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A GENERIC THEOREM IN CARDINAL FUNCTION INEQUALITIES

BY

ALEJANDRO RAMIREZ-PARAMO (Puebla)

Abstract. We establish a general technical result, which provides an algorithm to
prove cardinal inequalities and relative versions of cardinal inequalities.

1. Introduction. Among the best known theorems on cardinal func-
tions are those which give an upper bound on the cardinality of a space in
terms of other cardinal invariants. In [7] Hodel classified the bounds on | X|
in two categories: easy and difficult to prove. The proofs of several inequal-
ities in the difficult category have a common construction that is inspired
by Arkhangel’skii’s original proof of the inequality |X| < 2-COX(X) for ev-
ery Hausdorff space X (for a detailed discussion on this topic, the reader is
referred to [5]). This suggests the general problem of finding a result which
captures this common core. In [1], Arkhangel’skii established a general result
which yields an algorithm for proving relative versions of cardinal inequal-
ities and also captures the common construction of several inequalities in
the difficult category. However (as Arkhangel’skii commented in [1]), it is
not true that all important cardinal inequalities can be proved just following
his algorithm. Arkhangel’skii also says he does not know such a proof for
Gryzlov’s theorem [4]. Other results of this kind are also obtained in [5, Ths.
3.1 and 3.3], [11] and [9].

In this paper, following the ideas of Arkhangel’skii [1] and Hodel [5],
we formulate a general technical result (Theorem 3.1), closely related to
Theorem 1 in [1], which provides an algorithm for proving a wide range of
cardinal inequalities and relative versions of cardinal inequalities. Later we
will use Theorem 3.1 to prove three cardinal inequalities, in particular we
will prove Gryzlov’s inequality: | X| < 2¥(X) for every compact Ty-space X,
and a relative version of Sun’s inequality: | X| < 24L(X)e(XIUX) for every
Ts-space X.

2. Notation and terminology. We refer the reader to [7] and [8] for
definitions and terminology on cardinal functions not explicitly given. Let
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L, wL, x, ¥ and 1. denote the following standard cardinal functions: Lin-
delof degree, weak Lindel6f number, character, pseudocharacter and closed
pseudocharacter, respectively.

For any topological space X and any subset A of X, clx(A) is the closure
of A in X. For any set X and cardinal «, [X]=" denotes the collection of all
subsets of X with cardinality < x; [X]<" and [X]* are defined analogously.

DEFINITION 2.1 ([9]). Let X be a nonempty set and let 7, x be infinite
cardinals. An operator ¢ : P(X) — P(X) will be called a (7, k)-closure
operator if:

(1) ACc(A) for every A € P(X),
(2) if AC B, then ¢(A) C ¢(B) for every A, B € P(X),
(3) if |A| < 7%, then |c(A)| < 7.

If the operator ¢ : P(X) — P(X) satisfies (1) and (3) only, we say that it
is a quasi-(7, k)-closure operator.

REMARK 2.2. It is clear that if k™ = 7, then 7% = 2*; hence in this case,
condition (3) in the previous definition states: if |A| < 2%, then |c(A)| < 2".

Clearly every (7, k)-closure operator is a quasi-(7, k)-closure operator;
the following examples show that the converse need not be true.

ExaMPLE 2.3. Let X be a compact Tj-space and let x be an infinite
cardinal. Define ¢ : P(X) — P(X) by ¢(4) = AU A’ where A’ is obtained
as follows: For every infinite subset B of A with |B| < k choose a complete
accumulation point of B, and let A’ be the set of points chosen in this way
(this operator was defined by Stephenson [13]). Then c is a quasi-(k™, k)-
closure operator.

EXAMPLE 2.4. Let X be an X;-compact space. Define ¢ : P(X) — P(X)
by ¢(A) = AU A’ where A’ is obtained as follows: For each infinite subset
B of A with |B| = Ry choose a limit point of B, and let A’ be the set of
points chosen in this way (this operator was defined by Hodel [5]). It is not
difficult to prove that c is a quasi-(x™, k)-closure operator.

