VOL. 111

2008

NO. 1

AUTOMORPHISMS OF COMPLETELY PRIMARY FINITE RINGS OF CHARACTERISTIC p

ΒY

CHITENG'A JOHN CHIKUNJI (Gaborone)

Abstract. A completely primary ring is a ring R with identity $1 \neq 0$ whose subset of zero-divisors forms the unique maximal ideal \mathcal{J} . We determine the structure of the group of automorphisms $\operatorname{Aut}(R)$ of a completely primary finite ring R of characteristic p, such that if \mathcal{J} is the Jacobson radical of R, then $\mathcal{J}^3 = (0), \ \mathcal{J}^2 \neq (0)$, the annihilator of \mathcal{J} coincides with \mathcal{J}^2 and $R/\mathcal{J} \cong \operatorname{GF}(p^r)$, the finite field of p^r elements, for any prime p and any positive integer r.

1. Introduction. A ring R is completely primary if the subset \mathcal{J} of all its zero-divisors forms an ideal. These rings have been studied extensively by, among others, Raghavendran [5]. It has long been recognized that the group of automorphisms of a ring provides valuable information about the structure of the ring. For instance, Évariste Galois initiated the study of the group of automorphisms of a field, which was later applied by N. H. Abel to prove the celebrated theorem on the insolvability of the general quintic polynomial by radicals. It is known (see, e.g., [5]) that the group of automorphisms of the Galois ring $R_0 = \operatorname{GR}(p^{nr}, p^n)$ is isomorphic to the group of automorphisms of its residue field R_0/pR_0 , and is thus a cyclic group of order r. In [1], Alkhamees determined the group of automorphisms of a completely primary finite ring R in which the product of any two zero divisors is zero. This was done for both characteristics of the ring R (i.e. char R = pand p^2), and for both commutative and non-commutative cases.

In this paper, we seek an explicit description of the group of automorphisms of a completely primary finite ring R of characteristic p, with Jacobson radical \mathcal{J} such that $\mathcal{J}^3 = (0), \mathcal{J}^2 \neq (0)$, the annihilator of \mathcal{J} coincides with \mathcal{J}^2 and $R/\mathcal{J} \cong \operatorname{GF}(p^r)$, the finite field of p^r elements, for any prime p and any positive integer r. We leave the consideration of the cases when the characteristic of R is p^2 and p^3 for future work. These rings were studied by the author who gave their constructions for all characteristics; for details of

[91]

²⁰⁰⁰ Mathematics Subject Classification: Primary 16P10, 20B25; Secondary 16L99, 12E20.

 $Key\ words\ and\ phrases:$ completely primary finite rings, automorphism group, finite field.

the general background, the reader is referred to [2] and [3]. In this paper, these rings are given in terms of the basis of their additive groups and the multiplication tables of basis elements. We use standard notation and terminology; $\operatorname{ann}(\mathcal{J})$ denotes the two-sided annihilator of \mathcal{J} , and for any two groups G and H, $G \times_{\theta} H$ denotes the semidirect product of G by H, where $\theta: H \to \operatorname{Aut}(G)$ is a group homomorphism.

Throughout, we will assume that all rings are finite, associative (but generally not commutative) with identities, denoted by 1, that ring homomorphisms preserve 1, a ring and its subrings have the same 1 and that modules are unital. We freely use the definitions and notations introduced in [2], [3] and [5].

Let R be a completely primary finite ring. The following results will be assumed (see [5]): $|R| = p^{nr}$, \mathcal{J} is the Jacobson radical of R, $\mathcal{J}^n = (0)$, $|\mathcal{J}| = p^{(n-1)r}$, $R/\mathcal{J} \cong \operatorname{GF}(p^r)$, and char $R = p^k$, where $1 \leq k \leq n$, for some prime p and positive integers n, k, r; the group of units G_R is a semidirect product $G_R = (1 + \mathcal{J}) \times_{\theta} \langle b \rangle$ of its normal subgroup $1 + \mathcal{J}$ of order $p^{(n-1)r}$ by a cyclic subgroup $\langle b \rangle$ of order $p^r - 1$. If n = k, it is known that, up to isomorphism, there is precisely one completely primary ring of order p^{rk} having characteristic p^k and residue field $\operatorname{GF}(p^r)$. It is called the *Galois ring* $\operatorname{GR}(p^{rk}, p^k)$ and a concrete model is the quotient $\mathbb{Z}_{p^k}[X]/(f)$, where f is a monic polynomial of degree r, irreducible modulo p. Any such polynomial will do: the rings are all isomorphic. Trivial cases are $\operatorname{GR}(p^n, p^n) = \mathbb{Z}_{p^n}$ and $\operatorname{GR}(p^n, p) = \mathbb{F}_{p^n}$. In fact, $R = \mathbb{Z}_{p^n}[b]$, where b is an element of R of multiplicative order $p^r - 1$; furthermore, $\mathcal{J} = pR$ and $\operatorname{Aut}(R) \cong \operatorname{Aut}(R/pR)$ (see Proposition 2 in [5]).

Let R be a completely primary ring, $|R/\mathcal{J}| = p^r$ and char $R = p^k$. Then it can be deduced from [4] that R has a coefficient subring R_0 of the form $GR(p^{kr}, p^k)$, which is clearly a maximal Galois subring of R. Moreover, if R'_0 is another coefficient subring of R then there exists an invertible element xin R such that $R'_0 = xR_0x^{-1}$ (see Theorem 8 in [5]). Furthermore, there exist $m_1, \ldots, m_h \in \mathcal{J}$ and $\sigma_1, \ldots, \sigma_h \in Aut(R_0)$ such that $R = R_0 \oplus \sum_{i=1}^h R_0 m_i$ (as R_0 -modules), and $m_i r_0 = r_0^{\sigma_i} m_i$ for all $r_0 \in R_0$ and any $i = 1, \ldots, h$ (use the decomposition of $R_0 \otimes_{\mathbb{Z}} R_0$ in terms of $Aut(R_0)$ and apply the fact that R is a module over $R_0 \otimes_{\mathbb{Z}} R_0$). Moreover, $\sigma_1, \ldots, \sigma_h$ are uniquely determined by R and R_0 . We call σ_i the automorphism associated with m_i and $\sigma_1, \ldots, \sigma_h$ the associated automorphisms of R with respect to R_0 .

2. Cube radical zero completely primary finite rings. We now assume that R is a completely primary finite ring with Jacobson radical \mathcal{J} such that $\mathcal{J}^3 = (0)$ and $\mathcal{J}^2 \neq (0)$. These rings were studied by the author in [2] and [3]. Since R is such that $\mathcal{J}^3 = (0)$, by one of the above results char R is either p, p^2 or p^3 . The ring R contains a coefficient subring R_0 with char $R_0 = \operatorname{char} R$, and with R_0/pR_0 equal to R/\mathcal{J} . Moreover, R_0 is a Galois ring of the form $\operatorname{GR}(p^{kr}, p^k)$, k = 1, 2 or 3. Let $\operatorname{ann}(\mathcal{J})$ denote the two-sided annihilator of \mathcal{J} in R. Of course $\operatorname{ann}(\mathcal{J})$ is an ideal of R. Because $\mathcal{J}^3 = (0)$, it follows easily that $\mathcal{J}^2 \subseteq \operatorname{ann}(\mathcal{J})$.

