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MINIMAL MODELS FOR Z
d-ACTIONSBYBARTOSZ FREJ and AGATA KWA�NICKA (Wroªaw)Abstrat. We prove that on a metrizable, ompat, zero-dimensional spae every

Z
d-ation with no periodi points is measurably isomorphi to a minimal Z

d-ation withthe same, i.e. a�nely homeomorphi, simplex of measures.1. Basis. In 1970 Robert Jewett proved that for any weakly mixingdynamial system there exists an isomorphi stritly ergodi (i.e. uniquelyergodi and minimal) topologial dynamial system. Extended by WolfgangKrieger to the lass of all ergodi transformations, it was one of the �rst ma-jor results onerning modelling measure-theoretial dynamial systems bytopologial systems with preassigned topologial onditions, like minimality.One of the reent theorems of this kind was proved by Tomasz Downarowizin [1℄: an aperiodi, ontinuous map of a ompat, metri, zero-dimensionalspae is Borel∗ isomorphi to a minimal one. Borel∗ isomorphism is a rela-tion whih involves not only a measurable isomorphism between dynamialsystems, but also an a�ne homeomorphism between simplies of invariantmeasures. Our present paper is a sequel of [1℄�we adapt the methods usedthere to obtain suh an isomorphism theorem for ontinuous Z
d-ations.We onsider a ompat zero-dimensional metrizable spae X and a ol-letion T = {T1, . . . , Td} of ommuting homeomorphisms of X. We all apair (X,T ) a d-dimensional dynamial system. For n = (n1, . . . , nd) ∈ Z

dwe write Tn for the superposition Tn1

1 . . . Tnd

d . We say that a system (X,T )is aperiodi if Tn(x) 6= x for all x ∈ X and all n 6= (0, . . . , 0). It is minimalif X ontains no proper nonempty losed subset whih is invariant (a set Fis invariant if TiF = F for i = 1, . . . , d). Equivalently, (X,T ) is minimal ifand only if the orbit {Tnx : n ∈ Z
d} of every x ∈ X is dense.We denote by PT (X) the set of all Borel probability measures on Xinvariant under T (i.e. under all Ti, i = 1, . . . , d). It is well known that inour ase PT (X) endowed with the weak∗ topology is a ompat, metrizable2000 Mathematis Subjet Classi�ation: 28D05, 28D15, 37A05, 37B05.Key words and phrases: Z

d-ation, invariant measure, Choquet simplex, Borel isomor-phism, blok ode.The �rst author's researh was supported by grant MENII 1 P03A 021 29, Poland.[461℄ © Instytut Matematyzny PAN, 2008
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and onvex subset of the spae of all Borel probability measures on X. Everypoint of PT (X) has a unique representation as a baryenter of a ertainBorel measure onentrated on the Borel set of all ergodi measures. Theseproperties are usually abbreviated by saying that PT (X) is a Choquet simplex(see [4℄ for details). A set E ⊂ X is alled full if µ(E) = 1 for every µ ∈
PT (X).Definition. We say that two d-dimensional dynamial systems (X,T )and (Y, S) are Borel ∗ isomorphi if there exists an equivariant Borel-measur-able bijetion Φ : X0 → Y0 between full invariant subsets X0 ⊂ X and
Y0 ⊂ Y suh that the onjugate map Φ∗ : PT (X) → PS(Y ) given by theformula Φ∗(µ) = µ◦Φ−1 is an (a�ne) homeomorphism with respet to weak∗topologies.We will extensively use a speial type of dynamial systems, namely d-dimensional symboli systems over a ompat alphabet Λ. These are de�nedin the following way: on a ompat spae ΛZ

d we de�ne shift maps σi setting
(σi(y))n = yn+ei

for all y ∈ ΛZ
d , n ∈ Z

d and i = 1, . . . , d, where ei =
(0, . . . , 0, 1, 0, . . . , 0) ∈ Z

d with the only 1 ourring at the ith plae. A
d-dimensional symboli system is a nonempty losed subset Y of ΛZ

d whihis invariant under all σi.We use the following onventions. For a set Λ a funtionM : Z
d → Λ, i.e.an element of ΛZ

d , is alled an array. For a �nite set A ⊂ Z
d and an array

M we de�ne the on�guration MA to be M restrited to A. In partiular,for n ∈ Z
d we denote by Mn the single symbol M{n}. If Ã = A+m for some

m ∈ Z
d, and (M̃

Ã
)n = (MA)n+m for every n ∈ Ã, then we say that MA and

M̃
Ã
have the same pattern. In this ase both A and Ã are alled the shape ofthe pattern. More formally, shapes and patterns are osets of the equivalenerelation based on the translation of the domain. Thus one an de�ne inlusionfor shapes S, S′ as follows: S′ ⊂ S if A′ ⊂ A for some A′ ⊂ Z

d representing
S′ and A ⊂ Z

d representing S. A shape S is bounded if sets representing Sare bounded. A ube with maximal vertex v = (v1, . . . , vd) and edge length
b is the set