We shall use the notation and terminology employed in [1]. For the
reader’s convenience, we repeat some of the relevant definitions.

Let X be a set and Y be a nonempty subset of X. Here and in what
follows, let 7, x be infinite cardinals such that x < cf(7) and let p = 7.

Let £ be the family of subsets of Y of cardinality not greater than u,
that is, £ = [Y]H.

A 7-long increasing sequence in L is a transfinite sequence {F, : a < 7}
of elements of £ such that F,, C Fgif a < 3 < 7.

A sensor is a pair (A, F), where A is a family of subsets of Y and F is
a collection of families of subsets of X.
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We assume that with each sensor s = (A, F) a subset O(s) of X is
associated, called the ©-closure of s.

DEFINITION 2.5. A sensor s = (A, F) will be called small if:

(1) |A] < k and |A| < & for every A € A,

(2) |F| < kand |C| < k for every C € F,

(3) Y\ O(s) £ 0.

Let H be a subset of Y and G a family of subsets of X. A sensor (A, F)
is said to be generated by the pair (H,G) if A C H for each A € A, and
CCGforeachC e F.

Let Q be the set of all families G of subsets of X such that |G| < p. If g
is a mapping of £ into Q and £ C L, then Uy(E) = (H{g(F) : F € E}.

Let g be a mapping of £ into @, and let £ be a subfamily of £. A sensor
s will be called good for £ if it is generated by the pair (|J&,Uy(E)) and
UE CO(s).

A propeller (with respect to (g,©0)) in L is a 7-long increasing sequence
€ in L such that no small sensor s is good for £.

DEFINITION 2.6. A quasi-propeller (with respect to (g,0)) in L is a
7-long sequence £ in £ such that no small sensor s is good for £.

Clearly every propeller is a quasi-propeller.

3. The main theorem and some consequences. Now we are ready
to state and prove our main result which is a slight generalization of the
main result in [9] (see Corollary 3.2 below). The proof of Theorem 3.1 below
follows the same pattern as the proof of Theorem 1 in [1], therefore some of
the details are omitted.

THEOREM 3.1. Let X be a set, Y a nonempty subset of X, and 7 and
K infinite cardinals such that k < cf(7). Set p=7". If c: P(X) — P(X) is
a quasi-(7, k)-closure operator, then for every function g : L = [Y]~F — Q,
there exists a family {E, : a € T} C L such that:

(1) for each 0 < a <7, | J{c(Eg)NY : f < a} C E,,
(2) E={c(Ey)NY €T} is a quasi-propeller in L.

Proof. Let g: £L— Q be a function. We construct a sequence {E,:a<T}
of subsets of Y and a collection {U, : 0 < a < 7} of families of subsets of
X such that:

(a) |Bol <p, 0<a<T,

(b) Us = UHy(c(EsgNY)):B<a},0<a<T,

(c) if s is a small sensor generated by (|{c(E3)NY : B < a},U,), then
E,N (Y \O(s)) #0.
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Fix 0 < o < 7 and assume that Eg and Ug are already defined such that
(a)—(c) hold for each 3 € a. Note that U, has been defined by (2). Put
Hy, = U{c(Eg)NY : B <a}. Clearly |Hy| < pand |[Us| < p. For each
small sensor s generated by (H,,U,), choose a point m(s) € Y \ ©(s) and
let A, be the set of points chosen in this way. Let E, = H, U A,. Clearly
E, € L, |E,| < p and E,, satisfies (c). This completes the construction.

