dense open set, the preimage of
which under σ is not dense; the proof is the same as for (XE, σ), up to evi-
dent changes. The fact that (YE , σ) is weakly mixing can be deduced easily
from the similar property of (XE, σ).

With the same arguments it is not hard to show that scrambled sets of
(YE, σ) are nowhere dense.
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Here is a further example. Let E be a thick subset of N that is not
cofinite; then XE is weakly mixing. If (Y, σ′) is a non-trivial minimal strongly
mixing subshift the product system (XE×Y, σ×σ′) contains, like (XE, σ), a
residual set with non-residual preimage; being the product of one transitive
and one strongly mixing system, it is transitive. Finally, by Proposition 33
the scrambled sets of (Y, σ′) are nowhere residual; neither are those of the
product system.

Finally, it can be proved that some cellular automata have no residual
scrambled sets. The method of the proof is the same as for Proposition
46, except that the absence of residual scrambled sets is established with
the help of distal, instead of asymptotic, pairs. A one-dimensional cellular

automaton (CA) is a continuous shift-commuting self-map of AZ, where A
is a finite set. CA are exactly those transformations of AZ such that there
exist an integer r ≥ 0 and a so-called local map f : A2r+1 → A with

(F (x))i = f(x−r+i, . . . , xi, . . . , xr+i) for x ∈ AZ.

Proposition 50. Let A be a finite group, and let F be a CA with local

map f of the form f(x0, . . . , xr) = x0 + g(x1, . . . , xr), where g is any map

from Ar to A. Then (AZ, F ) is not residually scrambled.

Proof. Define φ : AZ → AZ as the continuous homeomorphism such that
(φx)0 = x0 + a, where a ∈ A, a 6= 0, and (φx)i = xi, i 6= 0.

Obviously by induction (Fn(φx))0 = (Fn(x))0 +a, so d(Fn(φx), Fnx) ≥
δ > 0 for all n, which means that the pair (x, φ(x)) is distal for any x. When
S ⊂ AZ is residual, S and φ(S) have non-empty intersection, which implies
that S contains a distal pair.

This class of CA contains some one-sided linear CA (those for which f
is a linear combination of a finite number of coordinates), but also many
non-linear ones, for instance the Coven cellular automata [15, 11], which
exhibit various dynamical properties.

Question. Example 49 and others that we cannot describe here suggest
that there are large classes of transitive, not necessarily synchronising, sym-
bolic systems for which one can prove that their scrambled sets are nowhere
residual. Can one describe such a class? Proposition 55 shows that a transi-
tive symbolic system may be residually scrambled: this sets a limit to what
can be expected in this direction.

6.4. Second category scrambled sets. In view of Proposition 33,
Theorem 45 and Proposition 46 it is natural to ask whether a minimal
map, a graph map or a synchronising subshift may have second category
scrambled sets. In what follows we answer these questions positively, but for
this we have to assume the Continuum Hypothesis. The following is obvious:
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Lemma 51. Let X be a Baire space. Suppose that S ⊆ X is nowhere

residual and has the Baire property. Then S is a first category set.

Thus if S is a scrambled set for a minimal map in a compact metric space
and S has the Baire property then S is first category. The next lemma is
implicitly contained in [12].

Lemma 52. Let X be a Polish space without isolated points and let R ⊆
X2 be residual in X2 and symmetric (i.e., (y, x) ∈ R whenever (x, y) ∈ R).
Assuming the Continuum Hypothesis, there exists an everywhere second cat-

egory set S ⊆ X such that S × S \ ∆ ⊆ R.

Proof. Since R is a residual subset of the square of a Polish space, by
Proposition 20 there is a residual set A ⊆ X such that for every x ∈ A there
is a residual set Ax ⊆ X such that {x}×Ax ⊆ R. As A and Ax are residual
sets, so is Ax ∩ A. There is no loss of generality in supposing Ax ⊆ A.

Assume the Continuum Hypothesis. Let Ω be the first uncountable or-
dinal and let

G0, G1, . . . , Gα, . . . (α < Ω)

be the second category sets of type Gδ in X. Since A is residual and G0

second category, there is x0 ∈ G0 ∩ A. Since X has no isolated point, every
singleton in X is nowhere dense, Ax0 \ {x0} is residual and we can choose
x1 ∈ G1 ∩ Ax0 \ {x0}. Similarly choose x2 ∈ G2 ∩ (Ax0 ∩ Ax1) \ {x0, x1}.
Suppose that for all β < α we have chosen xβ ∈ Gβ∩

⋂

γ<β Axγ\{xγ : γ < β}.
To find xα, consider the set

Sα =
(

Gα ∩
⋂

γ<α

Axγ

)

\ {xγ : γ < α} .

As a countable intersection of dense Gδ sets, Sα is a dense Gδ. Choose
xα ∈ Sα and put S = {xα : α < Ω}. The fact that S intersects every
second category Gδ set implies that S is everywhere second category. Indeed,
suppose that S is first category in an open ball B; then B \ S is residual
in B and contains a Gδ set C, dense in B. Since B is open and non-empty
and C ⊆ B is second category and Gδ in B, C is also second category
and Gδ in X but S is disjoint from C, which is a contradiction. Finally, fix
(x, y) ∈ S × S \ ∆. Then x = xα and y = xβ for some α 6= β. If α < β then
xβ ∈ Axα and so (xα, xβ) ∈ R. If α > β then similarly (xβ, xα) ∈ R and by
symmetry of R again (x, y) ∈ R.

A system (X, f) is called generically chaotic if scrambled pairs are resid-
ual in X × X.

Proposition 53. Let (X, f) be generically chaotic with X Polish, and

assume the Continuum Hypothesis. Then there exists an everywhere second
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category scrambled set for f . In particular , in the class of compact (metric)
systems we have, under CH :

(1) Non-trivial weakly mixing systems have everywhere second category

scrambled sets.

(2) A non-trivial minimal system has an everywhere second category

scrambled set if and only if it is weakly mixing.

(3) All scrambled sets of a minimal non-periodic system (X, f) are no-

where dense if and only if the maximal distal factor of (X, f) is not

periodic.

Proof. Generic chaos implies that X has no isolated points. Put R =
SR(X, f) and apply Lemma 52.

(1) Weak mixing for non-trivial systems implies generic chaos (pairs
(x, y) that are transitive for f × f are residual in X × X and scrambled)

(2) For one implication use (1). Conversely, if a compact metric minimal
system (X, f) has an everywhere second category scrambled set, by Propo-
sition 28 its maximal distal factor (Y, g) has an isolated point. Since (Y, g) is
minimal, this implies that it is just a periodic orbit. Suppose that its period
is at least 2. Then (X, f) consists of several non-intersecting clopen sets
which are permuted by f . This contradicts the assumption that (X, f) has
everywhere second category scrambled set. We have thus proved that the
maximal distal factor, hence the maximal equicontinuous factor, of (X, f)
is trivial. It follows that (X, f) is weakly mixing by Proposition 29.

(3) This follows from Proposition 30.

This result also implies existence of positive-entropy systems having sec-
ond category but no residual scrambled sets. Any weakly mixing system with
positive entropy which is not residually scrambled has this property, for in-
stance minimal weakly mixing systems with positive entropy (by Proposition
33), full shifts (by Proposition 46) or the tent map.