Kv

b = {n ∈ Z
d : vi − b < ni ≤ vi};then (v1 − b+ 1, . . . , vd − b+ 1) will be alled the minimal vertex of Kv

b . For
b ∈ N0, v = (b, . . . , b) we also write Kb = Kv

b+1 for the ube �xed at theorigin. We will also use the name �ube� for shapes based on ubes in Z
d. Itwill be onvenient to denote (0, . . . , 0) ∈ Z

d by 0, (1, . . . , 1) ∈ Z
d by 1, and

(k, . . . , k) ∈ Z
d by k · 1.In a symboli system (Y, σ), by bloks we will mean patterns havingbounded shapes. A restrition of a blok of the shape S to some shape

S′ ⊂ S is alled a subblok. A blok B ours in y ∈ ΛZ
d if it is a pattern
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of some on�guration yA; B ours in a system (Y, σ) if it ours in some
y ∈ Y . Let dΛ be a metri on the alphabet Λ. On the set of all bloks ofthe same shape we de�ne a distane D to be the supremum of distanes
dΛ between symbols oupying idential positions. Note that if B′

1,B′
2 areidentially shaped subbloks of B1 and B2, respetively, and D(B1, B2) < ε,then D(B′

1, B
′
2) < ε.The following theorem is the main result of this work.Theorem 1. If X is a metrizable, ompat , zero-dimensional spae thenevery d-dimensional aperiodi dynamial system (X,T ) is Borel ∗ isomorphito a minimal dynamial system (X̃, τ) (with X̃ being also metrizable, ompatand zero-dimensional).The �rst step of the onstrution of (X̃, τ) will be to replae (X,T )by a onjugate, thus having �the same� simplex of measures, d-dimensionalsymboli system (X∗, σ) over the in�nite alphabet Λ = (X ∪ N0)

N0 , where
N0 denotes the set of all nonnegative integers and N0 is the set N0 ∪ {∞}.Elements of Λ and X ∪ N0 will be referred to as symbols and haraters,respetively. Then we will onstrut a Borel∗ isomorphism Φ between (X∗, σ)and a minimal symboli system (X̃, τ) with the same alphabet. The map Φwill be de�ned as the pointwise limit of a sequene of topologial onjugaiesgiven by blok odes.We will now mention two of the di�ulties typial for the multidimen-sional ase. Similarly to [1℄, the onstrution relies on a hoie of a dereasingsequene of lopen sets, alled markers. For every x in the underlying spae,eah of these markers indues a division of the trajetory of x into nonover-lapping bloks in suh a way that every blok reated for the (n+1)st markeris a onatenation of bloks spei�ed by the nth marker. In several dimen-sions, the operation of dividing trajetories into bloks requires muh moree�ort. Retangular bloks are not possible and even Voronoi regions seem tobe unsuitable for our purposes, so we develop a new algorithm. The seondproblem, whih was not present in dimension one, onerns boundaries ofbloks indued by markers. The elements with badly behaving boundarieshave to be ruled out, whih fores another alulation to ensure that we getrid only of a set of measure zero.2. Markers. For p ∈ N0 we denote the entral ube with edge length
2p+ 1 by

Kp = {n = (n1, . . . , nd) ∈ Z
d : max{|n1|, . . . , |nd|} ≤ p}.Definition. A set F ⊂ X is a marker of order p ∈ N0 or simply a

p-marker if:(i) elements of {TnF : n ∈ Kp} are pairwise disjoint,
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(ii) {TnF : n ∈ KN} is a over of X for some N ∈ N0. The number

2N + 1 with minimal suh N will be alled the overing onstant ofthe marker F .We say that (X,T ) has the marker property if X ontains a lopen p-markerfor every p ∈ N0.Lemma 2 (Marker lemma). Any aperiodi Z
d-ation (X,T ) on a om-pat zero-dimensional Hausdor� spae has the marker property. Moreover ,for any inreasing sequene (pt) of positive integers there is a desendingsequene of pt-markers , with the overing onstant qt of the pt-marker equalto 4pt + qt−1.Proof. It is lear that the whole spae X is a 0-marker with overingonstant 1. We will show that given a lopen k-marker F k and an integer

p > k we an �nd a lopen p-marker F p ⊂ F k. The overing onstant of F kwill be denoted by 2K + 1.For every x ∈ F k we hoose a lopen neighbourhood Ex of x, ontainedin F k, suh that {TnEx : n ∈ K2p} onsists of pairwise disjoint sets. Fromthe over {Ex : x ∈ F k} of the lopen set F k we hoose a �nite subover
V = {Vl : l = 1, . . . , L}. Now we set

F1 = V1, Fl+1 = Fl ∪
(
Vl+1 \

⋃

m∈K2p

TmFl

)
.

Finally, F p = FL. Obviously, F p is lopen.We skip the indution that proves disjointness of TnF p for n ∈ Kp, butwe show that {TnF p : n ∈ K2p+K} is a over. Every x ∈ F k belongs to oneof Vl's. Either it was appended to Fl ⊂ F p at the lth step of the onstrutionor it had already been ontained in TmFl−1 ⊂ TmF p for some m ∈ K2p.Thus F k ⊂ ⋃
n∈K2p

TnF p, and X ⊂ ⋃
n∈K2p+K

TnF p.3. The spae X∗. Fix the summable sequene εt = 1/2t+3, t ∈ N0. Let
d

N0
be the metri on N0 given by d

N0
(k, l) =

∑l
t=k+1 εt for k ≤ l. Let dXdenote a metri on X. We de�ne a ompat metri d on X ∪ N0 by

d(x, y) =





dX(x, y) for x, y ∈ X,
diam(X) for x ∈ X, y ∈ N0 or x ∈ N0, y ∈ X,
d

N0
(x, y) for x, y ∈ N0,and the distane dΛ between x = (x0, x1, . . . ) and y = (y0, y1, . . . ) in Λ by
dΛ(x,y) =

