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AUTOMORPHISMS OF COMPLETELY PRIMARY FINITE RINGS

OF CHARACTERISTIC p

BY

CHITENG’A JOHN CHIKUNJI (Gaborone)

Abstract. A completely primary ring is a ring R with identity 1 6= 0 whose subset of
zero-divisors forms the unique maximal ideal J . We determine the structure of the group
of automorphisms Aut(R) of a completely primary finite ring R of characteristic p, such
that if J is the Jacobson radical of R, then J 3 = (0), J 2 6= (0), the annihilator of J

coincides with J 2 and R/J ∼= GF(pr), the finite field of pr elements, for any prime p and
any positive integer r.

1. Introduction. A ring R is completely primary if the subset J of all
its zero-divisors forms an ideal. These rings have been studied extensively
by, among others, Raghavendran [5]. It has long been recognized that the
group of automorphisms of a ring provides valuable information about the
structure of the ring. For instance, Évariste Galois initiated the study of the
group of automorphisms of a field, which was later applied by N. H. Abel
to prove the celebrated theorem on the insolvability of the general quintic
polynomial by radicals. It is known (see, e.g., [5]) that the group of auto-
morphisms of the Galois ring R0 = GR(pnr, pn) is isomorphic to the group
of automorphisms of its residue field R0/pR0, and is thus a cyclic group of
order r. In [1], Alkhamees determined the group of automorphisms of a com-
pletely primary finite ring R in which the product of any two zero divisors
is zero. This was done for both characteristics of the ring R (i.e. charR = p
and p2), and for both commutative and non-commutative cases.

In this paper, we seek an explicit description of the group of automor-
phisms of a completely primary finite ring R of characteristic p, with Jacob-
son radical J such that J 3 = (0), J 2 6= (0), the annihilator of J coincides
with J 2 and R/J ∼= GF(pr), the finite field of pr elements, for any prime p
and any positive integer r. We leave the consideration of the cases when the
characteristic of R is p2 and p3 for future work. These rings were studied by
the author who gave their constructions for all characteristics; for details of
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the general background, the reader is referred to [2] and [3]. In this paper,
these rings are given in terms of the basis of their additive groups and the
multiplication tables of basis elements. We use standard notation and ter-
minology; ann(J ) denotes the two-sided annihilator of J , and for any two
groups G and H, G×θ H denotes the semidirect product of G by H, where
θ : H → Aut(G) is a group homomorphism.

Throughout, we will assume that all rings are finite, associative (but
generally not commutative) with identities, denoted by 1, that ring homo-
morphisms preserve 1, a ring and its subrings have the same 1 and that
modules are unital. We freely use the definitions and notations introduced
in [2], [3] and [5].

Let R be a completely primary finite ring. The following results will be
assumed (see [5]): |R| = pnr, J is the Jacobson radical of R, J n = (0),
|J | = p(n−1)r, R/J ∼= GF(pr), and charR = pk, where 1 ≤ k ≤ n, for some
prime p and positive integers n, k, r; the group of units GR is a semidirect
product GR = (1 + J )×θ 〈b〉 of its normal subgroup 1 + J of order p(n−1)r

by a cyclic subgroup 〈b〉 of order pr − 1. If n = k, it is known that, up
to isomorphism, there is precisely one completely primary ring of order prk

having characteristic pk and residue field GF(pr). It is called the Galois ring

GR(prk, pk) and a concrete model is the quotient Zpk [X]/(f), where f is a
monic polynomial of degree r, irreducible modulo p. Any such polynomial
will do: the rings are all isomorphic. Trivial cases are GR(pn, pn) = Zpn

and GR(pn, p) = Fpn . In fact, R = Zpn [b], where b is an element of R of
multiplicative order pr−1; furthermore, J = pR and Aut(R) ∼= Aut(R/pR)
(see Proposition 2 in [5]).

Let R be a completely primary ring, |R/J | = pr and charR = pk. Then
it can be deduced from [4] that R has a coefficient subring R0 of the form
GR(pkr, pk), which is clearly a maximal Galois subring of R. Moreover, if R′

0

is another coefficient subring of R then there exists an invertible element x
in R such that R′

0 = xR0x
−1 (see Theorem 8 in [5]). Furthermore, there exist

m1, . . . ,mh ∈ J and σ1, . . . , σh ∈ Aut(R0) such that R = R0 ⊕
∑h

i=1R0mi

(as R0-modules), and mir0 = rσi

0 mi for all r0 ∈ R0 and any i = 1, . . . , h
(use the decomposition of R0 ⊗Z R0 in terms of Aut(R0) and apply the
fact that R is a module over R0 ⊗Z R0). Moreover, σ1, . . . , σh are uniquely
determined by R and R0. We call σi the automorphism associated with mi

and σ1, . . . , σh the associated automorphisms of R with respect to R0.