7. SYSTEMS WITH RESIDUAL SCRAMBLED SETS

In Section 6 above we gathered all we know about dynamical systems that
cannot be residually scrambled. Here we describe some residually scrambled
systems.

As mentioned above a variety of completely scrambled dynamical sys-
tems are known to exist [37, 38, 25, 27]: by definition a completely scram-
bled system (X, f) is one such that X itself is a scrambled set. A completely
scrambled system is proximal, so by Proposition 4 its unique minimal sub-
set is a singleton when X is compact. It is invertible, therefore feebly open.
A symbolic system is never completely scrambled; indeed, a symbolic system
contains proper asymptotic pairs unless it is the union of finitely many peri-
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odic orbits (then it is distal). For a similar reason the entropy of a completely
scrambled compact system is 0; Proposition 3 in [10] states that when X is
compact and h(f) > 0 the set of points x ∈ X such that there is an asymp-
totic pair (x, y) with y 6= x has measure 1 for any positive-entropy measure.
Finally, a completely scrambled, weakly mixing system is constructed in [27]
but no strongly mixing example is known.

Call a system residually scrambled if it has a residual scrambled set.
To our knowledge this weaker notion has not been previously investigated.
Here we give various examples. Some of them show that unlike completely
scrambled systems, residually scrambled systems are not necessarily prox-
imal, invertible or even feebly open; they can be strongly mixing or have
positive entropy; there are symbolic residually scrambled systems. Finally,
the technique used for constructing a residually scrambled positive-entropy
system also permits one to construct, given any minimal distal system, a
completely scrambled system that is not disjoint from it.

Let us start with a rather simple example:

Example 54. Let (X, f) be completely scrambled; f is thus a home-
omorphism and has a unique fixed point q. Let S = N ∪ {p} be disjoint
from X and endowed with the topology such that each point of N is isolated
and p is the limit of the sequence (n) as n → ∞. The map g is defined on
Y = X ∪ S as follows: g(x) = f(x) for x ∈ X; g(p) = p; g(n) = n − 1 for
n > 1, and g(1) is some point x1 ∈ X \ {q}.

(Y, g) contains the two fixed points p and q. One checks easily that the
set Y \ ({p} ∪ {f−n(x1) : n ∈ N}) is scrambled and residual. The preimage
of a residual set is not necessarily residual: let E ⊆ Y be such that N ⊂ E
and E ∩ X is residual in X but does not contain x1; then g−1(E) does not
intersect the open singleton {1}. Since none of the forward images of the
open set {n}, intersects {n} the system (Y, g) is not regionally recurrent.

The example above satisfies none of the assumptions of Proposition 33;
in particular the preimage of a residual set is not always residual. This shows
that residually scrambled systems may have more than one fixed point and
therefore not be proximal (see also Proposition 31).

Section 6.3 exhibits almost endless classes of symbolic systems in which
scrambled sets are never residual: minimal subshifts and more (Proposi-
tion 33); by Proposition 46, many subshifts containing a dense set of periodic
points (like synchronising systems) and probably others; and also subshifts
which do not satisfy the assumptions of Proposition 46. So why should this
not be a general property of symbolic systems? Well, it is not. We now con-
struct a residually scrambled symbolic system. In contrast with Example 54
it is proximal, which implies it has a unique fixed point, and invertible,
therefore feebly open.
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Proposition 55. There exists a proximal , residually scrambled , sym-

bolic system (X, σ). It is strongly mixing and there is a non-atomic ergodic

measure µ on (X, σ).

Proof. We are using the notation for symbolic systems introduced in
Subsection 6.3.

The symbolic system (X, σ) is defined on the alphabet {0, 1} by a clas-
sical k-block construction. For each non-negative integer k the k-block is a
word on {0, 1} defined inductively by the formula

Bk+1 = Bk.Bk.1 with B0 = 0.

The length of Bk is denoted by ℓk; it is easy to check that ℓk > k for any
k ∈ N. The closed σ-invariant set X ⊆ {0, 1}Z is the set of all sequences x
such that any block of coordinates of x is contained as a subword in one of
the blocks Bk, k ∈ N.

S. Bailey and K. Petersen pointed out that (X, σ) is the symbolic system
generated by the non-primitive substitution τ : {0, 1} → {0, 1}∗ defined by
τ(0) = 001 and τ(1) = 1. This remark provides tools for a deeper investiga-
tion of the properties of this subshift.

The following elementary observations are used repeatedly below. For
0 ≤ m ≤ n, Bn always begins with an occurrence of Bm; the word 01n

always occurs at the end of an n-block and only there. An occurrence of Bk

is either preceded or followed by another occurrence of Bk, and whenever
Bk occurs in x ∈ X it is always inside an occurrence of Bk+1. Finally, given
k > 0 and x ∈ X, any coordinate of x which is not included in an occurrence
of Bk has value 1.

Claim 1. The system (X, σ) is the union of three shift-invariant sets:

(1) the fixed point p on the letter 1;
(2) the orbits of the two points z and z′ such that zi = 1 for i < 0, z′i = 1

for i ≥ 0, z0 = z′−1 = 0, and there are infinitely many positive (resp.
negative) coordinates i with zi = 0 (resp. z′i = 0);

(3) all points x ∈ X with infinitely many 0s among both negative and

positive coordinates.

Proof of the claim. The length of 1-strings is unbounded in X so p be-
longs to X by closure. Suppose z ∈ X is such that zn = 1 for n < 0 and
z0 = 0: then z contains a 1-block starting at time 0. Since 1-blocks occur
in pairs and all negative coordinates are 1 there is a second 1-block just
after the first, therefore a 2-block starting at 0. By induction z0,ℓk

= Bk for
any k, which determines all non-negative coordinates of z, hence z itself; z′

is also completely determined when z′n = 1 for n ≥ 0 and z′−1 = 0. One
easily checks that z and z′ belong to X. All points of X that do not belong
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to their orbits have infinitely many occurrences of 0 among positive and
negative coordinates.

For x ∈ X, define rk(x) as the greatest negative coordinate of x at which
a k-block begins (when it exists). The integer rk(x) is defined if and only
if there is an occurrence of 0 in the negative coordinates of x; then it is
defined for any k. The sequence (rk(x)), k ∈ N, is non-increasing: the last
k-block starting in the negatives coordinates is contained in a k + 1-block
which starts either at the same coordinate (then rk+1(x) = rk(x)) or strictly
before rk(x).

Claim 2. Suppose x, y ∈ X form an asymptotic pair and have infinitely

many 0s among their positive coordinates. Then x = y.

Proof of the claim. Suppose x ∈ X contains infinitely many 0s in the
positive coordinates and (x, y) is an asymptotic pair; these two properties are
preserved by shifting x and y the same number of times. Thus we can assume
that there is n0 < 0 such that xi = yi for n ≥ n0 and that xn0 = yn0 = 0.

Then both sequences rn(x) and rn(y), n ∈ Z, exist. They are the same:
as xn0 = yn0 = 0 the n0 coordinate of x and that of y belong to a k-block
which terminates at the end of the first occurrence of 01k to the right of n0

in x and y respectively; but since xi = yi for n ≥ n0, 01k occurs in the same
place for x and y, and the k-blocks containing the n0 coordinate of x and y
also begin in the same position.