∞∑

i=0

2−id(xi, yi).Note that (Λ, dΛ) is a ompat metri spae.
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For an array M ∈ΛZd and n∈Z
d let Mk

n
denote the kth harater of thesymbolMn. The funtion mapping n∈Z

d toMk
n
is alled the kth level ofM .Fix an inreasing sequene (pt) and let (Ft) be a desending sequeneof pt-markers with overing onstants qt (see Lemma 2). Let Qt =

∑t
i=0 qi.In Setion 5 we will give more information about the hoie of the sequene

(pt). In partiular, the inequality Qt < pt+1 will be satis�ed.In the �rst step of the onstrution of (X∗, σ) we replae eah x ∈ Xby an array [x] : Z
d → Λ suh that [x]k

n
= 0 for k > 1, [x]1

n
= Tnx and

[x]0
n

= t if Tnx ∈ Fpt , Tnx /∈ Fpt+1
or [x]0

n
= ∞ if x belongs to all markers.We say that [x] has the marker t at position n ∈ Z

d if [x]0
n

= t. The spae
X∗ = {[x] : x ∈ X} is homeomorphi to X and the olletion σ of shifts σi istopologially onjugate to T . Aording to the de�nition of a marker, every
[x] ∈ X∗ has the following properties:(i) every on�guration in [x] based on a ube with edge length pt has(at some position) at most one marker ≥ t,(ii) every on�guration in [x] based on a ube with edge length qt has atleast one marker ≥ t.4. t-bloks. In the urrent setion we desribe an indutive algorithmof partitioning every [x] ∈ X∗ into disjoint on�gurations. The sequene ofpartitions, indued by a �xed sequene of markers, thus depending only onthe zero level of [x], will be the base of our onstrution of a topologialonjugay between X∗ and a minimal system.On every one n + N

d
0 = {m ∈ Z

d : m ≥ n}, where n ∈ Z
d, we de�ne amaximolexiographi order �<∗� as follows. For m ∈ N

d let sort(m) denotethe element of Z
d whose oordinates are equal to those of m, but arranged innoninreasing order, and let �≺� be the usual lexiographi order. We write

m <∗ m′ if
• sort(m) ≺ sort(m′) or
• sort(m) = sort(m′) and m ≺ m′.Figure 1 presents the sheme of the order for d = 2. The relation �<∗� isa linear order. The operation of taking minimum with respet to this orderwill be denoted by �min∗�. 9 11 13 154 6 8 141 3 7 120 2 5 10Fig. 1. The sheme of the maximolexiographi order for d = 2. Number 0 is the vertexof a one; onseutive integers are plaed aording to the maxlex order on this one.
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Let Q−1 = 0 and p0 = q0 = 1. First we de�ne 0-on�gurations as singlesymbols [x]n, n ∈ Z

d. To proeed with the indution, we assume that we havede�ned t-on�gurations in suh a way that every t-on�guration ontains onthe zero level exatly one marker u ≥ t. Let us denote the position of thismarker in a t-on�guration [x]A by n(t, A). We de�ne a (t+1)-on�gurationas a onatenation of t-on�gurations as follows. Every (t+ 1)-on�guration
[x]C onsists of exatly one t-on�guration [x]A with a marker u ≥ t+1 andsome other t-on�gurations [x]A′ suh that n(t, A) = min∗{m ≥∗ n(t, A′) :
[x]0

m
≥ t + 1}, where the ordering �≥∗� is inverse to �<∗� de�ned for theone n(t, A′) + N

d
0. We obtain n(t+ 1, C) = n(t, A). Roughly speaking, the

t-marker of A′ searhes for the nearest (in �<∗�) (t+1)-marker of some A, andthen the t-on�guration A′ is glued to A. Figure 2 pitures the distributionof 1-bloks and 2-bloks in two dimensions.Patterns of t-on�gurations will be alled t-bloks. The olletion of all
t-bloks whih our in the system X∗ will be denoted by Bt. Below wesummarize the main properties of t-bloks.Lemma 3. Let B be a t-blok.(1) B is a �nite onatenation of (t− 1)-bloks (t > 0).(2) B has exatly one marker u ≥ t.(3) The marker u ≥ t is situated at the maximal vertex of B, i.e. at themaximal vertex of the smallest ube ontaining the domain of B.(4) The shape of B ontains a ube with edge length pt −Qt−1.(5) The shape of B is ontained in a ube with edge length Qt.Proof. Properties (1) and (2) follow immediately from the onstrution.Properties (3)�(5) will be proved by indution.Let [x] ∈ X∗. Observe that 0-bloks obey these rules. Assume that on-ditions (3)�(5) hold for every t-blok in Bt. Consider a (t+ 1)-on�guration
[x]C with marker ≥ t+1 at n(t+1, C). We will show that the ube Kv

pt+1−Qtwith v = n(t+ 1, C) − (Qt · 1) is a subset of C.Let n ∈ Kv

pt+1−Qt
. The point n is in the domain of [x]A for some t-on�guration [x]A with marker t at n(t, A). By the indution hypothesis, thedomain A of [x]A is a subset of a ube of edge length Qt and the marker t issituated at the maximal vertex of A. Hene, having in mind that Qt < pt+1,we get n(t, A) ∈ Kn(t+1,C)

pt+1
. Therefore n(t + 1, C) lies in the ube L withminimal vertex n(t, A) and edge length pt+1. At n(t+1, C) there is a marker

