COLLOQUIUM MATHEMATICUM

AUTOMORPHISMS OF COMPLETELY PRIMARY FINITE RINGS OF CHARACTERISTIC p

By
CHITENG'A JOHN CHIKUNJI (Gaborone)

Abstract

A completely primary ring is a ring R with identity $1 \neq 0$ whose subset of zero-divisors forms the unique maximal ideal \mathcal{J}. We determine the structure of the group of automorphisms $\operatorname{Aut}(R)$ of a completely primary finite ring R of characteristic p, such that if \mathcal{J} is the Jacobson radical of R, then $\mathcal{J}^{3}=(0), \mathcal{J}^{2} \neq(0)$, the annihilator of \mathcal{J} coincides with \mathcal{J}^{2} and $R / \mathcal{J} \cong \operatorname{GF}\left(p^{r}\right)$, the finite field of p^{r} elements, for any prime p and any positive integer r.

1. Introduction. A ring R is completely primary if the subset \mathcal{J} of all its zero-divisors forms an ideal. These rings have been studied extensively by, among others, Raghavendran [5]. It has long been recognized that the group of automorphisms of a ring provides valuable information about the structure of the ring. For instance, Évariste Galois initiated the study of the group of automorphisms of a field, which was later applied by N. H. Abel to prove the celebrated theorem on the insolvability of the general quintic polynomial by radicals. It is known (see, e.g., [5]) that the group of automorphisms of the Galois ring $R_{0}=\operatorname{GR}\left(p^{n r}, p^{n}\right)$ is isomorphic to the group of automorphisms of its residue field $R_{0} / p R_{0}$, and is thus a cyclic group of order r. In [1], Alkhamees determined the group of automorphisms of a completely primary finite ring R in which the product of any two zero divisors is zero. This was done for both characteristics of the $\operatorname{ring} R$ (i.e. char $R=p$ and p^{2}), and for both commutative and non-commutative cases.

In this paper, we seek an explicit description of the group of automorphisms of a completely primary finite ring R of characteristic p, with Jacobson radical \mathcal{J} such that $\mathcal{J}^{3}=(0), \mathcal{J}^{2} \neq(0)$, the annihilator of \mathcal{J} coincides with \mathcal{J}^{2} and $R / \mathcal{J} \cong \operatorname{GF}\left(p^{r}\right)$, the finite field of p^{r} elements, for any prime p and any positive integer r. We leave the consideration of the cases when the characteristic of R is p^{2} and p^{3} for future work. These rings were studied by the author who gave their constructions for all characteristics; for details of

[^0]the general background, the reader is referred to [2] and [3]. In this paper, these rings are given in terms of the basis of their additive groups and the multiplication tables of basis elements. We use standard notation and terminology; $\operatorname{ann}(\mathcal{J})$ denotes the two-sided annihilator of \mathcal{J}, and for any two groups G and $H, G \times_{\theta} H$ denotes the semidirect product of G by H, where $\theta: H \rightarrow \operatorname{Aut}(G)$ is a group homomorphism.

Throughout, we will assume that all rings are finite, associative (but generally not commutative) with identities, denoted by 1 , that ring homomorphisms preserve 1 , a ring and its subrings have the same 1 and that modules are unital. We freely use the definitions and notations introduced in [2], [3] and [5].

Let R be a completely primary finite ring. The following results will be assumed (see [5]): $|R|=p^{n r}, \mathcal{J}$ is the Jacobson radical of $R, \mathcal{J}^{n}=(0)$, $|\mathcal{J}|=p^{(n-1) r}, R / \mathcal{J} \cong \operatorname{GF}\left(p^{r}\right)$, and char $R=p^{k}$, where $1 \leq k \leq n$, for some prime p and positive integers n, k, r; the group of units G_{R} is a semidirect product $G_{R}=(1+\mathcal{J}) \times_{\theta}\langle b\rangle$ of its normal subgroup $1+\mathcal{J}$ of order $p^{(n-1) r}$ by a cyclic subgroup $\langle b\rangle$ of order $p^{r}-1$. If $n=k$, it is known that, up to isomorphism, there is precisely one completely primary ring of order $p^{r k}$ having characteristic p^{k} and residue field $\mathrm{GF}\left(p^{r}\right)$. It is called the Galois ring $\operatorname{GR}\left(p^{r k}, p^{k}\right)$ and a concrete model is the quotient $\mathbb{Z}_{p^{k}}[X] /(f)$, where f is a monic polynomial of degree r, irreducible modulo p. Any such polynomial will do: the rings are all isomorphic. Trivial cases are $\operatorname{GR}\left(p^{n}, p^{n}\right)=\mathbb{Z}_{p^{n}}$ and $\operatorname{GR}\left(p^{n}, p\right)=\mathbb{F}_{p^{n}}$. In fact, $R=\mathbb{Z}_{p^{n}}[b]$, where b is an element of R of multiplicative order $p^{r}-1$; furthermore, $\mathcal{J}=p R$ and $\operatorname{Aut}(R) \cong \operatorname{Aut}(R / p R)$ (see Proposition 2 in [5]).

Let R be a completely primary ring, $|R / \mathcal{J}|=p^{r}$ and char $R=p^{k}$. Then it can be deduced from [4] that R has a coefficient subring R_{0} of the form $\operatorname{GR}\left(p^{k r}, p^{k}\right)$, which is clearly a maximal Galois subring of R. Moreover, if R_{0}^{\prime} is another coefficient subring of R then there exists an invertible element x in R such that $R_{0}^{\prime}=x R_{0} x^{-1}$ (see Theorem 8 in [5]). Furthermore, there exist $m_{1}, \ldots, m_{h} \in \mathcal{J}$ and $\sigma_{1}, \ldots, \sigma_{h} \in \operatorname{Aut}\left(R_{0}\right)$ such that $R=R_{0} \oplus \sum_{i=1}^{h} R_{0} m_{i}$ (as R_{0}-modules), and $m_{i} r_{0}=r_{0}^{\sigma_{i}} m_{i}$ for all $r_{0} \in R_{0}$ and any $i=1, \ldots, h$ (use the decomposition of $R_{0} \otimes_{\mathbb{Z}} R_{0}$ in terms of $\operatorname{Aut}\left(R_{0}\right)$ and apply the fact that R is a module over $R_{0} \otimes_{\mathbb{Z}} R_{0}$). Moreover, $\sigma_{1}, \ldots, \sigma_{h}$ are uniquely determined by R and R_{0}. We call σ_{i} the automorphism associated with m_{i} and $\sigma_{1}, \ldots, \sigma_{h}$ the associated automorphisms of R with respect to R_{0}.
2. Cube radical zero completely primary finite rings. We now assume that R is a completely primary finite ring with Jacobson radical \mathcal{J} such that $\mathcal{J}^{3}=(0)$ and $\mathcal{J}^{2} \neq(0)$. These rings were studied by the author in [2] and [3]. Since R is such that $\mathcal{J}^{3}=(0)$, by one of the above results char R is either p, p^{2} or p^{3}. The ring R contains a coefficient subring R_{0}
with char $R_{0}=\operatorname{char} R$, and with $R_{0} / p R_{0}$ equal to R / \mathcal{J}. Moreover, R_{0} is a Galois ring of the form $\operatorname{GR}\left(p^{k r}, p^{k}\right), k=1,2$ or 3 . Let $\operatorname{ann}(\mathcal{J})$ denote the two-sided annihilator of \mathcal{J} in R. Of course $\operatorname{ann}(\mathcal{J})$ is an ideal of R. Because $\mathcal{J}^{3}=(0)$, it follows easily that $\mathcal{J}^{2} \subseteq \operatorname{ann}(J)$.

