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Abstract. Two Banach spaces X and Y are symmetrically complemented in each
other if there exists a supplement of Y in X which is isomorphic to some supplement of
X in Y. In 1996, W. T. Gowers solved the Schroeder-Bernstein (or Cantor-Bernstein)
Problem for Banach spaces by constructing two non-isomorphic Banach spaces which
are symmetrically complemented in each other. In this paper, we show how to modify
such a symmetry in order to ensure that X is isomorphic to Y. To do this, first we
introduce the notion of Cantor—Schroeder—Bernstein Quadruples for Banach spaces. Then
we characterize them by using some Banach spaces constructed by W. T. Gowers and
B. Maurey in 1997. This new insight into the geometry of Banach spaces complemented
in each other leads naturally to the Strong Square-hyperplane Problem which is closely
related to the Schroeder—Bernstein Problem.

1. Introduction. Let X and Y be Banach spaces. We write Y <X if
Y is isomorphic to a complemented subspace of X, that is, X ~Y @ A for
some Banach space A. In this case, we say that A is a supplement of Y in

X and we also write Y 4 X. X ~ Y means that X is isomorphic to Y and
X 'Y means that X is not isomorphic to Y. If n € N = {1, 2, ...}, then
X" indicates the finite sum of n copies of X. It is useful to define X° = {0}.

Suppose that X and Y are Banach spaces complemented in each other,
that is,

(1.1) Y5 X and X SY.

In 1996, W. T. Gowers [14] solved the so-called Schroeder—Bernstein Problem
for Banach spaces by showing that X is not necessarily isomorphic to Y. This
answer in the negative opens two directions of research. The first is to provide
new negative solutions to this problem with some particular properties (see
[5]-9], [11] and [16]). The second is to ask what additional conditions on
X and Y satisfying (1.1) ensure that X is isomorphic to Y (see [10], [12]
and [13]).
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Concerning this last direction, it is well known that Pelczynski’s de-
composition method [3, p. 63], which has played an important role in the
isomorphic theory of classical Banach spaces, states that X ~ Y if these
spaces satisfy (1.1) and the following Decomposition Scheme:

{XNXQ,
Y ~ Y2

The present work is a continuation of [10], [12] and [13] in the sense that we
present some alternatives to Pelczynski’s decomposition method in Banach

spaces. Our starting point is the fact that the first condition of (1.1), Y N X,
A
means that there exists a Banach space A such that Y < X. Therefore a
necessary condition for (1.1) to yield X ~ Y is that
A A
(1.2) Y—>X and X <Y
So we define

DEFINITION 1.1. Two Banach spaces X and Y are symmetrically com-
plemented in each other if there exists a Banach space A satisfying (1.2).

Notice that if X and Y are Banach spaces symmetrically complemented
in each other then X? ~ Y?2. Indeed, let A be a Banach space satisfying
(1.2). Then

(1.3) X~YQA~XOADA=X0 A%
Adding X to both sides of (1.3) we deduce
X?~ X2 AP~ YR
We do not know examples of Banach spaces X and Y complemented in each
other and satisfying X2 ~ Y2 which are not symmetrically complemented
in each other.
Unfortunately, two Banach spaces which are symmetrically complem-

ented in each other are not necessarily isomorphic. Indeed, in [14] there was
constructed a Banach space Z isomorphic to Z3 but not to Z2. Thus

2227 and 725722 but Z o4 2%

Moreover, even when the space A from (1.2) is the complex scalars C it does
not imply that X ~ Y. Indeed, in [16, p. 559|, W. T. Gowers and B. Maurey
introduced a Banach space W isomorphic to each of its subspaces of co-
dimension 2, but not isomorphic to any of its hyperplanes. Therefore

(14) WaoCSW and WSWaC but WLWaC.

However, Banach spaces X and Y symmetrically complemented in each other
are isomorphic whenever there exists a space A satisfying (1.2) and A ~ A?™
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for some m € N. Indeed, adding A2 to both sides of (1.3) we obtain
X~XoA2~XaoApA®=Xo AL

So by induction
X~XoAm~X0A~NY.