≥ t+ 1 and in L there are no other markers ≥ t+ 1. So A must be a subsetof C and n lies in C.To prove (5), we will show that the domain of the (t + 1)-on�guration
[x]C is a subset of the ube Kn(t+1,C)

Qt+1
. Let n be situated outside this ube.The position n lies in the domain of some t-on�guration [x]A with marker
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Fig. 2. The onstrution of 1- and 2-bloks in two dimensions for p1 = 3, q1 = 7, p2 = 22.
1-bloks are distinguished by shades of grey. The bold line separates 2-bloks. Eah ofmarked squares with edge length p1 has a unique 1-marker in the right upper orner. Thebig hathed square is an area with a unique 2-marker.
≥ t at n(t, A). The ube with minimal vertex n(t, A) and edge length qt+1ontains at least one marker ≥ t + 1 and it does not ontain the position
n(t+1, C) (beause the ube Kn(t+1,C)

Qt+1−Qt
does not ontain n(t, A)). Thereforethe t-on�guration [x]A is part of a (t+1)-on�guration with marker ≥ t+1outside [x]C . Hene n /∈ C.Observe that the marker ≥ t+1 of [x]C lies at the maximal vertex of theube Kn(t+1,C)

Qt+1
whih ontains C. This proves (3).Reall that on t-bloks of the same shape we have a metri D, de�nedas the supremum of the distanes dΛ between symbols ourring at identialpositions. Sine there are only �nitely many shapes available for t-bloks,the metri D is ompat on every Bt.
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5. Blok odes φt. Now, we will simultaneously de�ne a sequene (pt)of marker onstants and a sequene (φt) of odes, with eah φt ating on t-bloks. To start the indution we set p0 = q0 = 1 (as in the previous setion)and let φ0 be the identity. We also hoose a �nite ε0-dense olletion Bε0

0from the set B0 (with metri D) and put r0 = #Bε0

0 .In step t + 1 we assume that we have already de�ned ps, qs and φs for
s ≤ t and that eah φs maps s-bloks into patterns of the same shape (imagesof s-bloks under φs will be alled s-images). Every [x] ∈ X∗ is a uniquelydetermined onatenation of s-bloks so we an de�ne a mapping Φs on X∗,whih applies φs to every s-blok of [x]. Moreover, we assume that the orbitof x was moved by φs from the �rst level of [x] to a level not farther than
(s+1)st. Let ψs be an auxiliary mapping on s-bloks that only hanges everymarker u ≥ s into marker s, and let φ̄s denote ψs ◦φs. Let Bεt

t be an εt-densesubset of Bt and rt = #(Bεt

t ). We put
pt+1 =

Qt(⌈ d
√
rt⌉ + 2)

εt+1
.

Let B̃ ∈ Bt our in [x] ∈ X∗ on a domain A. We will de�ne φt+1(B̃) asa pattern of the same shape, by desribing a on�guration M on A.By Lemma 3 the domain A ontains a ube K = Kv

pt+1−Qt
for some

v ∈ A. Let K′ = Kw

bt+1
be a smaller ube with edge length bt+1 = Qt⌈ d

√
rt⌉and maximal vertex w = v − ⌈(pt+1 − Qt − bt+1)/2⌉ · 1. Let [x]W denotethe onatenation of all t-on�gurations whose domains have nonempty in-tersetions with K′. The on�guration [x]W will be alled a bu�er. Observethat W ⊂ A. The ode φt preserves shapes of t-bloks and it will follow fromthis onstrution that it di�ers from φt−1 only inside bu�ers. The bu�erhas to be large enough to enlose the whole εt-dense olletion Bεt

t of ardi-nality rt. Syndeti appearane of bu�ers will then imply minimality of the�nal model. On the other hand, bu�ers must be relatively small omparedto whole bloks in order to preserve the set of invariant measures.We start the onstrution of M by inserting in MW all images φ̄t(B) of
t-bloks B from the εt-dense olletion Bεt

t , so that their markers t lie atpositions w −Qt · m, where m ∈ K⌈ d
√

rt⌉. The rest of MW (let U denote itsdomain) will be �lled with φ̄s(Bs) for Bs ∈ Bs, s ≤ t, in the following way.Put Ut = {n ∈ U : Kn

