
COLLOQU IUM MATHEMAT I CUMVOL. 111 2008 NO. 2

A q-ANALOGUE OF COMPLETE MONOTONICITYBYANNA KULA (Kraków)Abstra
t. The aim of this paper is to give a q-analogue for 
omplete monotoni
ity.We apply a 
lassi
al 
hara
terization of Hausdor� moment sequen
es in terms of positivede�niteness and 
omplete monotoni
ity, adapted to the q-situation. The method due toMaseri
k and Szafranie
 that does not need moments turns out to be useful. A de�nitionof a q-moment sequen
e appears as a by-produ
t.The aim of this paper is to �nd a q-analogue of 
omplete monotoni
ityand relate it to an appropriate notion of q-positive de�niteness as in the
lassi
al 
ase. It turns out that the q-positive de�niteness so de�ned is relatedto the one that has already appeared in [5℄ in the 
ontext of the q-os
illator.Let us mention that, in the vast literature 
on
erning q-
ommuting variables,the paper [3℄ seems to be 
lose to ours in �avour.In the 
lassi
al 
ase positive de�niteness and 
omplete monotoni
ity arerelated via the Hausdor� moment problem. However, in the q-situation thereis no standard understanding of moment problems. To omit this obsta
le weuse the 
onne
tion established by Maseri
k and Szafranie
. More pre
isely,the paper [4℄ 
ontains a proof (of the already known result) that a sequen
e
{an}n is 
ompletely monotoni
 if and only if both {an}n and {an − an+1}nare positive de�nite. The novelty of the proof is that it avoids any integralrepresentation of {an}n. Following that method we get a 
hara
terization of
q-
ompletely monotoni
 sequen
es in terms of q-positive de�niteness.In Se
tion 1 we 
olle
t the basi
 de�nitions and results from [4℄ that wewill use. The de�nition of q-positive de�nite sequen
es is given and dis
ussedin Se
tions 2 and 3. In Se
tion 4 we de�ne q-
ompletely monotoni
 sequen
esand 
hara
terize them in terms of q-positive de�niteness. Se
tion 5 deals withrelations between the 
lassi
al properties and their q-analogues.We set N = {0, 1, 2, . . .}. Whenever a sequen
e appears it is understoodthat its indi
es range from 0 to +∞. Unless otherwise stated, we 
onsider
q > 0.2000 Mathemati
s Subje
t Classi�
ation: Primary 44A60; Se
ondary 05A30, 43A35,47B32.Key words and phrases: moment problems, positive de�niteness, 
omplete monotoni-
ity, q-
al
ulus, reprodu
ing kernel, symmetri
 operators, selfadjoint extensions.[169℄ 
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1. Preliminaries. Let R be a 
ommutative algebra with identity e andinvolution ∗. Call a subset τ ⊂ R admissible if the following 
onditions aresatis�ed:(1) x∗ = x for all x ∈ τ ;(2) 1−x ∈ Alg+(τ) for all x ∈ τ , where Alg+(τ) is the set of all nonneg-ative 
ombinations of (�nite) produ
ts of members of τ ;(3) R = Alg(τ), i.e. every x ∈ R is a 
ombination of (�nite) produ
ts ofmembers of τ .Let τ ⊂ R be admissible. A linear fun
tional f on R is 
alled τ -positive if

f(x) ≥ 0 for all x ∈ Alg+(τ). Following standard 
onventions, f is 
alledpositive if f(x∗x) ≥ 0 for all x ∈ R. If f is positive then we set
|x|2f = sup

y∈R

f(x∗xy∗y)

f(y∗y)(0/0 = 0) and we 
all f bounded whenever |x|f < ∞ for all x ∈ R.For all x ∈ R de�ne the shift operator Ex on the set of all linear fun
-tionals on R by
Exf(y) = f(xy), y ∈ R.Theorem 1.1 (Maseri
k and Szafranie
 [4℄).(1) Let f be a bounded positive linear fun
tional on R. If τ ⊂ R isadmissible and Exf is positive for all x ∈ τ , then f is τ -positive.(2) If f is τ -positive for an admissible τ , then f is positive and boundedand Exf is positive for all x ∈ τ .Take R = Lin{Em; m ∈ N} and τ = {E1, I − E1}, where (Emµ)(n) :=

