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A q-ANALOGUE OF COMPLETE MONOTONICITY

BY

ANNA KULA (Krakow)

Abstract. The aim of this paper is to give a g-analogue for complete monotonicity.
We apply a classical characterization of Hausdorff moment sequences in terms of positive
definiteness and complete monotonicity, adapted to the g-situation. The method due to
Maserick and Szafraniec that does not need moments turns out to be useful. A definition
of a g-moment sequence appears as a by-product.

The aim of this paper is to find a g-analogue of complete monotonicity
and relate it to an appropriate notion of g-positive definiteness as in the
classical case. It turns out that the g-positive definiteness so defined is related
to the one that has already appeared in [5] in the context of the g-oscillator.
Let us mention that, in the vast literature concerning g-commuting variables,
the paper [3] seems to be close to ours in flavour.

In the classical case positive definiteness and complete monotonicity are
related via the Hausdorff moment problem. However, in the g-situation there
is no standard understanding of moment problems. To omit this obstacle we
use the connection established by Maserick and Szafraniec. More precisely,
the paper [4]| contains a proof (of the already known result) that a sequence
{an}n is completely monotonic if and only if both {a,}, and {a, — ap+1}n
are positive definite. The novelty of the proof is that it avoids any integral
representation of {a,},. Following that method we get a characterization of
g-completely monotonic sequences in terms of g-positive definiteness.

In Section 1 we collect the basic definitions and results from [4] that we
will use. The definition of g-positive definite sequences is given and discussed
in Sections 2 and 3. In Section 4 we define g-completely monotonic sequences
and characterize them in terms of g-positive definiteness. Section 5 deals with
relations between the classical properties and their g-analogues.

We set N ={0,1,2,...}. Whenever a sequence appears it is understood
that its indices range from 0 to +oo. Unless otherwise stated, we consider
q > 0.
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1. Preliminaries. Let R be a commutative algebra with identity e and
involution *. Call a subset 7 C R admissible if the following conditions are
satisfied:

(1) z* =z for all x € 7;

(2) 1—2 € Alg™(7) for all z € 7, where Alg™ (7) is the set of all nonneg-
ative combinations of (finite) products of members of ;

(3) R = Alg(7), i.e. every x € R is a combination of (finite) products of
members of 7.

Let 7 C R be admissible. A linear functional f on R is called T-positive if
f(x) > 0 for all 2 € Alg™ (7). Following standard conventions, f is called
positive if f(z*z) > 0 for all z € R. If f is positive then we set

ot = s 2 7)
yeER f(y*y)
(0/0 =0) and we call f bounded whenever |z|f < oo for all z € R.
For all € R define the shift operator E, on the set of all linear func-
tionals on R by

THEOREM 1.1 (Maserick and Szafraniec [4]).

(1) Let f be a bounded positive linear functional on R. If T C R is
admissible and E. f is positive for all x € T, then f is T-positive.

(2) If f is T-positive for an admissible T, then f is positive and bounded
and E. f is positive for all x € T.

Take R = Lin{E,,; m € N} and 7 = {E},I — E1}, where (E,u)(n) :=
p(n+m) for a sequence {(n)},. Then the above theorem implies a classical
result: a sequence {u(n)}, is completely monotonic if and only if {u(n)},
and {p(n) — p(n + 1)}, are positive definite (see [4] for details).

One may also apply the theorem to any other admissible set 7 provided
it generates R. In particular, for 7 = {E,,,I — E,,; m € N} we get the
following implication.

COROLLARY 1.2. If {p(n)}n is completely monotonic then {u(n+m)},
and {p(n) — p(n 4+ m)}, (for all m € N) are positive definite.

2. ¢g-positive definite sequences. Recall that a (Hamburger) moment
sequence is a sequence {u(n)}, that has an integral representation of the
form

p(n) =\ t"du(t), neN,
R
where p is a Borel measure on R. According to the Hamburger theorem (cf.
[9] or [6]), a sequence {u(n)}, is a (Hamburger) moment sequence if and only
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if it is positive definite (PD), i.e. for every n € N and any scalars aq, . .., oy,

n
Z a;ap(i+ ) > 0.
i,j=0

The g-analogue of positive definite sequences is the following.

DEFINITION 1. A sequence {¢(n)}y, is called g-positive definite (¢PD) if
for all n € N and all scalars aq,..., an,,

n
Y g Yaiap(i+j) > 0.
i,j=0
REMARK. A sequence is g-positive definite in the sense of Definition 1 if

and only if it is ¢~ !-positive definite in the sense of the definition given by
Ota and Szafraniec [5].

