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CANTOR�SCHROEDER�BERNSTEIN QUADRUPLESFOR BANACH SPACESBYELÓI MEDINA GALEGO (São Paulo)Abstra
t. Two Bana
h spa
es X and Y are symmetri
ally 
omplemented in ea
hother if there exists a supplement of Y in X whi
h is isomorphi
 to some supplement of
X in Y . In 1996, W. T. Gowers solved the S
hroeder�Bernstein (or Cantor�Bernstein)Problem for Bana
h spa
es by 
onstru
ting two non-isomorphi
 Bana
h spa
es whi
hare symmetri
ally 
omplemented in ea
h other. In this paper, we show how to modifysu
h a symmetry in order to ensure that X is isomorphi
 to Y . To do this, �rst weintrodu
e the notion of Cantor�S
hroeder�Bernstein Quadruples for Bana
h spa
es. Thenwe 
hara
terize them by using some Bana
h spa
es 
onstru
ted by W. T. Gowers andB. Maurey in 1997. This new insight into the geometry of Bana
h spa
es 
omplementedin ea
h other leads naturally to the Strong Square-hyperplane Problem whi
h is 
loselyrelated to the S
hroeder�Bernstein Problem.1. Introdu
tion. Let X and Y be Bana
h spa
es. We write Y

c
→֒ X if

Y is isomorphi
 to a 
omplemented subspa
e of X, that is, X ∼ Y ⊕ A forsome Bana
h spa
e A. In this 
ase, we say that A is a supplement of Y in
X and we also write Y

A
→֒ X. X ∼ Y means that X is isomorphi
 to Y and

X 6∼ Y means that X is not isomorphi
 to Y . If n ∈ N = {1, 2, . . . }, then
Xn indi
ates the �nite sum of n 
opies of X. It is useful to de�ne X0 = {0}.Suppose that X and Y are Bana
h spa
es 
omplemented in ea
h other,that is,(1.1) Y

c
→֒ X and X

c
→֒ Y.In 1996, W. T. Gowers [14℄ solved the so-
alled S
hroeder�Bernstein Problemfor Bana
h spa
es by showing that X is not ne
essarily isomorphi
 to Y . Thisanswer in the negative opens two dire
tions of resear
h. The �rst is to providenew negative solutions to this problem with some parti
ular properties (see[5℄�[9℄, [11℄ and [16℄). The se
ond is to ask what additional 
onditions on

X and Y satisfying (1.1) ensure that X is isomorphi
 to Y (see [10℄, [12℄and [13℄).2000 Mathemati
s Subje
t Classi�
ation: Primary 46B03, 46B20.Key words and phrases: Peª
zy«ski's de
omposition method, S
hroeder�Bernsteinproblem. [105℄ 
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Con
erning this last dire
tion, it is well known that Peª
zy«ski's de-
omposition method [3, p. 63℄, whi
h has played an important role in theisomorphi
 theory of 
lassi
al Bana
h spa
es, states that X ∼ Y if thesespa
es satisfy (1.1) and the following De
omposition S
heme:

{

X ∼ X2,

Y ∼ Y 2.The present work is a 
ontinuation of [10℄, [12℄ and [13℄ in the sense that wepresent some alternatives to Peª
zy«ski's de
omposition method in Bana
hspa
es. Our starting point is the fa
t that the �rst 
ondition of (1.1), Y c
→֒ X,means that there exists a Bana
h spa
e A su
h that Y

A
→֒ X. Therefore ane
essary 
ondition for (1.1) to yield X ∼ Y is that(1.2) Y

A
→֒ X and X

A
→֒ Y.So we de�neDefinition 1.1. Two Bana
h spa
es X and Y are symmetri
ally 
om-plemented in ea
h other if there exists a Bana
h spa
e A satisfying (1.2).Noti
e that if X and Y are Bana
h spa
es symmetri
ally 
omplementedin ea
h other then X2 ∼ Y 2. Indeed, let A be a Bana
h spa
e satisfying(1.2). Then(1.3) X ∼ Y ⊕ A ∼ X ⊕ A ⊕ A = X ⊕ A2.Adding X to both sides of (1.3) we dedu
e

