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Abstract. We prove a strengthened version of Dye’s theorem on orbit equivalence,
showing that if the transformation structures are represented as finite coordinate change
equivalence relations of ergodic measured Bratteli diagrams, then there is a finitary orbit
equivalence between these diagrams.

1. Introduction. Two ergodic measure preserving transformations of
nonatomic Lebesgue probability spaces are, by a classical theorem of Dye
[D], orbit equivalent : there exists a measure preserving isomorphism be-
tween the underlying spaces taking orbits to orbits on an invariant set of
full measure. In this article, we prove a strengthened version of Dye’s the-
orem, showing that if the transformation orbit structures are represented
by the procedure introduced initially by Vershik [V] as equivalence rela-
tions of ergodic measured Bratteli diagrams, then there is a finitary orbit
equivalence between these diagrams. In other words, after a change of the
transformation on invariant sets of measure zero, the transformation spaces
acquire a Cantor-like topology from the Bratteli diagram representations,
and the orbit equivalence is then given by a homeomorphism after removal
of sets of measure zero in each space.

We remark that an interesting result concerning orbit equivalence has
been obtained by N. Ormes [O]. He shows that any ergodic measure pre-
serving transformation S of a probability Lebesgue space (X,µ) is measure
conjugate to a homeomorphism T ′ whose orbits are the same as the T -orbits
for a given Cantor minimal system (Y, T ). However, in the case where (X,S)
is also a Cantor system with an ergodic invariant measure µ, it is not clear
that the measure conjugacy from X to Y in his construction is a homeo-
morphism after removal of sets of measure zero.

The structure of the article is as follows. First we recall the Vershik pro-
cedure in the simple setting we need in order to proceed—this seems to be
an easier version than the original one in [V], but the ideas come from [V].

2000 Mathematics Subject Classification: 28D05, 37A05, 37A20.
Key words and phrases: orbit equivalence, ergodic, finitary, Bratteli diagram.

[363] c© Instytut Matematyczny PAN, 2008



364 T. HAMACHI ET AL.

This part has also been known precisely in [O] as remarked above. Next,
we describe our finitary construction leading to finitary orbit equivalence of
ergodic measured Bratteli diagrams, which is similar to the isomorphism the-
orem for Bernoulli schemes as found in Keane–Smorodinsky ([KS1], [KS2]);
earlier versions for odometers have been given in Hamachi–Keane [HK] and
for irrational rotations in Roychowdhury [R]. We remark that this proof
differs from other proofs of Dye’s theorem and seems conceptually and cal-
culationally simpler. In a subsequent article, which will be published else-
where [HKY], we solve a problem of [GW] by obtaining a dynamical proof of
the topological orbit equivalence theorem of Giordano, Putnam, and Skau
[GPS].

2. Vershik’s procedure. Let (X,A, µ, S) be an ergodic measure pre-
serving system with µ(X) = 1; we suppose that (X,A, µ) is a nonatomic
Lebesgue space, so that the transformation S is aperiodic. We will see that
S admits a subset B ∈ A with return times 2 or 3. By an easy argument,
there exists a set A0 ∈ A with µ(A0) > 0 such that

A0 ∩ SA0 = ∅ and
∞
⋃

i=0

SiA0 = X,

since otherwise we would have Sx = x for some set E ∈ A of positive
measure and for every x ∈ E. We put

A1 = SA0,

An = SnA0 \
n−1
⋃

i=0

SiA0, n ≥ 2,

and

B = S(A1 ∪A3 ∪A5 ∪ · · · ).
Since the set S(A1 ∪A3 ∪A5 ∪ · · · ) is disjoint from A1 ∪A3 ∪A5 ∪ · · · ,

B ∩ SB = ∅.
Moreover,

B ∪ SB ∪ S2B = X.

Indeed, put

A′
n = An \ S−1An+1, n ≥ 1.

Then B = A2∪A4∪A6∪· · ·∪SA′
1∪SA′

3∪SA′
5∪· · · , and SB ⊃ A3∪A5∪

A7 ∪ · · · ∪ SA′
2 ∪ SA′

4 ∪ SA′
6 ∪ · · · . So A0 =

⋃∞
i=1 SA

′
i ⊂ B ∪ SB and A1 =

SA0 ⊂ SB ∪S2B. Therefore, B ∪SB ∪S2B ⊃ A0 ∪A1 ∪A2 ∪A3 ∪ · · · = X.
Consequently, we see that if

τ(x) = min{n ≥ 1 : Sn(x) ∈ B},
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then for each x ∈ B, τ(x) is equal to either 2 or 3.

A0

A1

A2

A3

Ai

An

An+1

A
′

1

A
′

2

A
′

3

A
′

i

A
′

n

S

B

SB

⊂ S
2
B

Next, consider the induced transformation SB defined by

SB(x) := Sτ(x)(x) (x ∈ B)

on B, and apply the same argument. Using induction, this yields a cutting-
and-stacking procedure whose stacks at the nth stage are of height at least
2n; taking further a sequence B1, B2, . . . of sets in A which generate A and
refining the stacks at each stage n so that the sets of this stage include
Bn, we obtain a cutting-and-stacking procedure which fully represents the
original transformation (X,A, µ, S), up to a set of measure zero in the way
that each interval of all of the stacks has length equal to the measure of the
corresponding measurable subset of X. Now define the measured Bratteli
diagram (see next section for definitions) associated with this procedure by
letting the vertex set Vn at stage n be the set of stacks at level n, and by
drawing an edge in En from a stack u ∈ Vn−1 to a stack v ∈ Vn for each
piece of the stack u which is cut by the procedure and placed in the stack v.
Each finite path a = a1 . . . an of the diagram starting from the root and
consisting of n edges ai corresponds to an interval appearing in the cutting-
and-stacking procedure. a is equipped with the same measure as the length
of the interval, and all the other finite paths b = b1 . . . bn starting from the
root and of the same length n and the same range vertex, r(bn) = r(an),
have the same measure as a does. Thus we have given a brief proof sketch
of:

2.1. Theorem (Vershik [V]). Let (X,A, µ, S) be an ergodic measure

preserving transformation of a nonatomic Lebesgue probability space. Then

there exists a measured Bratteli diagram and an isomorphism of (X,A, µ)
with the path space of this diagram which takes S-orbits in X to full equiv-

alence classes of the diagram.

3. Bratteli diagram and finite coordinate change relation. As is
well known (see [B], [HPS]), a Bratteli diagram is a countable graph G =
(V,E), whose vertex set V and edge set E satisfy the following conditions:

(1) V and E are countable unions of pairwise disjoint finite sets Vn,
n ≥ 0, and En, n ≥ 1, respectively, where V0 is a singleton set.
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(2) E is equipped with source maps s = sn : En → Vn−1, and range
maps r = rn : En → Vn. Call s(a) and r(a) for a ∈ E the source

vertex and the range vertex of a.
(3) s−1(v) is nonempty for all v ∈ V and r−1(v) is nonempty for all

v ∈ V \ V0.

The graph G is associated with a one-sided infinite edge space X = XG:

X = {(an)n≥1 : an ∈ En, r(an) = s(an+1) (n ≥ 1)}.
It is a compact space with the topology induced from the product topology
of the infinite product space of the sets En for n ≥ 1, each equipped with the
discrete topology. We let A be the σ-algebra consisting of all Borel subsets
of X.

On (X,A) one defines a finite coordinate change equivalence relation

S = SX by letting, for x and y in X, x ∼ y if there is an integer n ≥ 1 such
that xi = yi for i ≥ n. For x ∈ X we denote by S(x) the equivalence class
{y ∈ X : x ∼ y}, and call these classes S-orbits.

For n ≥ 1, we denote by Sn the subrelation of S, x
n∼ y, defined by xi = yi

for all i > n. We denote by Sn(x) the Sn-equivalence class {z ∈ X : x
n∼ z}.

For simplicity we identify the cylinder

[a1 . . . an] = {x ∈ X : xi = ai, 1 ≤ i ≤ n}
of X with the word a1 . . . an. If the cylinder is nonempty, the word is said
to be admissible. For m ≤ n, Sm is also considered to be an equivalence
relation on the set of all admissible words or cylinders a1 . . . an of length n,
namely

a1 . . . an
m∼ b1 . . . bn if ai = bi for all m < i ≤ n.

That is, a word a1 . . . an corresponds to a path in the graph G from the
root to level n, and two words of length n are m-equivalent (

m∼) if the
corresponding paths terminate at level m at the same vertex in Vm and
coincide from levelm+1 to n. Whenm = n, we also write a1 . . . an ∼ b1 . . . bn
if a1 . . . an

n∼ b1 . . . bn.

4. Measured Bratteli diagram. Given a Bratteli diagram G=(V,E),
let X = XG and S be the finite coordinate change relation on (X,A). In
what follows we will just write X instead of (X,A). A probability measure
µ on X is said to be S-invariant if for all n ≥ 1 and all admissible cylinders
a1 . . . an and b1 . . . bn with a1 . . . an

n∼ b1 . . . bn,
µ(a1 . . . an) = µ(b1 . . . bn).

µ (or S) is said to be ergodic if any S-invariant set E ∈ A (i.e. for a.e. x ∈ E,
x′ ∼ x implies x′ ∈ E) has measure 0 or 1.

4.1. Proposition. Any G admits an S-invariant probability measure.
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Proof. Fix x ∈ X, and for n ≥ 1 let µxn be the probability measure on
X defined by

µxn =
1

♯Sn(x)
∑

y∈Sn(x)

δy,

where δy means a Dirac measure. Then µxn is Sn-invariant. Actually for
a = a1 · · · an,

µxn(a) = 1/A

where A is the number of words of length n ending at the vertex r(an).
Since the set of all probability measures on a compact metric space is weak∗-
compact, one obtains a sequence of integers n1 < n2 < · · · such that

µ(x) = w∗- lim
k→∞

1

♯Snk
(x)

∑

y∈Snk
(x)

δy

exists. Then µ(x) is an S-invariant probability measure.

We remark two things on S-invariant probability measures µ. The one is
that the measure µ(a1 . . . an) of a1 · · · an only depends on r(an). The other
is that there is a subgraph G′ = (V ′, E′) of G such that µ has support on the
closed subset X ′ = XG′ of X on which µ is regular. The Bratteli diagram G′

is obtained by removing all the edges e ∈ E together with the range vertex
r(e) if e ∈ En and there is a path e1 . . . en−1e in G such that

µ[e1 . . . en−1e] = 0.

We note that then all the other edges f inEn ending at r(e) are also removed,
because any path f1 . . . fn−1f in G also satisfies

µ[f1 . . . fn−1f ] = µ[e1 . . . en−1e] = 0.