We know from the above results that $R=R_{0} \oplus \sum_{i=1}^{h} R_{0} m_{i}$, where $m_{i} \in \mathcal{J}$, and that there exist automorphisms $\sigma_{i} \in \operatorname{Aut}\left(R_{0}\right)(i=1, \ldots, h)$ such that $m_{i} r_{0}=r_{0}^{\sigma_{i}} m_{i}$ for all $r_{0} \in R_{0}$ and for all $i=1, \ldots, h$; and the number h and the automorphisms $\sigma_{1}, \ldots, \sigma_{h}$ are uniquely determined by R and R_{0}. Again, because $\mathcal{J}^{3}=(0)$, we have $p^{2} m_{i}=0$ for all $m_{i} \in \mathcal{J}$. Further, $p m_{i}=0$ for all $m_{i} \in \operatorname{ann}(\mathcal{J})$. In particular, $p m_{i}=0$ for all $m_{i} \in \mathcal{J}^{2}$.
2.1. Rings of characteristic p. Let \mathbb{F} be the Galois field $\mathrm{GF}\left(p^{r}\right)$. Given two positive integers s, t such that $1 \leq t \leq s^{2}$, fix s, t-dimensional \mathbb{F}-spaces U, V, respectively. Since \mathbb{F} is commutative we can think of them as both left and right vector spaces. Let $\left(a_{i j}^{k}\right) \in \mathbb{M}_{s \times s}(\mathbb{F})$ be t linearly independent matrices, $\left\{\sigma_{1}, \ldots, \sigma_{s}\right\},\left\{\theta_{1}, \ldots, \theta_{t}\right\}$ be sets of automorphisms of \mathbb{F} (with possible repetitions) and let $\left\{\sigma_{i}\right\}$ and $\left\{\theta_{k}\right\}$ satisfy the additional condition that if $a_{i j}^{k} \neq 0$ for any k with $1 \leq k \leq t$, then $\theta_{k}=\sigma_{i} \sigma_{j}$.

In the additive group $R=\mathbb{F} \oplus U \oplus V$, we select bases $\left\{u_{i}\right\}$ and $\left\{v_{k}\right\}$ for U and V, respectively, and we define multiplication by the following relations:

$$
\begin{align*}
& u_{i} u_{j}=\sum_{k=1}^{t} a_{i j}^{k} v_{k}, \quad u_{i} v_{k}=v_{k} u_{i}=u_{i} u_{j} u_{l}=0, \tag{1}\\
& u_{i} \alpha=\alpha^{\sigma_{i}} u_{i}, \quad v_{k} \alpha=\alpha^{\theta_{k}} v_{k} \quad(1 \leq i, j, l \leq s, 1 \leq k \leq t),
\end{align*}
$$

where $\alpha, a_{i j}^{k} \in \mathbb{F}$.
By the above relations, R is a completely primary finite ring of characteristic p with Jacobson radical $\mathcal{J}=U \oplus V, \mathcal{J}^{2}=V$ and $\mathcal{J}^{3}=(0)$ (see [2] and/or [3]). We call the numbers p, n, r, s, t invariants of the ring R.

Throughout, we need the following result proved in [3, Theorem 4.1]:
Theorem 2.1. Let R be a ring. Then R is a cube radical zero completely primary finite ring of characteristic p in which the annihilator of \mathcal{J} coincides with \mathcal{J}^{2} if and only if R is isomorphic to one of the rings given by the above relations.
3. The group of automorphisms. To determine this group, we first show that the Galois subfield $\mathbb{F}=\mathrm{GF}\left(p^{r}\right)$ and the \mathbb{F}-space $V \cong \mathcal{J}^{2}$ generated by $\left\{v_{1}, \ldots, v_{k}\right\}$ are invariant under any automorphism $\phi \in \operatorname{Aut}(R)$. Then we compute the image of the rest of the generators under a fixed element of $\operatorname{Aut}(R)$. Let U and V be the \mathbb{F}-vector spaces generated by $\left\{u_{1}, \ldots, u_{s}\right\}$ and $\left\{v_{1}, \ldots, v_{t}\right\}$, respectively. By (1), the set $\left\{u_{1}, \ldots, u_{s}\right\}$ is an \mathbb{F}-basis of the vector space $\mathcal{J} / \mathcal{J}^{2} \cong U$ and the set $\left\{u_{i} u_{j}: 1 \leq i, j \leq s\right\}$ generates the vector space V over \mathbb{F}.

Lemma 3.1. Let $\phi \in \operatorname{Aut}(R)$. Then $\phi(\mathbb{F})$ is a maximal subfield of R which is equal to \mathbb{F} and $\phi(V)=V$, where $V \cong \mathcal{J}^{2}$.

Proof. It is obvious that $\phi(\mathbb{F})$ is a maximal subfield of R so that there exists an invertible element $x \in R$ such that $x \phi(\mathbb{F}) x^{-1}=\mathbb{F}$. Now, consider the map $\psi: R \rightarrow R$ given by $r \mapsto x \phi(r) x^{-1}$. Then, clearly, ψ is an automorphism of R which sends \mathbb{F} to itself.

On the other hand, for any $v \in V$, we have $\phi(v) \in V$ because $[\phi(v)]^{2}=$ $\phi\left(v^{2}\right)=0$, and the result follows.
3.1. Preliminary results. Let R be the ring given by the multiplication in (1) with respect to the linearly independent matrices $A_{k}=\left(a_{i j}^{k}\right) \in \mathbb{M}_{s \times s}(\mathbb{F})$ $(k=1, \ldots, t)$ and associated automorphisms $\left\{\sigma_{i}\right\}$ and $\left\{\theta_{k}\right\}$. Then

$$
R=\mathbb{F} \oplus \sum_{i=1}^{s} \mathbb{F} u_{i} \oplus \sum_{k=1}^{t} \mathbb{F} v_{k}
$$

and $u_{i} r_{0}=r_{0}^{\sigma_{i}} u_{i}, v_{k} r_{0}=r_{0}^{\theta_{k}} v_{k}$ for every $r_{0} \in \mathbb{F}$.
Let $B=\left\{u_{1}, \ldots, u_{s}, v_{1}, \ldots, v_{t}\right\}$ and let $\tau \in \operatorname{Aut}(\mathbb{F})$. Put $B_{\tau}=\{w \in B:$ $\left.w b=b^{\tau} w\right\}$, where b is an element of \mathbb{F} of order $p^{r}-1$, and let $\mathcal{J}_{\tau}=$ $\sum_{w \in B_{\tau}}^{\oplus} \mathbb{F} w$. Then, obviously, \mathcal{J}_{τ} is an \mathbb{F}-submodule of \mathcal{J}.

Lemma 3.2. Let R be a ring of Theorem 2.1 with maximal ideal \mathcal{J}. Then $\mathcal{J}=\sum_{\tau \in \operatorname{Aut}(\mathbb{F})}^{\oplus} \mathcal{J}_{\tau}$ as \mathbb{F}-modules.

Let R be a ring of Theorem 2.1 and let us reindex the associated automorphisms in such a way that $\sigma_{1}, \ldots, \sigma_{r}$ are distinct, so that $\theta_{1}, \ldots, \theta_{h}$ are distinct as well. Let $\mathcal{J}=U \oplus V$. Obviously,

$$
\mathcal{J}=\sum_{i=1}^{s} \mathbb{F} u_{i} \oplus \sum_{k=1}^{t} \mathbb{F} v_{k}
$$

where $U=\oplus \sum_{i=1}^{s} \mathbb{F} u_{i}$ and $V=\oplus \sum_{k=1}^{t} \mathbb{F} v_{k}$. Now, if $\varphi \in \operatorname{End}_{\mathbb{F}}(\mathcal{J})$, then $\varphi(m)=m a(m \in \mathcal{J}, a \in \mathbb{F})$ and $\mathcal{J}_{i}=\sum_{\sigma_{j}=\sigma_{i}}^{\oplus} \mathbb{F} u_{j} \oplus \sum_{\theta_{l}=\sigma_{i}}^{\oplus} \mathbb{F} v_{l}$, where σ_{j} is the automorphism associated with $u_{i}(i=1, \ldots, s)$, and $\mathcal{J}_{k}^{2}=\sum_{\theta_{m}=\theta_{k}}^{\oplus} \mathbb{F} v_{m}$, where θ_{m} is the automorphism associated with v_{k} and $1 \leq k \leq r$. It is easy to see that $\mathcal{J}_{1}, \ldots, \mathcal{J}_{r}, \mathcal{J}_{k}^{2}(1 \leq k \leq r)$ are the eigenspaces of φ.