µ(n+m) for a sequen
e {µ(n)}n. Then the above theorem implies a 
lassi
alresult: a sequen
e {µ(n)}n is 
ompletely monotoni
 if and only if {µ(n)}nand {µ(n) − µ(n + 1)}n are positive de�nite (see [4℄ for details).One may also apply the theorem to any other admissible set τ providedit generates R. In parti
ular, for τ = {Em, I − Em; m ∈ N} we get thefollowing impli
ation.Corollary 1.2. If {µ(n)}n is 
ompletely monotoni
 then {µ(n + m)}nand {µ(n) − µ(n + m)}n (for all m ∈ N) are positive de�nite.2. q-positive de�nite sequen
es. Re
all that a (Hamburger) momentsequen
e is a sequen
e {µ(n)}n that has an integral representation of theform
µ(n) =

\
R

tn dµ(t), n ∈ N,where µ is a Borel measure on R. A

ording to the Hamburger theorem (
f.[9℄ or [6℄), a sequen
e {µ(n)}n is a (Hamburger) moment sequen
e if and only
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if it is positive de�nite (PD), i.e. for every n ∈ N and any s
alars α1, . . . , αn,

n
∑

i,j=0

αiαjµ(i + j) ≥ 0.

The q-analogue of positive de�nite sequen
es is the following.Definition 1. A sequen
e {ϕ(n)}n is 
alled q-positive de�nite (qPD) iffor all n ∈ N and all s
alars α1, . . . , αn,
n

∑

i,j=0

q−ijαiαjϕ(i + j) ≥ 0.

Remark. A sequen
e is q-positive de�nite in the sense of De�nition 1 ifand only if it is q−1-positive de�nite in the sense of the de�nition given byÔta and Szafranie
 [5℄.3. q-shifts. The aim of this se
tion is to express q-positive de�nitenessin terms of some properties of the 
orresponding linear fun
tional. For this,let F be the linear spa
e of all real sequen
es with the identity involution
{ϕ(n)}∗n = {ϕ(n)}n. For ea
h sequen
e {ϕ(n)}n ∈ F de�ne

Fmϕ(k) := q−mkϕ(k + m).The operator Fm : F → F will be 
alled the q-shift.Proposition 3.1. Let R = Lin{Fm; m ∈ N}. Then R is a 
ommutativealgebra with identity I = F0 and involution F ∗
i = Fi.Proof. By an easy 
al
ulation we get(1) FmFn = q−nmFm+n = FnFm.Sin
e any linear fun
tional f on R is uniquely determined by its valueson the basis {Fm; m ∈ N} via the formula

f
(

∑

αnFn

)

=
∑

αnf(Fn),

f 
an be identi�ed with the sequen
e {ϕ(n)}n where
ϕ(n) = f(Fn).Proposition 3.2. A linear fun
tional f on R is positive if and only ifthe sequen
e {ϕ(n)}n is q-positive de�nite.Proof. It is su�
ient to note that for p =

∑

αiFi we have
f(p∗p) =

n
∑

i,j=0

αiαjf(F ∗
i Fj) =

n
∑

i,j=0

αiαjFiFjϕ(0) =
n

∑

i,j=0

αiαj q−ijϕ(i + j).
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4. q-
omplete monotoni
ity. Re
all that a sequen
e {ϕ(n)}n is 
alled
ompletely monotoni
 (CM) if

k
∑

m=0

(−1)m+k

(

k

m

)

ϕ(n + k − m) ≥ 0.Another way to say this is that the (
lassi
al) mth di�eren
es, i.e.
∆

(1)
0 ϕ(n0) = ϕ(n0),

∆
(1)
m+1ϕ(n0; n1, . . . , nm+1)