We know from the above results that $R = R_0 \oplus \sum_{i=1}^h R_0 m_i$, where $m_i \in \mathcal{J}$, and that there exist automorphisms $\sigma_i \in \operatorname{Aut}(R_0)$ $(i = 1, \ldots, h)$ such that $m_i r_0 = r_0^{\sigma_i} m_i$ for all $r_0 \in R_0$ and for all $i = 1, \ldots, h$; and the number h and the automorphisms $\sigma_1, \ldots, \sigma_h$ are uniquely determined by R and R_0 . Again, because $\mathcal{J}^3 = (0)$, we have $p^2 m_i = 0$ for all $m_i \in \mathcal{J}$. Further, $pm_i = 0$ for all $m_i \in \mathcal{J}^2$.

2.1. Rings of characteristic p. Let \mathbb{F} be the Galois field $\operatorname{GF}(p^r)$. Given two positive integers s, t such that $1 \leq t \leq s^2$, fix s, t-dimensional \mathbb{F} -spaces U, V, respectively. Since \mathbb{F} is commutative we can think of them as both left and right vector spaces. Let $(a_{ij}^k) \in \mathbb{M}_{s \times s}(\mathbb{F})$ be t linearly independent matrices, $\{\sigma_1, \ldots, \sigma_s\}, \{\theta_1, \ldots, \theta_t\}$ be sets of automorphisms of \mathbb{F} (with possible repetitions) and let $\{\sigma_i\}$ and $\{\theta_k\}$ satisfy the additional condition that if $a_{ij}^k \neq 0$ for any k with $1 \leq k \leq t$, then $\theta_k = \sigma_i \sigma_j$.

In the additive group $R = \mathbb{F} \oplus U \oplus V$, we select bases $\{u_i\}$ and $\{v_k\}$ for U and V, respectively, and we define multiplication by the following relations:

(1)
$$u_i u_j = \sum_{k=1}^t a_{ij}^k v_k, \quad u_i v_k = v_k u_i = u_i u_j u_l = 0,$$
$$u_i \alpha = \alpha^{\sigma_i} u_i, \quad v_k \alpha = \alpha^{\theta_k} v_k \quad (1 \le i, j, l \le s, 1 \le k \le t).$$

where $\alpha, a_{ij}^k \in \mathbb{F}$.

By the above relations, R is a completely primary finite ring of characteristic p with Jacobson radical $\mathcal{J} = U \oplus V$, $\mathcal{J}^2 = V$ and $\mathcal{J}^3 = (0)$ (see [2] and/or [3]). We call the numbers p, n, r, s, t invariants of the ring R.

Throughout, we need the following result proved in [3, Theorem 4.1]:

THEOREM 2.1. Let R be a ring. Then R is a cube radical zero completely primary finite ring of characteristic p in which the annihilator of \mathcal{J} coincides with \mathcal{J}^2 if and only if R is isomorphic to one of the rings given by the above relations.

3. The group of automorphisms. To determine this group, we first show that the Galois subfield $\mathbb{F} = \operatorname{GF}(p^r)$ and the \mathbb{F} -space $V \cong \mathcal{J}^2$ generated by $\{v_1, \ldots, v_k\}$ are invariant under any automorphism $\phi \in \operatorname{Aut}(R)$. Then we compute the image of the rest of the generators under a fixed element of $\operatorname{Aut}(R)$. Let U and V be the \mathbb{F} -vector spaces generated by $\{u_1, \ldots, u_s\}$ and $\{v_1, \ldots, v_t\}$, respectively. By (1), the set $\{u_1, \ldots, u_s\}$ is an \mathbb{F} -basis of the vector space $\mathcal{J}/\mathcal{J}^2 \cong U$ and the set $\{u_i u_j : 1 \leq i, j \leq s\}$ generates the vector space V over \mathbb{F} .

LEMMA 3.1. Let $\phi \in \operatorname{Aut}(R)$. Then $\phi(\mathbb{F})$ is a maximal subfield of R which is equal to \mathbb{F} and $\phi(V) = V$, where $V \cong \mathcal{J}^2$.

Proof. It is obvious that $\phi(\mathbb{F})$ is a maximal subfield of R so that there exists an invertible element $x \in R$ such that $x\phi(\mathbb{F})x^{-1} = \mathbb{F}$. Now, consider the map $\psi : R \to R$ given by $r \mapsto x\phi(r)x^{-1}$. Then, clearly, ψ is an automorphism of R which sends \mathbb{F} to itself.

On the other hand, for any $v \in V$, we have $\phi(v) \in V$ because $[\phi(v)]^2 = \phi(v^2) = 0$, and the result follows.

3.1. Preliminary results. Let R be the ring given by the multiplication in (1) with respect to the linearly independent matrices $A_k = (a_{ij}^k) \in \mathbb{M}_{s \times s}(\mathbb{F})$ $(k = 1, \ldots, t)$ and associated automorphisms $\{\sigma_i\}$ and $\{\theta_k\}$. Then

$$R = \mathbb{F} \oplus \sum_{i=1}^{s} \mathbb{F} u_i \oplus \sum_{k=1}^{t} \mathbb{F} v_k,$$

and $u_i r_0 = r_0^{\sigma_i} u_i, v_k r_0 = r_0^{\theta_k} v_k$ for every $r_0 \in \mathbb{F}$.

Let $B = \{u_1, \ldots, u_s, v_1, \ldots, v_t\}$ and let $\tau \in \operatorname{Aut}(\mathbb{F})$. Put $B_{\tau} = \{w \in B : wb = b^{\tau}w\}$, where b is an element of \mathbb{F} of order $p^r - 1$, and let $\mathcal{J}_{\tau} = \sum_{w \in B_{\tau}}^{\oplus} \mathbb{F}w$. Then, obviously, \mathcal{J}_{τ} is an \mathbb{F} -submodule of \mathcal{J} .

LEMMA 3.2. Let R be a ring of Theorem 2.1 with maximal ideal \mathcal{J} . Then $\mathcal{J} = \sum_{\tau \in \operatorname{Aut}(\mathbb{F})}^{\oplus} \mathcal{J}_{\tau}$ as \mathbb{F} -modules.