Let γ be the number of non-trivial associated automorphisms σ_{j} of R taken with their multiplicities and $\mathcal{J}_{\gamma}=\sum_{\sigma_{j} \neq \mathrm{id}_{\mathbb{F}}}^{\oplus} \mathbb{F} e_{j}$, and let δ be the number of non-trivial associated automorphisms θ_{k} of R taken with their multiplicities and $\mathcal{J}_{\delta}^{2}=\sum_{\theta_{k} \neq \mathrm{id}_{\mathbb{F}}}^{\oplus} \mathbb{F} f_{k}$. Clearly, \mathcal{J}_{γ} and \mathcal{J}_{δ}^{2} are \mathbb{F}-vector spaces of dimensions γ and δ, respectively. Let $\mathcal{J}_{\lambda}=\sum_{\sigma_{j}=\mathrm{id} \mathbb{F}}^{\oplus} \mathbb{F} e_{j}$ and $\mathcal{J}_{\mu}^{2}=$ $\sum_{\theta_{k}=\operatorname{id}_{\mathbb{F}}}^{\oplus} \mathbb{F} f_{k}$; then $\mathcal{J}_{\lambda}=\mathcal{J}_{i}$ for some $i \in\{1, \ldots, r\}$ or $\mathcal{J}_{\lambda}=\{0\}$ according as one or none of the associated automorphisms of R is trivial; and
$\mathcal{J}_{\mu}^{2}=\mathcal{J}_{k}^{2}$ for some k with $1 \leq k \leq r$ or $\mathcal{J}_{\mu}^{2}=\{0\}$ according as one or none of the associated automorphisms of R is trivial.

If $\mathcal{J}_{\lambda}=\mathcal{J}_{i}$ for some $i \in\{1, \ldots, r\}$ and $\mathcal{J}_{\mu}^{2}=\mathcal{J}_{k}^{2}$ for some k with $1 \leq k \leq r$, let us assume that $\mathcal{J}_{\lambda}=\mathcal{J}_{r}$ and $\mathcal{J}_{\mu}^{2}=\mathcal{J}_{r}^{2}$, respectively. Hence, $\mathcal{J}_{\gamma}=\oplus \sum_{i=1}^{h} \mathcal{J}_{i}$, where $h=r$ or $r-1$; and $\mathcal{J}_{\delta}^{2}=\oplus \sum_{k=1}^{l} \mathcal{J}_{k}^{2}$, where $1 \leq l \leq r$ or $1 \leq l \leq r-1$. Clearly, we may assume $\mathcal{J}=\sum_{i=1}^{s} \mathbb{F} \oplus$ $\sum_{k=1}^{t} \mathbb{F}$, also $s=\sum_{i=1}^{r} s_{i}$ and $t=\sum_{i=1}^{r} t_{k}$, where $s_{i}=\operatorname{dim}_{\mathbb{F}}\left(\mathcal{J}_{i}\right)$ and $t_{k}=\operatorname{dim}_{\mathbb{F}}\left(\mathcal{J}_{k}^{2}\right)$.

Proposition 3.3. Let R be a ring of Theorem 2.1. Then $F \oplus \sum_{i=1}^{s} \mathbb{F} u_{i}^{\prime} \oplus$ $\sum_{k=1}^{t} \mathbb{F} v_{k}^{\prime}=R$ if and only if for all $i=1, \ldots, s$ and $k=1, \ldots, t, u_{i}^{\prime}=$ $e_{i}+\sum b_{l i} v_{l}$, and $v_{k}^{\prime}=f_{k}$, where $\left\{e_{1}, \ldots, e_{s}\right\}$ is a union of \mathbb{F}-bases for $\mathcal{J}_{1}, \ldots, \mathcal{J}_{r}$ and $b_{l i}$ is an element of \mathbb{F} which is zero if u_{i}^{\prime} is not in the centre, $Z(R)$, of R, and where $\left\{f_{1}, \ldots, f_{t}\right\}$ is a union of \mathbb{F}-bases for $\mathcal{J}_{1}^{2}, \ldots, \mathcal{J}_{k}^{2}(1 \leq$ $k \leq r)$.

Proof. Suppose that $R=\mathbb{F} \oplus \sum_{i=1}^{s} \mathbb{F} u_{i}^{\prime} \oplus \sum_{k=1}^{t} \mathbb{F} v_{k}^{\prime}$ and $u_{i}^{\prime} r=r^{\sigma_{i}} u_{i}^{\prime}$, $v_{k}^{\prime} r=r^{\theta_{k}} v_{k}^{\prime}$ for all $r \in \mathbb{F}$. Because $u_{i}^{\prime} \in \mathcal{J}=\sum_{j=1}^{s} \mathbb{F} u_{j} \oplus \sum_{l=1}^{t} \mathbb{F} v_{l}$ for any $i=1, \ldots, s$, we can write $u_{i}^{\prime}=\sum a_{j i} u_{j}+\sum b_{l i} v_{l}$, where $a_{j i}, b_{l i} \in \mathbb{F}$; and because $v_{k}^{\prime} \in \mathcal{J}^{2}=\sum_{l=1}^{t} \mathbb{F} v_{l}$ for any $k=1, \ldots, t$, we can write $v_{k}^{\prime}=\sum c_{l k} v_{l}$, where $c_{l k} \in \mathbb{F}$.

Now,

$$
\begin{aligned}
\sum a_{j i} r^{\sigma_{i}} u_{j}+\sum b_{l i} r^{\sigma_{i}} v_{l} & =r^{\sigma_{i}} u_{i}^{\prime}=u_{i}^{\prime} r=\left(\sum a_{j i} u_{j}+\sum b_{l i} v_{l}\right) r \\
& =\sum a_{j i} r^{\sigma_{j}} u_{j}+\sum b_{l i} r^{\theta_{l}} v_{l}
\end{aligned}
$$

and

$$
\sum c_{l k} r^{\theta_{k}} v_{l}=r^{\theta_{k}} v_{k}^{\prime}=v_{k}^{\prime} r=\left(\sum c_{l k} v_{l}\right) r=\sum c_{l k} r^{\theta_{l}} v_{l}
$$

From these equalities we deduce that if $\sigma_{i} \neq \sigma_{j}$ then $a_{j i}=0$, and if $\theta_{k} \neq \theta_{l}$ then $c_{k l}=0$. In particular, if $\sigma_{i} \neq \theta_{l}$ then $b_{l i}=0$. It is also worth noting that $\theta_{k}=\sigma_{i} \sigma_{j}$ because $\mathcal{J}^{3}=(0), \mathcal{J}^{2} \neq(0)$.