3. g-shifts. The aim of this section is to express g-positive definiteness
in terms of some properties of the corresponding linear functional. For this,
let F be the linear space of all real sequences with the identity involution
{e(n)}: = {p(n)}n,. For each sequence {p(n)}, € F define

Frp(k) = ¢ ™ok +m).
The operator F,, : F — F will be called the g-shift.

PROPOSITION 3.1. Let R = Lin{F,,; m € N}. Then R is a commutative
algebra with identity I = Fy and involution F; = F;.

Proof. By an easy calculation we get
(1) FonFn=q¢ """ Fpin=F,F,. =

Since any linear functional f on R is uniquely determined by its values
on the basis {F,;,; m € N} via the formula

f(zanFn> = Zanf(Fn)v
f can be identified with the sequence {¢(n)}, where
p(n) = f(Fn).

PROPOSITION 3.2. A linear functional f on R is positive if and only if
the sequence {p(n)}, is q-positive definite.

Proof. 1t is sufficient to note that for p = ) «; F; we have

n n n
F0'p) = Y aiaif(FFy) = Y aiajFiFjp(0) = > aiajq i+ j). u
i,j=0 i,j=0 i.j=0
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4. g-complete monotonicity. Recall that a sequence {p(n)},, is called
completely monotonic (CM) if

k

> o (—1mHk (Z) o(n+k—m) > 0.

m=0

Another way to say this is that the (classical) mth differences, i.e.

AP o(ng) = p(no),

A(llﬂﬂ(no, Nl Mng1)
= ADo(ng;na, ...y 1m) — AV o(ng + nma1; 015 - M),
are nonnegative for all m € N and ng,...,n, € N (cf. [9], [1]).

For a sequence {¢(n)}, we define a g-generalization of mth differences
by the formula

Agip(ng) = Aéq)SO(no) = ¢(no),
Amr1o(nosna, ..., Nmy1) = Affillso(no; N1y s M)
= Ape(no;ni, ... ,nm) — ¢ "L AL 0o F N 13N e ) -

DEFINITION 2. The sequence {p(n)}, is called g-completely monotonic
(gCM) if App(no;ni,...,ny,) >0 for all m € N and nog, ..., ny, € N

The g-complete monotonicity can be expressed by means of g-shifts. Note
that for ¢ — 1 the definition above leads to the classical one.

PROPOSITION 4.1.

App(no;ni, ..., nm) = Fp, H(I — Fy,.)e(0)  for all m,ng,...,ny, € N.
k=1

Proof. By induction on m, for any ng,...,n, € N we see that
Apg1p(no;na, ...y Nunt1)
= Ape(no;ni, ... ,nm) — ¢ "L AL (R0 + N 13N, -2 M)
m m
H (I = Fn)p(0) — g 0"t Ey, no+nm41 H(I — Fr)e(0)
k=1 k=1
m m—+1
= (Fuo = FroFupin) [ [ = Fu)#(0) = Fog [ (1 = Fo)(0)- m
k=1 k=1

The formula above, which is the g-analogue of the formula in the classical
case (see |4]), gives a description of the linear functionals corresponding to
the ¢gCM sequences.
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PROPOSITION 4.2. A sequence {p(n)}, is g-completely monotonic if and

only if the corresponding functional f is T-positive with respect to the set
T={F,I — F,; meN}

Proof. 1. First, we show that 7 is admissible. Condition (1) in the defi-
nition of an admissible set is obvious, while the other two conditions follow
from the fact

Fp=q' ™ VR F, = ¢E IR R = gD E R e AlgT (7).

2. Suppose {p(n)}, is gCM. Let f be the linear functional correspond-
ing to the sequence {¢(n)}, via the formula f(F,) = ¢(n) = F,»(0). By
Proposition 4.1, for all m,ng,...,n, € N we have

I (oo TTUT = Fu)) = Fu [TU = Fu)o(0) 2 0,
k=1

k=1

hence f is positive on every finite product of members of 7. So for x in
Alg™(7), i.e

n m;
T = Zaimi, where «; >0, z; = F""" H(I Foy.),
i=1 k=1

we get
= f(ZaiSCi) = Zaif(ﬂ%) >0
i=1 i=1

Therefore f is 7-positive.