Finally, inspired by the last remark, notice that we can strengthen (1.2) in
such a way that the new conditions guarantee X ~ Y. For example, X ~ Y
whenever there exists a supplement A of Y in X satisfying

y2 A X and x24 v
Indeed, in this case
(1.5) X~YoA?0A~X’0A0A~ YO ADA~X DA
Now adding X @ A to both sides of (1.5) we obtain
Y~ X’@A~X’0ADA~Y DA~X.

So the natural question which originated the research of this paper is whether
one can determine all quadruples (p, g, 7, s) in N such that X ~ Y whenever
there exists a supplement A of Y in X satisfying

A1 As
YP <~ X and X" =Y.
To answer affirmatively this question it is convenient to introduce
DEFINITION 1.2. A quadruple (p,q,r,s) in N is a Cantor-Schroeder-

Bernstein Quadruple for Banach spaces (for short, CSBQ) if X ~ Y when-
ever there exists a supplement A of Y in X such that

(1.6) y» X x amd x* Ly

We also say that I' = (¢—1)(s+ 1)+ (p—q)(s+7) is the Cantor-Schroeder—
Bernstein discriminant of the quadruple (p, q,r, s).

The main aim of this paper is to present a characterization of the CSBQ’s
in terms of their discriminants I" (see Theorem 1.3). This result suggests an
intriguing problem concerning the geometry of the hyperplanes of Banach
spaces (see Problem 1.4).

THEOREM 1.3. A quadruple (p,q,r,s) in N with discriminant I" is a
CSBQ if and only if one of the following conditions holds:

(a) '=0,r=1and ged(qg—1,s+1) =1;

(b) I' #0 and I' divides p— 1 and r — 1.

The Banach spaces constructed by W. T. Gowers and B. Maurey in
[16, p. 563] and the main result of [13] will be fundamental in the proof of

Theorem 1.3 (see Remarks 2.1 and 2.2 and also the proofs of Proposition 3.1
and Lemma 4.1).
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Nevertheless, we have not been able to obtain a natural generalization of
Theorem 1.3, that is, one involving finite sums of X, X™ m € N, m > 2,
instead of X in the first condition of (1.6). In particular, in the simplest
case of m = 2, we do not know whether two Banach spaces X and Y are
isomorphic whenever there exists a supplement A of Y in X satisfying

(1.7) Y2 A X2 and X v

On one hand, observe that (1.7) implies that X ~Y when A ~ X? Y7 for
some p,q € NU {0} with p 4+ ¢ > 1. Indeed, in this case,

X~Y@®A~XPpYIHL

and

YA YDA X ~ X2~ Y?2QPA~Y DY DA~Y @ X.

Thus, according to Remark 2.2 below, X ~ Y.

On the other hand, we do not know how to solve the above problem
even when A is the smallest possible non-null space, that is, the field of real
or complex scalars. Notice that in this case, indicating by K the field in
question, we have

XY’ K~ XoK?0K~X0X0K’ 0K ~X?0K.
Thus (1.7) can be rewritten as follows:
X’~X?®K and X~X@K2

Hence our search for alternatives to Petczynski’s decomposition method leads
naturally to:

PROBLEM 1.4 (Strong Square-hyperplane Problem). Let X be a Banach
whose square space 1s 1somorphic to its hyperplanes. Suppose that X 1is iso-
morphic to its subspaces of codimension 2. Does it follow that X is isomor-
phic to its hyperplanes?

Observe that the Banach space W mentioned in (1.4) is a candidate
for a negative solution to Problem 1.4. Moreover, evidently the answer to
Problem 1.4 is affirmative if the following problem has a positive solution.

PROBLEM 1.5 (Square-hyperplane Problem). Let X be a Banach space
whose square is isomorphic to its hyperplanes. Is X itself isomorphic to its
hyperplanes?

Finally, we recall that a Banach space H is hereditarily indecomposable
(H.I.) if no closed subspace E of H contains a pair of infinite-dimensional
closed subspaces M and N such that E = M @ N. In [15] W. T. Gowers and
B. Maurey gave the first example of a H.I. space. We refer to |2] for a detailed
survey of results about H.I. spaces. These spaces have been used to provide
negative answers to several questions in Banach space theory (see for example
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[1], [7], [15]-[17]). These spaces may be useful in solving Problems 1.4 and
1.5; we only remark that no H.I. space itself is a solution to Problem 1.4.
Furthermore, they are not solutions to Problem 1.5 because the square of a
H.I. space is not isomorphic to its hyperplanes [4, Corollary 5].