It is impossible for x and y to have an infinite string of 1s in the neg-
ative coordinates: by Claim 1 they would have to belong to the orbit of z;
two asymptotic points belonging to the same symbolic orbit are eventually
periodic, and the only periodic orbit in X is {p}, which means that the two
points would be asymptotic to p. This contradicts the fact that they have
infinitely many 0s among their positive coordinates.

Now we prove rn(x) → −∞ as n → −∞. Supposing this is not true,
there is k such that rn(x) = rk(x) = s0 for n > k. Then for any n > k there
is an n-block starting at the coordinate s0 for x and y, and since in points
of X there is always an occurrence of 1n before an n-block, this means that
xj = yj = 1 for j < s0, that is, there is an infinite string of 1s in the negative
coordinates of x and y, which we just proved to be false.

For n > 0 one has

xrn(x),rn(x)+ℓn−1 = yrn(x),rn(x)+ℓn−1 = Bn;

owing to the fact that the sequence rk is non-increasing, all coordinates xi

and yi are thus determined and equal for i ≤ r0(x). But we supposed that
xn0 = yn0 = 0, which implies that r0(x) = r0(y) ≥ n0, and that xi = yi

for i ≥ n0. Therefore x and y coincide at all coordinates and y = x, which
finishes the proof of Claim 2.
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Claim 3. The system (X, σ) is proximal.

Proof of the claim. Let us check that given n there is n0 such that if
w ∈ L(X) has length greater than or equal to n0 there is an occurrence of
1n in w. This property obviously implies that occurrences of 1n are syndetic
in any x ∈ X. This in its turn implies that {p} ⊆ X and that X contains
no other minimal system. By Proposition 4 the last property is equivalent
to proximality.

Fix n > 0 and let w with |w| = 3ℓn occur in Bk for some k > n + 1. The
word Bk can be decomposed into occurrences of Bn separated by strings
of 1s. If w contains an occurrence of Bn it contains an occurrence of 1n.
Otherwise w contains at most one strict suffix of Bn to the left and one
strict prefix to the right with more than ℓn occurrences of 1 in between. As
ℓn > n this implies that any word of length n0 = 3ℓn contains an occurrence
of 1n, which implies proximality as above.

Claim 4. The system (X, σ) contains a residual scrambled set.

Proof of the claim. (X, σ) was just shown to have no distal pairs. We
claim that it contains a unique, countable asymptotic class.

Suppose first that x ∈ X is asymptotic to the fixed point p. Then xn = 1
for n ≥ n0; by shifting x if necessary put n0 = 0 and assume x−1 = 0. By
Claim 1, xn = 1 for n ≥ 0 and x−1 = 0 imply x = z′. Thus the equivalence
class W s(p) of all points asymptotic to p consists of p and the orbit of z′; it
is a countable set.

Next suppose that the pair (x, y), x 6= y, is asymptotic but x and y are
not asymptotic to p, i.e., have infinitely many 0s in the positive coordinates.
Then by Claim 2 one has x = y.

Thus the countable set W s(p) is the unique non-degenerate asymptotic
class in X. Since (X, σ) is proximal, X \W s(p) is a residual scrambled set.

Claim 5.

(1) (X, σ) is strongly mixing.

(2) (X, σ) is not uniquely ergodic; there exists a non-atomic, σ-ergodic

measure on X.

Proof of the claim. (1) By definition we must prove that if U , V are two
non-empty open subsets of X, there is n0 > 0 such that n > n0 implies
U ∩ σ−nV 6= ∅. It is sufficient to check this property for cylinder sets, so
that finally a necessary and sufficient condition is that given u, v ∈ L(X)
there is n0 > 0 such that for n > n0 one can find w ∈ L(X) with |w| = n
and uwv ∈ L(X). This is easy to check. There is an integer k > 0 such that
u and v occur in the k-block, so that Bk = suw0 = w′

0vs′ with |w0w
′
0| = n0.

Now if n > 0 the n + k-block terminates with a k-block followed by 1n;
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thus in the two consecutive k-blocks of the k + 1-block there appears the
word suw01

nw′
0vs′, in which u and v are connected by a word of length

n0 + n.
(2) The Dirac measure on {p}, δp, is an ergodic measure on (X, σ). There

exists at least another one. Consider the point z ∈ X introduced in Claim 1,
and the sequence of measures

µn =
1

ℓn

ℓn−1
∑

i=1

δσiz,

where ℓk is the length of the k-block used in the definition of X. The mea-
sures µn belong to the set of all probability measures on X, which is compact
for the topology of weak∗ convergence. Take a converging subsequence µin ;
its limit µ′ is obviously σ-invariant. Moreover,

µn([1]0) =
1

ℓn

ℓn−1
∑

i=1

δσiz([1]0) =
1

ℓn

ℓn−1
∑

i=1

zi;

thus µn([1]0) is equal to the proportion of 1s in the n-block. Denoting by
sn the number of 1s in the n-block, one has sn+1 = 2sn + 1 with s0 = 0,
so sn = 2n−1 − 1, and ℓn+1 = 2ℓn + 1 with ℓ0 = 1, so ℓn = 2n − 1; thus
µn([1]0) → 1/2 as n → ∞.

Then µ′([1]0) = limn→∞ µin([1]0) = limn→∞ µn([1]0) = 1/2. The mea-
sure µ′ is not necessarily ergodic but it is a barycentre of ergodic measures;
µ′([1]0) = 1/2 implies that there is an ergodic µ with µ([1]0) ≤ 1/2. Since
δp([1]0) = 1 this means that µ 6= δp, and since p is the unique periodic point
in X, µ is non-atomic.

This finishes the proof of the proposition.

The easy job of checking that the one-sided version of (X, σ) in the last
proposition is also residually scrambled and feebly open is left to the reader.

Remarks.

1. In the construction above the word B0 may be chosen arbitrarily,
provided it contains one 0 at least.

2. (X, σ) has zero topological entropy. This can be proved by counting
words, but it is also an easy consequence of the result from [10] that
is quoted at the beginning of this section.

Starting from the example (X, σ) from Proposition 55 we now build a
residually scrambled, positive-entropy compact system. The proof relies on
three properties of X: its proximality, the fact that it is residually scrambled,
and the existence of a non-Dirac invariant measure.

First recall some definitions and properties. Let (X, f) be a compact
dynamical system. A point x ∈ X is called a distal point if for any y ∈ X
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with y 6= x, lim infn→∞ d(fn(x), fn(y)) > 0. Denote the set of all distal
points of (X, f) by D(X, f). A compact system (X, f) is called point distal

if it is minimal and D(X, f) 6= ∅. It is well known that for a point distal
system (X, f), D(X, f) is a dense Gδ set of X [17]. Toeplitz systems are
point distal and some of them have positive entropy [47].