2. Cube radical zero completely primary finite rings. We now
assume that R is a completely primary finite ring with Jacobson radical J
such that J 3 = (0) and J 2 6= (0). These rings were studied by the author
in [2] and [3]. Since R is such that J 3 = (0), by one of the above results
charR is either p, p2 or p3. The ring R contains a coefficient subring R0
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with charR0 = charR, and with R0/pR0 equal to R/J . Moreover, R0 is a
Galois ring of the form GR(pkr, pk), k = 1, 2 or 3. Let ann(J ) denote the
two-sided annihilator of J in R. Of course ann(J ) is an ideal of R. Because
J 3 = (0), it follows easily that J 2 ⊆ ann(J).

We know from the above results that R = R0 ⊕
∑h

i=1R0mi, where
mi ∈ J , and that there exist automorphisms σi ∈ Aut(R0) (i = 1, . . . , h)
such that mir0 = rσi

0 mi for all r0 ∈ R0 and for all i = 1, . . . , h; and the
number h and the automorphisms σ1, . . . , σh are uniquely determined by R
and R0. Again, because J 3 = (0), we have p2mi = 0 for all mi ∈ J . Further,
pmi = 0 for all mi ∈ ann(J ). In particular, pmi = 0 for all mi ∈ J 2.

2.1. Rings of characteristic p. Let F be the Galois field GF(pr). Given
two positive integers s, t such that 1 ≤ t ≤ s2, fix s, t-dimensional F-spaces
U, V, respectively. Since F is commutative we can think of them as both
left and right vector spaces. Let (akij) ∈ Ms×s(F) be t linearly independent
matrices, {σ1, . . . , σs}, {θ1, . . . , θt} be sets of automorphisms of F (with pos-
sible repetitions) and let {σi} and {θk} satisfy the additional condition that
if akij 6= 0 for any k with 1 ≤ k ≤ t, then θk = σiσj .

In the additive group R = F⊕U⊕V, we select bases {ui} and {vk} for U
and V , respectively, and we define multiplication by the following relations:

(1)
uiuj =

t
∑

k=1

akijvk, uivk = vkui = uiujul = 0,

uiα = ασiui, vkα = αθkvk (1 ≤ i, j, l ≤ s, 1 ≤ k ≤ t),

where α, akij ∈ F.
By the above relations, R is a completely primary finite ring of charac-

teristic p with Jacobson radical J = U ⊕ V, J 2 = V and J 3 = (0) (see [2]
and/or [3]). We call the numbers p, n, r, s, t invariants of the ring R.

Throughout, we need the following result proved in [3, Theorem 4.1]:

Theorem 2.1. Let R be a ring. Then R is a cube radical zero completely

primary finite ring of characteristic p in which the annihilator of J coincides

with J 2 if and only if R is isomorphic to one of the rings given by the above

relations.

3. The group of automorphisms. To determine this group, we first
show that the Galois subfield F = GF(pr) and the F-space V ∼= J 2 generated
by {v1, . . . , vk} are invariant under any automorphism φ ∈ Aut(R). Then
we compute the image of the rest of the generators under a fixed element
of Aut(R). Let U and V be the F-vector spaces generated by {u1, . . . , us}
and {v1, . . . , vt}, respectively. By (1), the set {u1, . . . , us} is an F-basis of
the vector space J /J 2 ∼= U and the set {uiuj : 1 ≤ i, j ≤ s} generates the
vector space V over F.
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Lemma 3.1. Let φ ∈ Aut(R). Then φ(F) is a maximal subfield of R
which is equal to F and φ(V ) = V, where V ∼= J 2.

Proof. It is obvious that φ(F) is a maximal subfield of R so that there
exists an invertible element x ∈ R such that xφ(F)x−1 = F. Now, con-
sider the map ψ : R → R given by r 7→ xφ(r)x−1. Then, clearly, ψ is an
automorphism of R which sends F to itself.

On the other hand, for any v ∈ V, we have φ(v) ∈ V because [φ(v)]2 =
φ(v2) = 0, and the result follows.