= ∆(1)
m ϕ(n0; n1, . . . , nm) − ∆(1)

m ϕ(n0 + nm+1; n1, . . . , nm),are nonnegative for all m ∈ N and n0, . . . , nm ∈ N (
f. [9℄, [1℄).For a sequen
e {ϕ(n)}n we de�ne a q-generalization of mth di�eren
esby the formula
∆0ϕ(n0) = ∆

(q)
0 ϕ(n0) = ϕ(n0),

∆m+1ϕ(n0; n1, . . . , nm+1) = ∆
(q)
m+1ϕ(n0; n1, . . . , nm+1)

= ∆mϕ(n0; n1, . . . , nm) − q−n0nm+1∆mϕ(n0 + nm+1; n1, . . . , nm).Definition 2. The sequen
e {ϕ(n)}n is 
alled q-
ompletely monotoni
(qCM) if ∆mϕ(n0; n1, . . . , nm) ≥ 0 for all m ∈ N and n0, . . . , nm ∈ N.The q-
omplete monotoni
ity 
an be expressed by means of q-shifts. Notethat for q → 1 the de�nition above leads to the 
lassi
al one.Proposition 4.1.
∆mϕ(n0; n1, . . . , nm) = Fn0

m
∏

k=1

(I − Fnk
)ϕ(0) for all m, n0, . . . , nm ∈ N.Proof. By indu
tion on m, for any n0, . . . , nm ∈ N we see that

∆m+1ϕ(n0; n1, . . . , nm+1)

= ∆mϕ(n0; n1, . . . , nm) − q−n0nm+1∆mϕ(n0 + nm+1; n1, . . . , nm)

= Fn0

m
∏

k=1

(I − Fnk
)ϕ(0) − q−n0nm+1Fn0+nm+1

m
∏

k=1

(I − Fnk
)ϕ(0)

= (Fn0
− Fn0

Fnm+1
)

m
∏

k=1

(I − Fnk
)ϕ(0) = Fn0

m+1
∏

k=1

(I − Fnk
)ϕ(0).The formula above, whi
h is the q-analogue of the formula in the 
lassi
al
ase (see [4℄), gives a des
ription of the linear fun
tionals 
orresponding tothe qCM sequen
es.
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Proposition 4.2. A sequen
e {ϕ(n)}n is q-
ompletely monotoni
 if andonly if the 
orresponding fun
tional f is τ -positive with respe
t to the set
τ = {F1, I − Fm; m ∈ N}.Proof. 1. First, we show that τ is admissible. Condition (1) in the de�-nition of an admissible set is obvious, while the other two 
onditions followfrom the fa
t
Fm = q1(m−1)F1Fm−1 = q

∑m−1

j=1
jF1 . . . F1 = qm(m−1)/2F1 . . . F1 ∈ Alg+(τ).2. Suppose {ϕ(n)}n is qCM. Let f be the linear fun
tional 
orrespond-ing to the sequen
e {ϕ(n)}n via the formula f(Fn) = ϕ(n) = Fnϕ(0). ByProposition 4.1, for all m, n0, . . . , nm ∈ N we have

f
(

Fn0

m
∏

k=1

(I − Fnk
)
)

= Fn0

m
∏

k=1

(I − Fnk
)ϕ(0) ≥ 0,hen
e f is positive on every �nite produ
t of members of τ . So for x in

Alg+(τ), i.e.
x =

n
∑

i=1

αixi, where αi ≥ 0, xi = F
n0,i

1

mi
∏

k=1

(I − Fnk,i
),we get

f(x) = f
(

n
∑

i=1

αixi

)

=

n
∑

i=1

αif(xi) ≥ 0.Therefore f is τ -positive.3. Suppose now that f is τ -positive with respe
t to τ = {F1, I − Fm;
m ∈ N}. Then

∆mϕ(n0; n1, . . . , nm) = Fn0

m
∏

k=1

(I − Fnk
)ϕ(0) = f

(

Fn0

m
∏

k=1

(I − Fnk
)
)