Let $e_{i}=u_{i}^{\prime}-\sum b_{l i} v_{l}$ and $v_{k}^{\prime}=f_{k}$. Then obviously $e_{i} r=r^{\sigma_{i}} e_{i}$ and $f_{k} r=r^{\theta_{k}} f_{k}$ for all $r \in \mathbb{F}$; that is, σ_{i}, θ_{k} are the automorphisms associated with e_{i}, f_{k}, respectively. Also, it is easy to check that $\oplus \sum_{i=1}^{s} \mathbb{F} e_{i}$ is of order $p^{s r}$, and $\oplus \sum_{k=1}^{t} \mathbb{F} f_{k}$ is of order $p^{t r}$; but clearly, $\sum_{i=1}^{s} \mathbb{F} e_{i} \oplus \sum_{k=1}^{t} \mathbb{F} f_{k} \subseteq \mathcal{J}$. Hence, $\mathcal{J}=\sum_{i=1}^{s} \mathbb{F} e_{i} \oplus \sum_{k=1}^{t} \mathbb{F} f_{k}$.

Finally, it is easy to prove that $\mathcal{J}_{i}=\sum_{\sigma_{j}=\sigma_{i}} \mathbb{F} e_{j}$ and $\mathcal{J}_{k}^{2}=\sum \mathbb{F} f_{l}$, where σ_{j} and θ_{l} are the automorphisms associated with e_{j} and f_{l}, respectively, and $i=1, \ldots, r, 1 \leq k \leq r$.

The converse is easy to prove.

Corollary 3.4. Let $\phi \in \operatorname{Aut}(R)$. Then for each $i=1, \ldots, s$ and each $k=1, \ldots, t$,

$$
\phi\left(u_{i}\right)=\sum_{\sigma_{j}=\sigma_{i}} a_{j i} u_{j}+\sum_{\theta_{k}=\sigma_{i}} b_{k i} v_{k}, \quad \phi\left(v_{k}\right)=\sum_{\theta_{l}=\theta_{k}} c_{l k} v_{l}
$$

where $a_{j i}, b_{k i}, c_{l k} \in \mathbb{F}$. In particular, if $b_{k i} \neq 0$, then $\sigma_{i}=\mathrm{id}_{\mathbb{F}}$.
Proof. Since

$$
\begin{aligned}
& u_{i} \in \mathcal{J}=\oplus \sum_{j=1}^{s} \mathbb{F} u_{j} \oplus \sum_{k=1}^{t} \mathbb{F} v_{k} \quad \text { for all } i=1, \ldots, s \\
& v_{k} \in \mathcal{J}^{2}=\oplus \sum_{l=1}^{t} \mathbb{F} v_{l} \quad \text { for all } k=1, \ldots, t
\end{aligned}
$$

we can write

$$
\phi\left(u_{i}\right)=\sum a_{j i} u_{j}+\sum b_{k i} v_{k}, \quad \phi\left(v_{k}\right)=\sum c_{l k} v_{l},
$$

where $a_{j i}, b_{k i}, c_{l k} \in \mathbb{F}$. Now, let $r_{0} \in \mathbb{F}$ be such that $u_{i} r_{0}=r_{0}^{\sigma_{i}} u_{i}$ and $v_{k} r_{0}=r_{0}^{\theta_{k}} v_{k}$. Then

$$
\phi\left(u_{i} r_{0}\right)=\phi\left(r_{0}^{\sigma_{i}} u_{i}\right)=\phi\left(r_{0}^{\sigma_{i}}\right) \phi\left(u_{i}\right)=\phi\left(r_{0}^{\sigma_{i}}\right)\left[\sum a_{j i} u_{j}+\sum b_{k i} v_{k}\right]
$$

On the other hand,

$$
\begin{aligned}
\phi\left(u_{i} r_{0}\right) & =\phi\left(u_{i}\right) \phi\left(r_{0}\right)=\left[\sum a_{j i} u_{j}+\sum b_{k i} w_{k}\right] \phi(r) \\
& =\sum a_{j i}\left[\phi\left(r_{0}\right)\right]^{\sigma_{j}} u_{j}+\sum b_{k i} \phi\left(r_{0}\right)^{\theta_{k}} v_{k} .
\end{aligned}
$$

Similarly

$$
\phi\left(r_{0}^{\theta_{k}}\right)\left[\sum c_{l k} v_{l}\right]=\sum c_{l k}\left[\phi\left(r_{0}\right)\right]^{\theta_{l}} v_{l}
$$

From these equalities, we deduce that if $\sigma_{j} \neq \sigma_{i}$ then $a_{j i}=0$, and if $\theta_{l} \neq \theta_{k}$ then $c_{l k}=0$. In particular, if $b_{k i} \neq 0$ then $\sigma_{i}=\mathrm{id}_{\mathbb{F}}$, since $\theta_{k}=\sigma_{i} \sigma_{j}$ if $a_{i j}^{k} \neq 0$, and $\operatorname{ann}(\mathcal{J})=\mathcal{J}^{2}$.

Corollary 3.5. Let $\phi \in \operatorname{Aut}(R)$. If $b_{k i}=0$, then $\phi\left(u_{i}\right)=\sum_{\sigma_{j}=\sigma_{i}} a_{j i} u_{j}$ and $\phi\left(v_{k}\right)=\sum_{\theta_{l}=\theta_{k}} c_{l k} v_{l}$, where $a_{j i}, c_{l k} \in \mathbb{F}$.
3.2. The main results. We first establish some notation that will be useful in the rest of the paper.

Notation. Let R be a ring of Theorem 2.1. If $\sigma \in \operatorname{Aut}(\mathbb{F})$ and $x \in G_{R}$, the group of unit elements in R, define the mappings $\alpha_{\sigma}, \psi_{x}$ from R to R as follows:

$$
\begin{aligned}
\alpha_{\sigma}\left(a_{0}+\sum a_{i} u_{i}+\sum b_{k} v_{k}\right) & =a_{0}^{\sigma}+\sum a_{i}^{\sigma} u_{i}+\sum b_{k}^{\sigma} v_{k} \\
\psi_{x}\left(a_{0}+\sum a_{i} u_{i}+\sum b_{k} v_{k}\right) & =x\left(a_{0}+\sum a_{i} u_{i}+\sum b_{k} v_{k}\right) x^{-1}
\end{aligned}
$$

Also, if

$$
\varphi\left(a_{0}+\sum a_{i} u_{i}+\sum b_{k} v_{k}\right)=a_{0}+\sum a_{i} \varphi_{j}\left(u_{i}\right)+\sum b_{k} \phi_{l}\left(v_{k}\right),
$$

where $\varphi_{j} \in \operatorname{Aut}_{\mathbb{F}}\left(\mathcal{J}_{i}\right)$ (if $\left.u_{i} \in \mathcal{J}_{j}\right)$ and $j=1, \ldots, r$, and $\phi_{l} \in \operatorname{Aut}_{\mathbb{F}}\left(\mathcal{J}_{k}^{2}\right)$ (if $\left.v_{k} \in \mathcal{J}_{l}^{2}\right)$ and $1 \leq l \leq r$, let $\varphi \sigma=\varphi \alpha_{\sigma}$, and if

$$
\beta\left(a_{0}+\sum a_{i} u_{i}+\sum b_{k} v_{k}\right)=a_{0}+\sum a_{i} u_{i}+\sum_{\sigma_{i}=\mathrm{id}_{F}} a_{l i} a_{i} v_{l}+\sum b_{k} v_{k},
$$

where $a_{l i} \in \mathbb{F}$ and σ_{i} is the automorphism associated with u_{i}, let $\beta \sigma=$ $\beta \alpha_{\sigma}$. Finally, if $A=\left(a_{i j}\right)$, define $A^{\sigma}=\left(a_{i j}^{\sigma}\right)$ and let $A^{\sigma_{i}}$ denote $\left(\sigma_{1}\left(a_{i 1}\right)\right.$, $\left.\sigma_{2}\left(a_{i 2}\right), \ldots, \sigma_{t}\left(a_{i t}\right)\right)$ for some automorphisms σ_{j}, not necessarily distinct.