3.1. Preliminary results. Let R be the ring given by the multiplication in
(1) with respect to the linearly independent matrices Ak = (akij) ∈ Ms×s(F)
(k = 1, . . . , t) and associated automorphisms {σi} and {θk}. Then

R = F ⊕
s

∑

i=1

Fui ⊕
t

∑

k=1

Fvk,

and uir0 = rσi

0 ui, vkr0 = rθk

0 vk for every r0 ∈ F.

Let B = {u1, . . . , us, v1, . . . , vt} and let τ ∈ Aut(F). Put Bτ = {w ∈ B :
wb = bτw}, where b is an element of F of order pr − 1, and let Jτ =
∑⊕

w∈Bτ
Fw. Then, obviously, Jτ is an F-submodule of J .

Lemma 3.2. Let R be a ring of Theorem 2.1 with maximal ideal J . Then

J =
∑⊕

τ∈Aut(F) Jτ as F-modules.

Let R be a ring of Theorem 2.1 and let us reindex the associated auto-
morphisms in such a way that σ1, . . . , σr are distinct, so that θ1, . . . , θh are
distinct as well. Let J = U ⊕ V . Obviously,

J =
s

∑

i=1

Fui ⊕
t

∑

k=1

Fvk,

where U = ⊕
∑s

i=1 Fui and V = ⊕
∑t

k=1 Fvk. Now, if ϕ ∈ EndF(J ), then
ϕ(m) = ma (m ∈ J , a ∈ F) and Ji =

∑⊕
σj=σi

Fuj ⊕
∑⊕

θl=σi
Fvl, where σj is

the automorphism associated with ui (i = 1, . . . , s), and J 2
k =

∑⊕
θm=θk

Fvm,
where θm is the automorphism associated with vk and 1 ≤ k ≤ r. It is easy
to see that J1, . . . ,Jr,J

2
k (1 ≤ k ≤ r) are the eigenspaces of ϕ.

Let γ be the number of non-trivial associated automorphisms σj of R
taken with their multiplicities and Jγ =

∑⊕
σj 6=idF

Fej , and let δ be the num-

ber of non-trivial associated automorphisms θk of R taken with their multi-
plicities and J 2

δ =
∑⊕

θk 6=idF
Ffk. Clearly, Jγ and J 2

δ are F-vector spaces

of dimensions γ and δ, respectively. Let Jλ =
∑⊕

σj=idF
Fej and J 2

µ =
∑⊕

θk=idF
Ffk; then Jλ = Ji for some i ∈ {1, . . . , r} or Jλ = {0} accord-

ing as one or none of the associated automorphisms of R is trivial; and
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J 2
µ = J 2

k for some k with 1 ≤ k ≤ r or J 2
µ = {0} according as one or none

of the associated automorphisms of R is trivial.

If Jλ = Ji for some i ∈ {1, . . . , r} and J 2
µ = J 2

k for some k with

1 ≤ k ≤ r, let us assume that Jλ = Jr and J 2
µ = J 2

r , respectively. Hence,

Jγ = ⊕
∑h

i=1 Ji, where h = r or r − 1; and J 2
δ = ⊕

∑l
k=1 J

2
k , where

1 ≤ l ≤ r or 1 ≤ l ≤ r − 1. Clearly, we may assume J =
∑s

i=1 F ⊕
∑t

k=1 F, also s =
∑r

i=1 si and t =
∑r

i=1 tk, where si = dimF(Ji) and
tk = dimF(J 2

k ).

Proposition 3.3. Let R be a ring of Theorem 2.1. Then F⊕
∑s

i=1 Fu′i⊕
∑t

k=1 Fv′k = R if and only if for all i = 1, . . . , s and k = 1, . . . , t, u′i =
ei +

∑

blivl, and v′k = fk, where {e1, . . . , es} is a union of F-bases for

J1, . . . ,Jr and bli is an element of F which is zero if u′i is not in the centre,
Z(R), of R, and where {f1, . . . , ft} is a union of F-bases for J 2

1 , . . . ,J
2
k (1 ≤

k ≤ r).

Proof. Suppose that R = F ⊕
∑s

i=1 Fu′i ⊕
∑t

k=1 Fv′k and u′ir = rσiu′i,

v′kr = rθkv′k for all r ∈ F. Because u′i ∈ J =
∑s

j=1 Fuj ⊕
∑t

l=1 Fvl for any

i = 1, . . . , s, we can write u′i =
∑

ajiuj +
∑

blivl, where aji, bli ∈ F; and
because v′k ∈ J 2 =

∑t
l=1 Fvl for any k = 1, . . . , t, we can write v′k =

∑

clkvl,
where clk ∈ F.