= qn0(n0−1)/2f
(

Fn0

1

m
∏

k=1

(I − Fnk
)
)

≥ 0.Now we state the main theorem whi
h gives a 
hara
terization of q-
ompletely monotoni
 sequen
es in terms of q-positive de�niteness.Theorem 4.3. A sequen
e {ϕ(n)}n is qCM if and only if the sequen
es
{ϕ(n)}n, {q−nϕ(n + 1)}n and {ϕ(n)− q−nmϕ(n + m)}n, for all m ∈ N, are
qPD.Proof. Suppose {ϕ(n)}n is qCM. It follows from Proposition 4.2 that thefun
tional f on R given by

f(Fn) = Fnϕ(0) = ϕ(n)
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is τ -positive with respe
t to the admissible set τ = {F1, I − Fm; m ∈ N}.Then Theorem 1.1 states that f is positive and bounded and Exf is positivefor every x ∈ τ . The positivity of f means (see Proposition 3.2) that {ϕ(n)}nis qPD.If x = F1 and y =

∑n
i=1 αiFi ∈ R, then

0 ≤ Exf(y∗y) =
n

∑

i,j=0

αiαjf(F1FiFj) =
n

∑

i,j=0

q−(ij+i+j)αiαjf(Fi+j+1)

=
n

∑

i,j=0

q−ijαiαj [q
−(i+j)ϕ(i + j + 1)].

Thus {q−nϕ(n + 1)}n is qPD.Let now x = I − Fm ∈ τ and set y =
∑n

i=1 αiFi ∈ R. Then
0 ≤ Exf(y∗y) =

n
∑

i,j=0

αiαjf((I − Fm)FiFj) =
n

∑

i,j=0

αiαjf(FiFj − FmFiFj)

=

n
∑

i,j=0

q−ijαiαjf(Fi+j) −

n
∑

i,j=0

q−ij−m(i+j)αiαjf(Fi+j+m)

=

n
∑

i,j=0

q−ijαiαj [ϕ(i + j) − q−m(i+j)ϕ(i + j + m)],

hen
e {ϕ(n) − q−nmϕ(n + m)}n is qPD.Suppose the 
onverse, i.e. {ϕ(n)}n is su
h that
{ϕ(n)}n is qPD,(qCM1)
{q−nϕ(n + 1)}n is qPD,(qCM2)
∀m∈N {ϕ(n) − q−nmϕ(n + m)}n is qPD.(qCM3)Let f be the linear fun
tional 
orresponding to {ϕ(n)}n as before. Condition(qCM1) implies that f is positive, while the other two 
onditions and the
al
ulations above imply positivity of Exf for every x ∈ τ . Now, it is enoughto show that f is bounded. If this is the 
ase, Theorem 1.1 shows that f is

τ -positive, whi
h is equivalent to {ϕ(n)}n being qCM.For m ∈ N put αm = 1 and αi = 0 for i 6= m. Then (qCM1) states that
q−m2

ϕ(2m) =
n

∑

i,j=0

αiαj q−ijϕ(i + j) ≥ 0 for n ≥ m,while (qCM2) means that
q−(2m+m2)ϕ(2m + 1) =

n
∑

i,j=0

αiαj q−ij−i−jϕ(i + j + 1) ≥ 0 for n ≥ m.
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Finally, for every m ∈ N, n ≥ m and α0 = 1, αi = 0 for i ∈ {1, . . . , n}
ondition (qCM3) gives
ϕ(0) − q−0·mϕ(m) =

n
∑

i,j=0

αiαj q−ij[ϕ(i + j) − q−(i+j)mϕ(i + j + m)] ≥ 0.Thus |f(Fm)| = |ϕ(m)| ≤ ϕ(0), i.e. f is bounded.5. Relation between 
omplete monotoni
ity and q-
omplete mo-notoni
ity. In this se
tion we investigate the relations between the 
lassi
aland q-properties. It turns out that a des
ription of the 
lass of q-positive de�-nite sequen
es in terms of some integral representation 
an be easily obtaineddue to the Hamburger theorem. A des
ription of q-
ompletely monotoni
 se-quen
es is not so apparent, though possible as well. We start with the easierobservation.Proposition 5.1. A sequen
e {ϕn}n is qPD if and only if the sequen
e
{µn}n, where µn = q−n(n−1)/2ϕn, is PD.Proof. This follows from