Theorem 3.6. Let R be a ring of Theorem 2.1. Then $\varphi \in \operatorname{Aut}(R)$ if and only if

$$
\begin{aligned}
\varphi\left(a_{0}+\sum_{i=1}^{s} a_{i} u_{i}+\sum_{k=1}^{t} b_{k} v_{k}\right)= & x a_{0}^{\sigma} x^{-1}+\sum_{i=1}^{s} x a_{i}^{\sigma} x^{-1} \varphi_{j}\left(u_{i}\right) \\
& +\sum_{\sigma_{i}=\mathrm{id}_{\mathbb{F}}} a_{l i} x a_{i}^{\sigma} x^{-1} v_{l}+\sum_{k=1}^{t} x b_{k}^{\sigma} x^{-1} \phi_{l}\left(v_{k}\right)
\end{aligned}
$$

where $\sigma \in \operatorname{Aut}(\mathbb{F}), x \in G_{R}, \varphi_{j} \in \operatorname{Aut}_{\mathbb{F}}\left(\mathcal{J}_{i}\right)\left(\right.$ if $\left.u_{i} \in \mathcal{J}_{j}\right)$ and $j=1, \ldots, r, \phi_{l} \in$ $\operatorname{Aut}_{\mathbb{F}}\left(\mathcal{J}_{k}^{2}\right)\left(\right.$ if $\left.v_{k} \in \mathcal{J}_{l}^{2}\right)$ and $1 \leq l \leq r, a_{l i} \in \mathbb{F}$, and σ_{i}, θ_{k} are automorphisms associated with u_{i}, v_{k}, respectively, and where θ_{k} is a composition of the σ_{i} 's.

Proof. Let $\varphi \in \operatorname{Aut}(R)$. Then there exists $x \in G_{R}$ such that $\varphi(\mathbb{F})=$ $x \mathbb{F} x^{-1}$, and hence $\varphi(r)=x r^{\sigma} x^{-1}$ for any $r \in \mathbb{F}$, for some automorphism σ of \mathbb{F}. Since

$$
R=\varphi(\mathbb{F}) \oplus \sum \varphi(\mathbb{F}) \varphi\left(u_{i}\right) \oplus \sum \varphi(\mathbb{F}) \varphi\left(v_{k}\right)
$$

and conjugation is an automorphism of R,

$$
R=\mathbb{F} \oplus \sum \mathbb{F} x^{-1} \varphi\left(u_{i}\right) x \oplus \sum \mathbb{F} x^{-1} \varphi\left(v_{k}\right) x .
$$

But $\mathcal{J}^{3}=(0), \mathcal{J}^{2} \neq(0)$, hence $x^{-1} \varphi\left(u_{i}\right) x=\alpha_{i} \varphi\left(u_{i}\right)$ and $x^{-1} \varphi\left(v_{k}\right) x=$ $\beta_{k} \varphi\left(v_{k}\right)$, where $\alpha_{i}, \beta_{k} \in \mathbb{F}$ for all $i=1, \ldots, s$ and $k=1, \ldots, t$. Thus,

$$
R=\mathbb{F} \oplus \sum \mathbb{F} \alpha_{i} \varphi\left(u_{i}\right) \oplus \sum \mathbb{F} \beta_{k} \varphi\left(v_{k}\right)
$$

and hence

$$
R=\mathbb{F} \oplus \sum \mathbb{F} \varphi\left(u_{i}\right) \oplus \sum \mathbb{F} \varphi\left(v_{k}\right) .
$$

Therefore, for any $i \in\{1, \ldots, s\}$ and any $k \in\{1, \ldots, t\}, \varphi\left(u_{i}\right)=\varphi_{j}\left(u_{i}\right)+$ $\sum a_{l i} v_{l}$ and $\varphi\left(v_{k}\right)=\phi_{l}\left(v_{k}\right)$, where $\varphi_{j} \in \operatorname{Aut}_{\mathbb{F}}\left(\mathcal{J}_{i}\right)$ (if $\left.u_{i} \in \mathcal{J}_{j}\right), \phi_{l} \in$ $\operatorname{Aut}_{\mathbb{F}}\left(\mathcal{J}_{k}^{2}\right)$ (if $\left.v_{k} \in \mathcal{J}_{l}^{2}\right)$, and $a_{l i} \in \mathbb{F}$, which is zero if $u_{i} \notin Z(R)$, the centre of R.

Conversely, let φ be as defined above. We need to check that for every $r=a_{0}+\sum a_{i} u_{i}+\sum a_{k} v_{k}$,
$\psi: a_{0}+\sum a_{i} u_{i}+\sum a_{k} v_{k} \mapsto a_{0}^{\sigma}+\sum a_{i}^{\sigma} \psi_{j}\left(u_{i}\right)+\sum_{\sigma_{i}=\mathrm{id}_{\mathbb{F}}} a_{l i} a_{i}^{\sigma} v_{l}+\sum a_{k}^{\sigma} \eta_{l}\left(v_{k}\right)$,
is an automorphism of R, where $\psi_{j}\left(u_{i}\right)=x^{-1} \varphi_{j}\left(u_{i}\right) x, \eta_{l}\left(v_{k}\right)=x^{-1} \phi_{l}\left(v_{k}\right) x$. So let $s=b_{0}+\sum b_{i} u_{i}+\sum b_{k} v_{k}$ be another element in R. Then
$\psi: b_{0}+\sum b_{i} u_{i}+\sum b_{k} v_{k} \mapsto b_{0}^{\sigma}+\sum b_{i}^{\sigma} \psi_{j}\left(u_{i}\right)+\sum_{\sigma_{i}=\operatorname{id}_{\mathbb{F}}} a_{l i} b_{i}^{\sigma} v_{l}+\sum b_{k}^{\sigma} \eta_{l}\left(v_{k}\right)$. Now,

$$
\begin{aligned}
\psi(r) \psi(s)= & a_{0}^{\sigma} b_{0}^{\sigma}+\sum\left[a_{0}^{\sigma} b_{i}^{\sigma}+a_{i}^{\sigma}\left(b_{0}^{\sigma}\right)^{\sigma_{j}}\right] \psi_{j}\left(u_{i}\right)+\sum_{\sigma_{i}=\mathrm{id}_{\mathbb{F}}}\left[a_{0}^{\sigma} a_{l i} b_{i}^{\sigma}+a_{l i} a_{i}^{\sigma}\left(b_{0}^{\sigma}\right)\right] v_{l} \\
& +\sum\left[a_{0}^{\sigma} b_{k}^{\sigma}+a_{k}^{\sigma}\left(b_{0}^{\sigma}\right)^{\theta_{l}}\right] \eta_{l}\left(v_{k}\right)+\sum_{i=1}^{s} a_{i}^{\sigma}\left(b_{q}^{\sigma}\right)^{\sigma_{j}} \psi_{j}\left(u_{i}\right) \psi_{q}\left(u_{i}\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\psi(r s)= & \left(a_{0} b_{0}\right)^{\sigma}+\sum\left(a_{0} b_{i}+a_{i} b_{0}^{\sigma_{j}}\right)^{\sigma} \psi_{j}\left(u_{i}\right)+\sum_{\sigma_{i}=\operatorname{id}_{\mathbb{F}}} a_{l i}\left(a_{0} b_{i}+a_{i} b_{0}^{\sigma_{j}}\right)^{\sigma} v_{l} \\
& +\sum\left(a_{0} b_{k}+a_{k} b_{0}^{\theta_{l}}\right)^{\sigma} \eta_{l}\left(v_{k}\right)+\sum_{k=1}^{t} \sum_{i, j=1}^{s}\left(a_{i} b_{j}^{\sigma_{i}} a_{i j}^{k}\right)^{\sigma} \eta_{l}\left(v_{k}\right)
\end{aligned}
$$

From the above equalities we deduce that $\sigma_{i}=\sigma_{j}, \sigma_{i}=\operatorname{id}_{\mathbb{F}}$ if $a_{l i} \neq 0$, $\theta_{k}=\theta_{l}$, and $\sum_{k=1}^{t}\left(a_{j q}^{k}\right)^{\sigma} \eta_{l}\left(v_{k}\right)=\sum_{j, q=1}^{s} \psi_{j}\left(u_{i}\right) \psi_{q}\left(u_{i}\right)$.