The definition of entropy pairs is given in [7], together with the two
properties used here: that a system has a non-empty set of entropy pairs if
and only if its topological entropy is positive; and that unless a factor map φ :
(X, f) → (Y, g) collapses an entropy pair (x, y), the image pair (φ(x), φ(y))
is an entropy pair of (Y, g). Moreover, it is proved in [22, Theorem 3(5)]
that when (X, f) and (Y, g) are compact systems with h(X, f) = 0 and
h(Y, g) > 0, then

E(X × Y ) ⊇ {((x, y1), (x, y2)) : x ∈ supp(µ), (y1, y2) ∈ E(Y, g)},

where E(W, θ) is the set of all entropy pairs of the system (W, θ) and µ is
an f -invariant Borel probability measure on X.

Proposition 56. Let (X, f) be a proximal , residually scrambled , system

with X compact. If there is an invariant measure µ for (X, f) which is not

Dirac, then (X, f) is a factor of a residually scrambled system (Z, h) with

positive entropy. In particular , there is a residually scrambled system with

positive entropy.

Proof. Since (X, f) is proximal, there is a fixed point p of (X, f) which
is the unique minimal set of (X, f). Let (Y, g) be a compact point distal
system with positive entropy. Since (Y, g) is minimal, {p}× Y is the unique
minimal subsystem of the product system (X × Y, f × g).

Consider the relation ∽ on X × Y with (x1, y1) ∽ (x2, y2) if and only
if (x1, y1) = (x2, y2) or x1 = x2 = p. Clearly ∽ is an f × g-invariant closed
equivalence relation on X×Y and induces a factor map π : (X×Y, f ×g) →
(Z, h), where Z = X × Y/∽ and h(π(x1, y1)) = π(f(x1), g(y1)) for each
(x1, y1) ∈ X × Y . Likewise (Z, h) has a unique minimal subsystem which is
a fixed point, which by Proposition 4 is equivalent to proximality.

The map π1 : Z → X with π1(π(x1, y1)) = x1 for (x1, y1) ∈ X × Y is
well defined, continuous, surjective and π1 : (Z, h) → (X, f) is a factor map.

In what follows we show that (Z, h) has the required properties.

First we prove that (Z, h) has positive entropy. There is an f -invariant
Borel probability measure µ on X such supp(µ) is different from {p}, so
that it is not a singleton. By [22],

E(X × Y ) ⊇ {((x, y1), (x, y2)) : x ∈ supp(µ), (y1, y2) ∈ E(Y, g)}

is not empty, since E(Y, g) 6= ∅. Moreover,
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E(Z, h) ⊇ π × π(E(X × Y, f × g)) \ {(z, z) : z ∈ Z}

⊇ {(π(x, y1), π(x, y2)) : x ∈ supp(µ) \ {p} and (y1, y2) ∈ E(Y, g)}

6= ∅ (as supp(µ) \ {p} 6= ∅)

and as supp(µ) is not equal to the singleton {p} the relation ∽ does not
collapse all entropy pairs of (X × Y, f × g). Then by [7], htop(Z, h) > 0.

Let A be a dense Gδ scrambled set of (X, f). If W s(p) is the asymptotic
class of p, since #(W s(p) ∩ A) ≤ 1 and X is perfect, A can be supposed
not to contain any point of W s(p). Let B = D(Y, g). Then A×B is a dense
Gδ subset of X × Y . Since p 6∈ A, we may assume that A × B =

⋂∞
n=1 Un,

where Un is a dense open subset of X×Y and Un∩ ({p}×Y ) = ∅ for n ∈ N.
For these reasons and as π−1(π(Un)) = Un, π(Un) is a dense open subset
of Z. This implies that C = π(A × B) =

⋂∞
n=1 π(Un) is a dense Gδ subset

of Z.
We claim that C is a scrambled set of (Z, h). Let z1, z2 ∈ C, z1 6= z2.

Since (Z, h) is proximal, lim infn→∞ d(hn(z1), h
n(z2)) = 0. Let zi = π(xi, yi),

where (xi, yi) ∈ A × B, i = 1, 2. There are two cases.

Case 1: x1 6= x2. Since x1, x2 ∈ A, (x1, x2) is a scrambled pair of (X, f),
therefore not asymptotic. Then (z1, z2) is not an asymptotic pair of (Z, h),
as π1(zi) = xi, i = 1, 2. So it is a scrambled pair.

Case 2: x1 = x2, so y1 6= y2. Since W s(p) ∩ A = ∅, x1 = x2 6∈ W s(p).
Thus there exists an infinite sequence {nj} of natural numbers such that
limj→∞ fnj (xi) = x for some x ∈ X \{p}, and limj→∞ gnj(yi) = y′i for some
y′i ∈ Y , i = 1, 2. Since y1, y2 ∈ D(Y, g) and y1 6= y2, the points y′1 and y′2 are
not equal. Moreover, π(x, y′1) 6= π(x, y′2), as x 6= p. Then limj→∞ hnj (zi) =
π(x, y′i), i = 1, 2, which implies that (z1, z2) is not an asymptotic pair of the
proximal system (Z, h). Therefore (z1, z2) is scrambled, and since (z1, z2) ∈
C is arbitrary, C is a scrambled set.

The existence of a positive-entropy, residually scrambled system results
from choosing for (X, f) the system constructed in the proof of Proposi-
tion 55.

The construction of (Z, h) in the last proof can be exploited in various
other ways. One instance is the following result; there is another one at
the beginning of the next section. Recall that disjointness is defined at the
beginning of Section 4.

Proposition 57. Let (Y, g) be a compact distal minimal system. There

exists a completely scrambled system (Z, h) which is not disjoint from (Y, g).

Proof. Suppose (X, f) is completely scrambled with X compact (no as-
sumption on measures is needed here). Then the system (Z, h) constructed
from (X, f) and (Y, g) as in the proof of Proposition 56 is completely scram-
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bled, since A′ = X is scrambled and the set D(Y, g) of distal points of (Y, g)
is Y itself.

Moreover, (Z, h) is not disjoint from (Y, g): keeping the notation of the
last proof, let K be the closed, f ×g×g-invariant set X ×∆Y ⊆ X ×Y ×Y ,
and define the factor map π : (X × Y × Y, f × g × g) → (Z × Y, h × g) by
setting π(x, y, y′) = (π(x, y), y′). Then J = π(K) is a closed, h× g-invariant
proper subset of Z × Y ; inside J any point z ∈ Z such that z = π(x, y) for
x 6= p is joined to y only, while the unique fixed point π(p, y) is joined to
the whole space Y .

The statement is also true when (Y, g) is not minimal, but it only makes
sense in the minimal case (two non-minimal systems are never disjoint).

Heuristically the meaning of Proposition 57 is that, given any minimal
distal system (Y, g), one can construct a system which preserves most of
the structure of (Y, g) while being completely scrambled. The property of
being completely scrambled is not as powerful as one would think at first
sight.

Questions

1. Is there a non-proximal dynamical system (X, f) with f feebly open,
such that X contains a residual scrambled set? In other words, if f
is feebly open, does the existence of a residual scrambled set imply
proximality?

2. May a triangular map have a residual scrambled set? See Example 59
below.

3. There are residually scrambled systems that are weakly (even strongly)
mixing, or have positive entropy, but our construction does not permit
to obtain the three properties simultaneously. Are they compatible?