N
∑

n,m=0

anamµm+n =
N

∑

n,m=0

anamq−(m+n)(m+n−1)/2ϕm+n

=
N

∑

n,m=0

anamq−m(m−1)/2q−n(n−1)/2q−mnϕm+n

=

N
∑

n,m=0

(q−n(n−1)/2an)(q−m(m−1)/2am)q−mnϕm+n

=
N

∑

n,m=0

bnbmq−mnϕm+n,

where N ∈ N and bn = q−n(n−1)/2an.This proposition together with the Hamburger theorem gives us a de-s
ription of the 
lass of q-positive de�nite sequen
es.Corollary 5.2. Any q-positive de�nite sequen
e may be represented inthe form
ϕn =

\
R

qn(n−1)/2tn dµ(t), n ∈ N,where µ is a representing measure for the sequen
e {q−n(n−1)/2ϕn}n.We now deal with the question whether a similar des
ription (with mea-sure 
on
entrated on some 
ompa
t interval) is true for q-
omplete mono-
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toni
 sequen
es. One impli
ation may be shown by dire
t 
al
ulation in 
ase
q ∈ (0, 1).Proposition 5.3. Let q ∈ (0, 1). If a sequen
e {µn}n is CM , then
{qn(n−1)/2µn}n is qCM.Proof. De�ne ϕn = qn(n−1)/2µn. A

ording to the 
lassi
al theory ofmoment sequen
es we know that {µn}n and {µn−µn+1}n are PD. Moreover,Corollary 1.2 states that for every k ∈ N the sequen
es {µn+k}n and {µn −
µn+k}n are PD as well. By Proposition 5.1, the �rst 
ondition is equivalentto q-positive de�niteness of {ϕn}n.Now we show that positive de�niteness of {µn+1}n is equivalent to q-positive de�niteness of {q−nϕn+1}n.Observe that for all n, m, k ∈ N we have

1

2
(n + m + k)(n + m + k − 1)

=
n(n − 1)

2
+

m(m − 1)

2
+

k(k − 1)

2
+ nm + k(n + m).Thus for every k ∈ N,

N
∑

n,m=0

anamµm+n+k

=

N
∑

n,m=0

anamq−(m+n+k)(m+n+k−1)/2ϕm+n+k

=
N

∑

n,m=0

anamq−m(m−1)/2q−n(n−1)/2q−k(k−1)/2q−mn−(n+m)kϕm+n+k

= q−k(k−1)/2
N

∑

n,m=0

(q−n(n−1)/2an)(q−m(m−1)/2am)q−mn−(m+n)kϕm+n+k

= q−k(k−1)/2
N

∑

n,m=0

bnbmq−mnq−(m+n)kϕm+n+k,

where N ∈ N and bn = q−n(n−1)/2an. In parti
ular, for k = 1 the aforesaidequivalen
e is true. Moreover, if {µn}n is 
ompletely monotoni
, then
(2) N

∑

n,m=0

bnbmq−mnq−(m+n)kϕm+n+k = qk(k−1)/2
N

∑

n,m=0

anamµm+n+k ≥ 0.
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Finally, observe that
N

∑

n,m=0

bnbmq−mnϕm+n =

N
∑

n,m

anamµm+n ≥

N
∑

n,m

anamµm+n+k

=
N

∑

n,m

anamq−(m+n+k)(m+n+k−1)/2ϕm+n+k

=

N
∑

n,m

(q−m(m−1)/2an)(q−n(n−1)/2am)q−mn−k(m+n)q−k(k−1)/2ϕm+n+k

= q−k(k−1)/2
N

∑

n,m

bnbmq−mnq−k(m+n)ϕm+n+k

≥
N

∑

n,m

bnbmq−mnq−k(m+n)ϕm+n+k,The last inequality follows from (2) and the fa
t that q−k(k−1)/2 ≥ 1 for
q ∈ (0, 1). This means that