Now, it is obvious that $\varphi=\psi_{x} \psi$, and hence φ is an automorphism of R.
Remark 3.7. In view of Corollary 3.4, if $\phi \in \operatorname{Aut}(R)$, then $\left.\phi\right|_{\mathbb{F}}$ is an automorphism $\sigma \in \operatorname{Aut}(\mathbb{F})$; if $b_{k i}=0$, then $\left.\phi\right|_{U}$ is an automorphism $\varphi_{i} \in$ $\operatorname{Aut}_{F}\left(U_{i}\right)$ (if $u_{j} \in U_{i}$) and $i=1, \ldots, s$, and $\left.\phi\right|_{V}$ is an automorphism $\phi_{k} \in$ $\operatorname{Aut}_{F}\left(V_{k}\right)$ (if $v_{l} \in V_{k}$) and $k=1, \ldots, t$.

REmark 3.8. If A_{1}, \ldots, A_{t} are linearly independent matrices over \mathbb{F} and $\sigma \in \operatorname{Aut}(\mathbb{F})$, then $A_{1}^{\sigma}, \ldots, A_{t}^{\sigma}$ are also linearly independent over \mathbb{F}.

Remark 3.9. Let $C \in \operatorname{GL}(s, \mathbb{F})$. If $\sigma_{j}=\theta$ for some fixed $\theta \in \operatorname{Aut}(\mathbb{F})$, for all $j=1, \ldots, s$, then $C^{\sigma_{j}} \in \mathrm{GL}(s, \mathbb{F})$.

Example 3.10. Let $C=\left(\begin{array}{cc}\alpha & 1+\alpha \\ 1 & 1\end{array}\right) \in \operatorname{GL}\left(2, \mathbb{F}_{4}\right)$ and suppose that $\sigma_{1}=$ $\operatorname{id}_{\mathbb{F}_{4}}, \sigma_{2} \neq \mathrm{id}_{\mathbb{F}_{4}}$ are automorphisms of \mathbb{F}_{4}. Then $C^{\sigma_{j}}=\left(\begin{array}{cc}\alpha & \alpha \\ 1 & 1\end{array}\right) \notin \operatorname{GL}\left(2, \mathbb{F}_{4}\right)$. However, if $C^{\sigma_{j}}=C^{\theta}$, then for $\theta=\mathrm{id}_{\mathbb{F}_{4}}$ or $\theta \neq \mathrm{id}_{\mathbb{F}_{4}}, C^{\theta} \in \mathrm{GL}\left(2, \mathbb{F}_{4}\right)$.

Following observations from Remark 3.9 and Example 3.10, we consider determining the groups of automorphisms of the rings of the paper only in the case where σ_{j} is fixed for all $j=1, \ldots, s$. Thus, the formulae in Proposition 3.11 will have fixed automorphisms in what follows.

Proposition 3.11. Let R be a ring of Theorem 2.1 with structural matrices $A_{k}=\left(a_{i j}^{k}\right)$ and with invariants p, n, r, s, t. Then ϕ is an automorphism of R if and only if $\sigma_{i}=\theta \in \operatorname{Aut}(\mathbb{F})$ (for every $i=1, \ldots, s$) and there exist $\sigma \in \operatorname{Aut}(\mathbb{F}), B=\left(\beta_{k \varrho}\right) \in \mathrm{GL}(t, \mathbb{F})$ and $C \in \mathrm{GL}(s, \mathbb{F})$ such that $C^{T} A_{\varrho} C^{\theta}=\sum_{k=1}^{t} \beta_{k \varrho} A_{k}^{\sigma}$.

Proof. Suppose there is an automorphism $\psi: R \rightarrow R$. Then $\phi(\mathbb{F})$ is a maximal subfield of R so that there exists an invertible element $x \in R$ such that $x \psi(\mathbb{F}) x^{-1}=\mathbb{F}$.

Now, consider the map $\phi: R \rightarrow R$ given by $r \mapsto x \psi(r) x^{-1}$. Then, clearly, ϕ is an automorphism of R which sends \mathbb{F} to itself. Also,

$$
\begin{aligned}
\phi\left(\sum_{i} \alpha_{i} u_{i}\right) & =\sum_{\nu} \sum_{i} \phi\left(\alpha_{i}\right) \alpha_{\nu i} u_{\nu}+y \quad(y \in V) \\
\phi\left(\sum_{k} \gamma_{k} v_{k}\right) & =\sum_{\varrho} \sum_{k} \phi\left(\gamma_{k}\right) \beta_{\varrho k} v_{\varrho}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\phi\left(\sum_{i} \alpha_{i} u_{i}\right) & \cdot \phi\left(\sum_{i} \alpha_{i}^{\prime} u_{i}\right) \\
= & \left(\sum_{\nu} \sum_{i} \phi\left(\alpha_{i}\right) \alpha_{\nu i} u_{\nu}+y\right) \cdot\left(\sum_{\nu} \sum_{i} \phi\left(\alpha_{i}^{\prime}\right) \alpha_{\nu i} u_{\nu}+y^{\prime}\right) \\
& =\sum_{\varrho} \sum_{\nu, \mu=1}^{s} \sum_{i, j=1}^{s} \phi\left(\alpha_{i}\right) \alpha_{\nu i}\left[\phi\left(\alpha_{j}^{\prime}\right) \alpha_{\mu j}\right]^{\sigma_{\nu}} a_{\nu \mu}^{\varrho} v_{\varrho} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\phi\left(\left(\sum_{i} \alpha_{i} u_{i}\right) \cdot\left(\sum_{i} \alpha_{i}^{\prime} u_{i}\right)\right) & =\phi\left(\sum_{k} \sum_{i, j=1}^{s} \alpha_{i}\left[\alpha_{j}^{\prime}\right]^{\sigma_{i}} a_{i j}^{k} v_{k}\right) \\
& =\sum_{\varrho} \sum_{k=1}^{t} \sum_{i, j=1}^{s} \phi\left(\alpha_{i}\left[\alpha_{j}^{\prime}\right]^{\sigma_{i}}\right) \beta_{\varrho k} \phi\left(a_{i j}^{k}\right) v_{\varrho}
\end{aligned}
$$

It follows that

$$
\sum_{\nu, \mu=1}^{s} \sum_{i, j=1}^{s} \phi\left(\alpha_{i}\right) \alpha_{v i}\left[\phi\left(\alpha_{j}^{\prime}\right) \alpha_{\mu j}\right]^{\sigma_{\nu}} a_{\nu \mu}^{\varrho}=\sum_{k=1}^{t} \sum_{i, j=1}^{s} \phi\left(\alpha_{i}\left[\alpha_{j}^{\prime}\right]^{\sigma_{i}}\right) \beta_{\varrho k} \phi\left(a_{i j}^{k}\right)
$$

Now, $\left.\phi\right|_{\mathbb{F}}$ is an automorphism σ of \mathbb{F}, and so $\phi\left(a_{i j}^{k}\right)=\sigma\left(a_{i j}^{k}\right)$ and $\sigma_{\nu}=\sigma_{i}$. Hence, the above equation now implies that $C^{T} A_{\varrho} C^{\theta}=\sum_{k=1}^{t} \beta_{k \varrho} A_{k}^{\sigma}$ with $C=\left(\alpha_{\mu j}\right)$ and $\sigma_{i}=\theta$ for every $i=1, \ldots, s$, as required.