8. FACTORS AND EXTENSIONS FROM THE POINT OF VIEW

OF SCRAMBLED SETS

The properties of being completely or residually scrambled are conjugacy
invariants for compact systems. In this section we show that they are not
invariant under factor maps or almost one-to-one extensions. We also show
that triangular maps, which are particular extensions of interval maps, may
have scrambled sets with non-empty interior; for interval maps scrambled
sets are always nowhere residual [12], [22]. Finally, in [9] it is proved that if
φ : (X, f) → (Y, g) is a factor map and g has a scrambled pair then f has a
scrambled pair too. Here we show that this property of systems is not true
pairwise, i.e., a scrambled pair of (Y, g) may have no element of its preimage
that is a scrambled pair for (X, f).

All the systems described in this section are on compact spaces.
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An extension of a residually scrambled system may not be residually
scrambled—consider the Cartesian product of a completely scrambled sys-
tem and a distal system as an extension of its completely scrambled factor.

An almost one-to-one extension is an extension that is one-to-one on
a dense Gδ set. If we additionally assume that (X, F ) is a transitive al-
most one-to-one extension of a residually scrambled system (Z, h) then still
(X, F ) may not have a residual scrambled set. In Proposition 57 consider
the Cartesian product (X×Y, f×g) where X is perfect, (X, f) is completely
scrambled and (Y, g) is non-trivial distal, and its completely scrambled fac-
tor (Z, h). Since the factor map collapses only pairs (p, y) where p is the
unique fixed point of f , (X × Y, f × g) is an almost one-to-one extension
of (Z, h). But it is also an extension of the non-trivial distal system (Y, g),
so by Proposition 28(1) the scrambled sets of (X × Y, f × g) are not dense.
To ensure transitivity for (X × Y, f × g) assume in addition that (X, f) is
weakly mixing [27] and (Y, g) is minimal; the product of a minimal system
and a weakly mixing system is always transitive [19].

The case of factors is not so easy. In the following example a factor of
a completely scrambled system has no scrambled sets. This is due to the
fact that the image of a scrambled pair may be asymptotic: here (Z, G) is
completely scrambled but its factor (Y, h) is asymptotic, in the sense that
all pairs of Y are asymptotic.

Proposition 58. There exist two systems (Z, G) and (Y, h) and a factor

map (Z, G) → (Y, h) such that Z and Y are perfect compact metric spaces

and

(1) (Z, G) is completely scrambled ;
(2) (Y, h) has no scrambled sets.

Proof. Let (X, f) be the completely scrambled system constructed in [25].
(X, f) has the following properties:

• X is a countable infinite set and f is a homeomorphism.
• There exists x0 ∈ Xis such that {f j(x0) : j ∈ Z} = Xis, where Xis is

the set of all isolated points of X (Xis is dense in X but this does not
imply that the forward orbit of x0 is dense in X).

• (X, f) has a unique fixed point p which is the unique minimal set of
(X, f) and p 6∈ Xis.

In the first step we embed (X, f) into a system (X1, f) where X1 is
a perfect compact subset of the interval (we still write (X1, f) instead of
a more precise (X1, f1)). The system (X1, f) is not completely scrambled,
actually

⋃

x∈X W s(x) = X1. As a consequence any scrambled set of (X1, f)
has at most countably many points.
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To do this embed X into the open interval (0, 1) as a compact subset.
For each x ∈ Xis put

εx =
d(x, (X \ {x}) ∪ {1})

4
and Ix = [x, x + εx].

Clearly εx > 0, Ix ⊆ (0, 1) and d(Ix, ((X \ {x}) ∪
⋃

y∈Xis\{x}
Iy)) > εx for

x ∈ Xis. The set X1 = X ∪
⋃

x∈Xis
Ix ⊆ [0, 1] is closed. Extend the map

f to X1 as follows: f(x + sεx) = f(x) + sεf(x) for x ∈ Xis and s ∈ [0, 1].
It is clear that X1 is a perfect compact metric space and as f : X → X
is a homeomorphism, so is f : X1 → X1. Since limj→∞ diam(f j(Ix)) =
limj→∞ εfj(x) = 0 for x ∈ Xis and (X, f) is completely scrambled, we have

W s(x) =

{

Ix when x ∈ Xis,

{x} when x ∈ X \ Xis.
(8.1)

So X1 =
⋃

x∈X W s(x).

The system (X1, f) just defined has a factor (Y, h) and an extension
(Z, G) with the required properties. The factor (Y, h) is very easy to describe.
The set X is a closed f -invariant subset of X1. By collapsing X to a fixed
point one creates a factor (Y, h) of (X1, f). Observe that any two points in
Y are asymptotic; this implies that (Y, h) has no scrambled sets.

The really hard part of the proof consists in constructing (Z, G) as an
extension of (X1, f). Consider the set X1×S1, where S1 is the unit circle of
the complex plane, and the point x0 ∈ X. Since (x0, p) is a scrambled pair
of (X, f), hence of (X1, f), there exist x∗ ∈ X1 and a sequence {nj}j∈Z+ of
non-negative integers with limj→∞ fnj(x0) = x∗ 6= p. We may assume that
n0 = 0 and nj+1 − nj ≥ j for j ∈ N.

For j ∈ Z+, when j ∈ [n2k, n2k+1) for some k ∈ Z+, define m(j) =
n2k+1 − n2k and

rj(s, z) = z · eπis/m(j) for s ∈ I and z ∈ S1;

when j ∈ [n2k+1, n2(k+1)) for k ∈ Z+, define m(j) = n2(k+1) − n2k+1 and

rj(s, z) = z · e−πis/m(j) for s ∈ I and z ∈ S1.

For all j the map rj is continuous from I × S1 to S1. Set

Cj = max
(s,z)∈I×S1

|rj(s, z) − z| for j ∈ Z+.

Since limj→∞ m(j) = +∞,

lim
j→∞

Cj = lim
j→∞

|eπi/m(j) − 1| = 0.(8.2)

Define g : X1 × S1 → S1 by
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g(x, z) =







z when (x, z) ∈ (X1 \
⋃∞

j=0 Ifj(x0)) × S1,

rj

(

x − f j(x0)

εfj(x0)
, z

)

when (x, z) ∈ Ifj(x0) × S1 for some j ∈ Z+.

Considering (8.2) and by continuity of rj it is not hard to see that g is a
continuous map on X1×S1. Let F (x, z) = (f(x), g(x, z)) for (x, z) ∈ X1×S1.
Then F is a homeomorphism on X1 × S1, as f is a homeomorphism, g is
continuous and for fixed x ∈ X1, g(x, ·) : S1 → S1 is a homeomorphism.

For x ∈ Ix0 write x = x0 + sεx0 with s ∈ I. Then with the same s we
have fm(x) = fm(x0) + sεfm(x0) for m ∈ Z+. Therefore, for j ∈ Z+ and
x ∈ Ix0 we are able to compute

F j(x, z) =



























(f j(x), z · e
πis

j−n2k
n2k+1−n2k )

when j ∈ [n2k, n2k+1) for some k ∈ Z+,

(f j(x), z · e
πis

n2(k+1)−j

n2(k+1)−n2k+1 )

when j ∈ [n2k+1, n2(k+1)) for some k ∈ Z+.