X2 ∼ X2 ⊕ A2 ∼ Y 2.We do not know examples of Bana
h spa
es X and Y 
omplemented in ea
hother and satisfying X2 ∼ Y 2 whi
h are not symmetri
ally 
omplementedin ea
h other.Unfortunately, two Bana
h spa
es whi
h are symmetri
ally 
omplem-ented in ea
h other are not ne
essarily isomorphi
. Indeed, in [14℄ there was
onstru
ted a Bana
h spa
e Z isomorphi
 to Z3 but not to Z2. Thus
Z2 Z

→֒ Z and Z
Z
→֒ Z2 but Z 6∼ Z2.Moreover, even when the spa
e A from (1.2) is the 
omplex s
alars C it doesnot imply that X ∼ Y . Indeed, in [16, p. 559℄, W. T. Gowers and B. Maureyintrodu
ed a Bana
h spa
e W isomorphi
 to ea
h of its subspa
es of 
o-dimension 2, but not isomorphi
 to any of its hyperplanes. Therefore(1.4) W ⊕ C

C

→֒ W and W
C

→֒ W ⊕ C but W 6∼ W ⊕ C.However, Bana
h spa
es X and Y symmetri
ally 
omplemented in ea
h otherare isomorphi
 whenever there exists a spa
e A satisfying (1.2) and A ∼ A2m
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for some m ∈ N. Indeed, adding A2 to both sides of (1.3) we obtain
X ∼ X ⊕ A2 ∼ X ⊕ A2 ⊕ A2 = X ⊕ A4.So by indu
tion

X ∼ X ⊕ A2m ∼ X ⊕ A ∼ Y.Finally, inspired by the last remark, noti
e that we 
an strengthen (1.2) insu
h a way that the new 
onditions guarantee X ∼ Y . For example, X ∼ Ywhenever there exists a supplement A of Y in X satisfying
Y 2 A5

→֒ X and X2 A
→֒ Y.Indeed, in this 
ase(1.5) X ∼ (Y ⊕ A)2 ⊕ A3 ∼ X2 ⊕ A ⊕ A2 ∼ Y ⊕ A ⊕ A ∼ X ⊕ A.Now adding X ⊕ A to both sides of (1.5) we obtain

Y ∼ X2 ⊕ A ∼ X2 ⊕ A ⊕ A ∼ Y ⊕ A ∼ X.So the natural question whi
h originated the resear
h of this paper is whetherone 
an determine all quadruples (p, q, r, s) in N su
h that X ∼ Y wheneverthere exists a supplement A of Y in X satisfying
Y p Aq

→֒ X and Xr As

→֒ Y.To answer a�rmatively this question it is 
onvenient to introdu
eDefinition 1.2. A quadruple (p, q, r, s) in N is a Cantor�S
hroeder�Bernstein Quadruple for Bana
h spa
es (for short, CSBQ) if X ∼ Y when-ever there exists a supplement A of Y in X su
h that(1.6) Y p Aq

→֒ X and Xr As

→֒ Y.We also say that Γ = (q−1)(s+1)+(p− q)(s+r) is the Cantor�S
hroeder�Bernstein dis
riminant of the quadruple (p, q, r, s).The main aim of this paper is to present a 
hara
terization of the CSBQ'sin terms of their dis
riminants Γ (see Theorem 1.3). This result suggests anintriguing problem 
on
erning the geometry of the hyperplanes of Bana
hspa
es (see Problem 1.4).Theorem 1.3. A quadruple (p, q, r, s) in N with dis
riminant Γ is aCSBQ if and only if one of the following 
onditions holds :(a) Γ = 0, r = 1 and gcd(q − 1, s + 1) = 1;(b) Γ 6= 0 and Γ divides p − 1 and r − 1.The Bana
h spa
es 
onstru
ted by W. T. Gowers and B. Maurey in[16, p. 563℄ and the main result of [13℄ will be fundamental in the proof ofTheorem 1.3 (see Remarks 2.1 and 2.2 and also the proofs of Proposition 3.1and Lemma 4.1).
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Nevertheless, we have not been able to obtain a natural generalization ofTheorem 1.3, that is, one involving �nite sums of X, Xm, m ∈ N, m ≥ 2,instead of X in the �rst 
ondition of (1.6). In parti
ular, in the simplest
ase of m = 2, we do not know whether two Bana
h spa
es X and Y areisomorphi
 whenever there exists a supplement A of Y in X satisfying(1.7) Y 2 A