Clearly the collection {E, : o < 7} C L satisfies (1). Now, it is sufficient
to prove that &€ = {¢(Ey) NY : a < 7} is a quasi-propeller in L. To see
this, let P = |J & and suppose there is a small sensor sg = (A, F) generated
by the pair (P,Uy(E)) such that P C O(sg). Since k£ < cf(7), there exists
ap < 7 such that A C H,, for each A € A, and B C U,, for each B € F.
Hence the sensor s is generated by the pair (Hy,, Uy, ). Hence by (c), there
exists mg, € Eo, N (Y \ O(s0)); but then my, € ¢(Ea,) NY C P C O(sp),
which is a contradiction. m

COROLLARY 3.2 ([9]). Ifc: P(X) — P(X) is a (1, k)-closure operator,
then for every function g : L — Q, there exists a family {Ey : a« € T} C L
such that:

(1) for each 0 < a <7, | J{c(Eg)NY : f < a} C E,,
(2) E={c(Esa)NY €T} is a propeller in L.

Now we will use Theorem 3.1 to prove four cardinal inequalities and one
relative version. The first one is the following well-known inequality due to
Bell, Ginsburg and Woods [2]:

COROLLARY 3.3. Let X be a Ty-space. Then | X| < 2WwLX)X(X),

Proof. Let k = wL(X)x(X), 7 = k7 and p = 2F. For every z € X,
let B, be a local base of z in X with |B,| < k. For each F € £ = [X]SH,
set g(F) = U{By : = € clx(F)}, and for every sensor s = (0,{F}), put
O(s) = clx(UF). Define ¢ : P(X) — P(X) by c(A) = clx(A). Notice that
cis a (kT, k)-closure operator. Thus by Theorem 3.1 there exists a family
{Eq : a € k™} C L such that [ J{c(Es) : 8 < a} C E, forevery 0 < a < kT,
and £ = {¢(E,) : « € kT} is a quasi-propeller in £. Let H = |J& and note
that |[H| < 2% and ¢(H) = H.

The proof will be complete if we prove that X C H. Suppose not and
let p € X \ H. Since X is T}, there is an open subset U of X such that
HCUandp¢clx(U).Let F={V:V e€By,z € Hand V C U} and
note that G = (JF. Clearly H C G C U and p ¢ clx(G). Since X is T},
there exists an open subset W of X such that H C W C clx(W) C G. It
is not difficult to prove that the collection F U {X \ clx (W)} is an open
cover of X; hence since wL(X) < k, there exists F' € [F|=F such that

X = Clx(U f’) U Clx(X \ Clx(W))
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Let s = (0, {F'}). Tt is clear that p ¢ O(s) while H C O(s). We see that
s is a small sensor good for £, which is a contradiction. m

We now give a proof of Gryzlov’s theorem using Theorem 3.1. First, we
need a lemma due to Gryzlov.

LeMMA 3.4 ([4]). Let X be a compact Ti-space with ¥(X) < k and let
H be a subset of X such that every infinite subset of H of cardinality < k
has a complete accumulation point in H. Then H is compact.

Now we are ready to prove Gryzlov’s inequality.
COROLLARY 3.5 ([4]). Let X be a compact Ty-space. Then |X| < 2¥(X),

Proof. Let k = ¢¥(X), 7 = kT and p = 2. For every x € X, let B,
be a local pseudobase of x in X with |B;| < k. For each F' € £ = [X]|<H,
set g(F) = U{B: : € clx(F)}, and for every sensor s = (0, {F}), put
O(s) = JF. Let ¢ : P(X) — P(X) be defined as in Example 2.3 (i.e.,
c(A) = AU A’). Since c is a quasi-(k T, k)-closure operator, by Theorem 3.1
there exists a family {F, : « € KT} C £ such that J{c(E3) : 8 < a} C E,
for every 0 < a < kT, and € = {c¢(F,) : @ € kT} is a quasi-propeller in L.
Let H = |J& and note that |H| < 2" and H = ¢(H ), hence by Lemma 3.4,
H is compact.

Now, it is enough to prove that X C H. Suppose not and let p € X \ H.
For each © € H, let V, € B, be such that p ¢ V,. It is clear that the
collection {V,, : * € H} covers H, hence there exist x1,...,z, € H such
that H C J{V4, : i € {1,...,n}}. Let F = {V,, : i € {1,...,n}} and
s = (0,{F}). It is clear that p ¢ O(s) while H C O(s). We see that s is a
small sensor good for &£, which is a contradiction. m

The following result was proved in [5]. We will use Theorem 3.1 to
prove it.