Now,
∑

ajir
σiuj +

∑

blir
σivl = rσiu′i = u′ir =

(

∑

ajiuj +
∑

blivl

)

r

=
∑

ajir
σjuj +

∑

blir
θlvl

and
∑

clkr
θkvl = rθkv′k = v′kr =

(

∑

clkvl

)

r =
∑

clkr
θlvl.

From these equalities we deduce that if σi 6= σj then aji = 0, and if θk 6= θl
then ckl = 0. In particular, if σi 6= θl then bli = 0. It is also worth noting
that θk = σiσj because J 3 = (0), J 2 6= (0).

Let ei = u′i −
∑

blivl and v′k = fk. Then obviously eir = rσiei and
fkr = rθkfk for all r ∈ F; that is, σi, θk are the automorphisms associated
with ei, fk, respectively. Also, it is easy to check that ⊕

∑s
i=1 Fei is of order

psr, and ⊕
∑t

k=1 Ffk is of order ptr; but clearly,
∑s

i=1 Fei ⊕
∑t

k=1 Ffk ⊆ J .

Hence, J =
∑s

i=1 Fei ⊕
∑t

k=1 Ffk.

Finally, it is easy to prove that Ji =
∑

σj=σi
Fej and J 2

k =
∑

Ffl, where

σj and θl are the automorphisms associated with ej and fl, respectively, and
i = 1, . . . , r, 1 ≤ k ≤ r.

The converse is easy to prove.
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Corollary 3.4. Let φ ∈ Aut(R). Then for each i = 1, . . . , s and each

k = 1, . . . , t,

φ(ui) =
∑

σj=σi

ajiuj +
∑

θk=σi

bkivk, φ(vk) =
∑

θl=θk

clkvl,

where aji, bki, clk ∈ F. In particular , if bki 6= 0, then σi = idF.

Proof. Since

ui ∈ J = ⊕
s

∑

j=1

Fuj ⊕
t

∑

k=1

Fvk for all i = 1, . . . , s;

vk ∈ J 2 = ⊕
t

∑

l=1

Fvl for all k = 1, . . . , t,

we can write

φ(ui) =
∑

ajiuj +
∑

bkivk, φ(vk) =
∑

clkvl,

where aji, bki, clk ∈ F. Now, let r0 ∈ F be such that uir0 = rσi

0 ui and

vkr0 = rθk

0 vk. Then

φ(uir0) = φ(rσi

0 ui) = φ(rσi

0 )φ(ui) = φ(rσi

0 )
[

∑

ajiuj +
∑

bkivk

]

.

On the other hand,

φ(uir0) = φ(ui)φ(r0) =
[

∑

ajiuj +
∑

bkiwk

]

φ(r)

=
∑

aji[φ(r0)]
σjuj +

∑

bkiφ(r0)
θkvk.

Similarly

φ(rθk

0 )
[

∑

clkvl

]

=
∑

clk[φ(r0)]
θlvl.

From these equalities, we deduce that if σj 6= σi then aji = 0, and if θl 6= θk
then clk = 0. In particular, if bki 6= 0 then σi = idF, since θk = σiσj if
akij 6= 0, and ann(J ) = J 2.

Corollary 3.5. Let φ ∈ Aut(R). If bki = 0, then φ(ui) =
∑

σj=σi
ajiuj

and φ(vk) =
∑

θl=θk
clkvl, where aji, clk ∈ F.

3.2. The main results. We first establish some notation that will be
useful in the rest of the paper.

Notation. Let R be a ring of Theorem 2.1. If σ ∈ Aut(F) and x ∈ GR,
the group of unit elements in R, define the mappings ασ, ψx from R to R as
follows:

ασ

(

a0 +
∑

aiui +
∑

bkvk

)

= aσ0 +
∑

aσi ui +
∑

bσkvk,

ψx

(

a0 +
∑

aiui +
∑

bkvk

)

= x
(

a0 +
∑

aiui +
∑

bkvk

)

x−1.
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Also, if

ϕ
(

a0 +
∑

aiui +
∑

bkvk

)

= a0 +
∑

aiϕj(ui) +
∑

bkφl(vk),

where ϕj ∈ AutF(Ji) (if ui ∈ Jj) and j = 1, . . . , r, and φl ∈ AutF(J 2
k ) (if

vk ∈ J 2
l ) and 1 ≤ l ≤ r, let ϕσ = ϕασ, and if

β
(

a0 +
∑

aiui +
∑

bkvk

)

= a0 +
∑

aiui +
∑

σi=idF

aliaivl +
∑

bkvk,

where ali ∈ F and σi is the automorphism associated with ui, let βσ =
βασ. Finally, if A = (aij), define Aσ = (aσij) and let Aσi denote (σ1(ai1),
σ2(ai2), . . . , σt(ait)) for some automorphisms σj , not necessarily distinct.