→֒ X2 and X
A
→֒ Y.On one hand, observe that (1.7) implies that X ∼ Y when A ∼ Xp ⊕Y q forsome p, q ∈ N ∪ {0} with p + q ≥ 1. Indeed, in this 
ase,

X ∼ Y ⊕ A ∼ Xp ⊕ Y q+1,and
Y 2 ∼ Y ⊕ A ⊕ X ∼ X2 ∼ Y 2 ⊕ A ∼ Y ⊕ Y ⊕ A ∼ Y ⊕ X.Thus, a

ording to Remark 2.2 below, X ∼ Y .On the other hand, we do not know how to solve the above problemeven when A is the smallest possible non-null spa
e, that is, the �eld of realor 
omplex s
alars. Noti
e that in this 
ase, indi
ating by K the �eld inquestion, we have

X2 ∼ Y 2 ⊕ K ∼ (X ⊕ K)2 ⊕ K ∼ X ⊕ X ⊕ K2 ⊕ K ∼ X2 ⊕ K.Thus (1.7) 
an be rewritten as follows:
X2 ∼ X2 ⊕ K and X ∼ X ⊕ K2.Hen
e our sear
h for alternatives to Peª
zy«ski's de
omposition method leadsnaturally to:Problem 1.4 (Strong Square-hyperplane Problem). Let X be a Bana
hwhose square spa
e is isomorphi
 to its hyperplanes. Suppose that X is iso-morphi
 to its subspa
es of 
odimension 2. Does it follow that X is isomor-phi
 to its hyperplanes?Observe that the Bana
h spa
e W mentioned in (1.4) is a 
andidatefor a negative solution to Problem 1.4. Moreover, evidently the answer toProblem 1.4 is a�rmative if the following problem has a positive solution.Problem 1.5 (Square-hyperplane Problem). Let X be a Bana
h spa
ewhose square is isomorphi
 to its hyperplanes. Is X itself isomorphi
 to itshyperplanes?Finally, we re
all that a Bana
h spa
e H is hereditarily inde
omposable(H.I.) if no 
losed subspa
e E of H 
ontains a pair of in�nite-dimensional
losed subspa
es M and N su
h that E = M ⊕N . In [15℄ W. T. Gowers andB. Maurey gave the �rst example of a H.I. spa
e. We refer to [2℄ for a detailedsurvey of results about H.I. spa
es. These spa
es have been used to providenegative answers to several questions in Bana
h spa
e theory (see for example
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[1℄, [7℄, [15℄�[17℄). These spa
es may be useful in solving Problems 1.4 and1.5; we only remark that no H.I. spa
e itself is a solution to Problem 1.4.Furthermore, they are not solutions to Problem 1.5 be
ause the square of aH.I. spa
e is not isomorphi
 to its hyperplanes [4, Corollary 5℄.2. Preliminaries. We start by re
alling some results on pairs of Bana
hspa
es whi
h are isomorphi
 to 
omplemented subspa
es of ea
h other.Remark 2.1. In [16, p. 563℄ there were 
onstru
ted Bana
h spa
es Xt,for every t ∈ N, t ≥ 2, having the following property: Xm
t ∼ Xn

t , with
m, n ∈ N, if and only if m is equal to n modulo t.Remark 2.2. In [13℄ a quintuple (p, q, r, s, t) in N ∪ {0} with p + q ≥ 2,
r + s + t ≥ 3, (r, s) 6= (0, 0) and t ≥ 1 was said to be a S
hroeder�Bernsteinquintuple (for short, SBq) if X ∼ Y whenever the Bana
h spa
es X and Ysatisfy (1.1) and the following De
omposition S
heme:

{

X ∼ Xp ⊕ Y q,

Y t ∼ Xr ⊕ Y s.The number ∇ = (p − 1)(s − t) − rq was 
alled the dis
riminant of thequintuple (p, q, r, s, t).We re
all the following 
hara
terization of the SBq's obtained in [13℄: Let
(p, q, r, s, t) be a quintuple in N with p + q ≥ 2, r + s + t ≥ 3, (r, s) 6= (0, 0)and t ≥ 1. Then (p, q, r, s, t) is a SBq if and only if ∇ 6= 0 and ∇ divides
p + q − 1 and r + s − t.3. Su�
ient 
onditions for a quadruple (p, q, r, s) in N to be aCSBQ. The main goal of this se
tion is to prove the su�
ien
y part ofTheorem 1.3, by proving Propositions 3.1 and 3.2 below.Proposition 3.1. Let (p, q, r, s) be a quadruple in N with dis
rimi-nant Γ . If Γ 6= 0 and Γ divides p − 1 and r − 1 then (p, q, r, s) is a CSBQ.Proof. Let X and Y be Bana
h spa
es satisfying (1.6) for some sup-plement A of Y in X and quadruple (p, q, r, s) in N su
h that Γ 6= 0 and
Γ divides p − 1 and r − 1. We will show that X ∼ Y . It is 
onvenient todistinguish two 
ases: p ≤ q and p > q.
Case 1: p ≤ q. There are two sub
ases: Γ > 0 and Γ < 0.
Subcase 1.1: Γ > 0. Let m, n ∈ N ∪ {0} be su
h that p − 1 = mΓ and

r − 1 = nΓ . We 
an 
he
k that(3.1) Γ = (s + 1)(p − 1) − (q − p)(r − 1).Thus(3.2) m(s + 1) = 1 + n(q − p).
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By the �rst 
ondition of (1.6), we have(3.3) X ∼ Y p ⊕ Ap ⊕ Aq−p ∼ Xp ⊕ Aq−p.Adding Xp−1 ⊕ Aq−p to both sides of (3.3) we 
on
lude that

X ∼ Xp ⊕ Aq−p ∼ Xp+(p−1) ⊕ A2(q−p) = X2(p−1)+1 ⊕ A2(q−p).Therefore by indu
tion we get(3.4) X ∼ Xn(p−1)+1 ⊕ An(q−p).Now a

ording to the se
ond 
ondition of (1.6),(3.5) Y ∼ Xr ⊕ As.Adding A to both sides of (3.5), we dedu
e that
X ∼ Y ⊕ A ∼ Xr ⊕ As+1.Thus pro
eeding as above, we see that(3.6) X ∼ Xm(r−1)+1 ⊕ Am(s+1).By the 
hoi
e of m and n, n(p− 1) = m(r− 1). Hen
e bearing (3.2) in mindand using (3.4) in (3.6) we �nd that(3.7) X ∼ X ⊕ A.Finally, adding Xr−1 ⊕ As to both sides of (3.7), we infer that

Y ∼ Xr ⊕ As ∼ X ⊕ Xr−1 ⊕ As ∼ X ⊕ Xr−1 ⊕ As ⊕ A

∼ Xr ⊕ As ⊕ A ∼ Y ⊕ A ∼ X.

Subcase 1.2: Γ < 0. Let m, n ∈ N be su
h that p − 1 = −mΓ and
r − 1 = −nΓ . Hen
e n(p− 1) = m(r − 1) and a

ording to (3.1), n(q − p) =
1 + m(s + 1). Thus analogously to Sub
ase 1.1, we use (3.6) in (3.4) to get
X ∼ Y .
Case 2: p > q. Sin
e X ∼ Y ⊕A, by the �rst 
ondition of (1.6) we have(3.8) X ∼ Y p−q ⊕ Y q ⊕ Aq ∼ Xq ⊕ Y p−q.Moreover, by the se
ond 
ondition of (1.6) we know that(3.9) Y ∼ Xr ⊕ As.Adding Y s to both sides of (3.9), we dedu
e that

Y s+1 ∼ Xr ⊕ As ⊕ Y s ∼ Xr ⊕ Xs = Xr+s.Thus by (3.8) we 
on
lude that
{

X ∼ Xq ⊕ Y p−q,

Y s+1 ∼ Xr+s.Sin
e the dis
riminant ∇ of the quintuple (q, p− q, r + s, 0, s + 1) is equal to
−(q − 1)(s + 1) − (p − q)(r + s) = −Γ , by hypothesis we have ∇ 6= 0, and