Qt
⊂ U}, the set of possible maximal verties for ubeswith edge length Qt, totally ontained in U . Consider the order <∗ on theone (min{ni : n ∈ Ut})i=1,...,d + N

d
0. If Ut is nonempty, hoose Bt ∈ Bt andplae φ̄t(Bt) in MW so that its marker t lies at min∗ Ut. Redue the set Uby subtrating the area where φ̄t(Bt) was plaed and reate new Ut for theredued U . Until Ut is empty repeat this proedure hoosing bloks from Btand pasting their images in MW so that markers lie at minimal points of Ut.
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Then repeat this proedure for what has remained of U , replaing t by t−1,then by t− 2 and so on. In the last step for t = 0 we �ll up the whole MWwith 0-bloks.Now we omplete M outside the bu�er W . The on�guration [x]A\W isa onatenation of t-on�gurations. For every C being the domain of suha t-on�guration with pattern Bt we plae in MC a t-image φt(Bt). By theindution hypothesis, the (t + 2)nd level of MW onsists of zeros. So for
n ∈W we set M t+2

n
= [x]1

n
.Having de�ned MW made of s-images for s ≤ t and MA\W made of

t-images, we have determined the whole on�guration M , whose patternis φt+1(B̃).It has to be stressed that the onstrution of levels 0 to t + 1 of MWmay be performed in suh a way that it depends only on the shape of thebu�er W . We do so to ensure that if two (t + 1)-bloks have bu�ers of thesame shape then their images oinide in bu�ers on every level exept t+ 2.Properties of the odes are summarized in the following lemma.Lemma 4.(1) The orbit of x an be read in Φt([x]) on the level not farther than
(t+ 1)st guaranteeing that Φt is one-to-one.(2) φt and Φt di�er from φt−1 and Φt−1 only in bu�ers of t-bloks.(3) φt and Φt do not hange markers ≥ t.(4) φt is ontinuous on Bt.(5) If D(B,B′) < εt for t-bloks B and B′, then D(φt(B), φt(B

′)) < εt.(6) Let B ∈ Bt. Inside the bu�er , the image φt(B) is a onatenation of
s-images for s ≤ t − 1 (with markers u > s hanged to s). Outsidethe bu�er it is a onatenation of (t− 1)-images.Proof. Properties (1), (2) and (6) follow diretly from the onstrutionof φt. All others are learly satis�ed for φ0. To prove (3) note that by (2) itsu�es to hek the markers in the bu�er; but every marker in the bu�er ofa (t+ 1)-blok is less than or equal to t, while φt+1 replaes s-bloks (s ≤ t)from the bu�er only by s-images with markers hanged to s. We leave thestraightforward veri�ation of (4) and (5) to the reader.Let B̃t denote the olletion of all t-images and let

B̃εt

t = {φt(B) : B ∈ Bεt

t }.Note that by (5) of the above lemma, B̃εt

t is εt-dense in B̃t.6. Frequeny of bu�ers and borders. Let A = {Ax : x ∈ X} be aolletion of subsets of Z
d. We will say that A ours in a system X withfrequeny ≤ α if there exist a and b suh that a/bd ≤ α and for every x ∈ X
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in any ube Kv

b lying in the domain of [x] the ardinality of Ax ∩ Kv

b is lessthan or equal to a.A position n in the domain of a t-on�guration M belongs to the borderof the t-on�guration (or, simply, to the t-border) if at least one of the 2dpositions n ± ei belongs to the domain of another t-on�guration.Lemma 5. For the sequenes (pt) and (qt) de�ned above we have:(1) if A denotes a set of t-bu�ers, i.e. Ax is the union of all bu�ers of
t-on�gurations in [x], then A ours in X with frequeny ≤ (4εt)

d,(2) the set of t-borders ours in X with frequeny ≤ (1 − 10−2d)t.Proof. Throughout the proof ct = ⌈ d
√
rt⌉ + 2.(1) Consider an arbitrary array [x] ∈ X∗ and a ube K with edge length

pt/2, lying in the domain of [x]. The domain of every t-on�guration [x]Aontains a ube with edge length pt − Qt−1 > pt/2, arrying a bu�er ofa t-blok. The bu�er is situated at positions lying at least 3pt/16 from thelosest fae of this ube. It follows that Kmay interset the domains of bu�ersof at most 2d t-on�gurations. A bu�er of a t-on�guration [x]A is ontainedin a ube with edge length Qt−1ct−1. Thus, among all positions in K, atmost 2d(Qt−1ct−1)
d positions lie in t-bu�ers. By the reursive de�nition of

pt we have Qt−1ct−1 = ptεt. So the frequeny of the set of symbols lying in
t-bu�ers is less than or equal to

2d(Qt−1ct−1)
d

(pt/2)d
=

2d(ptεt)
d

(pt/2)d
= (4εt)

d.(2) Sine qt−1 ≤ Qt−1 and εt < 1 < ct for every t > 0,
pt

qt
=

pt

4pt + qt−1
=

Qt−1ct−1

εt

(
4Qt−1ct−1

εt
+ qt−1

) ≥ ct−1

4ct−1 + εt
>

1

5
.Fix [x] ∈ X∗. In every ube with edge length qt one an �nd a marker

u ≥ t. Every domain of a t-on�guration ontains a ube with edge length
pt −Qt−1. Hene, in every ube with edge length qt + pt there is a ube withedge length pt−Qt−1, totally ontained in the domain of one t-on�guration.Cutting o� a border of thikness one we obtain a ube with edge length
pt −Qt−1 − 2, no position of whih belongs to a t-border.Set p̃0 = p0 and q̃0 = q0. Indutively, let p̃t be the largest integer multipleof q̃t−1 less than or equal to pt/4 and let q̃t be the smallest integer multipleof p̃t greater than or equal to 2qt. For t ≥ 1 we have