3. Suppose now that f is T-positive with respect to 7 = {F1,I — Fp;;
m € N}. Then

Amp(no;ni, ..., nm H (I —F,,)¢(0)= f(FnO H(I_Fnk)>
k=1 k=1
= grolro=0/2f (Fpo ﬁ([ —Fp)) > 0. m
k=1

Now we state the main theorem which gives a characterization of g-
completely monotonic sequences in terms of g-positive definiteness.

THEOREM 4.3. A sequence {p(n)}, is ¢CM if and only if the sequences

{e(n)}n, {a"o(n+1)}n and {o(n) — ¢ ""p(n + m)}n, for all m € N, are
qPD.

Proof. Suppose {¢(n)}, is gCM. It follows from Proposition 4.2 that the
functional f on R given by

f(Fn) = Fn@(o) = 90(77’)
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is 7-positive with respect to the admissible set 7 = {Fy,I — F,,; m € N}.
Then Theorem 1.1 states that f is positive and bounded and E, f is positive
for every x € 7. The positivity of f means (see Proposition 3.2) that {¢(n)},
is ¢PD.

Ifx=F andy=>,oF €R, then

0<Ef(y'y) = Y aicif(FLFiFy) = Y g W aja;f(Fiyjin)
i,j=0 i,j=0

Z ¢ Taalqg” i 4 5+ 1))

Thus {¢ "¢(n + 1)}, is ¢PD.
Let now 2 =1 — F, € T and set y = > " 1aiF' € R. Then

0 < E.f(y"y) Z i f((I — F) FiF}) Z o f(FiFy — Fy, FyFj)
7] 0 ,] 0
= > g i f(Firg) = Y ¢ T "o, f(Fiyjym)
,j=0 ,j=0

n
=Y a Paiaglp(i+4) — g (i + j + m)),
i,j=0
hence {¢(n) — ¢ " p(n +m)}, is ¢PD.
Suppose the converse, i.e. {(n)}, is such that

(aCM1) {¢(n)}n is ¢PD,
(aCM2) {a7"p(n+1)}n is ¢PD,
(aCM3) Vmen {p(n) — ¢ """ p(n+m)}y is ¢PD.

Let f be the linear functional corresponding to {¢(n)}, as before. Condition
(qCM1) implies that f is positive, while the other two conditions and the
calculations above imply positivity of E, f for every x € 7. Now, it is enough
to show that f is bounded. If this is the case, Theorem 1.1 shows that f is
T-positive, which is equivalent to {¢(n)}, being gCM.

For m € N put oy, = 1 and «; = 0 for ¢ # m. Then (qCM1) states that

n
T em) = 3 iy g (i) =0 forn >m,
$,j=0
while (¢qCM2) means that

n
¢ P o2m +1) = Y aia;g T p(i4j+1) >0 for n>m.
,7=0
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Finally, for every m € N, n > m and a9 = 1, o; = 0 for i € {1,...,n}
condition (qCM3) gives

0(0) =g "p(m) = > iy q i+ §) — g (i + j 4+ m)] > 0,
ij—0

Thus |f(Fm)| = |p(m)] < ¢(0), i.e. fis bounded. =

5. Relation between complete monotonicity and g-complete mo-
notonicity. In this section we investigate the relations between the classical
and g-properties. It turns out that a description of the class of g-positive defi-
nite sequences in terms of some integral representation can be easily obtained
due to the Hamburger theorem. A description of g-completely monotonic se-
quences is not so apparent, though possible as well. We start with the easier
observation.

PROPOSITION 5.1. A sequence {¢n}n is ¢PD if and only if the sequence
{Mn}m where i, = q_n(n_l)ﬂ@n, 1s PD.

Proof. This follows from
N

N
Z U G florm g = Z anamq_(m+”)(m+”_1)/2¢m+n

n,m=0 n,m=0

N
— Z anamqu(mf1)/2q7n(n71)/2q7mngom+n

n,m=0
N
_ Z (q—n(n—l)/Qan)(q—m(m—l)/Qam)q—mn(pm+n

n,m=0

N
= Z by bmq_mn@m—i-ny

n,m=0
where N € N and b,, = q_”("_l)/2an. n
This proposition together with the Hamburger theorem gives us a de-

scription of the class of g-positive definite sequences.

COROLLARY 5.2. Any g-positive definite sequence may be represented in
the form
on =\ """V du(t), neN,
R
where | 18 a representing measure for the sequence {q_”(”_l)/Qcpn}n.