CANTOR�SCHROEDER�BERNSTEIN QUADRUPLES 111

∇ divides q +(p− q)− 1 = p and r + s− (s+1) = r− 1. Furthermore p ≥ 2,so by Remark 2.2 we 
on
lude that X ∼ Y .Proposition 3.2. Let (p, q, r, s) be a quadruple in N with dis
riminant
Γ = 0, r = 1 and g
d(q − 1, s + 1) = 1. Then (p, q, r, s) is a CSBQ.Proof. By Bézout's theorem there exist m, n ∈ N ∪ {0} su
h that

m(q − 1) = n(s + 1) + 1 or n(s + 1) = m(q − 1) + 1.Sin
e r = 1, it follows that Γ = (p− 1)(s+1) = 0 and therefore p = 1. Now,as in the proof of (3.4) and (3.5), we obtain
X ∼ X ⊕ An(q−1) and X ∼ X ⊕ Am(s+1).So it su�
es to pro
eed as in the proof of Proposition 3.1 to dedu
e that

X ∼ Y .4. Ne
essary 
onditions for a quadruple (p, q, r, s) in N to be aCSBQ. The main purpose of this se
tion is to 
omplete the proof of Theo-rem 1.3. This theorem is an immediate 
onsequen
e of Propositions 4.2, 4.5and 4.6 below. In order to prove Proposition 4.2 we need to state an auxiliaryresult. It is related to the Bana
h spa
es Xt mentioned in Remark 2.1.Lemma 4.1. Let p, q, r, s ∈ N and suppose that there exist i, j, t ∈ N with
t ≥ 2 satisfying(a) t divides i(q − 1) + j(p − q);(b) t divides i(s + r) − j(s + 1);(
) t does not divide j − i.Then (p, q, r, s) is not a CSBQ.Proof. Let n ∈ N be su
h that nt−j+i > 0. Sin
e j+(nt−j+i)−i = nt,by the property of Xt mentioned in Remark 2.1 we have

Xj
t

A
→֒ X i

t , where A = Xnt−j+i
t .Next noti
e that from (a) and (b) we dedu
e that

Xjp
t

Aq

→֒ X i
t and X ir

t

As

→֒ Xj
t .Furthermore, (
) implies that X i

t is not isomorphi
 to Xj
t . Consequently,

(p, q, r, s) is not a CSBQ.Proposition 4.2. If a quadruple (p, q, r, s) in N is a CSBQ with dis-
riminant Γ = 0, then r = 1 and g
d(q − 1, s + 1) = 1.Proof. Suppose that the dis
riminant Γ of a quadruple (p, q, r, s) in Nis equal to zero. We will show that (p, q, r, s) is not a CSBQ when r ≥ 2 or
r = 1 and g
d(q − 1, s + 1) ≥ 2.
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Case 1: r ≥ 2. Take i = s+1 and j = s+r. Thus i(s+r)− j(s+1) = 0and sin
e Γ = 0, it follows that i(q − 1) + j(p − q) = 0. Moreover, j − i =

r − 1 6= 0. Hen
e it is enough to take t ∈ N, t ≥ 2, not dividing r − 1 andapply Lemma 4.1 to see that (p, q, r, s) is not a CSBQ.
Case 2: r = 1 and g
d(q − 1, s + 1) ≥ 2. Sin
e Γ = 0, we dedu
e that

p = 1. Take i = 1, j = 2 and t = g
d(q − 1, s + 1). Hen
e the 
onditions(a)�(
) of Lemma 4.1 are satis�ed. Consequently, (p, q, r, s) is not a CSBQ.We need two lemmas.Lemma 4.3. Let (p, q, r, s) be a quadruple in N with dis
riminant Γ ≥ 2.Suppose that there exist integers α and β satisfying(a) −α(s + 1) > β(p − q);(b) β(q − 1) > α(s + r);(
) Γ does not divide β(p − 1) + α(r − 1).Then (p, q, r, s) is not a CSBQ.Proof. Let t = Γ and 
onsider the linear system(4.1) {