p̃t ≥
pt

4
− q̃t−1 ≥ pt

4
− 2qt−1 − p̃t−1 ≥ pt

4
− 2

pt−1

16
− pt−1

4
≥ 7pt

64
,so

p̃t

q̃t
≥ p̃t

2qt + p̃t
≥ 7pt

64(2qt + pt/4)
≥ 10−2.
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In the domain of [x] onsider a ube K with edge length being an integermultiple of q̃t. The ube K onsists of disjoint ubes L1, . . . ,Ln, with edgesof ommon length q̃t. Every ube Li an be divided into ubes Li,j withedges p̃t. Sine 2p̃t < pt −Qt−1 − 2 and q̃t > qt + pt, for every i at least oneof Li,j 's does not ontain any position from the t-border. Suppose that Li,1is suh. Put Lt =
⋃

i Li,1. The set Lt overs at least a 10−2d fration of theube L. In the next step we perform an analogous reasoning, replaing L by
L \ Lt, and t by t − 1 (note that L \ Lt is a onatenation of ubes withedge length q̃t−1). We de�ne Lt−1, whih again overs 10−2d of a new L, andremove it from L. In the kth step we divide the urrent set L into ubes Liwith edge length q̃t−k+1, and Li's into Li,j 's with edge length p̃t−k+1, andde�ne Lt−k+1 =

⋃
i Li,1 that oupies 10−2d of L. The algorithm is repeateduntil k = t. In every step we diminish L at least by 10−2d of it, so after

t steps we obtain an L whih is at least (1 − 10−2d)t times smaller, but itontains the whole t-border.
7. The spae (X̃, τ). We will distinguish a full subset of X∗ whih willbeome the support of a Borel∗ isomorphism Φ de�ned as the pointwise limitof maps Φt.Let Xbuf

t denote the set of all [x] ∈ X∗ whose position 0 lies in a t-bu�er.Using the �rst part of Lemma 5 and Tempel'man's ergodi theorem for dommuting endomorphisms of a probability spae (see [2℄), for any ergodimeasure µE on X∗ we obtain
µE(Xbuf

t ) = lim
r→∞

1

rd

∑

n∈Kr

1Xbuf
t

◦ σn ≤ (4εt)
d.

Let Xbuf be the set of those [x] ∈ X∗ whose zero position lies in a t-bu�er forat most �nitely many t, and let X ′ be the set of [x] eah of whose positionslies in a t-bu�er for at most �nitely many t. Then
Xbuf = X \

∞⋂

s=1

∞⋃

t=s

Xbuf
t and X ′ =

⋂

n∈Zd

σn(Xbuf).
The sequene ((4εt)

d)t is summable, so µE(Xbuf) = 1. Sine µE is invariant,we also obtain µE(X ′) = 1. This holds for any ergodi µE ∈ P(X∗), thus
µ(X ′) = 1 for any measure µ ∈ P(X∗) and X ′ is a full subset of X∗.Similarly we de�ne Xborder

t to be the subset of X ′ onsisting of the pointswhose zero position belongs to a t-border,
Xborder = X ′ \

∞⋂

s=1

∞⋃

t=s

Xborder
t and X ′′ =

⋂

n∈Zd

σn(Xborder).
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Analogously to the above onsiderations, the seond part of Lemma 5and the ergodi theorem yield µE(Xborder

t ) ≤ (1 − 10−2d)t for any ergodimeasure µE , hene the sets Xborder and X ′′ are full subsets of X∗. It followsthat for all y ∈ X ′′ any ube appearing in the domain of y is overed by one
t-on�guration for su�iently large t.Reall that aording to Lemma 4 the map Φt+1 di�ers from Φt only inbu�ers of (t + 1)-bloks. Consequently, for any y from X ′′ eah position ishanged by Φt only for a �nite number of t. Thus we an de�ne a map Φ on
X ′′ as the pointwise limit of the maps Φt as t → ∞. Let X̃ be the losureof Φ(X ′′) in ΛZ

d , where Λ = (X ∪ N0)
N0 , and let τ be the set of shift mapson X̃.For eah t every element y of Φ(X ′′) is a onatenation of s-images for

s ≤ t. Shapes of s-images are the same as shapes of s-bloks, so theysatisfy (4) and (5) of Lemma 3. As in the proof of Lemma 5 every ubewith edge length pt/2 in the domain of y intersets at most 2d bu�ers of t-on�gurations. Hene for elements of Φ(X ′′) we obtain the same upper boundon the frequeny of t-bu�ers as in Lemma 5. We now show that this bound isalso valid for elements of X̃. Pik y = limk yk ∈ X̃, where (yk)k∈N ⊂ Φ(X ′′).For a given t onsider a ube K = Kv

pt/2 in the domain of y. If for any y theube K intersets the domain of a bu�er of some s-on�guration for s ≤ t,then its marker belongs to L = Kv+pt