Thus the rest G′ of G also satisfies the conditions (1)–(3) of the previous
section, and the measure µ is an S ′-invariant probability measure on X ′ =
XG′ , where S ′ is the finite coordinate change equivalence relation, and takes
positive measure for all cylinders of X ′. So whenever a Bratteli diagram
G = (V,E) and an S-invariant probability measure µ on X = XG are given,
we may and will assume that µ is regular.

Here are examples of measured Bratteli diagrams:

4.2. Example (Binary odometer).

·
1
2

1
2

·
1
2

1
2

·
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The finite coordinate change relation S arising from the measured Bratteli
diagram is called the binary odometer.

4.3. Example (Irrational rotation).

·
α α2

· ·
α α2

1
· ·

α α2
1

The finite change relation arising from the diagram is called the irrational

rotation by α = (
√

5− 1)/2.

4.4. Example (Binomial relation).

·
1
2

1
2

· ·1
2

1
2

· ··

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

····

The finite coordinate change relation arising from the diagram is called the
binomial relation.

5. Hopf equivalence. Let G = (V,E) be a Bratteli diagram and µ an
ergodic, nonatomic, S-invariant probability measure on X = XG. We assign
in arbitrary manner the linear order from 0 to k − 1 to the set of edges
e ∈ En ending at the vertex v ∈ Vn, for each n ≥ 1 and e ∈ En, where k
is the number of these edges. We denote by λ(e) the order of the edge e.
Call the edges e and f the minimal and maximal edges if λ(e) = 0 and
λ(f) = k − 1. Write

Xmin = {x ∈ X : xn is minimal for all n ≥ 1},
Xmax = {x ∈ X : xn is maximal for all n ≥ 1},
X

(n)
min = {x ∈ X : xi is minimal for all 1 ≤ i ≤ n},

X(n)
max = {x ∈ X : xi is maximal for all 1 ≤ i ≤ n}.
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The clopen sets X
(n)
min and X

(n)
max are decreasing and satisfy

⋂

n≥1

X
(n)
min = Xmin and

⋂

n≥1

X(n)
max = Xmax.

Note that Xmin and Xmax are nonempty and µ(X
(n)
min) = µ(X

(n)
max), and hence

µ(Xmin) = µ(Xmax). If z, z′ ∈ Xmin and z ∼ z′ then z = z′. Since µ is ergodic
and nonatomic, this means that

µ(Xmin) = µ(Xmax) = 0.

Now we define the one-to-one map S : Xc
max → Xc

min by setting

Sx = x′, x ∈ Xc
max,

where x′ is next to x in the sense that if we let

n = min{i ≥ 1 : xi is not maximal}
then

λ(x′n) = λ(xn) + 1, i < n,

λ(x′i) = 0, i < n,

x′i = xi, i > n.

S is continuous on the open set Xc
max and so also is S−1 on Xc

min, and

S(x) = {Snx : n ∈ Z}, x 6∈ S(Xmax) ∪ S(Xmin).

So, S is a measure preserving automorphism of X, and is called an adic

transformation ([V]). We define the S-invariant measurable subset

X0 = {x 6∈ S(Xmax) ∪ S(Xmin) : x is not periodic under S}
of full measure.

5.1. Definition. Let C be an open subset of X. We call a countable
set C = {Cξ : ξ ∈ Λ} of cylinders a cylinder partition of C if the cylinders
are pairwise disjoint subsets of C and

∑

ξ∈Λ

µ(Cξ) = µ(C).

5.2. Definition. Let O1 and O2 be open subsets ofX. We say that they
are Hopf equivalent to each other if there are cylinder partitions {C1,i : i ≥ 1}
of C1 and {C2,i : i ≥ 1} of C2 such that

C1,i ∼ C2,i, i ≥ 1.

For any open set O ⊂ X the return time τ under S to O is defined,
because µ(O) > 0 and S is conservative. For any point x ∈ X0 and any
integer k ≥ 1, the points Six, 0 ≤ i < k, are all different. Moreover, one
then obtains an integer n ≥ 1 such that

(Six)j = xj , 0 ≤ i < k, j ≥ n.
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One also sees that for any x′ ∈ X with xj = x′j , 1 ≤ j < n,

(Six′)j = x′j , 0 ≤ i < k, j ≥ n,
and

(Six)j = (Six′)j , 0 ≤ i < k, 1 ≤ j < n.

This means that for the cylinder C = [x1 . . . xn−1], the return time τ(x) to
C satisfies

τ(x) ≥ k, x ∈ C.
5.3. Lemma. Let C ⊂ X be a clopen set. Then the return time τ to C

satisfies, for each integer k ≥ 1,

µ(Ck) = µ(IntCk),

where Ck = {x ∈ C : τ(x) = k } and Int denotes interior , and hence τ is a

continuous function on C up to a null set.

Proof. C is the union of a finite number of pairwise disjoint cylinders
Er = cr,1 . . . cr,q, 1 ≤ r ≤ p, of the same length q for some q ≥ 1. It is
enough to show that for any 1 ≤ r ≤ p and any k ≥ 1 with µ(Ck) > 0, any
point x ∈ X0 ∩Er ∩Ck is an interior point of Ck. One has an integer n ≥ q
satisfying the following conditions:

(i) The words (Six)1 . . . (S
ix)n, 0 ≤ i < k, are all different.

(ii) Any word in (i) except x1 . . . xn has no prefix in {cr,1 . . . cr,q : 1 ≤
r ≤ p}.