2. Preliminaries. We start by recalling some results on pairs of Banach
spaces which are isomorphic to complemented subspaces of each other.

REMARK 2.1. In [16, p. 563] there were constructed Banach spaces X,
for every t € N, t > 2, having the following property: X" ~ X/, with
m,n € N, if and only if m is equal to n modulo %.

REMARK 2.2. In [13] a quintuple (p,q, 7, s,t) in NU{0} with p+ ¢ > 2,
r+s+t>3,(r,s) #(0,0) and t > 1 was said to be a Schroeder—Bernstein
quintuple (for short, SBq) if X ~ Y whenever the Banach spaces X and Y
satisfy (1.1) and the following Decomposition Scheme:

{X ~XPBYY,

Yin XTpYS.

The number V = (p — 1)(s — t) — rq was called the discriminant of the
quintuple (p,q,r,s,t).

We recall the following characterization of the SBq’s obtained in [13]: Let
(p,q,r,s,t) be a quintuple in N with p+¢ > 2, r+ s+t >3, (r,s) # (0,0)
and t > 1. Then (p,q,r,s,t) is a SBq if and only if V # 0 and V divides
p+q—1and r+s—t.

3. Sufficient conditions for a quadruple (p,q,7,s) in N to be a
CSBQ. The main goal of this section is to prove the sufficiency part of
Theorem 1.3, by proving Propositions 3.1 and 3.2 below.

PROPOSITION 3.1. Let (p,q,r,s) be a quadruple in N with discrimi-
nant I'. If I' # 0 and I' divides p — 1 and r — 1 then (p,q,r,s) is a CSBQ.

Proof. Let X and Y be Banach spaces satisfying (1.6) for some sup-
plement A of Y in X and quadruple (p,q,r,s) in N such that I" # 0 and
I" divides p — 1 and 7 — 1. We will show that X ~ Y. It is convenient to
distinguish two cases: p < ¢ and p > q.

CASE 1: p < g. There are two subcases: I' > 0 and I" < 0.

SUBCASE 1.1: I' > 0. Let m,n € NU {0} be such that p — 1 = mI" and
r —1 =nl". We can check that
(3.1) I'=(s+1)p-1)-(-p)(r-1).

Thus
(3.2) m(s+1)=1+n(qg—p).
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By the first condition of (1.6), we have
(3.3) X ~YP @ AP @ ATP o XP @ ATP,
Adding XP~! @ A97P to both sides of (3.3) we conclude that
X ~ XP @ AT P ~ XPH—1) gy A2(a—p) — x2(0—1)+1 g g2(a-Pp),

Therefore by induction we get

(3.4) X ~ xnp=+l g gnla=p),
Now according to the second condition of (1.6),
(3.5) Y ~X"® A

Adding A to both sides of (3.5), we deduce that
X~Y@A~X" @ AT

Thus proceeding as above, we see that

(3.6) X ~ XD+ gy gmlst1),

By the choice of m and n, n(p — 1) = m(r — 1). Hence bearing (3.2) in mind
and using (3.4) in (3.6) we find that

(3.7) X~XadA
Finally, adding X"~ @ A* to both sides of (3.7), we infer that
Y X oA ~XaX ToAl~XoX oA 0A
~XTHAAPA~Y DA~ X,

SUBCASE 1.2: I' < 0. Let m,n € N be such that p — 1 = —mI and
r—1= —nI". Hence n(p—1) = m(r — 1) and according to (3.1), n(q — p) =
1+ m(s + 1). Thus analogously to Subcase 1.1, we use (3.6) in (3.4) to get
X~Y.