Theorem 3.6. Let R be a ring of Theorem 2.1. Then ϕ ∈ Aut(R) if

and only if

ϕ
(

a0 +
s

∑

i=1

aiui +
t

∑

k=1

bkvk

)

= xaσ0x
−1 +

s
∑

i=1

xaσi x
−1ϕj(ui)

+
∑

σi=idF

alixa
σ
i x

−1vl +
t

∑

k=1

xbσkx
−1φl(vk),

where σ ∈ Aut(F), x ∈ GR, ϕj ∈ AutF(Ji) (if ui ∈ Jj) and j = 1, . . . , r, φl ∈
AutF(J 2

k ) (if vk ∈ J 2
l ) and 1 ≤ l ≤ r, ali ∈ F, and σi, θk are automorphisms

associated with ui, vk, respectively , and where θk is a composition of the σi’s.

Proof. Let ϕ ∈ Aut(R). Then there exists x ∈ GR such that ϕ(F) =
xFx−1, and hence ϕ(r) = xrσx−1 for any r ∈ F, for some automorphism σ
of F. Since

R = ϕ(F) ⊕
∑

ϕ(F)ϕ(ui) ⊕
∑

ϕ(F)ϕ(vk)

and conjugation is an automorphism of R,

R = F ⊕
∑

Fx−1ϕ(ui)x⊕
∑

Fx−1ϕ(vk)x.

But J 3 = (0), J 2 6= (0), hence x−1ϕ(ui)x = αiϕ(ui) and x−1ϕ(vk)x =
βkϕ(vk), where αi, βk ∈ F for all i = 1, . . . , s and k = 1, . . . , t. Thus,

R = F ⊕
∑

Fαiϕ(ui) ⊕
∑

Fβkϕ(vk)

and hence

R = F ⊕
∑

Fϕ(ui) ⊕
∑

Fϕ(vk).

Therefore, for any i ∈ {1, . . . , s} and any k ∈ {1, . . . , t}, ϕ(ui) = ϕj(ui)+
∑

alivl and ϕ(vk) = φl(vk), where ϕj ∈ AutF(Ji) (if ui ∈ Jj), φl ∈
AutF(J 2

k ) (if vk ∈ J 2
l ), and ali ∈ F, which is zero if ui /∈ Z(R), the centre

of R.
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Conversely, let ϕ be as defined above. We need to check that for every
r = a0 +

∑

aiui +
∑

akvk,

ψ : a0+
∑

aiui+
∑

akvk 7→ aσ0 +
∑

aσi ψj(ui)+
∑

σi=idF

alia
σ
i vl+

∑

aσkηl(vk),

is an automorphism of R, where ψj(ui) = x−1ϕj(ui)x, ηl(vk) = x−1φl(vk)x.
So let s = b0 +

∑

biui +
∑

bkvk be another element in R. Then

ψ : b0 +
∑

biui+
∑

bkvk 7→ bσ0 +
∑

bσi ψj(ui)+
∑

σi=idF

alib
σ
i vl+

∑

bσkηl(vk).

Now,

ψ(r)ψ(s) = aσ0 b
σ
0 +

∑

[aσ0b
σ
i + aσi (b

σ
0 )σj ]ψj(ui) +

∑

σi=idF

[aσ0alib
σ
i + alia

σ
i (b

σ
0 )]vl

+
∑

[aσ0b
σ
k + aσk(b

σ
0 )θl ]ηl(vk) +

s
∑

i=1

aσi (b
σ
q )
σjψj(ui)ψq(ui).

On the other hand,

ψ(rs) = (a0b0)
σ +

∑

(a0bi + aib
σj

0 )σψj(ui) +
∑

σi=idF

ali(a0bi + aib
σj

0 )σvl

+
∑

(a0bk + akb
θl

0 )σηl(vk) +
t

∑

k=1

s
∑

i,j=1

(aib
σi

j a
k
ij)

σηl(vk).