We now deal with the question whether a similar description (with mea-
sure concentrated on some compact interval) is true for g-complete mono-
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tonic sequences. One implication may be shown by direct calculation in case
q € (0,1).

PROPOSITION 5.3. Let ¢ € (0,1). If a sequence {un}n is CM, then
{g"" V2, ), is qOM.

Proof. Define ¢, = ¢"("=1/2,, - According to the classical theory of
moment sequences we know that {1, },, and {y, — fin+1}n are PD. Moreover,
Corollary 1.2 states that for every k € N the sequences {1 }n and {p, —
Untk tn are PD as well. By Proposition 5.1, the first condition is equivalent
to g-positive definiteness of {py, }5.

Now we show that positive definiteness of {41}y is equivalent to g-
positive definiteness of {¢"¢vp+1}n-

Observe that for all n,m,k € N we have

1
—(n+m+k)(n+m+k—1)

2
nin—1 m(m —1 k(k—1
= ( )—i- ( )—i- ( )+nm+k(n+m).
2 2 2
Thus for every k € N,
N
Z QnQm m+n+k
n,m=0
N
_ Z anamq—(m+n+k)(m+n+k—1)/290m+n+k
n,m=0

N
_ Z anamq—m(m—l)/Qq—n(n—1)/2q—k;(k;—1)/2q—mn_(n+m)k

= Pm+n+k
n,m=0
N
_ q—k(k—l)/Q Z (q—n(n—l)/2an) (q—m(m—1)/2am)q—mn—(m+n)k¢m+n+k
n,m=0

N
:q—k(k—l)/Q Z bnbmq_mnq_(m+n)k@m+n+ka

n,m=0

where N € N and b,, = ¢-"(»=1/2q,,. In particular, for k = 1 the aforesaid
equivalence is true. Moreover, if {ju,}, is completely monotonic, then

N N
(2) Z bnbmq_mnq_(m+n)k¢m+n+k = qk(k_l)/Q Z QnQm m+n+k Z 0.

n,m=0 n,m=0
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Finally, observe that

N N N
Z bnbmq_mn(Pm—l-n = Z Qn G fhmtn = Z A Qm P +n+k
n,m=0 n,m n,m
N
— k k—1)/2
= Zanamq (metntk)(mtnth=1)/2,
n,m

N
_ Z(q—m(m—l)/Qan) (q—n(n—1)/2am)q—mn—k(m—&-n)q—k(k—1)/290m+n+]c

N
— qfk(kfl)/2 Z bnbmquank(mqtn) Ormtntk

N
> Z bnbmq_mnq_k(m+n)¢m+n+ka
n,m

The last inequality follows from (2) and the fact that ¢~ *(#~1/2 > 1 for
q € (0,1). This means that

N
Z bnbmq_mn [(Pern - q—k(m+n)¢m+n+k] 2 0.
n,m

Summarizing, we have shown that {¢,}, is ¢PD, {¢ "¢vn+t1}n is ¢PD and
for all m € N, {¢n, — ¢ " Yntm}n is ¢PD. According to Theorem 4.3 this is
equivalent to the fact that {¢,}, is ¢qCM. u

To get the opposite implication, we need more advanced arguments: the
RKHS technique used as in [5] and [7] (for more on this subject see [8]). This
yields the result for all ¢ > 0.

THEOREM 5.4. If a sequence {¢n}n is qCM, then there exists a measure
w on [0,1] such that
on =\ """Vt dp(t), neN.
[0,1]

Proof. By Theorem 4.3 the sequence {¢, }, satisfies conditions (qCM1)—
(qCM3). Define the kernel on N by the formula

K(”v m) = q_mnganrmv n,m & N.
The assumption (qCM1) means that this kernel is positive definite, i.e.
N —
> K(nm)Andm >0, Xo,...,Ay €C, NeN.

n,m=0



178 A. KULA

The factorization theorem of Aronszajn (cf. [8], for example) implies that
there exists a Hilbert space ‘H and a mapping N > n — ~,, € H such that

H =Lin{y,; n €N},  K(n,m) = (yn,m)-

Next, we set

D:=Lin{y,;neN}, T:D> Zan’yn — Zanq_”'ynﬂ eD.
n n

Observe that for u = ijzl oY and v = ZnN:1 Bnyn we have

Tu 1) < Z anq ’}/n-i,-l, Z /6m7m> Z anfmq " 7n+17 ’Ym)

= Z g " g 1 = Z g ™

n,m

= Z anﬂmq 'an 'Ym+1> <u, TU)'

Now, suppose v = anzl Bnyn = 0. Then for every 7, we have (T'v,yg) =
(v, Ty = 0, so Tw is orthogonal to the total set {~,; n € N} and must be
zero. This means that T is well-defined and symmetric.