(iii) (Six)j = xj , j > n, 1 ≤ i ≤ k.
(iv) (Skx)1 . . . (S

kx)q ∈ {cr,1 . . . cr,q : 1 ≤ r ≤ p}.
Let x′ be any point in X such that

x′j = xj , 1 ≤ j ≤ n.
Then

(Six′)1 . . . (S
ix′)n = (Six)1 . . . (S

ix)n, 1 ≤ i ≤ k,
(Six′)j = x′j , j > n, 1 ≤ i ≤ k,
(Skx′)j = (Skx)j , 1 ≤ j ≤ q,

that is, x′ ∈ Ck.
5.4. Remark. The proof of Lemma 5.3 shows that there is a cylinder

partition {Ck,i,j : i, k ≥ 1, 0 ≤ j < k} of X satisfying:

1. Ck,i,0 ⊂ Ck, i, k ≥ 1.
2.

∑

i≥1 µ(Ck,i,0) = µ(Ck), k ≥ 1.

3. Ck,i,j = Sj(Ck,i,0), 0 < j < k, i, k ≥ 1.
4. Ck,i,0 ∼ Ck,i,1 ∼ · · · ∼ Ck,i,k−1, i, k ≥ 1.
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5.5. Proposition. Let A,B ⊂ X be clopen sets. If µ(A) = µ(B), then

A and B are Hopf equivalent to each other.

Proof. Let 0 < ε < µ(A)/2. By choosing a clopen subset A′ ⊂ A such
that µ(A′) > µ(A)− ε, it is enough to construct finitely many pairwise dis-
joint, and the same number of cylinders [ai] and [bi] satisfying the following
conditions:

(i) [ai] ⊂ A, [bi] ⊂ B,
(ii) [ai] ∼ [bi], i ≥ 1,
(iii)

∑

i µ([ai]) > µ(A′)− ε.
It follows from the ergodic theorem that there exists a measurable subset
E ⊂ X with µ(E) < ε and an integer N ≥ 1 such that if n ≥ N and x 6∈ E
then

♯{0 ≤ k < n : Skx ∈ A′} < ♯{0 ≤ k < n : Skx ∈ B},
♯{0 < k ≤ n : S−kx ∈ A′} < ♯{0 < k ≤ n : S−kx ∈ B}.

Take an integer M ≥ 2/ε and a cylinder C ⊂ X such that the return time
τ to C satisfies

τ(x) ≥MN, x ∈ C.
Then by Remark 5.4 one has a cylinder partition {Ck,i,j : 0 ≤ j < k, i ≥ 1,
k ≥MN} of X satisfying:

1. Ck,i,0 ⊂ {x ∈ C : τ(x) = k}, i ≥ 1, k ≥MN.
2.

∑

i≥1 µ(Ck,i,0) = µ({x ∈ C : τ(x) = k}), k ≥MN.

3. Ck,i,j = Sj(Ck,i,0), 0 ≤ j < k, i ≥ 1, k ≥MN.
4. Ck,i,0 ∼ Ck,i,1 ∼ · · · ∼ Ck,i,k−1, i ≥ 1, k ≥MN.

By decomposing the cylinder Ck,i,0 into finitely many cylinders for each k
and each i if necessary, we may assume that the set A′ (resp. B) is the union
of a countable number of the cylinders Ck,i,j up to a null set.

Set

Γ = {(k, i) ∈ [MN,∞)× [1,∞) : ∃j with N ≤ j < k −N
such that Ck,i,j ∩ Ec 6= ∅},

and

H =
⋃

(k,i)∈Γ

k−N−1
⋃

j=N

Ck,i,j .

Then µ(H) > 1− 2ε and for each (k, i) ∈ Γ , the number of cylinders in the
collection {Ck,i,j : 0 ≤ j < k} that are contained in A′ is smaller than the
number of those contained in B. Making a maximal number of one-to-one
matchings between these cylinders completes the proof.
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6. Tower partition. Let us use some definitions similar to those in
[HK]. Let G = (V,E) be a Bratteli diagram, X = XG, and µ an S-invariant
probability measure on X.

6.1. Definition. Let C be an open set of X. A tower partition of C is
a cylinder partition C of C endowed with an equivalence relation such that
each equivalence class consists of cylinders having the same length and the
same range vertex, and in each equivalence class, a specified cylinder called
a bottom cylinder is designated. The union of the bottom cylinders is called
the bottom of the tower partition, and is denoted by B(C).

Given a tower partition C, for each equivalence class {C1, . . . , Cd} of
C and each 1 ≤ i, j ≤ d we introduce partially defined homeomorphisms
Cj,i : Ci → Cj by setting

Cj,i(x) = x′, x ∈ Ci,
where x′ ∈ Cj , xk = x′k, k > n, and n is the common length of the cylinders
Ci and Cj . Then

Ci,i = Id|Ci
and Ck,jCj,i = Ck,i (1 ≤ i, j, k ≤ d).

We call Cj,i’s the associated homeomorphisms of C. For x ∈ Ci and x′ ∈ Cj ,
we write

x
C∼ x′ if x′ = Cj,ix,

and C(x) = {x′ : x
C∼ x′}.

For a subset E ⊂ Ci and j, we let E′ = Cj,i(E), and say that E′ ⊂ Cj
is induced from E by the C-equivalence of Ci, or briefly that E′ is induced

from E by C, and write

E
C∼ E′.

When we discuss an equivalence A = [a1 . . . am]
m∼ B = [b1 . . . bm] of cylin-

ders, we also say that for a subset E ⊂ A the subset E′ ⊂ B defined below
is induced from E by the equivalence:

E′ = {y : yi = bi (1 ≤ i ≤ m), yi = xi (i > m) for some x ∈ E}.
We then write

E
m∼ E′.