From the above equalities we deduce that σi = σj , σi = idF if ali 6= 0,
θk = θl, and

∑t
k=1(a

k
jq)

σηl(vk) =
∑s

j,q=1 ψj(ui)ψq(ui).
Now, it is obvious that ϕ = ψxψ, and hence ϕ is an automorphism of R.

Remark 3.7. In view of Corollary 3.4, if φ ∈ Aut(R), then φ|F is an
automorphism σ ∈ Aut(F); if bki = 0, then φ|U is an automorphism ϕi ∈
AutF(Ui) (if uj ∈ Ui) and i = 1, . . . , s, and φ|V is an automorphism φk ∈
AutF(Vk) (if vl ∈ Vk) and k = 1, . . . , t.

Remark 3.8. If A1, . . . , At are linearly independent matrices over F and
σ ∈ Aut(F), then Aσ1 , . . . , A

σ
t are also linearly independent over F.

Remark 3.9. Let C ∈ GL(s,F). If σj = θ for some fixed θ ∈ Aut(F),
for all j = 1, . . . , s, then Cσj ∈ GL(s,F).

Example 3.10. Let C =
(

α 1+α
1 1

)

∈ GL(2,F4) and suppose that σ1 =

idF4
, σ2 6= idF4

are automorphisms of F4. Then Cσj =
(

α α
1 1

)

/∈ GL(2,F4).

However, if Cσj = Cθ, then for θ = idF4
or θ 6= idF4

, Cθ ∈ GL(2,F4).

Following observations from Remark 3.9 and Example 3.10, we consider
determining the groups of automorphisms of the rings of the paper only
in the case where σj is fixed for all j = 1, . . . , s. Thus, the formulae in
Proposition 3.11 will have fixed automorphisms in what follows.
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Proposition 3.11. Let R be a ring of Theorem 2.1 with structural ma-

trices Ak = (akij) and with invariants p, n, r, s, t. Then φ is an automor-

phism of R if and only if σi = θ ∈ Aut(F) (for every i = 1, . . . , s) and

there exist σ ∈ Aut(F), B = (βk̺) ∈ GL(t,F) and C ∈ GL(s,F) such that

CTA̺C
θ =

∑t
k=1 βk̺A

σ
k .

Proof. Suppose there is an automorphism ψ : R → R. Then φ(F) is a
maximal subfield of R so that there exists an invertible element x ∈ R such
that xψ(F)x−1 = F.

Now, consider the map φ : R→ R given by r 7→ xψ(r)x−1. Then, clearly,
φ is an automorphism of R which sends F to itself. Also,

φ
(

∑

i

αiui

)

=
∑

ν

∑

i

φ(αi)ανiuν + y (y ∈ V ),

φ
(

∑

k

γkvk

)

=
∑

̺

∑

k

φ(γk)β̺kv̺.

Therefore,

φ
(

∑

i

αiui

)

· φ
(

∑

i

α′
iui

)

=
(

∑

ν

∑

i

φ(αi)ανiuν + y
)

·
(

∑

ν

∑

i

φ(α′
i)ανiuν + y′

)

=
∑

̺

s
∑

ν,µ=1

s
∑

i,j=1

φ(αi)ανi[φ(α′
j)αµj]

σνa̺νµv̺.

On the other hand,

φ
((

∑

i

αiui

)

·
(

∑

i

α′
iui

))

= φ
(

∑

k

s
∑

i,j=1

αi[α
′
j ]
σiakijvk

)

=
∑

̺

t
∑

k=1

s
∑

i,j=1

φ(αi[α
′
j ]
σi)β̺kφ(akij)v̺.

It follows that
s

∑

ν,µ=1

s
∑

i,j=1

φ(αi)αυi[φ(α′
j)αµj ]

σνa̺νµ =
t

∑

k=1

s
∑

i,j=1

φ(αi[α
′
j ]
σi)β̺kφ(akij).

Now, φ|F is an automorphism σ of F, and so φ(akij) = σ(akij) and σν = σi.

Hence, the above equation now implies that CTA̺C
θ =

∑t
k=1 βk̺A

σ
k with

C = (αµj) and σi = θ for every i = 1, . . . , s, as required.
Conversely, suppose that the associated automorphisms σi equal θ ∈

Aut(R) for every i = 1, . . . , s and there exist σ ∈ Aut(F), B = (βk̺) ∈

GL(t,F) and C ∈ GL(s,F) with CTA̺C
θ =

∑t
k=1 βk̺A

σ
k . Consider the map
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φ : R → R given by

φ
(

α0 +
∑

i

αiui +
∑

k

γkvk

)

= ασ0 +
∑

ν

∑

i

ασi ανiuν +
∑

̺

∑

k

γσkβk̺v̺.