Let R be a ring of Theorem 2.1 and let us reindex the associated automorphisms in such a way that $\sigma_1, \ldots, \sigma_r$ are distinct, so that $\theta_1, \ldots, \theta_h$ are distinct as well. Let $\mathcal{J} = U \oplus V$. Obviously,

$$\mathcal{J} = \sum_{i=1}^{s} \mathbb{F} u_i \oplus \sum_{k=1}^{t} \mathbb{F} v_k,$$

where $U = \bigoplus \sum_{i=1}^{s} \mathbb{F}u_i$ and $V = \bigoplus \sum_{k=1}^{t} \mathbb{F}v_k$. Now, if $\varphi \in \operatorname{End}_{\mathbb{F}}(\mathcal{J})$, then $\varphi(m) = ma$ $(m \in \mathcal{J}, a \in \mathbb{F})$ and $\mathcal{J}_i = \sum_{\sigma_j = \sigma_i}^{\oplus} \mathbb{F}u_j \oplus \sum_{\theta_l = \sigma_i}^{\oplus} \mathbb{F}v_l$, where σ_j is the automorphism associated with u_i $(i = 1, \ldots, s)$, and $\mathcal{J}_k^2 = \sum_{\theta_m = \theta_k}^{\oplus} \mathbb{F}v_m$, where θ_m is the automorphism associated with v_k and $1 \leq k \leq r$. It is easy to see that $\mathcal{J}_1, \ldots, \mathcal{J}_r, \mathcal{J}_k^2$ $(1 \leq k \leq r)$ are the eigenspaces of φ .

Let γ be the number of non-trivial associated automorphisms σ_j of R taken with their multiplicities and $\mathcal{J}_{\gamma} = \sum_{\sigma_j \neq \mathrm{id}_{\mathbb{F}}}^{\oplus} \mathbb{F}e_j$, and let δ be the number of non-trivial associated automorphisms θ_k of R taken with their multiplicities and $\mathcal{J}_{\delta}^2 = \sum_{\theta_k \neq \mathrm{id}_{\mathbb{F}}}^{\oplus} \mathbb{F}f_k$. Clearly, \mathcal{J}_{γ} and \mathcal{J}_{δ}^2 are \mathbb{F} -vector spaces of dimensions γ and δ , respectively. Let $\mathcal{J}_{\lambda} = \sum_{\sigma_j = \mathrm{id}_{\mathbb{F}}}^{\oplus} \mathbb{F}e_j$ and $\mathcal{J}_{\mu}^2 = \sum_{\theta_k = \mathrm{id}_{\mathbb{F}}}^{\oplus} \mathbb{F}f_k$; then $\mathcal{J}_{\lambda} = \mathcal{J}_i$ for some $i \in \{1, \ldots, r\}$ or $\mathcal{J}_{\lambda} = \{0\}$ according as one or none of the associated automorphisms of R is trivial; and

 $\mathcal{J}^2_{\mu} = \mathcal{J}^2_k$ for some k with $1 \leq k \leq r$ or $\mathcal{J}^2_{\mu} = \{0\}$ according as one or none of the associated automorphisms of R is trivial.

If $\mathcal{J}_{\lambda} = \mathcal{J}_{i}$ for some $i \in \{1, \ldots, r\}$ and $\mathcal{J}_{\mu}^{2} = \mathcal{J}_{k}^{2}$ for some k with $1 \leq k \leq r$, let us assume that $\mathcal{J}_{\lambda} = \mathcal{J}_{r}$ and $\mathcal{J}_{\mu}^{2} = \mathcal{J}_{r}^{2}$, respectively. Hence, $\mathcal{J}_{\gamma} = \bigoplus \sum_{i=1}^{h} \mathcal{J}_{i}$, where h = r or r - 1; and $\mathcal{J}_{\delta}^{2} = \bigoplus \sum_{k=1}^{l} \mathcal{J}_{k}^{2}$, where $1 \leq l \leq r$ or $1 \leq l \leq r - 1$. Clearly, we may assume $\mathcal{J} = \sum_{i=1}^{s} \mathbb{F} \oplus \sum_{k=1}^{t} \mathbb{F}$, also $s = \sum_{i=1}^{r} s_{i}$ and $t = \sum_{i=1}^{r} t_{k}$, where $s_{i} = \dim_{\mathbb{F}}(\mathcal{J}_{i})$ and $t_{k} = \dim_{\mathbb{F}}(\mathcal{J}_{k}^{2})$.

PROPOSITION 3.3. Let R be a ring of Theorem 2.1. Then $F \oplus \sum_{i=1}^{s} \mathbb{F}u'_i \oplus \sum_{k=1}^{t} \mathbb{F}v'_k = R$ if and only if for all $i = 1, \ldots, s$ and $k = 1, \ldots, t, u'_i = e_i + \sum b_{li}v_l$, and $v'_k = f_k$, where $\{e_1, \ldots, e_s\}$ is a union of \mathbb{F} -bases for $\mathcal{J}_1, \ldots, \mathcal{J}_r$ and b_{li} is an element of \mathbb{F} which is zero if u'_i is not in the centre, Z(R), of R, and where $\{f_1, \ldots, f_t\}$ is a union of \mathbb{F} -bases for $\mathcal{J}_1^2, \ldots, \mathcal{J}_k^2$ $(1 \le k \le r)$.

Proof. Suppose that $R = \mathbb{F} \oplus \sum_{i=1}^{s} \mathbb{F} u'_i \oplus \sum_{k=1}^{t} \mathbb{F} v'_k$ and $u'_i r = r^{\sigma_i} u'_i$, $v'_k r = r^{\theta_k} v'_k$ for all $r \in \mathbb{F}$. Because $u'_i \in \mathcal{J} = \sum_{j=1}^{s} \mathbb{F} u_j \oplus \sum_{l=1}^{t} \mathbb{F} v_l$ for any $i = 1, \ldots, s$, we can write $u'_i = \sum a_{ji} u_j + \sum b_{li} v_l$, where $a_{ji}, b_{li} \in \mathbb{F}$; and because $v'_k \in \mathcal{J}^2 = \sum_{l=1}^{t} \mathbb{F} v_l$ for any $k = 1, \ldots, t$, we can write $v'_k = \sum c_{lk} v_l$, where $c_{lk} \in \mathbb{F}$.

Now,

$$\sum a_{ji}r^{\sigma_i}u_j + \sum b_{li}r^{\sigma_i}v_l = r^{\sigma_i}u'_i = u'_ir = \left(\sum a_{ji}u_j + \sum b_{li}v_l\right)r$$
$$= \sum a_{ji}r^{\sigma_j}u_j + \sum b_{li}r^{\theta_l}v_l$$

and

$$\sum c_{lk} r^{\theta_k} v_l = r^{\theta_k} v'_k = v'_k r = \left(\sum c_{lk} v_l\right) r = \sum c_{lk} r^{\theta_l} v_l.$$

From these equalities we deduce that if $\sigma_i \neq \sigma_j$ then $a_{ji} = 0$, and if $\theta_k \neq \theta_l$ then $c_{kl} = 0$. In particular, if $\sigma_i \neq \theta_l$ then $b_{li} = 0$. It is also worth noting that $\theta_k = \sigma_i \sigma_j$ because $\mathcal{J}^3 = (0), \ \mathcal{J}^2 \neq (0)$.