N
∑

n,m

bnbmq−mn[ϕm+n − q−k(m+n)ϕm+n+k] ≥ 0.Summarizing, we have shown that {ϕn}n is qPD, {q−nϕn+1}n is qPD andfor all m ∈ N, {ϕn − q−nmϕn+m}n is qPD. A

ording to Theorem 4.3 this isequivalent to the fa
t that {ϕn}n is qCM.To get the opposite impli
ation, we need more advan
ed arguments: theRKHS te
hnique used as in [5℄ and [7℄ (for more on this subje
t see [8℄). Thisyields the result for all q > 0.Theorem 5.4. If a sequen
e {ϕn}n is qCM , then there exists a measure
µ on [0, 1] su
h that

ϕn =
\

[0,1]

qn(n−1)/2tn dµ(t), n ∈ N.

Proof. By Theorem 4.3 the sequen
e {ϕn}n satis�es 
onditions (qCM1)�(qCM3). De�ne the kernel on N by the formula
K(n, m) := q−mnϕn+m, n, m ∈ N.The assumption (qCM1) means that this kernel is positive de�nite, i.e.

N
∑

n,m=0

K(n, m)λnλ̄m ≥ 0, λ0, . . . , λN ∈ C, N ∈ N.
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The fa
torization theorem of Aronszajn (
f. [8℄, for example) implies thatthere exists a Hilbert spa
e H and a mapping N ∋ n 7→ γn ∈ H su
h that

H = Lin{γn; n ∈ N}, K(n, m) = 〈γn, γm〉.Next, we set
D := Lin{γn; n ∈ N}, T : D ∋

∑

n

αnγn 7→
∑

n

αnq−nγn+1 ∈ D.

Observe that for u =
∑N

n=1 αnγn and v =
∑N

n=1 βnγn we have
〈Tu, v〉 =

〈

∑

n

αnq−nγn+1,
∑

m

βmγm

〉

=
∑

n,m

αnβmq−n〈γn+1, γm〉

=
∑

n,m

αnβmq−nq−(n+1)mϕn+m+1 =
∑

n,m

αnβmq−m−n(m+1)ϕn+m+1

=
∑

n,m

αnβmq−m〈γn, γm+1〉 = 〈u, Tv〉.

Now, suppose v =
∑N

n=1 βnγn = 0. Then for every γk, we have 〈Tv, γk〉 =
〈v, Tγk〉 = 0, so Tv is orthogonal to the total set {γn; n ∈ N} and must bezero. This means that T is well-de�ned and symmetri
.The operator T is obviously densely de�ned (D dense in H) and 
losable,being a symmetri
 operator. It is easy to see that T has a 
y
li
 ve
tor γ0.Indeed,

Tnγ0 = q−n(n−1)/2γn, n ∈ N.Sin
e the operator T is 
losed, symmetri
 and has a 
y
li
 ve
tor, itadmits a self-adjoint extension S in the same spa
e H (
f. [2℄). Thus by thespe
tral theorem for self-adjoint operators (
f. [2℄) there exists a spe
tralmeasure E su
h that
S =

\
R

t dE(t).Moreover,
Sn =

\
R

tn dE(t).Now we de�ne µ(σ) := 〈E(σ)γ0, γ0〉 for all Borel sets σ ⊂ R. Then
ϕn = 〈γn, γ0〉 = 〈qn(n−1)/2Tnγ0, γ0〉 = qn(n−1)/2〈Snγ0, γ0〉

=
\
R

qn(n−1)/2tn〈dE(t)γ0, γ0〉 =
\
R

qn(n−1)/2tn dµ(t).