CASE 2: p > q. Since X ~Y @ A, by the first condition of (1.6) we have

(3.8) X~YPigYlg A~ X1 YPT1
Moreover, by the second condition of (1.6) we know that
(3.9) Y~ X"@ A%

Adding Y® to both sides of (3.9), we deduce that
Ys+1 ~ XT @AS @Ys ~ Xr @Xs — XT+S.
Thus by (3.8) we conclude that
X ~ X1 YPa,
ys+l o Xrts,

Since the discriminant V of the quintuple (¢,p —¢q,7+s,0,s+ 1) is equal to
—(¢—1)(s+1)—(p—q)(r+s) =—1I, by hypothesis we have V # 0, and
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V divides ¢+ (p—¢q) —1 =pand r+s— (s+ 1) = r — 1. Furthermore p > 2,
so by Remark 2.2 we conclude that X ~ Y. =

PROPOSITION 3.2. Let (p,q,r,s) be a quadruple in N with discriminant
I'=0,r=1andged(q—1,s+1)=1. Then (p,q,7,s) is a CSBQ.

Proof. By Bézout’s theorem there exist m,n € NU {0} such that
m(g—1)=n(s+1)+1 or n(s+1)=m(¢g—1)+1.
Since r = 1, it follows that I' = (p—1)(s+1) = 0 and therefore p = 1. Now,
as in the proof of (3.4) and (3.5), we obtain
X~ X@®A"D and X ~ X @A™,

So it suffices to proceed as in the proof of Proposition 3.1 to deduce that
X~Y.nm

4. Necessary conditions for a quadruple (p,q,r,s) in N to be a
CSBQ. The main purpose of this section is to complete the proof of Theo-
rem 1.3. This theorem is an immediate consequence of Propositions 4.2, 4.5
and 4.6 below. In order to prove Proposition 4.2 we need to state an auxiliary
result. It is related to the Banach spaces X; mentioned in Remark 2.1.

LEMMA 4.1. Let p,q,r,s € N and suppose that there exist i,j,t € N with
t > 2 satisfying

(a) t divides i(q— 1)+ j(p — q);
(b) t divides i(s+ 1) — j(s+1);
(c) t does not divide j —i.

Then (p,q,r,s) is not a CSBQ.

Proof. Let n € N be such that nt—j+i > 0. Since j+(nt—j+1i)—i = nt,
by the property of X; mentioned in Remark 2.1 we have

A . o
X] & X!, where A= X"
Next notice that from (a) and (b) we deduce that
. A4 . . AS .
X — X; and X" = X].
Furthermore, (c) implies that X} is not isomorphic to th . Consequently,
(p,q,r,s) is not a CSBQ. =

PROPOSITION 4.2. If a quadruple (p,q,r,s) in N is a CSBQ with dis-
criminant I' = 0, then r = 1 and gcd(¢ — 1,s +1) = 1.

Proof. Suppose that the discriminant I" of a quadruple (p,q,7,s) in N
is equal to zero. We will show that (p, q,r,s) is not a CSBQ when r > 2 or
r=1and ged(¢g —1,s+1) > 2.
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CASE 1: 7> 2. Takei=s+1and j = s+7r. Thusi(s+r)—j(s+1) =0
and since I' = 0, it follows that i(¢ — 1) + j(p — q¢) = 0. Moreover, j — i =
r — 1 # 0. Hence it is enough to take t € N, t > 2, not dividing r — 1 and
apply Lemma 4.1 to see that (p,q,r,s) is not a CSBQ.

CASE 2: 7 =1 and ged(q — 1,5 4+ 1) > 2. Since I' = 0, we deduce that
p=1 Take i =1, j = 2 and t = ged(q — 1, s + 1). Hence the conditions
(a)—(c) of Lemma 4.1 are satisfied. Consequently, (p, g, r, s) is not a CSBQ. =

We need two lemmas.

LEMMA 4.3. Let (p,q,r,s) be a quadruple in N with discriminant I' > 2.
Suppose that there exist integers o and (3 satisfying

(a) —a(s+1)> B —q);

(b) Blg—1) > afs+r);

(¢c) I' does not divide B(p — 1) + a(r — 1).
Then (p,q,r,s) is not a CSBQ.