3pt/2, a larger ube sharing the minimalvertex with K. Hene, if yk onverges to y, loation of s-bu�ers for s ≤ t on
(yk)K is for su�iently large k the same as on yK. In partiular, we get anupper bound on the frequeny of t-bu�ers for the whole X̃ as in Lemma 5.In the same way as in X∗ we de�ne a full subset X̃ ′ of X̃, onsisting of thepoints eah of whose positions lies in a t-bu�er for �nitely many t only.On X̃ ′ ∩ Φ(X ′′) a position belongs to a t-border either if it belonged toa t-border in X ′′ and it does not lie in any of u-bu�ers for u > t, or if it liesin u-bu�ers for u > t and it has fallen into a t-border by �lling the bu�erfor the largest suh u. The �rst ase happens with frequeny ≤ (1− 10−2d)t,aording to Lemma 5. The frequeny of the seond ase is bounded fromabove by the sum of the frequenies of the u-bu�ers for u > t, whih is equalto ∑∞

i=t+1(4εi)
d. Hene the frequeny of observing a t-border is bounded on

X̃ ′ ∩ Φ(X ′′) by the terms of the summable sequene (1− 10−2d)t + 4dεd
t . Toprove that this bound is also valid for X̃ ′ onsider y = limk yk ∈ X̃ ′, where

(yk)k∈N ⊂ Φ(X ′′). In the domain of y selet a ube K = Kv

b . Let L = Kv+Qt·1
b+2Qt

.Sine y is the limit of yk's, positions of markers t in (yk)L are for su�ientlylarge k the same as in yL, exept for the markers t whih will be replaed byhigher markers during the onstrution. Therefore t-on�gurations in (yk)Kfor large k have the same shapes as t-on�gurations in yK, and they have thesame t-borders. It follows that on X̃ ′ the frequeny of t-borders has the same
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upper bound as on X̃ ′ ∩ Φ(X ′′). Setting X̃ ′′ to be the set of all elements of
X̃ ′ whose positions belong to t-borders for at most �nitely many t, we obtainagain a full subset of X̃ ′, hene also of X̃.Remark 6. Note also that for ỹ ∈ X̃ ′′ every ube Kv

b in ỹ has the samedistribution of markers as an idential ube in some y ∈ Φ(X ′′). Thus thestruture of t-on�gurations on Kv−Qt

b−2Qt
in ỹ is the same as in y.

8. (X̃, τ) is minimal. A set A ⊂ Z
d is syndeti with onstant L ≥ 0 if

A∩Kv

L 6= ∅ for every v ∈ Z
d. We say that a blok B with the shape ontainedin some ube with edge length k appears in an array y syndetially with aonstant L if it appears as a subblok of every ube with edge length L+ k.We skip the standard proof of the following lemma.Lemma 7. Let Y be a d-dimensional symboli system over a ompatalphabet Λ. Let B′

Y be a ountable olletion of bloks satisfying the followingondition: for every ε > 0 and every blok B ourring in Y one an �nd
B′ ∈ B′

Y suh that D(B,B′′) < ε for a ertain subblok B′′ of B′.If there exists a dense set Y ′ ⊂ Y onsisting of elements y in whih every
B ∈ B′

Y ours syndetially with onstant depending only on B, then thesymboli system (Y, σ) is minimal.We will use the above lemma for Y = X̃, taking as B′
X̃

the olletion
⋃

t B̃εt

t , and as a dense subset of X̃ the set Φ(X ′′).Consider a blok B̃ with the shape of ube, ourring in X̃. For arbitrarilysmall ε the blok is ε-lose to a on�guration in some element of Φ(X ′′).For large t this on�guration is ontained in a t-image Bt ∈ B̃t, whose εt-approximation will be denoted by B′
t ∈ B̃εt

t . Pik any y ∈ Φ(X ′′). It su�esto show that B′
t (with entries at positions on levels farther than t+1 possiblyhanged from zeros to other haraters) ours syndetially in y. The distane

D between B̃ and an appropriate subblok of B′
t will be bounded by ε+(1+

diam(X))εt.The blok B′
t appears in the bu�er of every (t + 1)-image. Fix n ∈ Z

d.We will show that for some subset E of Kn+Qt+1

3Qt+1
the on�guration yE or-responds to a (t+ 1)-image. It will prove that B′

t appears syndetially withonstant 3Qt+1 −Qt.Reall that the array y is a onatenation of (t + 1)-images apart from
u-bu�ers for u > t + 1, while the bu�er of a u-blok is a onatenationof s-images for s < u. Consider a blok onsisting of the ube Kn

Qt+1
in ytogether with all u-bloks, u > t + 1, whose bu�ers interset this ube andwill not be hanged by higher odes (note that any two bu�ers, possibly ofdi�erent order, are either disjoint or ordered by inlusion). If no suh bloks
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exist, then n belongs to the domain of some (t+1)-image, whih will be the�nal outome of the ation of Φ. This blok is ontained in a ube with edgelength Qt+1, so its domain is ontained in Kn+Qt+1

2Qt+1
. On the other hand, ifthere are some u > t+ 1 suh that u-bu�ers interset Kn

Qt+1
, then pik oneof those u-bu�ers and study its struture. It was onatenated of u′-imagesfor u′ < u, whose bu�ers may interset Kn

Qt+1
. Eah of these u′-images againis a ertain onatenation and so on. Let u0 denote the least u′ > t+ 1 suhthat a u′-bu�er intersets our ube. If Kn

Qt+1
is ompletely overed by thebu�er of a u0-blok, then it intersets the domain of some s-blok, where

t+ 1 ≤ s < u0 (beause of the algorithm of �lling the bu�er). Hene, thereis a position n′ ∈ Kn

Qt+1
, whih belongs to the domain of an s-image (takethe smallest suh s ≥ t+1), but not to its bu�er. Then it lies in the domainof some (t+ 1)-image, whih is ontained in Kn