i(q − 1) + j(p − q) = αt,

i(s + r) − j(s + 1) = βt.The only solution of (4.1) is i = −α(s+1)−β(p−q) and j = β(q−1)−α(s+r).It follows from (a)�(
) that i > 0, j > 0 and t does not divide j − i =
β(p − 1) − α(r − 1). Moreover, 
learly t divides i(q − 1) + j(p − q) and
i(s + r) − j(s + 1). Therefore Lemma 4.1 implies that (p, q, r, s) is not aCSBQ.Taking t = −Γ and pro
eeding as in the proof of Lemma 4.3 we obtain:Lemma 4.4. Let (p, q, r, s) be a quadruple in N with dis
riminant Γ ≤−2.Suppose that there exist integers α and β satisfying(a) −α(s + 1) < β(p − q);(b) β(q − 1) < α(s + r);(
) Γ does not divide β(p − 1) − α(r − 1).Then (p, q, r, s) is not a CSBQ.Now we are ready to 
omplete the proof of the ne
essity part of Theo-rem 1.3, by proving Propositions 4.5 and 4.6 below.Proposition 4.5. If a quadruple (p, q, r, s) in N with dis
riminant Γ 6= 0is a CSBQ , then Γ divides p − 1.Proof. Assume that a quadruple in N has dis
riminant Γ 6= 0 and Γ doesnot divide p−1. We will show that it is not a CSBQ. We 
onsider two 
ases:
Γ ≥ 2 and Γ ≤ −2.
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Case 1: Γ ≥ 2. We distinguish three sub
ases: p < q, p = q and p > q.
Subcase 1.1: p < q. Then q > 1 and a

ording to the de�nition of Γ ,

(s + r)/(q − 1) < (s + 1)/(q − p).Take α = q − p and β = s + 2. Hen
e
(s + 1)/(q − p) < β/α and β(p − 1) − α(r − 1) = Γ + p − 1.By Lemma 4.3, we infer that (p, q, r, s) is not a CSBQ.

Subcase 1.2: p = q. Then Γ = (p − 1)(s + 1) and therefore p ≥ 2.Take α = 1 − q and β = 1 − s − r. Hen
e α < 0, β(q − 1) > α(s + r) and
β(p − 1) − α(r − 1) = −Γ + p − 1. Thus Lemma 4.3 implies that (p, q, r, s)is not a CSBQ.
Subcase 1.3: p > q. We 
onsider the sub
ases q = 1 and q > 1.
Subcase 1.3.1: q = 1. Then Γ = (p − 1)(s + r) > 0 and hen
e p ≥ 2.Take α = 1 − p and β = s. Then α < 0, β(p − 1) < −α(s + 1) and

β(p− 1)−α(r− 1) = Γ − (p− 1). A

ording to Lemma 4.3, (p, q, r, s) is nota CSBQ.
Subcase 1.3.2: q > 1. Then by the de�nition of Γ we have

(s + 1)/(q − p) < (s + r)/(q − 1).Take α = q−p and β = s+2. So β/α < (s+1)/(q−p) and β(p−1)−α(r−1) =
Γ + p− 1. Therefore again by Lemma 4.3 we dedu
e that (p, q, r, s) is not aCSBQ.
Case 2: Γ ≤ −2. Then by the de�nition of Γ , p < q and

(s + 1)/(q − p) < (s + r)/(q − 1).Take α = q−p and β = s. So β/α < (s+1)/(q−p) and β(p−1)−α(r−1) =
Γ − (p − 1). Thus Lemma 4.4 implies that (p, q, r, s) is not a CSBQ.Proposition 4.6. If a quadruple (p, q, r, s) in N with dis
riminant Γ 6= 0is a CSBQ , then Γ divides r − 1.Proof. Suppose that a quadruple in N has dis
riminant Γ 6= 0 and Γdoes not divide r − 1. We will show that it is not a CSBQ. We 
onsider two
ases: Γ ≥ 2 and Γ ≤ −2.
Case 1: Γ ≥ 2. Then a

ording to the de�nition of Γ ,

(q − p)/(s + 1) < (q − 1)/(s + r).Take α = q − p − 1 and β = s + 1. Hen
e α/β < (q − p)/(s + 1) and
β(p − 1) − α(r − 1) = Γ + r − 1. By Lemma 4.3, we infer that (p, q, r, s) isnot a CSBQ.
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Case 2: Γ ≤ −2. Then again by the de�nition of Γ ,

(q − 1)/(s + r) < (q − p)/(s + 1).Take α = q − p + 1 and β = s + 1. It follows that (q − p)/(s + r) < α/β and
β(p−1)−α(r−1) = Γ − (r−1). It su�
es to apply Lemma 4.4 to 
on
ludethat (p, q, r, s) is not a CSBQ.A
knowledgements. The author would like to thank the referee for his
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