Now we define tower extension and tower refinement, similarly to [HK].

6.2. Definition. An extension of an equivalence class of a tower par-
tition is defined to be the set of cylinders constructed by juxtaposing the
same word to the cylinders belonging to the equivalence class. That is, for
a word w, it is the set of cylinders cw, where c ranges over the equivalence
class, and where w can be an empty word.
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6.3. Definition. Let C be a tower partition of an open subset C of X,
and E be a tower partition of the bottom B(C) such that E is, as a partition,
finer than or equal to the partition of B(C) consisting of the bottom cylin-
ders of the equivalence classes of C. We let C′ be the tower partition of C
constructed in the way that for every equivalence class of E the equivalence
class of C′ is the collection of cylinders induced from every cylinder in the
E-equivalence class by C, where the bottom cylinder of the E-equivalence
class is also the bottom cylinder of the C′-equivalence class. C′ is called a
tower refinement of C, and E is also said to be extended to C ′ by C. In
particular, if E is trivial as an equivalence relation, we say that the tower
refinement C′ is a tower extension of C. In other words, each equivalence
class of the tower extension is an extension of an equivalence class of C.

A tower refinement C′ of a tower partition C is, in other words, a refine-
ment of C as a partition, and as an equivalence relation, C is a subrelation
of C′. Each cylinder c′ ∈ C′ is contained in a unique c ∈ C, yielding a map
π : C′ → C which preserves the measure µ. Let E(0) be the cylinder par-
tition of B(C), which is the restriction of C′ to B(C) as a partition, and
endow E(0) with the trivial equivalence relation. The tower refinement of C
extended from the tower partition E(0) to C is a tower extension of C and is
denoted by Ĉ. It is a subrelation of C′ and we call the equivalence relation
of Ĉ the subrelation of C′ coming from C. If c′ and c̃′ are equivalent in Ĉ,
then we write c′ ≈ c̃′, namely c′ = cu, c̃′ = c̃u for some word u, where
π(c′) = c, π(c̃′) = c̃, c ∼ c̃.

Clearly, if C′ is a tower refinement of C and C′′ is a tower refinement
of C′, then C′′ is also a tower refinement of C—in this case, we write c′′ ∼= c̃′′

for the subrelation of C′′ coming from C, namely, c′′ = cuv and c̃′′ = c̃uv

for some word v, where c = π2(c′′), c̃ = π2(c̃′′), c
C∼ c̃, and where π(c′′) =

cu, π(c̃′′) = c̃u.

7. (1 − ε)-Sn-invariant tower partition. We will introduce a notion
of (1−ε)-Sn-invariant tower partition, which is quite similar to (1−ε)-cyclic
tower partition of odometers [HK]. Let X be the path space associated with
a Bratteli diagram G = (V,E) and µ be an S-invariant probability measure.

7.1. Definition. Let 0 < ε < 1 and n ≥ 1. A tower partition C is
said to be (1 − ε)-Sn-invariant if there exists a union E of finitely many
C-equivalence classes of cylinders of the same length ≥ n such that

∑

c∈E

µ(c) > 1− ε,

and for c, c′ ∈ E ,
c
n∼ c′ ⇒ c

C∼ c′.
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In the definition above it is easily seen that there exists a C-invariant set
E of positive measure > 1 − ε such that for x and x′ in E, if x

n∼ x′ then

x
C∼ x′.
7.2. Proposition. Let C be a tower partition, n ≥ 1, and 0 < ε < 1.

There exists a tower refinement C′ of C which is (1− ε)-Sn-invariant.

Proof. Take a union E of finitely many C-equivalence classes so that
∑

c∈E

µ(c) > 1− ε.

Also take an extension Ĉ of C so that every cylinder ĉ ∈ Ĉ either is in C, or
has constant length ≥ n and is contained in a cylinder c ∈ E . Put

Ê = {ĉ ∈ Ĉ : ĉ = cu for some c ∈ E and u}.
We define the tower partition C′ by letting, for ĉ, ĉ′ ∈ Ĉ,

ĉ
C′

∼ ĉ′

if either ĉ, ĉ′ 6∈ Ê , ĉ, ĉ′ ∈ C and ĉ
C∼ ĉ′, or ĉ, ĉ′ ∈ Ê and there exist a finite

number of cylinders ĉi ∈ Ê , 1 ≤ i < k and ĉ′i ∈ Ê , 2 ≤ i ≤ k, such that

ĉi
n∼ ĉ′i+1, 1 ≤ i < k,

ĉ1
Ĉ∼ ĉ, ĉ′k

Ĉ∼ ĉ′, ĉ′i
Ĉ∼ ĉi, 1 < i < k.

Then C′ is (1− ε)-Sn-invariant.

8. Orbital extension and tower map. As seen in [HK] and [R],
a tower map is a central ingredient of finitary orbit equivalence. We will
introduce a more general notion of a tower map for finite coordinate change
relations.

8.1. Lemma. Let C ⊂ X be an open set , and {ri}i≥1 be a finite or

countable sequence of positive numbers such that
∑

i≥1

ri = µ(C).

Then there exist pairwise disjoint cylinders Ci,j ⊂ C, i, j ≥ 1, satisfying , for

each i ≥ 1,
∑

j≥1

µ(Ci,j) = ri.