Conversely, suppose that the associated automorphisms σ_{i} equal $\theta \in$ $\operatorname{Aut}(R)$ for every $i=1, \ldots, s$ and there exist $\sigma \in \operatorname{Aut}(\mathbb{F}), B=\left(\beta_{k \varrho}\right) \in$ $\mathrm{GL}(t, \mathbb{F})$ and $C \in \mathrm{GL}(s, \mathbb{F})$ with $C^{T} A_{\varrho} C^{\theta}=\sum_{k=1}^{t} \beta_{k \varrho} A_{k}^{\sigma}$. Consider the map
$\phi: R \rightarrow R$ given by

$$
\phi\left(\alpha_{0}+\sum_{i} \alpha_{i} u_{i}+\sum_{k} \gamma_{k} v_{k}\right)=\alpha_{0}^{\sigma}+\sum_{\nu} \sum_{i} \alpha_{i}^{\sigma} \alpha_{\nu i} u_{\nu}+\sum_{\varrho} \sum_{k} \gamma_{k}^{\sigma} \beta_{k \varrho} v_{\varrho} .
$$

Then it is easy to verify that ϕ is an automorphism of the ring R.
Thus, the set $\left\{\theta, \sigma \in \operatorname{Aut}(\mathbb{F}), B=\left(\beta_{k \varrho}\right) \in \mathrm{GL}(t, \mathbb{F}), C \in \operatorname{GL}(s, \mathbb{F})\right\}$ determines all the automorphisms of the ring R.

Consider the set of equations $C^{T} A_{\varrho} C^{\theta}=\sum_{k=1}^{t} \beta_{k \varrho} A_{k}^{\sigma}$ given in Proposition 3.11 with $C=\left(\alpha_{i j}\right) \in \mathrm{GL}(s, \mathbb{F})$ and for a fixed $\theta \in \operatorname{Aut}(\mathbb{F})$. Then it is easy to see that $C=\left(\alpha_{i j}\right)$ is the transition matrix between the bases $\left(\bar{u}_{i}\right)$ of $\mathcal{J} / \mathcal{J}^{2}$. Also, $B=\left(\beta_{k \varrho}\right)$ is the transition matrix between the bases $\left(v_{k}\right)$ of \mathcal{J}^{2}. By calculating $u_{\nu} u_{\mu}$ (the images of the u_{i} under ϕ) and comparing coefficients of $\left(v_{\varrho}\right)$ (the images of the v_{k} under ϕ) we obtain equations which, in matrix form, are $C^{T} A_{\varrho} C^{\theta}=\sum_{k=1}^{t} \beta_{k \varrho} A_{k}^{\sigma}$.

The problem of determining the groups of automorphisms of our rings amounts to classifying t-tuples of linearly independent matrices $\left(A_{1}, \ldots, A_{t}\right)$ under the above relation, B, C being arbitrary invertible matrices and σ, θ being arbitrary automorphisms.

Let \mathcal{A} be the set of all t-tuples $\left(A_{1}, \ldots, A_{t}\right)$ of $s \times s$ matrices over \mathbb{F}. The group $\operatorname{GL}(s, \mathbb{F})$ acts on \mathcal{A} by "congruence":

$$
\left(A_{1}, \ldots, A_{t}\right) \cdot C=\left(C^{T} A_{1} C^{\theta}, \ldots, C^{T} A_{t} C^{\theta}\right)
$$

and on the left via

$$
B \cdot\left(A_{1}, \ldots, A_{t}\right)=\left(\beta_{11} A_{1}^{\sigma}+\cdots+\beta_{1 t} A_{t}^{\sigma}, \ldots, \beta_{t 1} A_{1}^{\sigma}+\cdots+\beta_{t t} A_{t}^{\sigma}\right)
$$

where $B=\left(\beta_{k \varrho}\right)$. Thus, these two actions are permutable and define a (left) action of $G=\operatorname{GL}(s, \mathbb{F}) \times \operatorname{GL}(t, \mathbb{F})$ on \mathcal{A} :

$$
(C, B) \cdot\left(A_{1}, \ldots, A_{t}\right)=B \cdot\left(A_{1}^{\sigma}, \ldots, A_{t}^{\sigma}\right) \cdot\left(C^{-1}\right)^{\theta}
$$

for some fixed automorphisms σ and θ. By restriction, G acts on the subset Y consisting of linearly independent t-tuples A_{1}, \ldots, A_{t}. This amounts to studying the "congruence" action (via C) of $\mathrm{GL}(s, \mathbb{F})$ on the set \mathcal{Y} of t dimensional subspaces of $\mathbb{M}_{s \times s}(\mathbb{F}), B$ just representing a change of basis in a given space. In the same way, the whole action of G on \mathcal{A} may be represented as an action of $\mathrm{GL}(t, \mathbb{F})$ on the set \mathbf{A} of subspaces of dimension $\leq t$. We may call two t-tuples in the same G-orbit equivalent.

Theorem 3.12. Let R be a ring of Theorem 2.1 with invariants p, n, r, s, t. Then

$$
\operatorname{Aut}(R) \cong\left[\mathbb{M}_{t \times s}(\mathbb{F}) \times(U \oplus V)\right] \times_{\theta_{2}}\left[\operatorname{Aut}(\mathbb{F}) \times_{\theta_{1}}(\mathrm{GL}(s, \mathbb{F}) \times \mathrm{GL}(t, \mathbb{F}))\right]
$$

Proof. Let G be the subgroup of $\operatorname{Aut}(R)$ which contains all the automorphisms φ defined by

$$
\varphi\left(r_{0}+\sum a_{i} u_{i}+\sum b_{k} v_{k}\right)=r_{0}^{\sigma}+\sum a_{i}^{\sigma} \varphi_{j}\left(u_{i}\right)+\sum b_{k}^{\sigma} \phi_{l}\left(v_{k}\right)
$$

where $\sigma \in \operatorname{Aut}(\mathbb{F}), \varphi_{j} \in \operatorname{Aut}_{\mathbb{F}}\left(U_{j}\right)$ (if $u_{i} \in U_{j}$) and $j=1, \ldots, s$, and $\phi_{l} \in \operatorname{Aut}_{\mathbb{F}}\left(V_{l}\right)\left(\right.$ if $\left.v_{k} \in V_{l}\right)$ and $l=1, \ldots, t$.

Let G_{0} be the subgroup of G which contains all the automorphisms α_{σ} such that

$$
\alpha_{\sigma}\left(r_{0}+\sum a_{i} u_{i}+\sum b_{k} v_{k}\right)=r_{0}^{\sigma}+\sum a_{i}^{\sigma} u_{i}+\sum b_{k}^{\sigma} v_{k}
$$

where $\sigma \in \operatorname{Aut}(\mathbb{F})$. Then $G_{0} \cong \operatorname{Aut}(\mathbb{F})$. Let G_{1} be the subgroup of G which contains all the automorphisms φ such that

$$
\varphi\left(r_{0}+\sum a_{i} u_{i}+\sum b_{k} v_{k}\right)=r_{0}+\sum a_{i} \varphi_{j}\left(u_{i}\right)+\sum b_{k} v_{k}
$$

where $\varphi_{j} \in \operatorname{Aut}_{\mathbb{F}}\left(U_{j}\right)$ (if $u_{i} \in U_{j}$) and $i=1, \ldots, s$; and let G_{2} be the subgroup of G which contains all the automorphisms φ such that

$$
\varphi\left(r_{0}+\sum a_{i} u_{i}+\sum b_{k} v_{k}\right)=r_{0}+\sum a_{i} u_{i}+\sum b_{k} \phi_{l}\left(v_{k}\right)
$$

where $\phi_{l} \in \operatorname{Aut}_{\mathbb{F}}\left(V_{l}\right)$ (if $v_{k} \in V_{l}$) and $k=1, \ldots, t$. Then G_{1} and G_{2} are subgroups of G and $G_{1} \times G_{2}$ is a direct product. Moreover, $G_{1} \cong \operatorname{Aut}_{\mathbb{F}}(U) \cong$ $\mathrm{GL}(s, \mathbb{F})$ and $G_{2} \cong \operatorname{Aut}_{\mathbb{F}}(V) \cong \mathrm{GL}(t, \mathbb{F})$.