COROLLARY 3.6 ([5]). Let X be an Xj-compact space, and assume that

(1) ¥(X) < 2%,
(2) if Y C X and |Y]| < 2%, then Y is meta-Lindeldf.

Then | X| < 2N,

Proof. Let 7 = N9 and let u = Ngl = 2™ For every = € X, let B, be
a local pseudobase of z in X with |B,| < 2M. For each F € £ = [X]|=H,
set g(F) = U{B: : = € clx(F)}, and for every sensor s = (0, {F}), put
O(s) = UF. Let ¢ : P(X) — P(X) be defined as in Example 2.4. Since
¢ is a quasi-(XNg, X;)-closure operator, by Theorem 3.1 there exists a family
{Ey : a € kT} C L such that [ J{c(Ep) : B < a} C E, for every 0 < a < Ny,
and £ = {c(E,) : a € Ny} is a quasi-propeller in £. Let H = (J€ and
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note that |[H| < 28t and H = c¢(H); hence H is Nj-compact and, by (2),
meta-Lindel6f; therefore H is Lindelof.

The proof will be complete if we prove that X C H. Suppose not and
let pe X \ H. For each x € H, let V, € B, be such that p ¢ V. It is clear
that the collection {V,, : x € H} covers H, hence there exist z1,...,x, € H
such that H C | J{V,, : i € {1,...,n}}. Let F ={V,, :i € {1,...,n}} and
let s = (0, {F}). It is clear that p ¢ O(s) while H C O(s). We see that s is
a small sensor good for &£, which is a contradiction. =

Before presenting our next result (Corollary 3.9), we need some notations
and results.

DEFINITION 3.7 ([10]). The Urysohn pseudocharacter of X, denoted by
U (X), is the smallest infinite cardinal s such that for each z € X, there
is a collection B, of open neighborhoods of X such that:

(1) |Be| < &,
(2) if  # y, then there exist V, € B, and V}, € B, such that clx(V;) N
Clx(Vy) = @

We have the inequalities ¢.(X) < Uy(X) < x(X) for every Urysohn
space X.

Let x be an infinite cardinal, and let X be a set. Suppose that for each
x € X, V; is a family of subsets of X which contains x. For every L C X,
let L* ={zx € X :VNL#(forall Ve V,}. This operator was defined by
Hodel in [6].

We shall use the following result proved in [6].

THEOREM 3.8. Let k be an infinite cardinal and X a set. For eachx € X,
let Vo = {Vy(x) : v < k} be a family of subsets of X which contains x such
that if x # y, then there exists v € k with Vy(z) NV, (y) = 0. Then

(1) [L*] < |LJ~.
(2) If L =yept ELy where {Eq : 0 < o < KT} is a sequence of subsets
of X with Ugo, Ejy € Eq for all o < &7, then L* = L.

Finally, we recall that a subset Y of a space X is called an H-set in X
if for every open family U/ in X such that Y C |JU there exists V € [U]<¥
satisfying Y C clx (U V).

The next result is another consequence of Theorem 3.1.

COROLLARY 3.9. If Y is an H-set in the Urysohn space X, then |Y| <
UB(X)

Proof. Let k = Uy(X), 7= rt and u = 2%. For every x € X, let B, be
a collection of open neighborhoods of z in X with |B;| < &, closed under
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finite intersections, and satisfying (2) of Definition 3.7. For each F € L =
[Y]=H, set g(F) = U{B: : © € F}, and for every sensor s = (), {F}) put
O(s) = clx(UF). Define ¢ : P(X) — P(X) by ¢(L) = L* = {x € X :
cx(V)NL # § for all V € B,}. By Theorem 3.8, ¢ is a (kT k)-closure
operator, hence by Theorem 3.1 there exists a family {F, : a« € k7} C L
such that (J{c(Eg) NY : B < a} C E, for every 0 < a < 7, and £ =
{c(Es)NY :a € KT} is a quasi-propeller in £. Let H = |J £ and note that
|H| < 2%, hence |c¢(H)| < 2%. Moreover, it is not difficult to prove that if
x € ¢(H), then there exists a < kT such that z € ¢(E,).