Let $e_i = u'_i - \sum b_{li}v_l$ and $v'_k = f_k$. Then obviously $e_i r = r^{\sigma_i}e_i$ and $f_k r = r^{\theta_k}f_k$ for all $r \in \mathbb{F}$; that is, σ_i , θ_k are the automorphisms associated with e_i , f_k , respectively. Also, it is easy to check that $\bigoplus \sum_{i=1}^s \mathbb{F}e_i$ is of order p^{sr} , and $\bigoplus \sum_{k=1}^t \mathbb{F}f_k$ is of order p^{tr} ; but clearly, $\sum_{i=1}^s \mathbb{F}e_i \oplus \sum_{k=1}^t \mathbb{F}f_k \subseteq \mathcal{J}$. Hence, $\mathcal{J} = \sum_{i=1}^s \mathbb{F}e_i \oplus \sum_{k=1}^t \mathbb{F}f_k$.

Finally, it is easy to prove that $\mathcal{J}_i = \sum_{\sigma_j = \sigma_i} \mathbb{F} e_j$ and $\mathcal{J}_k^2 = \sum \mathbb{F} f_l$, where σ_j and θ_l are the automorphisms associated with e_j and f_l , respectively, and $i = 1, \ldots, r, 1 \leq k \leq r$.

The converse is easy to prove. \blacksquare

COROLLARY 3.4. Let $\phi \in Aut(R)$. Then for each i = 1, ..., s and each k = 1, ..., t,

$$\phi(u_i) = \sum_{\sigma_j = \sigma_i} a_{ji} u_j + \sum_{\theta_k = \sigma_i} b_{ki} v_k, \quad \phi(v_k) = \sum_{\theta_l = \theta_k} c_{lk} v_l,$$

where $a_{ji}, b_{ki}, c_{lk} \in \mathbb{F}$. In particular, if $b_{ki} \neq 0$, then $\sigma_i = id_{\mathbb{F}}$.

Proof. Since

$$u_i \in \mathcal{J} = \bigoplus \sum_{j=1}^s \mathbb{F}u_j \oplus \sum_{k=1}^t \mathbb{F}v_k \quad \text{for all } i = 1, \dots, s;$$
$$v_k \in \mathcal{J}^2 = \bigoplus \sum_{l=1}^t \mathbb{F}v_l \quad \text{for all } k = 1, \dots, t,$$

we can write

$$\phi(u_i) = \sum a_{ji}u_j + \sum b_{ki}v_k, \quad \phi(v_k) = \sum c_{lk}v_l,$$

where $a_{ji}, b_{ki}, c_{lk} \in \mathbb{F}$. Now, let $r_0 \in \mathbb{F}$ be such that $u_i r_0 = r_0^{\sigma_i} u_i$ and $v_k r_0 = r_0^{\theta_k} v_k$. Then

$$\phi(u_i r_0) = \phi(r_0^{\sigma_i} u_i) = \phi(r_0^{\sigma_i})\phi(u_i) = \phi(r_0^{\sigma_i}) \left[\sum a_{ji} u_j + \sum b_{ki} v_k\right]$$

On the other hand,

$$\phi(u_i r_0) = \phi(u_i)\phi(r_0) = \left[\sum a_{ji}u_j + \sum b_{ki}w_k\right]\phi(r)$$
$$= \sum a_{ji}[\phi(r_0)]^{\sigma_j}u_j + \sum b_{ki}\phi(r_0)^{\theta_k}v_k.$$

Similarly

$$\phi(r_0^{\theta_k}) \left[\sum c_{lk} v_l \right] = \sum c_{lk} [\phi(r_0)]^{\theta_l} v_l.$$

From these equalities, we deduce that if $\sigma_j \neq \sigma_i$ then $a_{ji} = 0$, and if $\theta_l \neq \theta_k$ then $c_{lk} = 0$. In particular, if $b_{ki} \neq 0$ then $\sigma_i = \mathrm{id}_{\mathbb{F}}$, since $\theta_k = \sigma_i \sigma_j$ if $a_{ij}^k \neq 0$, and $\mathrm{ann}(\mathcal{J}) = \mathcal{J}^2$.

COROLLARY 3.5. Let $\phi \in \operatorname{Aut}(R)$. If $b_{ki} = 0$, then $\phi(u_i) = \sum_{\sigma_j = \sigma_i} a_{ji} u_j$ and $\phi(v_k) = \sum_{\theta_l = \theta_k} c_{lk} v_l$, where $a_{ji}, c_{lk} \in \mathbb{F}$.

3.2. The main results. We first establish some notation that will be useful in the rest of the paper.

Notation. Let R be a ring of Theorem 2.1. If $\sigma \in \operatorname{Aut}(\mathbb{F})$ and $x \in G_R$, the group of unit elements in R, define the mappings α_{σ}, ψ_x from R to R as follows:

$$\alpha_{\sigma}\left(a_{0} + \sum a_{i}u_{i} + \sum b_{k}v_{k}\right) = a_{0}^{\sigma} + \sum a_{i}^{\sigma}u_{i} + \sum b_{k}^{\sigma}v_{k},$$

$$\psi_{x}\left(a_{0} + \sum a_{i}u_{i} + \sum b_{k}v_{k}\right) = x\left(a_{0} + \sum a_{i}u_{i} + \sum b_{k}v_{k}\right)x^{-1}.$$

Also, if

$$\varphi\Big(a_0 + \sum a_i u_i + \sum b_k v_k\Big) = a_0 + \sum a_i \varphi_j(u_i) + \sum b_k \phi_l(v_k),$$

where $\varphi_j \in \operatorname{Aut}_{\mathbb{F}}(\mathcal{J}_i)$ (if $u_i \in \mathcal{J}_j$) and $j = 1, \ldots, r$, and $\phi_l \in \operatorname{Aut}_{\mathbb{F}}(\mathcal{J}_k^2)$ (if $v_k \in \mathcal{J}_l^2$) and $1 \leq l \leq r$, let $\varphi \sigma = \varphi \alpha_{\sigma}$, and if

$$\beta \left(a_0 + \sum a_i u_i + \sum b_k v_k \right) = a_0 + \sum a_i u_i + \sum_{\sigma_i = \mathrm{id}_{\mathbb{F}}} a_{li} a_i v_l + \sum b_k v_k,$$

where $a_{li} \in \mathbb{F}$ and σ_i is the automorphism associated with u_i , let $\beta \sigma = \beta \alpha_{\sigma}$. Finally, if $A = (a_{ij})$, define $A^{\sigma} = (a_{ij}^{\sigma})$ and let A^{σ_i} denote $(\sigma_1(a_{i1}), \sigma_2(a_{i2}), \ldots, \sigma_t(a_{it}))$ for some automorphisms σ_j , not necessarily distinct.