Then it is easy to verify that φ is an automorphism of the ring R.

Thus, the set {θ, σ ∈ Aut(F), B = (βk̺) ∈ GL(t,F), C ∈ GL(s,F)}
determines all the automorphisms of the ring R.

Consider the set of equations CTA̺C
θ =

∑t
k=1 βk̺A

σ
k given in Proposi-

tion 3.11 with C = (αij) ∈ GL(s,F) and for a fixed θ ∈ Aut(F). Then it is
easy to see that C = (αij) is the transition matrix between the bases (ui)
of J /J 2. Also, B = (βk̺) is the transition matrix between the bases (vk)
of J 2. By calculating uνuµ (the images of the ui under φ) and comparing
coefficients of (v̺) (the images of the vk under φ) we obtain equations which,
in matrix form, are CTA̺C

θ =
∑t

k=1 βk̺A
σ
k .

The problem of determining the groups of automorphisms of our rings
amounts to classifying t-tuples of linearly independent matrices (A1, . . . , At)
under the above relation, B, C being arbitrary invertible matrices and σ, θ
being arbitrary automorphisms.

Let A be the set of all t-tuples (A1, . . . , At) of s×s matrices over F. The
group GL(s,F) acts on A by “congruence”:

(A1, . . . , At) · C = (CTA1C
θ, . . . , CTAtC

θ)

and on the left via

B · (A1, . . . , At) = (β11A
σ
1 + · · · + β1tA

σ
t , . . . , βt1A

σ
1 + · · · + βttA

σ
t ),

where B = (βk̺). Thus, these two actions are permutable and define a (left)
action of G = GL(s,F) × GL(t,F) on A:

(C,B) · (A1, . . . , At) = B · (Aσ1 , . . . , A
σ
t ) · (C

−1)θ

for some fixed automorphisms σ and θ. By restriction, G acts on the subset
Y consisting of linearly independent t-tuples A1, . . . , At. This amounts to
studying the “congruence” action (via C) of GL(s,F) on the set Y of t-
dimensional subspaces of Ms×s(F), B just representing a change of basis
in a given space. In the same way, the whole action of G on A may be
represented as an action of GL(t,F) on the set A of subspaces of dimension
≤ t. We may call two t-tuples in the same G-orbit equivalent.

Theorem 3.12. Let R be a ring of Theorem 2.1 with invariants p, n, r,
s, t. Then

Aut(R) ∼= [Mt×s(F) × (U ⊕ V )] ×θ2 [Aut(F) ×θ1 (GL(s,F) × GL(t, F))].
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Proof. Let G be the subgroup of Aut(R) which contains all the auto-
morphisms ϕ defined by

ϕ
(

r0 +
∑

aiui +
∑

bkvk

)

= rσ0 +
∑

aσi ϕj(ui) +
∑

bσkφl(vk),

where σ ∈ Aut(F), ϕj ∈ AutF(Uj) (if ui ∈ Uj) and j = 1, . . . , s, and
φl ∈ AutF(Vl) (if vk ∈ Vl) and l = 1, . . . , t.

Let G0 be the subgroup of G which contains all the automorphisms ασ
such that

ασ

(

r0 +
∑

aiui +
∑

bkvk

)

= rσ0 +
∑

aσi ui +
∑

bσkvk,

where σ ∈ Aut(F). Then G0
∼= Aut(F). Let G1 be the subgroup of G which

contains all the automorphisms ϕ such that

ϕ
(

r0 +
∑

aiui +
∑

bkvk

)

= r0 +
∑

aiϕj(ui) +
∑

bkvk,

where ϕj ∈ AutF(Uj) (if ui ∈ Uj) and i = 1, . . . , s; and let G2 be the
subgroup of G which contains all the automorphisms ϕ such that

ϕ
(

r0 +
∑

aiui +
∑

bkvk

)

= r0 +
∑

aiui +
∑

bkφl(vk),

where φl ∈ AutF(Vl) (if vk ∈ Vl) and k = 1, . . . , t. Then G1 and G2 are
subgroups of G and G1×G2 is a direct product. Moreover, G1

∼= AutF(U) ∼=
GL(s,F) and G2

∼= AutF(V ) ∼= GL(t,F).
Finally, let H be the subgroup of Aut(R) containing all the automor-

phisms ϕ defined by

ϕ
(

r0 +
∑

aiui+
∑

bkvk

)