Proof. We inductively show that there exist positive numbers εi,j with
εi,j < min{ri, 1/(i+ j)} and pairwise disjoint clopen subsets Ci,j of C for
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1 ≤ j ≤ n− i+ 1, 1 ≤ i ≤ n and n ≥ 1 satisfying

(∗) ri −
n−i
∑

j=1

µ(Ci,j) > µ(Ci,n−i+1) > ri −
n−1
∑

j=1

µ(Ci,j)− εi,n−i+1

(1 ≤ i ≤ n, n ≥ 1).

For n = 1, it is enough to choose a positive number ε1,1 < r1 and a clopen
subset C1,1 of C such that

r1 − ε1,1 < µ(C1,1) < r1.

Suppose (∗) holds for n. Put

Di =
n−i+1
⋃

j=1

Ci,j for 1 ≤ i ≤ n, D =
n
⋃

i=1

Di.

The induction hypothesis makes it possible to choose small positive numbers
εi,n+i−2 < 1/(n+ 2) for 1 ≤ i ≤ n such that

ri − µ(Di)− εi,n+i−2 > 0.

We also choose a small positive number εn+1,1 < rn+1. Since

µ(C \D) > rn+1 +

n
∑

i=1

(ri − µ(Di)),

one then has pairwise disjoint clopen subsets Ci,n+1−i, 1 ≤ i ≤ n + 1, of
C \D such that

ri − µ(Di) > µ(Ci,n+2−i) > ri − µ(Di)− εi,n+2−i (1 ≤ i ≤ n)

and
rn+1 > µ(Cn+1,1) > rn+1 − εn+1,1.

This means that (∗) holds for n+ 1.
Letting n tend to infinity for i ≥ 1 in the inequality

ri > µ
(

n−i+1
⋃

j=1

Ci,j

)

> ri − εn−i+1,

one then shows
∞

∑

j=1

µ(Ci,j) = ri.

The proof is completed by taking a finite partition of Ci,j into cylinders for
each i ≥ 1 and j ≥ 1.

The basic idea of the following lemma comes from [HK, Lemma 2, the
argument in Section 3, and the proof of Proposition 4.3], where the cylinders
of the binary odometer space X and the ternary odometer space Y are com-
pared with each other as subintervals of [0, 1] through some identification.
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8.2. Lemma. Assume that SY is ergodic. Let n ≥ 1 and Ci,j , 1 ≤ j ≤ n,
i ≥ 1, be pairwise disjoint cylinders of X, and Dj, 1 ≤ j ≤ n, be pairwise

disjoint cylinders of Y . Suppose that for each i ≥ 1, the cylinders Ci,j ,
1 ≤ j ≤ n, have the same length, and

Ci,1 ∼ · · · ∼ Ci,n and
∑

i≥1

µ(Ci,j) = ν(Dj) (1 ≤ j ≤ n).

Then there are pairwise disjoint cylinders Di,j,k ⊂ Dj , i, k ≥ 1 (1 ≤ j ≤ n),
satisfying the following conditions:

(1) For i, k ≥ 1, the cylinders Di,j,k, 1 ≤ j ≤ n, have the same length,
and

Di,1,k ∼ Di,2,k ∼ · · · ∼ Di,n,k.

(2)
∑

k≥1 ν(Di,j,k) = µ(Ci,j) (i ≥ 1, 1 ≤ j ≤ n).

Proof. First apply Proposition 5.5 for the cylinders D1, . . . , Dn to get
pairwise disjoint cylinders Dj,l ⊂ Dj, l ≥ 1, 1 ≤ j ≤ n, such that for each
l ≥ 1 the cylinders Dj,l, 1 ≤ j ≤ n, have the same length, and

D1,l ∼ D2,l ∼ · · · ∼ Dn,l and
∑

l≥1

ν(Dj,l) = ν(Dj) (1 ≤ j ≤ n).

Next apply Lemma 8.1 for the cylinder D1 and the numbers µ(Ci,1), i ≥ 1,
to get pairwise disjoint cylinders D′

i,k ⊂ D1, i, k ≥ 1, such that
∑

k≥1

ν(D′
i,k) = µ(Ci,1), i ≥ 1.

One then has a common refinement of the partitions {D′
i,k : i, k ≥ 1} and

{D1,l : l ≥ 1} of D1. Write

Di,1,k,l = D′
i,k ∩D1,l, i, k ≥ 1, l ≥ 1.

For l ≥ 1, the equivalences D1,l ∼ D2,l ∼ · · · ∼ Dn,l induce pairwise disjoint
cylinders Di,j,k,l ⊂ Dj,l such that for l ≥ 1,

Di,1,k,l ∼ Di,j,k,l (i, k ≥ 1) and
∑

i≥1

∑

k≥1

ν(Di,j,k,l) = ν(Dj,l).

These cylinders Di,j,k,l, with subscripts i, j, and (k, l), satisfy conditions
(1)–(3) of the lemma.

8.3. Definition. Let C ⊂ X and D ⊂ Y be open sets such that µ(C) =
ν(D), and C = {Ch,i,j : h, i ≥ 1, 1 ≤ j ≤ n(h)} be a tower partition of C,
where n(h) ≥ 1 for h ≥ 1 and

{Ch,i,1, Ch,i,2, . . . , Ch,i,n(h)}, h, i ≥ 1,



ORBIT EQUIVALENCE AND BRATTELI DIAGRAMS 377

are the C-equivalence classes, where Ch,i,1’s are the bottom cylinders. Let

D(0) = {Dh,j : h ≥ 1, 1 ≤ j ≤ n(h)} be a cylinder partition of D such that

(∗) ν(Dh,j) =
∑

i≥1

µ(Ch,i,j).