THEOREM 3.6. Let R be a ring of Theorem 2.1. Then $\varphi \in \operatorname{Aut}(R)$ if and only if

$$\varphi\Big(a_0 + \sum_{i=1}^s a_i u_i + \sum_{k=1}^t b_k v_k\Big) = x a_0^{\sigma} x^{-1} + \sum_{i=1}^s x a_i^{\sigma} x^{-1} \varphi_j(u_i) + \sum_{\sigma_i = \mathrm{id}_{\mathbb{F}}} a_{li} x a_i^{\sigma} x^{-1} v_l + \sum_{k=1}^t x b_k^{\sigma} x^{-1} \phi_l(v_k),$$

where $\sigma \in \operatorname{Aut}(\mathbb{F}), x \in G_R, \varphi_j \in \operatorname{Aut}_{\mathbb{F}}(\mathcal{J}_i) \text{ (if } u_i \in \mathcal{J}_j) \text{ and } j = 1, \ldots, r, \phi_l \in \operatorname{Aut}_{\mathbb{F}}(\mathcal{J}_k^2) \text{ (if } v_k \in \mathcal{J}_l^2) \text{ and } 1 \leq l \leq r, a_{li} \in \mathbb{F}, \text{ and } \sigma_i, \theta_k \text{ are automorphisms associated with } u_i, v_k, \text{ respectively, and where } \theta_k \text{ is a composition of the } \sigma_i \text{ 's.}$

Proof. Let $\varphi \in \operatorname{Aut}(R)$. Then there exists $x \in G_R$ such that $\varphi(\mathbb{F}) = x\mathbb{F}x^{-1}$, and hence $\varphi(r) = xr^{\sigma}x^{-1}$ for any $r \in \mathbb{F}$, for some automorphism σ of \mathbb{F} . Since

$$R = \varphi(\mathbb{F}) \oplus \sum \varphi(\mathbb{F})\varphi(u_i) \oplus \sum \varphi(\mathbb{F})\varphi(v_k)$$

and conjugation is an automorphism of R,

$$R = \mathbb{F} \oplus \sum \mathbb{F} x^{-1} \varphi(u_i) x \oplus \sum \mathbb{F} x^{-1} \varphi(v_k) x.$$

But $\mathcal{J}^3 = (0), \ \mathcal{J}^2 \neq (0)$, hence $x^{-1}\varphi(u_i)x = \alpha_i\varphi(u_i)$ and $x^{-1}\varphi(v_k)x = \beta_k\varphi(v_k)$, where $\alpha_i, \beta_k \in \mathbb{F}$ for all $i = 1, \ldots, s$ and $k = 1, \ldots, t$. Thus,

$$R = \mathbb{F} \oplus \sum \mathbb{F} \alpha_i \varphi(u_i) \oplus \sum \mathbb{F} \beta_k \varphi(v_k)$$

and hence

$$R = \mathbb{F} \oplus \sum \mathbb{F} \varphi(u_i) \oplus \sum \mathbb{F} \varphi(v_k).$$

Therefore, for any $i \in \{1, \ldots, s\}$ and any $k \in \{1, \ldots, t\}$, $\varphi(u_i) = \varphi_j(u_i) + \sum_{l \in \mathcal{I}} a_{li}v_l$ and $\varphi(v_k) = \phi_l(v_k)$, where $\varphi_j \in \operatorname{Aut}_{\mathbb{F}}(\mathcal{J}_i)$ (if $u_i \in \mathcal{J}_j$), $\phi_l \in \operatorname{Aut}_{\mathbb{F}}(\mathcal{J}_k^2)$ (if $v_k \in \mathcal{J}_l^2$), and $a_{li} \in \mathbb{F}$, which is zero if $u_i \notin Z(R)$, the centre of R.

Conversely, let φ be as defined above. We need to check that for every $r = a_0 + \sum a_i u_i + \sum a_k v_k$, $\psi : a_0 + \sum a_i u_i + \sum a_k v_k \mapsto a_0^{\sigma} + \sum a_i^{\sigma} \psi_j(u_i) + \sum_{\sigma_i = \mathrm{id}_{\mathbb{F}}} a_{li} a_i^{\sigma} v_l + \sum a_k^{\sigma} \eta_l(v_k)$,

is an automorphism of R, where $\psi_j(u_i) = x^{-1}\varphi_j(u_i)x$, $\eta_l(v_k) = x^{-1}\phi_l(v_k)x$. So let $s = b_0 + \sum b_i u_i + \sum b_k v_k$ be another element in R. Then

$$\psi: b_0 + \sum b_i u_i + \sum b_k v_k \mapsto b_0^{\sigma} + \sum b_i^{\sigma} \psi_j(u_i) + \sum_{\sigma_i = \mathrm{id}_{\mathbb{F}}} a_{li} b_i^{\sigma} v_l + \sum b_k^{\sigma} \eta_l(v_k).$$

Now,

$$\begin{split} \psi(r)\psi(s) &= a_0^{\sigma}b_0^{\sigma} + \sum [a_0^{\sigma}b_i^{\sigma} + a_i^{\sigma}(b_0^{\sigma})^{\sigma_j}]\psi_j(u_i) + \sum_{\sigma_i = \mathrm{id}_{\mathbb{F}}} [a_0^{\sigma}a_{li}b_i^{\sigma} + a_{li}a_i^{\sigma}(b_0^{\sigma})]v_l \\ &+ \sum [a_0^{\sigma}b_k^{\sigma} + a_k^{\sigma}(b_0^{\sigma})^{\theta_l}]\eta_l(v_k) + \sum_{i=1}^s a_i^{\sigma}(b_q^{\sigma})^{\sigma_j}\psi_j(u_i)\psi_q(u_i). \end{split}$$

On the other hand,

$$\psi(rs) = (a_0b_0)^{\sigma} + \sum (a_0b_i + a_ib_0^{\sigma_j})^{\sigma}\psi_j(u_i) + \sum_{\sigma_i = \mathrm{id}_{\mathbb{F}}} a_{li}(a_0b_i + a_ib_0^{\sigma_j})^{\sigma}v_l + \sum (a_0b_k + a_kb_0^{\theta_l})^{\sigma}\eta_l(v_k) + \sum_{k=1}^t \sum_{i,j=1}^s (a_ib_j^{\sigma_i}a_{ij}^k)^{\sigma}\eta_l(v_k).$$

From the above equalities we deduce that $\sigma_i = \sigma_j$, $\sigma_i = \mathrm{id}_{\mathbb{F}}$ if $a_{li} \neq 0$, $\theta_k = \theta_l$, and $\sum_{k=1}^t (a_{jq}^k)^{\sigma} \eta_l(v_k) = \sum_{j,q=1}^s \psi_j(u_i) \psi_q(u_i)$.