Now we show that S ≥ 0, or equivalently that the measure µ is 
on
en-trated on [0,∞). For this, let u =
∑N

n=1 αnγn. By (qCM2) we have
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〈Su, u〉 =
〈

N
∑

n=1

αnq−nγn+1,
N

∑

m=1

αmγm

〉

=
N

∑

m,n=1

αnαmq−n〈γn+1, γm〉

=

N
∑

m,n=1

αnαmq−n−m(n+1)ϕn+m+1 =

N
∑

m,n=1

αnαmq−mnq−(n+m)ϕn+m+1 ≥ 0.To prove that the measure is 
on
entrated on [0, 1] we only need to showthat ‖S‖ ≤ 1. Sin
e {ϕn − q−nϕn+1} is qPD (see (qCM3) for m = 1), wehave
N

∑

m,n=1

αnαmq−mnq−(n+m)ϕn+m+1 ≤

N
∑

m,n=1

αnαmq−mnϕn+m.

Thus for u =
∑N

n=1 αnγn we get
〈Su, u〉 =

〈

N
∑

n=1

αnq−nγn+1,

N
∑

m=1

αmγm

〉

=

N
∑

m,n=1

αnαmq−n〈γn+1, γm〉

=
N

∑

m,n=1

αnαmq−n−m(n+1)ϕn+m+1

=

N
∑

m,n=1

αnαmq−mnq−(n+m)ϕn+m+1

≤
N

∑

m,n=1

αnαmq−mnϕn+m = 〈u, u〉.This gives the operator inequality 0 ≤ S ≤ I and therefore ‖S‖ ≤ 1.Corollary 5.5. Let q ∈ (0, 1). For a sequen
e {ϕn}n the following
onditions are equivalent :(1) {ϕn}n is qCM ,(2) {q−n(n−1)/2ϕn}n is CM ,(3) there exists a measure µ on [0, 1] su
h that
ϕn =

\
[0,1]

qn(n−1)/2tn dµ(t), n ∈ N.

Proof. The impli
ations (2)⇒(1)⇒(3) follow from Proposition 5.3 andTheorem 5.4, while (3)⇒(2) is a 
onsequen
e of the Hausdor� theorem whi
hstates that a sequen
e admits an integral representation with a measure
on
entrated on [0, 1] if and only if it is 
ompletely monotoni
 ([9℄).
Remark. Observe that the �rst part of the proof of Theorem 5.4 givesthe impli
ation (already proved in Corollary 5.2) that if a sequen
e {ϕn} is
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q-positive de�nite then it may be represented in the form

ϕn =
\
R

qn(n−1)/2tn dµ(t).The result above suggests the following de�nition of q-moment sequen
es.Definition 3. Call {ϕn}n a q-moment sequen
e if there exists a Borelmeasure µ on some set X ⊂ R su
h that
ϕn =

\
X

qn(n−1)/2tn dµ(t), n ∈ N.

Remark. In the general 
ase (for q > 0) the relations between 
onditions(1)�(3) in Corollary 5.5 are as follows:(1)⇒(2)⇔(3)and 
annot be improved for q > 1. Indeed, a weighted sequen
e need not be
qCM even if a 
lassi
al sequen
e is CM. For example, take the sequen
e

ϕn =

1\
0

qn(n−1)/2tn dt, n ∈ N,
orresponding to Lebesgue measure. Then {ϕn}n is not qCM.Suppose to the 
ontrary that for all n, m = 0, . . . , N and k ∈ N we have
0 ≤

∑

n,m

anamq−nm[ϕm+n − q−(n+m)kϕn+m+k]

=

1\
0

(1 − qk(k−1)/2tk)
(

∑

n

qn(n−1)/2antn
)2

dt.Now 
hoose i = k and set ai = q−k(k−1)/2, an = 0 for n 6= i. Then
1\
0

[1 − qk(k−1)/2tk]t2k dt =
1

2k + 1
− qk(k−1)/2 1

3k + 1
≥ 0,and hen
e qk(k−1)/2 ≤ 1 + k/(2k + 1). But if k → ∞ then the right handside tends to 3/2 while the left hand side tends to +∞.A
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