(8.3)

Consider the relation ∽ on X1 × S1 with (x1, z1) ∽ (x2, z2) if and only
if (x1, z1) = (x2, z2) or x1 = x2 = p. It is a closed F -invariant equivalence
relation on X1×S1, which induces naturally a factor map π : (X1×S1, F ) →
(Z, G), where Z = X1 ×S1/∽ and G(π(x, z)) = π(F (x, z)) for each (x, z) ∈
X1 × S1. The situation is the same as in the proof of Proposition 56: Z is a
perfect compact metric space and (Z, G) has a unique minimal subsystem
{π({p} × S1)} which is a fixed point; by Proposition 4, (Z, G) is proximal.
The map π1 : Z → X1 with π1(π(x, z)) = x for (x, z) ∈ X1 × S1 is well-
defined, continuous and surjective and π1 : (Z, G) → (X1, f) is a factor
map.

It remains to show that the proximal system (Z, G) is completely scram-
bled; for this purpose we need only prove that for any y1 6= y2 ∈ Z, (y1, y2)
is not asymptotic for G. Suppose that there exist (xi, zi) ∈ X1×S1, i = 1, 2,
such that for yi = π(xi, zi), i = 1, 2, the pair (y1, y2) is proper asymptotic
for G. Since π1(yi) = xi, i = 1, 2, the pair (x1, x2) is asymptotic. Then, by
(8.1) and the fact that Xis = {f j(x0) : j ∈ Z}, either x1 = x2 ∈ X \ Xis or
x1, x2 ∈ Ifj(x0) for some j ∈ Z.

Case 1: x1 = x2 = x ∈ X \ Xis. Since y1 6= y2, one has x 6= p and
z1 6= z2. Since f(X \Xis) = X \Xis and g(x, z) = z for x ∈ X \Xis, Gn(yi) =
Gn(π(x, zi)) = π(Fn(x, zi)) = π(fn(x), zi) for n ∈ Z+. Since (X, f) is a
completely scrambled system and x 6= p there exists a sequence {ml} of
natural numbers such that liml→∞ fml(x) = x′ for some x′ ∈ X \ {p}. So
liml→∞ Gml(yi) = π(x′, zi). As (y1, y2) is asymptotic, π(x′, z1) = π(x′, z2).
This, together with x′ 6= p, implies that z1 = z2 and y1 = y2, a contradiction.
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Case 2: x1, x2 ∈ Ifj(x0) for some j ∈ Z. Since y1, y2 are asymptotic

if and only if G−j(y1), G−j(y2) are, assume without loss of generality that
x1, x2 ∈ Ix0 . Then there exist si ∈ I such that xi = x0 + siεx0 for i = 1, 2.

For the subsequence {nj} defined above one has limj→∞ fnj(x0) = x∗

6= p. Since W s(x0) = Ix0 this implies that limj→∞ fnj (xi) = x∗, i = 1, 2. By
(8.3) one deduces that for i = 1, 2,

(8.4) lim
k→∞

Gn2k(yi) = π(x∗, zi) and lim
k→∞

Gn2k+1(yi) = π(x∗, zi · e
πisi).

Since y1 6= y2, (x1, z1) 6= (x2, z2). This means that either z1 6= z2 or s1 6= s2.
Hence z1 6= z2 or, in case z1 = z2 = z, zeπis1 6= zeπis2. Then since x∗ 6= p
the formulas (8.4) show that (y1, y2) is not asymptotic, which is a contra-
diction.

Let us address the second point, scrambled sets with non-empty interior
in systems that are not completely scrambled. There are compact metric
spaces that do not admit any scrambled set, say finite spaces or rigid con-
tinua. On the other hand, there are many spaces admitting a scrambled set
with non-empty interior. Here is an example that is not completely scram-
bled. Let (I, f) be an interval map with a Cantor scrambled set S. Then
Y = (I×{0})∪(S×{1}) is a compact subset of the unit square I2. Consider
the continuous map g : Y → Y such that g(x, 0) = (f(x), 0) for any x ∈ I
and g(s, 1) = (f(s), 0) for any s ∈ S. Then S × {1} is a clopen scrambled
set for (Y, g).

Observe that the system (Y, g) described above is an extension of (I, f)
and that f , as an interval map, has only nowhere residual scrambled sets.
A more concrete fact is that a system with an open scrambled set can be
constructed on the whole square I2 as a triangular map, i.e., as an extension
of an interval system for which each fibre equals I. It may be possible to
generalize this result to higher dimensions, as suggested in Subsection 2.4.

Example 59. There is a triangular map in the square which has a non-
empty open scrambled set.

Proof. Again let (X, f) be the completely scrambled system constructed
in [25], with its fixed point p. Then for any x ∈ X \ {p}, ω(x) \ {p} 6= ∅
and ω(x) ⊃ {p}. Construct the system (X1, f) as in the proof of the last
proposition, keeping the corresponding notation.

Extend the map f on X1 to a continuous map on the whole unit interval
I = [0, 1], still denoting the extended map as f . Fix a point x0 ∈ Xis and
construct a continuous map h : [0, 1] → [0, 1/2] such that

h(x) > 0 for x 6= p, h(x) = 1/2 for x ∈ Ix0 and h(p) = 0.

With the help of h define a continuous map θ : I × I → I by

θ(x, (1 − t)i + t · h(x)) = (1 − t)i + t · h(f(x)) for x, t ∈ I and i = 0, 1;
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note that (1− t)i + t · h(x) ranges from 0 to h(x) when i = 0 and from h(x)
to 1 when i = 1, and that when x is fixed, θ is a linear map on each of these
two intervals. Also define h1, h2 : [0, 1] → [1/2, 1] by

h1(t) =

{

1 − t/2, 0 ≤ t ≤ 1/2,

(1 + t)/2, 1/2 ≤ t ≤ 1,
h2(t) =

{

1 − t, 0 ≤ t ≤ 1/2,

t, 1/2 ≤ t ≤ 1.

One has hi(0) = hi(1) = 1, i = 1, 2, and h1(s) ≥ h2(s) for s ∈ I.
Since (x0, p) is a scrambled pair, there exists a sequence {nj}j∈Z+ of

non-negative integers such that n0 = 0, nj+1 − nj ≥ j for j ∈ Z+ and
limj→∞ fnj (x0) = x∗ for some x∗ ∈ X \ {p}. For j ∈ Z+ define a sequence
of maps rj : I × I → I in the following way:

• whenever j ∈ [n2k, n2k+1) for some k ∈ Z+, put m(j) = n2k+1 − n2k

and

rj(s, (1 − t)i + t · h1(s)
1/m(j))

= (1 − t)i + t · h2(s)
1/m(j) for s, t ∈ I and i = 0, 1;

• whenever j ∈ [n2k+1, n2(k+1)) for some k ∈ Z+, put m(j) = n2(k+1) −
n2k+1 and

rj(s, (1 − t)i + t · h2(s)
1/m(j))

= (1 − t)i + t · h1(s)
1/m(j) for s, t ∈ I and i = 0, 1.

Each map rj is continuous on I ×I and rj(0, y) = rj(1, y) = y for any y ∈ I.
For j ∈ Z+, let Cj(s) = maxy∈I |rj(s, y)− y| and Cj = maxs∈I Cj(s). Then,
taking into account the fact that h1(s) ≥ h2(s) ≥ 0, a simple computation
shows that

Cj(s) = |h1(s)
1/m(j) − h2(s)

1/m(j)| = h1(s)
1/m(j) − h2(s)

1/m(j)

≤ 1 −

(

1

2

)1/m(j)

.