Now, it is obvious that $\varphi = \psi_x \psi$, and hence φ is an automorphism of R.

REMARK 3.7. In view of Corollary 3.4, if $\phi \in \operatorname{Aut}(R)$, then $\phi|_{\mathbb{F}}$ is an automorphism $\sigma \in \operatorname{Aut}(\mathbb{F})$; if $b_{ki} = 0$, then $\phi|_U$ is an automorphism $\varphi_i \in \operatorname{Aut}_{\mathbb{F}}(U_i)$ (if $u_j \in U_i$) and $i = 1, \ldots, s$, and $\phi|_V$ is an automorphism $\phi_k \in \operatorname{Aut}_{\mathbb{F}}(V_k)$ (if $v_l \in V_k$) and $k = 1, \ldots, t$.

REMARK 3.8. If A_1, \ldots, A_t are linearly independent matrices over \mathbb{F} and $\sigma \in \operatorname{Aut}(\mathbb{F})$, then $A_1^{\sigma}, \ldots, A_t^{\sigma}$ are also linearly independent over \mathbb{F} .

REMARK 3.9. Let $C \in \operatorname{GL}(s, \mathbb{F})$. If $\sigma_j = \theta$ for some fixed $\theta \in \operatorname{Aut}(\mathbb{F})$, for all $j = 1, \ldots, s$, then $C^{\sigma_j} \in \operatorname{GL}(s, \mathbb{F})$.

EXAMPLE 3.10. Let $C = \begin{pmatrix} \alpha & 1+\alpha \\ 1 & 1 \end{pmatrix} \in \operatorname{GL}(2, \mathbb{F}_4)$ and suppose that $\sigma_1 = \operatorname{id}_{\mathbb{F}_4}$, $\sigma_2 \neq \operatorname{id}_{\mathbb{F}_4}$ are automorphisms of \mathbb{F}_4 . Then $C^{\sigma_j} = \begin{pmatrix} \alpha & \alpha \\ 1 & 1 \end{pmatrix} \notin \operatorname{GL}(2, \mathbb{F}_4)$. However, if $C^{\sigma_j} = C^{\theta}$, then for $\theta = \operatorname{id}_{\mathbb{F}_4}$ or $\theta \neq \operatorname{id}_{\mathbb{F}_4}$, $C^{\theta} \in \operatorname{GL}(2, \mathbb{F}_4)$.

Following observations from Remark 3.9 and Example 3.10, we consider determining the groups of automorphisms of the rings of the paper only in the case where σ_j is fixed for all $j = 1, \ldots, s$. Thus, the formulae in Proposition 3.11 will have fixed automorphisms in what follows. PROPOSITION 3.11. Let R be a ring of Theorem 2.1 with structural matrices $A_k = (a_{ij}^k)$ and with invariants p, n, r, s, t. Then ϕ is an automorphism of R if and only if $\sigma_i = \theta \in \operatorname{Aut}(\mathbb{F})$ (for every $i = 1, \ldots, s$) and there exist $\sigma \in \operatorname{Aut}(\mathbb{F})$, $B = (\beta_{k\varrho}) \in \operatorname{GL}(t, \mathbb{F})$ and $C \in \operatorname{GL}(s, \mathbb{F})$ such that $C^T A_{\varrho} C^{\theta} = \sum_{k=1}^t \beta_{k\varrho} A_k^{\sigma}$.

Proof. Suppose there is an automorphism $\psi : R \to R$. Then $\phi(\mathbb{F})$ is a maximal subfield of R so that there exists an invertible element $x \in R$ such that $x\psi(\mathbb{F})x^{-1} = \mathbb{F}$.

Now, consider the map $\phi : R \to R$ given by $r \mapsto x\psi(r)x^{-1}$. Then, clearly, ϕ is an automorphism of R which sends \mathbb{F} to itself. Also,

$$\phi\Big(\sum_{i} \alpha_{i} u_{i}\Big) = \sum_{\nu} \sum_{i} \phi(\alpha_{i}) \alpha_{\nu i} u_{\nu} + y \quad (y \in V),$$

$$\phi\Big(\sum_{k} \gamma_{k} v_{k}\Big) = \sum_{\varrho} \sum_{k} \phi(\gamma_{k}) \beta_{\varrho k} v_{\varrho}.$$

Therefore,

$$\phi\Big(\sum_{i} \alpha_{i} u_{i}\Big) \cdot \phi\Big(\sum_{i} \alpha_{i}' u_{i}\Big)$$

= $\Big(\sum_{\nu} \sum_{i} \phi(\alpha_{i}) \alpha_{\nu i} u_{\nu} + y\Big) \cdot \Big(\sum_{\nu} \sum_{i} \phi(\alpha_{i}') \alpha_{\nu i} u_{\nu} + y'\Big)$
= $\sum_{\varrho} \sum_{\nu,\mu=1}^{s} \sum_{i,j=1}^{s} \phi(\alpha_{i}) \alpha_{\nu i} [\phi(\alpha_{j}') \alpha_{\mu j}]^{\sigma_{\nu}} a_{\nu\mu}^{\varrho} v_{\varrho}.$

On the other hand,

$$\phi\Big(\Big(\sum_{i} \alpha_{i} u_{i}\Big) \cdot \Big(\sum_{i} \alpha_{i}' u_{i}\Big)\Big) = \phi\Big(\sum_{k} \sum_{i,j=1}^{s} \alpha_{i} [\alpha_{j}']^{\sigma_{i}} a_{ij}^{k} v_{k}\Big)$$
$$= \sum_{\varrho} \sum_{k=1}^{t} \sum_{i,j=1}^{s} \phi(\alpha_{i} [\alpha_{j}']^{\sigma_{i}}) \beta_{\varrho k} \phi(a_{ij}^{k}) v_{\varrho}$$

It follows that

$$\sum_{\nu,\mu=1}^{s} \sum_{i,j=1}^{s} \phi(\alpha_{i}) \alpha_{\nu i} [\phi(\alpha_{j}')\alpha_{\mu j}]^{\sigma_{\nu}} a_{\nu\mu}^{\varrho} = \sum_{k=1}^{t} \sum_{i,j=1}^{s} \phi(\alpha_{i} [\alpha_{j}']^{\sigma_{i}}) \beta_{\varrho k} \phi(a_{ij}^{k}).$$

Now, $\phi|_{\mathbb{F}}$ is an automorphism σ of \mathbb{F} , and so $\phi(a_{ij}^k) = \sigma(a_{ij}^k)$ and $\sigma_{\nu} = \sigma_i$. Hence, the above equation now implies that $C^T A_{\varrho} C^{\theta} = \sum_{k=1}^t \beta_{k\varrho} A_k^{\sigma}$ with $C = (\alpha_{\mu j})$ and $\sigma_i = \theta$ for every $i = 1, \ldots, s$, as required.