We also let D be a tower partition of D whose equivalence classes are

{Dh,i,1,k, Dh,i,2,k, . . . , Dh,i,n(h),k}, i, h, k ≥ 1,

where Dh,i,1,k’s are the bottom cylinders such that
⋃

i≥1

⋃

k≥1

Dh,i,j,k = Dh,j (mod ν)

and
∑

k≥1

ν(Dh,i,j,k) = µ(Ch,i,j) (1 ≤ j ≤ n(h)).

We call the tower partition D an orbital extension of the tower partition C
to the cylinder partition D(0). We also call the map ψ : D → C defined by

ψ(Dh,i,j,k) = Ch,i,j

a tower map.

Lemma 8.2 implies the existence of an orbital extension D for any tower
partition C and a cylinder partition D(0) satisfying (∗).

Although the following proposition was observed in [HK], for complete-
ness we will include the proof.

8.4. Proposition. Let φ : C → D be a tower map, and C′ a tower

refinement of C. Then there exist a tower refinement D′ of D and a tower

map ψ : D′ → C′ such that

C φ−−−−→ D
π

x





x





π

C′ ψ←−−−− D′

commutes, i.e. φ ◦ π ◦ ψ = π, and ψ is also a tower map from D̂ to Ĉ.
Proof. It follows from Lemma 8.2 that there exists an orbital extension

E of the restriction C′|B(C) to the partition D|B(D), whose tower map ψ :
E → C′|B(C) is such that if ψ(D′) = C ′ then the cylinders C ∈ C and D ∈ D
determined by C ′ ⊂ C and D′ ⊂ D satisfy φ(C) = D. We extend the tower
partition E of B(D) to a tower partition of the whole space Y by D. The
resulting tower refinement D′ admits a tower map ψ : D′ → C′ closing the
above diagram, and which preserves the ≈ equivalence relations.
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9. The finitary construction. Let

C1 φ1−−−−→ D1

π

x





x





π

C2 ψ2←−−−− D2

be a commuting diagram of tower refinements and tower maps. Assume also
that ψ2 preserves the ≈ equivalence relations.

9.1. Lemma. Let y1 . . . yn2
, ỹ1 . . . ỹn2

∈ D2, and n1 < n2, ñ1 < n2 be

such that

π(y1 . . . yn2
) = y1 . . . yn1

, π(ỹ1 . . . ỹn2
) = ỹ1 . . . ỹñ1

.

If

ψ2(y1 . . . yn2
) ≈ ψ2(ỹ1 . . . ỹn2

) and y1 . . . yn2
∼ ỹ1 . . . ỹn2

then n1 = ñ1 and yk = ỹk (n1 < k ≤ n2).

Proof. First we show that n1 = ñ1 and y1 . . . yn1
∼ ỹ1 . . . ỹn1

. Put

x1 . . . xm2
= ψ2(y1 . . . yn2

)

and let m1 < m2 be such that

x1 . . . xm1
= π(x1 . . . xm2

) ∈ C1.
By the commuting diagram,

φ1(x1 . . . xm1
) = φ1(π(x1 . . . xm2

)) = φ1πψ2(y1 . . . yn2
)

= π(y1 . . . yn2
) = y1 . . . yn1

.

One of the assumptions means that

ψ(ỹ1 . . . ỹn2
) = x̃1 . . . x̃m1

xm1+1 . . . xm2

for some x̃1 . . . x̃m1
∈ C1 with x̃1 . . . x̃m1

∼ x1 . . . xm1
. We then have

ỹ1 . . . ỹñ1
= φ1(x̃1 . . . x̃m1

) ∼ φ1(x1 . . . xm1
) = y1 . . . yn1

.

Next we show that

ψ2(ỹ1 . . . ỹn1
yn1+1 . . . yn2

) = x̃1 . . . x̃m1
xm1+1 . . . xm2

.

As a matter of fact,

x1 . . . xm2
= ψ2(y1 . . . . . . . . . yn2

) ≈ ψ2(ỹ1 . . . ỹn1
yn1+1 . . . yn2

),

and hence

ψ2(ỹ1 . . . ỹn1
yn1+1 . . . yn2

) = x̂1 . . . x̂m1
xm1+1 . . . xm2

for some x̂1 . . . x̂m1
∈ C1 with x̂1 . . . x̂m1

∼ x1 . . . xm1
. Therefore

φ1(x̂1 . . . x̂m1
) = ỹ1 . . . ỹn1

= φ1(x̃1 . . . x̃m1
).

Since φ1 is injective on each equivalence class, x̂1 . . . x̂m1
= x̃1 . . . x̃m1

.
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To complete the proof, we use the other assumption:

ỹ1 . . . ỹn1
yn1+1 . . . yn2

∼ y1 . . . y1 . . . yn2
∼ ỹ1 . . . ỹn2

.

This and the fact that ψ2(ỹ1 . . . ỹn1
yn1+1 . . . yn2

) = ψ2(ỹ1 . . . ỹn2
), which we

showed above, imply

yn1+1 . . . yn2
= ỹn1+1 . . . ỹn2

,

because ψ2 is injective on each equivalence class.

We next let

C1 φ1−−−−→ D1

π

x





x





π

C2 ψ2←−−−− D2

π

x





x





π

C3 φ3−−−−→ D3

be a commuting diagram of tower refinements and tower maps, and assume
that both ψ2 and φ3 preserve the corresponding ≈ equivalence relations.
Then the following proposition is known from [HK]. Here we give a slightly
different and shorter proof.