′+Qt+1

2Qt+1
⊂ Kn+Qt+1

3Qt+1
.But if the ube Kn

Qt+1
is not ompletely overed by the bu�er of a u0-blok, then a ertain position n′′ ∈ Kn

Qt+1
lies outside this bu�er and insidethe same u0-image. Thus n′′ belongs to the domain of a (t+ 1)-blok, whihis ontained in the ube Kn

′′+Qt+1

2Qt+1
⊂ Kn+Qt+1

3Qt+1
.9. Φ is a Borel∗ isomorphism. It remains to prove that (X∗, σ) and

(X̃, τ) are Borel∗ isomorphi. The sets X ′′ and X̃ ′′ are full subsets of X∗ and
X̃, respetively. We will show that Φ is a bijetion between them.Sine for every [x] ∈ X ′′ we have Φ([x])k

0
6= 0 for at most �nitely many k,and the last nonzero level ontains x, Φ is injetive. To prove that it is alsosurjetive, hoose ỹ ∈ X̃ ′′. By Remark 6, at every position only a �nitenumber of nonzero levels is allowed. Let x be the harater that appears atthe last level of position 0 in ỹ. The harater is a member of the originalspae X, and its array representation in X∗ is denoted by [x]. Consider aentral ube Kb in the domain of ỹ. It is ontained in the domain of some

t-on�guration, representing a blok B̃. Sine ỹ ∈ X̃, there exists a sequene
(Bk) of t-bloks suh that B̃ = limk φt(Bk). Note that sine B̃ has x atthe last nonzero level of the position orresponding to position 0 of ỹ, Bk'smust approah x at the �rst level of the same position. The metri D on theset of t-bloks is ompat, thus we an hoose a subsequene (B′

k) of (Bk)onvergent to some t-blok B, whih surrounds position 0 in [x]. Reall that
φt is ontinuous, hene

B̃ = lim
k
φt(Bk) = lim

k
φt(B

′
k) = φt(lim

k
B′

k) = φt(B).Thus the equality ỹ = Φt([x]) holds on the whole Kb. Sine Kb an betaken arbitrarily large and the alulation above is orret for any su�ientlylarge t, every position of [x] lies in bu�ers of at most �nitely many t-bloks
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and ỹ = Φ([x]). To show that a position n of [x] visits borders �nitely manytimes, �x t and note that the set of t-border positions in [x] oinides withthe t-border of Φu([x]), u ≥ t, apart from s-bu�ers for t < s ≤ u. Take
Kb ∋ n and t so large that for u ≥ t we have ỹ = Φu([x]) on Kb and [x]n liesoutside u-bu�ers. From the fat that ỹn belongs only to a �nite number ofborders, we get the same property for [x]n.Measurability of Φ follows from the fat that it is the pointwise limit ofa sequene of ontinuous maps Φt, and measurability of its inverse is thusgranted by the Kuratowski theorem (see [3℄).Sine X̃ is metri, the spae C(X̃) is separable. Choosing a dense ount-able set {f̃k} ⊂ C(X̃) and setting fk = f̃k/‖f̃k‖∞ we an de�ne a metri on
P(X̃), ompatible with the weak∗ topology, by the formula

̺(µ̃, ν̃) =

∞∑

k=1

1

2k+1

∣∣∣
\
fk dµ̃−

\
fk dν̃

∣∣∣.

We an also demand that the set {f̃k} onsists of simple funtions ombinedfrom harateristi funtions of lopen ylinders.We will show that the sequene of maps Φ∗
t : P(X∗) → P(X̃), t ∈ N,onverges uniformly, by verifying the Cauhy riterion. Fix ε > 0. We needto �nd T suh that ̺(Φ∗

t (µ), Φ∗
T (µ)) < ε for all t > T and µ ∈ P(X∗).Sine all Φ∗

t 's are a�ne, µ 7→ ̺(Φ∗
t (µ), Φ∗

T (µ)) is onvex (and ontinuous),hene attains its maximum on the set of extremal points of P(X∗). Thus itis enough to onsider ergodi measures.Find K ∈ N suh that ∑∞
k=K+1 1/2k < ε/2. For every pair of measures

µ̃, ν̃, the kth element of the series ̺(µ̃, ν̃) is bounded by 1/2k, so the task boilsdown to �nding T suh that for every t > T and every ergodi µ ∈ P(X∗),
K∑

k=1

1

2k+1

∣∣∣
\
fk dΦ

∗
t (µ) −

\
fk dΦ

∗
T (µ)

∣∣∣ < ε

2
.Sine the above sum is �nite and eah fk is a linear ombination of hara-teristi funtions of ylinders, it is enough to prove that for every δ > 0 andevery ylinder A there exists T suh that for every t > T and every ergodimeasure µ ∈ P(X∗),

∣∣∣
\
1A dΦ

∗
t (µ) −

\
1A dΦ

∗
T (µ)

∣∣∣ = |µ(Φ−1
t A) − µ(Φ−1

T A)| < δ.Note that ΦT and Φt di�er only in bu�ers of s-markers for T < s ≤ t. Thusthe above inequality follows from the Z
d-ergodi theorem by estimating thefrequeny of visits of ΦT (x) and Φt(x) in A.Aknowledgements. First of all we want to thank Tomasz Downaro-wiz, who introdued us into the subjet. We are also grateful to Tomasz
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