Conversely, suppose that the associated automorphisms σ_i equal $\theta \in \operatorname{Aut}(R)$ for every $i = 1, \ldots, s$ and there exist $\sigma \in \operatorname{Aut}(\mathbb{F})$, $B = (\beta_{k\varrho}) \in \operatorname{GL}(t, \mathbb{F})$ and $C \in \operatorname{GL}(s, \mathbb{F})$ with $C^T A_{\varrho} C^{\theta} = \sum_{k=1}^t \beta_{k\varrho} A_k^{\sigma}$. Consider the map

 $\phi: R \to R$ given by

$$\phi\Big(\alpha_0 + \sum_i \alpha_i u_i + \sum_k \gamma_k v_k\Big) = \alpha_0^{\sigma} + \sum_{\nu} \sum_i \alpha_i^{\sigma} \alpha_{\nu i} u_{\nu} + \sum_{\varrho} \sum_k \gamma_k^{\sigma} \beta_{k\varrho} v_{\varrho}.$$

Then it is easy to verify that ϕ is an automorphism of the ring R.

Thus, the set $\{\theta, \sigma \in \operatorname{Aut}(\mathbb{F}), B = (\beta_{k\varrho}) \in \operatorname{GL}(t, \mathbb{F}), C \in \operatorname{GL}(s, \mathbb{F})\}$ determines all the automorphisms of the ring R.

Consider the set of equations $C^T A_{\varrho} C^{\theta} = \sum_{k=1}^t \beta_{k\varrho} A_k^{\sigma}$ given in Proposition 3.11 with $C = (\alpha_{ij}) \in \operatorname{GL}(s, \mathbb{F})$ and for a fixed $\theta \in \operatorname{Aut}(\mathbb{F})$. Then it is easy to see that $C = (\alpha_{ij})$ is the transition matrix between the bases (\overline{u}_i) of $\mathcal{J}/\mathcal{J}^2$. Also, $B = (\beta_{k\varrho})$ is the transition matrix between the bases (v_k) of \mathcal{J}^2 . By calculating $u_{\nu}u_{\mu}$ (the images of the u_i under ϕ) and comparing coefficients of (v_{ϱ}) (the images of the v_k under ϕ) we obtain equations which, in matrix form, are $C^T A_{\varrho} C^{\theta} = \sum_{k=1}^t \beta_{k\varrho} A_k^{\sigma}$.

The problem of determining the groups of automorphisms of our rings amounts to classifying *t*-tuples of linearly independent matrices (A_1, \ldots, A_t) under the above relation, *B*, *C* being arbitrary invertible matrices and σ , θ being arbitrary automorphisms.

Let \mathcal{A} be the set of all *t*-tuples (A_1, \ldots, A_t) of $s \times s$ matrices over \mathbb{F} . The group $GL(s, \mathbb{F})$ acts on \mathcal{A} by "congruence":

$$(A_1, \dots, A_t) \cdot C = (C^T A_1 C^{\theta}, \dots, C^T A_t C^{\theta})$$

and on the left via

$$B \cdot (A_1, \dots, A_t) = (\beta_{11}A_1^{\sigma} + \dots + \beta_{1t}A_t^{\sigma}, \dots, \beta_{t1}A_1^{\sigma} + \dots + \beta_{tt}A_t^{\sigma}),$$

where $B = (\beta_{k\varrho})$. Thus, these two actions are permutable and define a (left) action of $G = \operatorname{GL}(s, \mathbb{F}) \times \operatorname{GL}(t, \mathbb{F})$ on \mathcal{A} :

$$(C,B) \cdot (A_1,\ldots,A_t) = B \cdot (A_1^{\sigma},\ldots,A_t^{\sigma}) \cdot (C^{-1})^{\theta}$$

for some fixed automorphisms σ and θ . By restriction, G acts on the subset Y consisting of linearly independent t-tuples A_1, \ldots, A_t . This amounts to studying the "congruence" action (via C) of $GL(s, \mathbb{F})$ on the set \mathcal{Y} of t-dimensional subspaces of $\mathbb{M}_{s \times s}(\mathbb{F})$, B just representing a change of basis in a given space. In the same way, the whole action of G on \mathcal{A} may be represented as an action of $GL(t, \mathbb{F})$ on the set \mathbf{A} of subspaces of dimension $\leq t$. We may call two t-tuples in the same G-orbit equivalent.

THEOREM 3.12. Let R be a ring of Theorem 2.1 with invariants p, n, r, s, t. Then

$$\operatorname{Aut}(R) \cong [\mathbb{M}_{t \times s}(\mathbb{F}) \times (U \oplus V)] \times_{\theta_2} [\operatorname{Aut}(\mathbb{F}) \times_{\theta_1} (\operatorname{GL}(s, \mathbb{F}) \times \operatorname{GL}(t, \mathbb{F}))].$$

Proof. Let G be the subgroup of $\operatorname{Aut}(R)$ which contains all the automorphisms φ defined by

$$\varphi\Big(r_0 + \sum a_i u_i + \sum b_k v_k\Big) = r_0^{\sigma} + \sum a_i^{\sigma} \varphi_j(u_i) + \sum b_k^{\sigma} \phi_l(v_k),$$

where $\sigma \in \operatorname{Aut}(\mathbb{F}), \varphi_j \in \operatorname{Aut}_{\mathbb{F}}(U_j)$ (if $u_i \in U_j$) and $j = 1, \ldots, s$, and $\phi_l \in \operatorname{Aut}_{\mathbb{F}}(V_l)$ (if $v_k \in V_l$) and $l = 1, \ldots, t$.

Let G_0 be the subgroup of G which contains all the automorphisms α_{σ} such that

$$\alpha_{\sigma} \left(r_0 + \sum a_i u_i + \sum b_k v_k \right) = r_0^{\sigma} + \sum a_i^{\sigma} u_i + \sum b_k^{\sigma} v_k,$$

where $\sigma \in \operatorname{Aut}(\mathbb{F})$. Then $G_0 \cong \operatorname{Aut}(\mathbb{F})$. Let G_1 be the subgroup of G which contains all the automorphisms φ such that

$$\varphi\Big(r_0 + \sum a_i u_i + \sum b_k v_k\Big) = r_0 + \sum a_i \varphi_j(u_i) + \sum b_k v_k,$$

where $\varphi_j \in \operatorname{Aut}_{\mathbb{F}}(U_j)$ (if $u_i \in U_j$) and $i = 1, \ldots, s$; and let G_2 be the subgroup of G which contains all the automorphisms φ such that

$$\varphi\Big(r_0 + \sum_{i=1}^{n} a_i u_i + \sum_{i=1}^{n} b_k v_k\Big) = r_0 + \sum_{i=1}^{n} a_i u_i + \sum_{i=1}^{n} b_k \phi_l(v_k),$$

where $\phi_l \in \operatorname{Aut}_{\mathbb{F}}(V_l)$ (if $v_k \in V_l$) and $k = 1, \ldots, t$. Then G_1 and G_2 are subgroups of G and $G_1 \times G_2$ is a direct product. Moreover, $G_1 \cong \operatorname{Aut}_{\mathbb{F}}(U) \cong$ $\operatorname{GL}(s, \mathbb{F})$ and $G_2 \cong \operatorname{Aut}_{\mathbb{F}}(V) \cong \operatorname{GL}(t, \mathbb{F})$.