Proof. Let t = I' and consider the linear system

{i(q— 1) +j(p - q) = at,

i(s+r)—j(s+1)=pt

The only solution of (4.1) is i = —a(s+1)—F(p—q) and j = B(¢—1)—a(s+r).
It follows from (a)—(c) that ¢ > 0, 7 > 0 and ¢ does not divide j —i =
B(p — 1) — a(r — 1). Moreover, clearly ¢ divides i(q — 1) + j(p — ¢) and
i(s + 1) — j(s + 1). Therefore Lemma 4.1 implies that (p,q,r,s) is not a
CSBQ. =

Taking ¢ = —I" and proceeding as in the proof of Lemma 4.3 we obtain:

(4.1)

LEMMA 4.4. Let (p,q,r,s) be a quadruple in N with discriminant I' < —2.
Suppose that there exist integers o and [ satisfying

(a) —a(s+1) < B(p—q);

(b) Blg—1) <als+r);

(¢) I' does not divide B(p — 1) — a(r — 1).
Then (p,q,r,s) is not a CSBQ.

Now we are ready to complete the proof of the necessity part of Theo-
rem 1.3, by proving Propositions 4.5 and 4.6 below.

PROPOSITION 4.5. If a quadruple (p, q,r, s) in N with discriminant I # 0
is a CSBQ, then I' divides p — 1.

Proof. Assume that a quadruple in N has discriminant I" £ 0 and I" does
not divide p— 1. We will show that it is not a CSBQ. We consider two cases:
I'>2and I' < —-2.
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CASE 1: I' > 2. We distinguish three subcases: p < ¢, p =¢q and p > gq.
SUBCASE 1.1: p < g. Then ¢ > 1 and according to the definition of I,
(s+7)/(¢—1) <(s+1)/(¢—p)
Take « = ¢ — p and B = s + 2. Hence
(s+1)/(¢g—p) <fB/a and Bp—1)—alr—1)=I+p—1.
By Lemma 4.3, we infer that (p, ¢, r,s) is not a CSBQ.

SUBCASE 1.2: p = q. Then I' = (p — 1)(s + 1) and therefore p > 2.
Take « =1—qgand f =1—5s—7r. Hence « < 0, (g —1) > (s + ) and
B(p—1)—a(r—1) = —I"' + p — 1. Thus Lemma 4.3 implies that (p,q,r,s)
is not a CSBQ.

SUBCASE 1.3: p > q. We consider the subcases ¢ =1 and ¢ > 1.

SUBCASE 1.3.1: ¢ =1. Then I' = (p — 1)(s + r) > 0 and hence p > 2.
Take « = 1 —p and f§ = s. Then a < 0, B(p — 1) < —a(s + 1) and
Bp—1)—a(r—1)=I—(p—1). According to Lemma 4.3, (p, ¢, 7, s) is not
a CSBQ.

SUBCASE 1.3.2: ¢ > 1. Then by the definition of I" we have
(s+1)/(g=p) <(s+r)/(g—1).

Take & = g—p and = s+2. So f/a < (s+1)/(¢—p) and B(p—1)—a(r—1) =
I' + p — 1. Therefore again by Lemma 4.3 we deduce that (p, q,r,s) is not a
CSBQ.

CASkE 2: I' < —2. Then by the definition of I', p < ¢ and
(s+1)/(g—p) <(s+7)/(g—1).

Take a =g¢—pand f=s. S0 f/a < (s+1)/(¢—p) and B(p—1)—a(r—1) =
I' — (p —1). Thus Lemma 4.4 implies that (p,q,r,s) is not a CSBQ. =

PROPOSITION 4.6. If a quadruple (p,q,r, s) in N with discriminant ' # 0
1s a CSBQ, then I' divides r — 1.

Proof. Suppose that a quadruple in N has discriminant I" # 0 and I
does not divide r — 1. We will show that it is not a CSBQ. We consider two
cases: I' > 2 and I' < —2.

CASE 1: I' > 2. Then according to the definition of I,
(g—p)/(s+1) <(¢g—=1)/(s+7).

Take « = ¢ —p—1and 8 = s+ 1. Hence o/ < (¢ —p)/(s + 1) and
Bp—1)—a(r—1)=I+r—1. By Lemma 4.3, we infer that (p,q,r,s) is
not a CSBQ.
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CASE 2: I' < —2. Then again by the definition of I,

(g—=1)/(s+7)<(¢g—p)/(s+1).

Take « =q—p+1and 8 = s+ 1. It follows that (¢ —p)/(s+r) < a/f and
Bp—1)—a(r—1)=1I—(r—1). It suffices to apply Lemma 4.4 to conclude
that (p,q,,s) is not a CSBQ. =
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