9.2. Proposition. The tower map φ3 preserves the ∼= equivalence rela-

tions. That is, for x1 . . . xm3
∈ C3, let y1 . . . yn3

= φ3(x1 . . . xm3
) ∈ D3, and

let m1 < m3, n1 < n3 be such that

x1 . . . xm1
= π2(x1 . . . xm3

) ∈ C1 and y1 . . . yn1
= π2(y1 . . . yn3

) ∈ D1.

If x̃1 . . . x̃m1
∈ C1 satisfies x1 . . . xm1

∼ x̃1 . . . x̃m1
then

φ3(x̃1 . . . x̃m1
xm1+1 . . . xm3

) ∼= φ3(x1 . . . xm1
xm1+1 . . . xm3

),

i.e.

φ3(x̃1 . . . x̃m1
xm1+1 . . . xm3

) = ỹ1 . . . ỹn1
yn1+1 . . . yn3

for some ỹ1 . . . ỹn1
∈ D1 with y1 . . . yn1

∼ ỹ1 . . . ỹn1
.

Proof. Let m1 < m2 < m3 and n1 < n2 < n3 be such that

x1 . . . xm2
= π(x1 . . . xm3

), y1 . . . yn2
= π(y1 . . . yn3

).

By the commuting diagram,

ψ2(y1 . . . yn2
) = x1 . . . xm2

and φ1(x1 . . . xm1
) = y1 . . . ym1

.

Since φ3 respects the ≈ equivalence relation,

x̃1 . . . x̃m1
xm1+1 . . . xm2

xm2+1 . . . xm3
≈ x1 . . . xm2

xm2+1 . . . xm3

implies

φ3(x̃1 . . . x̃m1
xm1+1 . . . xm2

xm2+1 . . . xm3
) = ỹ1 . . . ỹn2

yn2+1 . . . yn3
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for some ỹ1 . . . ỹn2
∈ D2, where y1 . . . yn2

∼ ỹ1 . . . ỹn2
. We also have

ψ2(ỹ1 . . . ỹn2
) = x̃1 . . . x̃m1

xm1+1 . . . xm2
,

and

ψ2(y1 . . . yn2
) = x1 . . . xm2

.

Apply Lemma 9.1 for y1 . . . ym2
and ỹ1 . . . ỹn2

to conclude that y1 . . . yn2
≈

ỹ1 . . . ỹn2
, so yk = ỹk for all n1 < k ≤ n2.

Now we are ready to state and prove our main theorem.

9.3. Theorem. Finite coordinate change relations arising from mea-

sured Bratteli diagrams admitting nonatomic ergodic probability invariant

measures are all finitary orbit equivalent.

Proof. Choose a sequence {εn} with 0 < εn < 1 and

∞
∑

n=1

εn <∞.

Using Propositions 7.2 and 8.4 inductively, we have a commuting diagram

C0 φ0−−−−→ D0

π

x





x





π

C1 ψ1←−−−− D1

π

x





x





π

C2 φ2−−−−→ D2

x





x





· · ·
where C0 = {X}, D0 = {Y }, φ0(X) = Y, C2n+1 is (1−ε2n+1)-S2n+1-invariant
(n ≥ 0), D2n is (1−ε2n)-S2n-invariant (n ≥ 1), the maps commute, and φ2n

and ψ2n+1 preserve the respective ≈ equivalence relations at each stage of
the induction. By the definition of cylinder partition, µ-almost every x ∈ X
belongs to a cylinder cn(x) ∈ Cn for each n ≥ 0. Similarly, ν-almost every
y ∈ Y belongs to a cylinder dn(y) ∈ Dn for each n ≥ 0. Moreover, if

d0
π← d1

π← d2 ← · · · is a chain, then
⋂

n≥0 dn is a singleton in Y . Therefore
for µ-almost every x ∈ X there is a y = Φ(x) ∈ Y such that for each n ≥ 0,

φ2n(c2n(x)) = d2n(y).

Analogously (or by commutativity),

ψ2n+1(d2n+1(y)) = c2n+1(x),
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defining Ψ(y) = x and proving that Φ and Ψ are finitary and inverses of
each other.

Finally, let x and x̃ be two points of X belonging to the same S-orbit.
By (1− εn)-Sn-invariance and the Borel–Cantelli lemma, µ-almost all such
x (and x̃) belong to the sets

E2n+1 =
⋃

c∈E2n+1

c

for all sufficiently large n, where E2n+1 is the collection of cylinders associ-
ated with the (1− ε2n+1)-S2n+1-invariant tower C2n+1, whose total measure
is at least 1 − ε2n+1. This means that the cylinders c2n+1(x) and c2n+1(x̃)
are C2n+1-equivalent for all large n. In other words,

S(x) =
⋃

n≥0

C2n+1(x)

for µ-almost every x ∈ X, and in particular the cylinders c2n+1(x) and
c2n+1(x̃) are obtained from the cylinders c2n(x) and c2n(x̃) by juxtaposi-
tion of the same word w. Then by Proposition 9.2, φ2n+2 respects the ∼=
equivalence relation. Therefore the corresponding cylinders d2n+2(Φ(x)) =
φ2n+2(c2n+2(x)) and d2n+2(Φ(x̃)) = φ2n+2(c2n+2(x̃)) are obtained from
d2n(Φ(x)) and d2n(Φ(x̃)) by juxtaposition of the same word. This shows
that y = Φ(x) and ỹ = Φ(x̃) differ in at most finitely many coordinates.
Symmetrically we also see that x = Ψ(y) and x̃ = Ψ(ỹ) differ in at most
finitely many coordinates.
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