= x
(

r0 +
∑

aiui+
∑

σi=idF

αliaivl+
∑

bkvk

)

x−1,

where x ∈ 1+J , ali ∈ F and σi is the automorphism associated with ui. Let
H1 be the subgroup of H which contains all the automorphisms ϕ defined
by

ϕ
(

r0 +
∑

aiui +
∑

bkvk

)

= r0 +
∑

aiui +
∑

σi=idF

αliaivl +
∑

bkvk,

where αli ∈ F and σi is the automorphism associated with ui, and H2 be
the subgroup of H which contains all the automorphisms ϕ such that

ϕ
(

r0 +
∑

aiui +
∑

bkvk

)

= x
(

r0 +
∑

aiui +
∑

bkvk

)

x−1,

where x ∈ 1 + J ⊂ GR. Then it is easy to check that the direct product
H = H1×H2 and the semidirect productG = (G1×G2)×θ2G0 are subgroups
of Aut(R), where if ϕ ∈ G1 ×G2 and ασ ∈ G0, then θ2(ασ)(ϕ) = ϕσ.

Let ϕ ∈ H ∩ G. Since every element of H either fixes F elementwise
or sends F to another maximal Galois subring of R and ϕ ∈ G, we see
that ϕ fixes F elementwise. Let ϕ = βψx, where β ∈ H1 and ψx ∈ H2.
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Since x ∈ 1 + J , clearly, ϕ = βψx = β. Since β ∈ G, β(U) = U. But the
only element of H1 which fixes U is the identity. Thus, ϕ = idR and hence
H ∩ G = idR. Now, it is easy to see that Aut(R) = H ×θ1 G, where if
βψx ∈ H1 and ϕασ ∈ G, then θ1(ϕασ)(βψx) = βσϕψασ

(x). It is trivial to
check that the mapping g : H1 → Mt×s(F) given by g(βM ) =

∑

σi=idF
aliui,

where

βM

(

r0 +
∑

aiui +
∑

bkvk

)

= r0 +
∑

aiui +
∑

σi=idF

aliaiui +
∑

bkvk,

is an isomorphism, and so, combining with f : H2 → U ⊕ V, we obtain an
isomorphism H ∼= Mt×s(F) × (U ⊕ V ).

Hence,

Aut(R) ∼= [Mt×s(F) × (U ⊕ V )] ×θ2 [Aut(F) ×θ1 (GL(s,F) × GL(t,F))],

where

θ1(σ)(C,B) · (A1, . . . , At) = B · (Aσ1 , . . . , A
σ
t ) · (C

−1)σ,

θ2(σ,C,B)(A1, . . . , At) = (CTA1C
θ, . . . , CTAtC

θ).

Corollary 3.13. Let R be a ring of Theorem 2.1 with invariants p, n,
r, s, t. Then

|Aut(R)| = qt×s × qs+t

×r×(qs−qs−1)(qs−qs−2) . . . (qs−1) × (qt−qt−1) . . . (qt−1).

Corollary 3.14. Let R be a ring of Theorem 2.1 with invariants p, n,
r, s, t. If F lies in the centre of R, then

Aut(R) ∼= [Mt×s(F) × (U ⊕ V )] ×θ2 [GL(s,F) × GL(t,F)].

Corollary 3.15. Let R be a ring of Theorem 2.1 with invariants p,
n, r, s, t. If every ϕ ∈ Aut(R) is such that ϕ(α) = α for every α ∈ F,
ϕ(U) = U and F lies in the centre of R, then

Aut(R) ∼= GL(s,F) × GL(t,F).

REFERENCES

[1] Y. Alkhamees, Finite rings in which the multiplication of any two zero-divisors is

zero, Arch. Math. (Basel) 37 (1981), 144–149.
[2] C. J. Chikunji, On a class of finite rings, Comm. Algebra 27 (1999), 5049–5081.
[3] —, A classification of cube radical zero completely primary finite rings, Demonstratio

Math. 38 (2005), 7–20.
[4] W. E. Clark, A coefficient ring for finite noncommutative rings, Proc. Amer. Math.

Soc. 33 (1972), 25–28.



AUTOMORPHISMS OF FINITE RINGS 103

[5] R. Raghavendran, Finite associative rings, Compos. Math. 21 (1969), 195–229.

Department of Basic Sciences
Botswana College of Agriculture
P/BAG 0027, Gaborone, Botswana
E-mail: jchikunj@bca.bw

Received 23 March 2007;

revised 23 April 2007 (4888)