To finish the proof let us show that Y C ¢(H). Suppose not and let
p €Y \c(H). For each y € Y Ne(H), fix V,, € By and let V(y,p) € B, be
such that clx (V) Neclx (V(y,p)) = 0, and for every y € Y \ c(H), let V,, € B,
be such that clx (V) N H = (. It is clear that the collection {V, : z € Y}
covers Y, hence since Y is an H-set in X, there exist x1,...,z, € Y such
that Y Cclx(U{Vy, i € {1,...,n}}). Let C ={z1,...,xn} Nec(H), F =
{Vy sz € C}and s = (0,{F}). It is clear that p ¢ O(s) while H C O(s).
We see that s is a small sensor good for &£, which is a contradiction. =

As a consequence of Corollary 3.9, we have:

COROLLARY 3.10 ([3]). If Y is an H-set in the Urysohn space X, then
V| < 2x(X),

At the moment the author does not know the answer to the following
question:

QUESTION 3.11. Let Y be an H-set in the Hausdorff space X. Is it true
that Y| < 2H¥(X)? (The definition of Ht)(X) can be found in [6].)

Now we turn to the final result of this paper. The following inequality was
proved in [12]: | X| < 20LX)e(XUX) for every Hausdorff space X. We will
prove a relative version of this result. To formulate it, we have to introduce
a relative version of ¢L.

DEFINITION 3.12. Let X be a topological space, Y C X, and x an infinite
cardinal.

(1) We say that A € [Y]=%" is k-quasi-dense in Y with respect to X if
for every open cover U of X, there exist B € [A]=" and V € [U]*
such that Y C clx(B)U V.

(2) We define ¢L(Y, X) as the smallest infinite cardinal x such that there
is a subset k-quasi-dense in Y with respect to X.

It follows from Definition 3.12 that if Y = X, then ¢L(Y, X) = ¢L(X).

COROLLARY 3.13. Let X be a Ti-space and let Y be a subspace of X.
Suppose that:
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< 2% for every B € [X]5%",

If qL(Y, X) < K, then |Y| < 2.

Proof. Let 7 = k™, p = 2% and for each z € X let B, be a local
pseudobase of z in X with |B;| < k. Since ¢L(Y,X) < k, there exists
A € [Y]=H which is k-quasi-dense in Y with respect to X. For every F €
L = [Y]=# we put g(F) = |J{B. : z € clx(F)}. For every sensor s = (A, F)
we put O(s) = clx(JA) UU{UC : C € F}. Since ¢(D) = clx(D) is a
(7, k)-closure operator, by Theorem 3.1 there is {E, : « < 7} C L such that
U{c(ER)NY : B < a} C E, forevery a < k and € = {c(Eq)NY ta < 7} is
a quasi-propeller in £. We suppose, without loss of generality, that Ey = A.
Let P =|J& and note that |P| < u; hence |clx(P)| < u.

Now, let us show that Y C clx(P). Suppose not and fix p € Y\ clx(P).
For every x € clx(P), let V,, € B, be such that p ¢ V,. It is clear that the
collection {V, : = € clx(P)} U {X\ clx(P)} covers X. Since qL(Y, X) < &,
there exist D € [A]<" and B € [clx(P)]=" such that Y C clx(D)UU{Vs :
z € B} UX\clx(P). Let A ={D}, F ={V,:2 € B} and s = (A, F).
Clearly p ¢ O(s) and P C O(s). Thus s is a small sensor good for &,
a contradiction. m

COROLLARY 3.14. If X is a Ty-space, then |Y| < 2¢E(:X)¢e(X)UX),
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