Since additionally limj→∞ m(j) = +∞, this implies that

(8.5) lim
j→∞

Cj = 0.

Then define a map g : I × I → I by

g(x, y) =







θ(x, y) for y ∈ I when x ∈ I \
⋃∞

j=0 Ifj(x0),

rj

(

x − f j(x0)

εfj(x0)
, θ(x, y)

)

for y ∈ I when x ∈ Ifj(x0), j ∈ Z+.

Claim 1. g is a continuous map on I × I.

Proof of the claim. Since limj→∞ diam(Ifj(x0)) = limj→∞ εfj(x0) = 0,
the set

A =

∞
⋃

j=0

Ifj(x0) ∪ ω(x0, f),
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where ω(x0, f) is the set of all ω-limit points of x0, is a closed subset of I.
As g(x, ·) = θ(x, ·) when x ∈ I \A, g is continuous on (I \A) × I because θ
is continuous on the open subset (I \ A) × I of I × I.

Assume (x, y) ∈ Ifj(x0) × I for some j ∈ Z+. A point of ω(x0, f) is not

isolated in X so (f j(x0) − εfj(x0), f
j(x0) + 2εfj(x0)) ∩ A = Ifj(x0) by the

definition and properties of Ix, x ∈ Xis. Hence

(8.6) g(x, y) =







































θ(x, y) when x ∈ (f j(x0) − εfj(x0), f
j(x0)), y ∈ I,

rj

(

x − f j(x0)

εfj(x0)
, θ(x, y)

)

,

when x ∈ [f j(x0), f
j(x0) + εfj(x0)], y ∈ I,

θ(x, y)

when x ∈ (f j(x0) + εfj(x0), f
j(x0) + 2εfj(x0)), y ∈ I.

Since rj(0, y) = rj(1, y) = y for y ∈ I, one has

(8.7)
g(f j(x0), y) = θ(f j(x0), y),

g(f j(x0) + εfj(x0), y) = θ(f j(x0) + εfj(x0), y) for y ∈ I.

Since rj and θ are continuous on I × I, g is continous on Ifj(x0) × I by (8.6)
and (8.7).

We still have to show that g is continuous on ω(x0, f) × I. If this is
not true, there exist (xn, yn) ∈ I × I and (x∗, y∗) ∈ ω(x0, f) × I such that
(xn, yn) → (x∗, y∗) but g(xn, yn) 6→ g(x∗, y∗). Since g(x, y) = θ(x, y) when

x 6∈
⋃∞

j=0 Ifj(x0), and g(x∗, y∗) = θ(x∗, y∗) and θ is continuous on I × I, for

n large enough one must have xn ∈
⋃∞

j=0 Ifj(x0). Thus for n large enough
there is a unique tn ∈ Z+ such that xn ∈ If tn(x0). But x∗ 6∈ Ifj(x0) for any
j ∈ Z+ and xn → x∗, so that limn→∞ tn = ∞. Now

lim sup
n→∞

|g(xn, yn) − g(x∗, y∗)|

= lim sup
n→+∞

∣

∣

∣

∣

rtn

(

xn − f tn(x0)

εf tn(x0)
, θ(xn, yn)

)

− θ(x∗, y∗)

∣

∣

∣

∣

≤ lim sup
n→∞

(

|θ(xn, yn) − θ(x∗, y∗)|

+

∣

∣

∣

∣

rtn

(

xn − f tn(x0)

εf tn(x0)
, θ(xn, yn)

)

− θ(xn, yn)

∣

∣

∣

∣

)

≤ lim sup
n→∞

(|θ(xn, yn) − θ(x∗, y∗)| + Ctn)

= lim sup
n→∞

Ctn (as θ is continuous and (xn, yn) → (x∗, y∗))

= 0 (because lim
n→∞

tn = ∞ and (8.5)),

which contradicts g(xn, yn) 6→ g(x∗, y∗). This ends the proof of Claim 1.
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We claim that the triangular map F (x, y) = (f(x), g(x, y)) for (x, y) ∈
I × I has the required properties. By Claim 1, F is continuous on I × I. For
(x, y) ∈ Ix0 × [0, 1/2], there exists a unique pair (s, t) ∈ [0, 1] × [0, 1] such
that x = x0 + s · εx0 and y = t · h(x), as h(x) = 1/2 for x ∈ Ix0 .

Claim 2. Let (x, y) ∈ Ix0 × [0, 1/2]. Then:

(i) fm(x) = fm(x0) + sεfm(x0) for m ∈ Z+.

(ii) For j ∈ Z+,

F j(x, y) =











































(

f j(x), t

(

h2(s)

h1(s)

)

j−n2k
n2k+1−n2k

· h(f j(x))

)

when j ∈ [n2k, n2k+1) for some k ∈ Z+,

(

f j(x), t

(

h2(s)

h1(s)

)

n2(k+1)−j

n2(k+1)−n2k+1
· h(f j(x))

)

when j ∈ [n2k+1, n2(k+1)) for some k ∈ Z+.

Proof of the claim. (i) follows from the definition of f ; (ii) is proved by
induction on j. For j = 0, it is clear that F 0(x, y) = (x, y) = (x, t ·h(f0(x))),
i.e., (ii) is true for j = 0. Assume that (ii) is true for j = u. For j = u + 1,
there are two cases.

Case 1: u ∈ [n2k, n2k+1) for some k ∈ Z+. Since h1(s) ≥ h2(s) and
maxy∈I h(y) = 1/2 ≤ h1(s), one has

(⋆) t

(

h2(s)

h1(s)

)a

∈ I and t

(

h2(s)

h1(s)

)a

·
h(y)

h1(s)
b
∈ I for any a > 0, 0 < b < 1

and y ∈ I. Using (⋆) repeatedly one gets

F u+1(x, y) = F (F u(x, y)) = F

(

fu(x), t

(

h2(s)

h1(s)

)

u−n2k
n2k+1−n2k

· h(fu(x))

)

(by the induction hypothesis)

=

(

fu+1(x), ru

(

s, θ

(

fu(x), t

(

h2(s)

h1(s)

)

u−n2k
n2k+1−n2k

· h(fu(x))

)))

(as fu(x) = fu(x0) + sεfu(x0) ∈ Ifu(x0))

=

(

fu+1(x), ru

(

s, t

(

h2(s)

h1(s)

)

u−n2k
n2k+1−n2k

· h(fu+1(x))

))

(by t(h2(s)
h1(s)

)
u−n2k

n2k+1−n2k ∈ I and the definition of θ)

=

(

fu+1(x), ru

(

s, t

(

h2(s)

h1(s)

)

u−n2k
n2k+1−n2k

·
h(fu+1(x))

h1(s)
1/m(u)

·h1(s)
1/m(u)

))
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=

(

fu+1(x), t

(

h2(s)

h1(s)

)

u−n2k
n2k+1−n2k

·
h(fu+1(x))

h1(s)
1/m(u)

· h2(s)
1/m(u)

)

(by the definition of ru; by (⋆) t(h2(s)
h1(s)

)
u−n2k

n2k+1−n2k · h(fu+1(x))

h1(s)
1/m(u) ∈ I)

=

(

fu+1(x), t

(

h2(s)

h1(s)

)

u+1−n2k
n2k+1−n2k

· h(fu+1(x))

)

(as m(u) = n2k+1 − n2k).