Finally, let H be the subgroup of $\operatorname{Aut}(R)$ containing all the automorphisms φ defined by

$$\varphi\Big(r_0 + \sum a_i u_i + \sum b_k v_k\Big) = x\Big(r_0 + \sum a_i u_i + \sum_{\sigma_i = \mathrm{id}_{\mathbb{F}}} \alpha_{li} a_i v_l + \sum b_k v_k\Big) x^{-1},$$

where $x \in 1 + \mathcal{J}$, $a_{li} \in \mathbb{F}$ and σ_i is the automorphism associated with u_i . Let H_1 be the subgroup of H which contains all the automorphisms φ defined by

$$\varphi\Big(r_0 + \sum a_i u_i + \sum b_k v_k\Big) = r_0 + \sum a_i u_i + \sum_{\sigma_i = \mathrm{id}_{\mathbb{F}}} \alpha_{li} a_i v_l + \sum b_k v_k,$$

where $\alpha_{li} \in \mathbb{F}$ and σ_i is the automorphism associated with u_i , and H_2 be the subgroup of H which contains all the automorphisms φ such that

$$\varphi\Big(r_0 + \sum a_i u_i + \sum b_k v_k\Big) = x\Big(r_0 + \sum a_i u_i + \sum b_k v_k\Big)x^{-1},$$

where $x \in 1 + \mathcal{J} \subset G_R$. Then it is easy to check that the direct product $H = H_1 \times H_2$ and the semidirect product $G = (G_1 \times G_2) \times_{\theta_2} G_0$ are subgroups of Aut(R), where if $\varphi \in G_1 \times G_2$ and $\alpha_{\sigma} \in G_0$, then $\theta_2(\alpha_{\sigma})(\varphi) = \varphi \sigma$.

Let $\varphi \in H \cap G$. Since every element of H either fixes \mathbb{F} elementwise or sends \mathbb{F} to another maximal Galois subring of R and $\varphi \in G$, we see that φ fixes \mathbb{F} elementwise. Let $\varphi = \beta \psi_x$, where $\beta \in H_1$ and $\psi_x \in H_2$. Since $x \in 1 + \mathcal{J}$, clearly, $\varphi = \beta \psi_x = \beta$. Since $\beta \in G$, $\beta(U) = U$. But the only element of H_1 which fixes U is the identity. Thus, $\varphi = \mathrm{id}_R$ and hence $H \cap G = \mathrm{id}_R$. Now, it is easy to see that $\mathrm{Aut}(R) = H \times_{\theta_1} G$, where if $\beta \psi_x \in H_1$ and $\varphi \alpha_\sigma \in G$, then $\theta_1(\varphi \alpha_\sigma)(\beta \psi_x) = \beta_\sigma \varphi_{\psi \alpha_\sigma}(x)$. It is trivial to check that the mapping $g: H_1 \to \mathbb{M}_{t \times s}(\mathbb{F})$ given by $g(\beta_M) = \sum_{\sigma_i = \mathrm{id}_{\mathbb{F}}} a_{li}u_i$, where

$$\beta_M \Big(r_0 + \sum a_i u_i + \sum b_k v_k \Big) = r_0 + \sum a_i u_i + \sum_{\sigma_i = \mathrm{id}_{\mathbb{F}}} a_{li} a_i u_i + \sum b_k v_k,$$

is an isomorphism, and so, combining with $f: H_2 \to U \oplus V$, we obtain an isomorphism $H \cong \mathbb{M}_{t \times s}(\mathbb{F}) \times (U \oplus V)$.

Hence,

$$\operatorname{Aut}(R) \cong [\mathbb{M}_{t \times s}(\mathbb{F}) \times (U \oplus V)] \times_{\theta_2} [\operatorname{Aut}(\mathbb{F}) \times_{\theta_1} (\operatorname{GL}(s, \mathbb{F}) \times \operatorname{GL}(t, \mathbb{F}))],$$

where

$$\theta_1(\sigma)(C,B) \cdot (A_1,\ldots,A_t) = B \cdot (A_1^{\sigma},\ldots,A_t^{\sigma}) \cdot (C^{-1})^{\sigma},$$

$$\theta_2(\sigma,C,B)(A_1,\ldots,A_t) = (C^T A_1 C^{\theta},\ldots,C^T A_t C^{\theta}). \blacksquare$$

COROLLARY 3.13. Let R be a ring of Theorem 2.1 with invariants p, n, r, s, t. Then

$$|\operatorname{Aut}(R)| = q^{t \times s} \times q^{s+t} \times r \times (q^s - q^{s-1})(q^s - q^{s-2}) \dots (q^s - 1) \times (q^t - q^{t-1}) \dots (q^t - 1).$$

COROLLARY 3.14. Let R be a ring of Theorem 2.1 with invariants p, n, r, s, t. If \mathbb{F} lies in the centre of R, then

$$\operatorname{Aut}(R) \cong [\mathbb{M}_{t \times s}(\mathbb{F}) \times (U \oplus V)] \times_{\theta_2} [\operatorname{GL}(s, \mathbb{F}) \times \operatorname{GL}(t, \mathbb{F})].$$

COROLLARY 3.15. Let R be a ring of Theorem 2.1 with invariants p, n, r, s, t. If every $\varphi \in \operatorname{Aut}(R)$ is such that $\varphi(\alpha) = \alpha$ for every $\alpha \in \mathbb{F}$, $\varphi(U) = U$ and \mathbb{F} lies in the centre of R, then

$$\operatorname{Aut}(R) \cong \operatorname{GL}(s, \mathbb{F}) \times \operatorname{GL}(t, \mathbb{F}).$$

REFERENCES

- Y. Alkhamees, Finite rings in which the multiplication of any two zero-divisors is zero, Arch. Math. (Basel) 37 (1981), 144–149.
- [2] C. J. Chikunji, On a class of finite rings, Comm. Algebra 27 (1999), 5049–5081.
- [3] —, A classification of cube radical zero completely primary finite rings, Demonstratio Math. 38 (2005), 7–20.
- W. E. Clark, A coefficient ring for finite noncommutative rings, Proc. Amer. Math. Soc. 33 (1972), 25–28.

[5] R. Raghavendran, Finite associative rings, Compos. Math. 21 (1969), 195–229.

Department of Basic Sciences Botswana College of Agriculture P/BAG 0027, Gaborone, Botswana E-mail: jchikunj@bca.bw

> Received 23 March 2007; revised 23 April 2007

(4888)