The operator T is obviously densely defined (D dense in H) and closable,
being a symmetric operator. It is easy to see that 7" has a cyclic vector 7.

Indeed,

Ty = q_”("_l)/2'yn n € N.

Since the operator T is closed, symmetric and has a cyclic vector, it
admits a self-adjoint extension S in the same space H (cf. [2]). Thus by the
spectral theorem for self-adjoint operators (cf. |2]) there exists a spectral
measure F such that

S =\tdE(®).
R
Moreover,
sm = |t dE(t).
R
Now we define (o) := (E(0)70,70) for all Borel sets o C R. Then

@n = (Tn,70) = (@ V2Tg, 70) = ¢ H/2(8 0, v0)

= "V AE (t)70,70) = [ gD dpe).
R R

Now we show that S > 0, or equivalently that the measure p is concen-
trated on [0, 00). For this, let u = 3> apy,. By (qCM2) we have
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Su U <Z Qnq ’Yn—f—h Z O‘m’Ym> Z QAnQmq ’Yn+17 7m>

m,n=1

Z nCim( —n— m(n+1)(;0n+m+1 _ Z anamq_mnq_(n+m)@n+m+l > 0.

m,n=1 m,n=1

To prove that the measure is concentrated on [0, 1] we only need to show
that ||S]| < 1. Since {¢n — ¢ "@nt1} is ¢PD (see (qCM3) for m = 1), we
have

N
Z anamq_mnq_(n+m)()@n+m+1 S Z anamq_mn@n—i—m-
m,n=1 m,n=1

Thus for u = ZnNzl QanYn We get

N N
(Su7u> = <Zanqin7n+1a Z am7m> Z ApQmq ’Yn—i-l ’Ym>
n=1 m=1

m,n=1
N

- Z a”amq_n_m(n+1)@n+m+1

m,n=1
N

= Z Qn amq—mnq—(n—i-m) Prn4+m+1

m,n=1

< Z anmq " Oppm = (u,u)

m,n=1
This gives the operator inequality 0 < .S < I and therefore ||S]| < 1. m

COROLLARY 5.5. Let ¢ € (0,1). For a sequence {¢n}n the following
conditions are equivalent:

(1) {en}n is ¢CM,

(2) {g7"" D P} is OM,

(3) there exists a measure p on [0, 1] such that

Op = S Y2 aut), neN.
[0,1]

Proof. The implications (2)=-(1)=-(3) follow from Proposition 5.3 and

Theorem 5.4, while (3)=(2) is a consequence of the Hausdorff theorem which

states that a sequence admits an integral representation with a measure
concentrated on [0,1] if and only if it is completely monotonic ([9]). =

REMARK. Observe that the first part of the proof of Theorem 5.4 gives
the implication (already proved in Corollary 5.2) that if a sequence {py,} is
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g-positive definite then it may be represented in the form
on = a1 (),
R
The result above suggests the following definition of ¢-moment sequences.

DEFINITION 3. Call {¢,}, a g-moment sequence if there exists a Borel
measure p on some set X C R such that

On = S YV aut), neN.
X
REMARK. In the general case (for ¢ > 0) the relations between conditions
(1)—(3) in Corollary 5.5 are as follows:
(1)=(2)=(3)
and cannot be improved for ¢ > 1. Indeed, a weighted sequence need not be
qCM even if a classical sequence is CM. For example, take the sequence
1
op = Sq”("_l)/zt" dt, neN,
0
corresponding to Lebesgue measure. Then {¢, }, is not gCM.
Suppose to the contrary that for all n,m =0,..., N and k € N we have

0< Z an@mq """ [Pmtn — q_(n+m)k90n+m+k]
n,m

_ § (1— qk(k—l)/2tk)(z qn(n—l)/Qantn)2 "

0 n

Now choose i = k and set a; = ¢ **+=1/2 g, =0 for n # i. Then
§ [1— ghk=1/24k72k gy
0

and hence ¢**~1/2 < 1 + k/(2k +1). But if & — oo then the right hand

side tends to 3/2 while the left hand side tends to +oc.

_ qk;(k;—l)/Q

- — >0,
2k +1 3k+1 7~
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