It follows that (ii) is true for j = u + 1 (when u = n2k+1 − 1, note that
u+1−n2k

n2k+1−n2k
= 1 =

n2(k+1)−(u+1)

n2(k+1)−n2k+1
).

Case 2: u ∈ [n2k+1, n2(k+1)) for some k ∈ Z+. A computation similar
to that of Case 1 shows that (ii) is true for u + 1.

We have thus shown that (ii) is always true for j = u + 1. This finishes
the proof of Claim 2.

Now we can show that C := [x0, x0 + εx0/2]× [0, 1/2] is a scrambled set
of the triangular map F . For any (x1, y1) 6= (x2, y2) ∈ C, there exist unique
si ∈ [0, 1/2] and ti ∈ [0, 1] such that xi = x0 + siεx0 and yi = tih(xi), as
h(xi) = 1/2, where i = 1, 2. Because limn→∞ εfn(x0) = 0, one has

(8.8) lim
n→∞

max{|fn(x1) − fn(x0)|, |f
n(x2) − fn(x0)|} = 0.

Since (X, f) is proximal and p is the fixed point of (X, f), there exists an
infinite sequence {ml} of natural numbers such that liml→∞ fml(x0) = p. By
(8.8) this implies that liml→∞ fml(xi) = p, i = 1, 2. By Claim 2(ii), property
(⋆) and since h(p) = 0, one further obtains liml→∞ Fml(xi, yi) = (p, 0),
i = 1, 2. The pair ((x1, y1), (x2, y2)) is thus proximal.

It cannot be asymptotic. By the choice of the sequence {nj}, we have
limj→∞ fnj (x0) = x∗ 6= p, which by (8.8) implies that limj→∞ fnj(xi) = x∗

for i = 1, 2. Again by Claim 2(ii) one has

lim
k→∞

Fn2k(xi, yi) = (x∗, tih(x∗)),

lim
k→∞

Fn2k+1(xi, yi) =

(

x∗, ti
h2(si)

h1(si)
h(x∗)

)

, i = 1, 2.

As (s1, t1) 6= (s2, t2) ∈ [0, 1/2] × [0, 1], it is easy to see that either t1 6= t2 or
t1h2(s1)/h1(s1) 6= t2h2(s2)/h1(s2). As h(x∗) 6= 0 (h(x) = 0 only when x = p
and x∗ 6= p) one has

lim
k→∞

Fn2k(x1, y1) 6= lim
k→∞

Fn2k(x2, y2)

or

lim
k→∞

Fn2k+1(x1, y1) 6= lim
k→∞

Fn2k(x2, y2).
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So ((x1, y1), (x2, y2)) is not asymptotic, which means that it is scrambled.
Finally, since (x1, y1) and (x2, y2) are arbitrary, C is a scrambled set of
(I × I, F ) while obviously int(C) 6= ∅.

Let F (x, y) = (f(x), g(x, y)) be a triangular map in the square. We
address the connection between scrambled pairs for f and scrambled pairs
for F .

Example 60. There is a triangular map F (x, y) = (f(x), gx(y)) of the
unit square [0, 1]2 such that for some x1, x2 one has:

{x1, x2} is a scrambled pair in the basis but there are no y1, y2

such that the pair {(x1, y1), (x2, y2)} is a scrambled pair of F .
(Neither does there exist n ≥ 0 such that for some y1, y2, the
pair {(fn(x1), y1), (f

n(x2), y2)} is a scrambled pair of F .)

Endow [0, 1]2 with the distance

d((x, y), (x′, y′)) = sup{d(x, x′), d(y, y′)}

where d is the usual distance on the unit interval. First define the basis
map f . Let f(0) = f(1) = 1/2, f(1/4) = 0, f(3/4) = 1 and let f be affine
on each of the intervals [0, 1/4], [1/4, 3/4] and [3/4, 1]; then f is continuous.
There are seven important points: 0 < a < b < 1/2 < c < d < 1 where
b = 1/4, c = 3/4 and a < 1/2 < d are all fixed points. These seven points
divide the basis into six intervals I1, . . . , I6 (numbered from left to right).
The intervals [0, 1/2] and [1/2, 1] are invariant under f , and it is not hard
to show that f is transitive in each of these two intervals.

No matter how we define the fibre maps gx, the left and right halves of
the square are F -invariant. The square can be partitioned into six vertical
strips, namely the strips over the above mentioned six intervals. Denote these
strips by S1, . . . , S6, where Si = Ii × [0, 1], from left to right. For x ∈ I1 put
gx(y) = 0 (constant maps), for x ∈ I6 put gx(y) = 1, for x ∈ I3 ∪ I4 put
gx(y) = y and for x ∈ I2 ∪ I5 fix gx in such a way as to ensure continuity
of F .

Let x1 ∈ I3 \ {1/2} be a transitive point of f restricted to the interval
[0, 1/2] and let x2 = 1 − x1 ∈ I4 \ {1/2}. By symmetry fn(x2) = 1 −
fn(x1). Then {x1, x2} is a scrambled pair in the basis, owing to the fact
that the closer fn(x1) is to 1/2, the closer fn(x2) is to 1/2, hence to fn(x1).
Fix y1, y2 arbitrarily. Notice that the basis map was defined in such a way
that the points (except those in the three fixed fibres) move to the right
if they are in S1 ∪ S4 ∪ S5 and to the left if they are in S2 ∪ S3 ∪ S6.
Therefore d(fn(x1), f

n(x2)) < d(fn−1(x1), f
n−1(x2)) only when fn−1(x1)

and fn−1(x2) lie in the intervals I1 and I6 respectively. Moreover, the points
fn−1(x1) and fn−1(x2) must be mapped by f to I3 and I4 respectively, if
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one wishes d(Fn(x1, y1), F
n(x2, y2)) to get close to 0. But then the distance

between Fn(x1, y1) and Fn(x2, y2) is at least 1, owing to the definition of
gx in the strips S1 and S6 (the points Fn(x1, y1) and Fn(x2, y2) are on the
bottom and top sides of the square respectively). Thus

lim inf
n→∞

d(Fn(x1, y1), F
n(x2, y2)) > 0,

so {(x1, y1), (x2, y2)} is not a scrambled pair of F .

Question. Is it true that “most” scrambled pairs of f must be pro-
jections of scrambled pairs of F? Or, conversely, can there exist a factor
(Y, F ) → (X, f) and an uncountable scrambled set E ⊆ X which does not
contain the image of any uncountable scrambled set of (Y, F )?
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[45] L’. Snoha and V. Špitalský, Recurrence equals uniform recurrence does not imply zero

entropy for triangular maps of the square, Discrete Contin. Dyn. Syst. 14 (2006),
821–835.

[46] B. Weiss, Multiple recurrence and doubly minimal systems, in: Contemp. Math. 215,
Amer. Math. Soc., 1998, 189–196.

[47] S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch.
Verw. Gebiete 57 (1984), 95–107.

LAMA – UMR 8050
(CNRS-Université Paris Est)
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