Finally, let H be the subgroup of $\operatorname{Aut}(R)$ containing all the automorphisms φ defined by

$$
\varphi\left(r_{0}+\sum a_{i} u_{i}+\sum b_{k} v_{k}\right)=x\left(r_{0}+\sum a_{i} u_{i}+\sum_{\sigma_{i}=\mathrm{id}_{\mathbb{F}}} \alpha_{l i} a_{i} v_{l}+\sum b_{k} v_{k}\right) x^{-1}
$$

where $x \in 1+\mathcal{J}, a_{l i} \in \mathbb{F}$ and σ_{i} is the automorphism associated with u_{i}. Let H_{1} be the subgroup of H which contains all the automorphisms φ defined by

$$
\varphi\left(r_{0}+\sum a_{i} u_{i}+\sum b_{k} v_{k}\right)=r_{0}+\sum a_{i} u_{i}+\sum_{\sigma_{i}=\mathrm{id}_{\mathbb{F}}} \alpha_{l i} a_{i} v_{l}+\sum b_{k} v_{k}
$$

where $\alpha_{l i} \in \mathbb{F}$ and σ_{i} is the automorphism associated with u_{i}, and H_{2} be the subgroup of H which contains all the automorphisms φ such that

$$
\varphi\left(r_{0}+\sum a_{i} u_{i}+\sum b_{k} v_{k}\right)=x\left(r_{0}+\sum a_{i} u_{i}+\sum b_{k} v_{k}\right) x^{-1}
$$

where $x \in 1+\mathcal{J} \subset G_{R}$. Then it is easy to check that the direct product $H=H_{1} \times H_{2}$ and the semidirect product $G=\left(G_{1} \times G_{2}\right) \times{ }_{\theta_{2}} G_{0}$ are subgroups of $\operatorname{Aut}(R)$, where if $\varphi \in G_{1} \times G_{2}$ and $\alpha_{\sigma} \in G_{0}$, then $\theta_{2}\left(\alpha_{\sigma}\right)(\varphi)=\varphi \sigma$.

Let $\varphi \in H \cap G$. Since every element of H either fixes \mathbb{F} elementwise or sends \mathbb{F} to another maximal Galois subring of R and $\varphi \in G$, we see that φ fixes \mathbb{F} elementwise. Let $\varphi=\beta \psi_{x}$, where $\beta \in H_{1}$ and $\psi_{x} \in H_{2}$.

Since $x \in 1+\mathcal{J}$, clearly, $\varphi=\beta \psi_{x}=\beta$. Since $\beta \in G, \beta(U)=U$. But the only element of H_{1} which fixes U is the identity. Thus, $\varphi=\mathrm{id}_{R}$ and hence $H \cap G=\operatorname{id}_{R}$. Now, it is easy to see that $\operatorname{Aut}(R)=H \times_{\theta_{1}} G$, where if $\beta \psi_{x} \in H_{1}$ and $\varphi \alpha_{\sigma} \in G$, then $\theta_{1}\left(\varphi \alpha_{\sigma}\right)\left(\beta \psi_{x}\right)=\beta_{\sigma} \varphi_{\psi \alpha_{\sigma}}(x)$. It is trivial to check that the mapping $g: H_{1} \rightarrow \mathbb{M}_{t \times s}(\mathbb{F})$ given by $g\left(\beta_{M}\right)=\sum_{\sigma_{i}=\text { id }_{\mathbb{F}}} a_{l i} u_{i}$, where

$$
\beta_{M}\left(r_{0}+\sum a_{i} u_{i}+\sum b_{k} v_{k}\right)=r_{0}+\sum a_{i} u_{i}+\sum_{\sigma_{i}=\mathrm{id}_{\mathbb{F}}} a_{l i} a_{i} u_{i}+\sum b_{k} v_{k}
$$

is an isomorphism, and so, combining with $f: H_{2} \rightarrow U \oplus V$, we obtain an isomorphism $H \cong \mathbb{M}_{t \times s}(\mathbb{F}) \times(U \oplus V)$.

Hence,

$$
\operatorname{Aut}(R) \cong\left[\mathbb{M}_{t \times s}(\mathbb{F}) \times(U \oplus V)\right] \times_{\theta_{2}}\left[\operatorname{Aut}(\mathbb{F}) \times_{\theta_{1}}(\operatorname{GL}(s, \mathbb{F}) \times \operatorname{GL}(t, \mathbb{F}))\right]
$$

where

$$
\begin{aligned}
\theta_{1}(\sigma)(C, B) \cdot\left(A_{1}, \ldots, A_{t}\right) & =B \cdot\left(A_{1}^{\sigma}, \ldots, A_{t}^{\sigma}\right) \cdot\left(C^{-1}\right)^{\sigma} \\
\theta_{2}(\sigma, C, B)\left(A_{1}, \ldots, A_{t}\right) & =\left(C^{T} A_{1} C^{\theta}, \ldots, C^{T} A_{t} C^{\theta}\right)
\end{aligned}
$$

Corollary 3.13. Let R be a ring of Theorem 2.1 with invariants p, n, r, s, t. Then

$$
\begin{aligned}
|\operatorname{Aut}(R)|= & q^{t \times s} \times q^{s+t} \\
& \times r \times\left(q^{s}-q^{s-1}\right)\left(q^{s}-q^{s-2}\right) \ldots\left(q^{s}-1\right) \times\left(q^{t}-q^{t-1}\right) \ldots\left(q^{t}-1\right)
\end{aligned}
$$

Corollary 3.14. Let R be a ring of Theorem 2.1 with invariants p, n, r, s, t. If \mathbb{F} lies in the centre of R, then

$$
\operatorname{Aut}(R) \cong\left[\mathbb{M}_{t \times s}(\mathbb{F}) \times(U \oplus V)\right] \times_{\theta_{2}}[\mathrm{GL}(s, \mathbb{F}) \times \mathrm{GL}(t, \mathbb{F})]
$$

Corollary 3.15. Let R be a ring of Theorem 2.1 with invariants p, n, r, s, t. If every $\varphi \in \operatorname{Aut}(R)$ is such that $\varphi(\alpha)=\alpha$ for every $\alpha \in \mathbb{F}$, $\varphi(U)=U$ and \mathbb{F} lies in the centre of R, then

$$
\operatorname{Aut}(R) \cong \mathrm{GL}(s, \mathbb{F}) \times \mathrm{GL}(t, \mathbb{F})
$$

REFERENCES

[1] Y. Alkhamees, Finite rings in which the multiplication of any two zero-divisors is zero, Arch. Math. (Basel) 37 (1981), 144-149.
[2] C. J. Chikunji, On a class of finite rings, Comm. Algebra 27 (1999), 5049-5081.
[3] -, A classification of cube radical zero completely primary finite rings, Demonstratio Math. 38 (2005), 7-20.
[4] W. E. Clark, A coefficient ring for finite noncommutative rings, Proc. Amer. Math. Soc. 33 (1972), 25-28.
[5] R. Raghavendran, Finite associative rings, Compos. Math. 21 (1969), 195-229.
Department of Basic Sciences
Botswana College of Agriculture
P/BAG 0027, Gaborone, Botswana
E-mail: jchikunj@bca.bw

> Received 23 March 2007;
> revised 23 April 2007

[^0]: 2000 Mathematics Subject Classification: Primary 16P10, 20B25; Secondary 16L99, 12E20.

 Key words and phrases: completely primary finite rings, automorphism group, finite field.

