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THE PROPORTIONALITY CONSTANT FOR THE

SIMPLICIAL VOLUME OF LOCALLY SYMMETRIC SPACES
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MICHELLE BUCHER-KARLSSON (Stockholm)

Abstract. We follow ideas going back to Gromov’s seminal article [Publ. Math. IHES
56 (1982)] to show that the proportionality constant relating the simplicial volume and
the volume of a closed, oriented, locally symmetric space M = Γ\G/K of noncompact
type is equal to the Gromov norm of the volume form in the continuous cohomology of G.
The proportionality constant thus becomes easier to compute. Furthermore, this method
also gives a simple proof of the proportionality principle for arbitrary manifolds.

1. Introduction. We propose here a reformulation of a proof of Gromov
[Gr82] of the proportionality principle relating the simplicial volume and
the volume of a closed oriented Riemannian manifold in the language of
continuous bounded cohomology, a theory whose functorial properties have
been established in recent years by Burger and Monod (see [Mo01]).

Theorem 1 (Proportionality principle). Let M be a closed , oriented

Riemannian manifold. Then there exists a proportionality constant c(M̃) in

R ∪ {+∞}, depending on the universal cover M̃ of M only , such that

‖M‖ =
Vol(M)

c(M̃)
.

The proportionality principle admits another proof by Strohm-Löh
[St05] following an approach sketched by Thurston in [Th78].

This fundamental result shows in particular that within classes of man-
ifolds isometrically covered by a given simply connected Riemannian man-
ifold M̃ for which c(M̃) 6= +∞, the volume is a topological invariant. For
hyperbolic spaces, Gromov showed that the proportionality constant c(Hn)
is equal to the maximal volume of ideal geodesic simplices in the hyperbolic
space and used it as a key ingredient to a simple proof of Mostow’s rigidity
theorem for H

n (see [Gr82], [Mu80], [BePe92]).
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We give below a new expression for the proportionality constant of
closed, oriented, locally symmetric spaces. While it is easy to see that the
simplicial volume of a locally symmetric space whose universal cover ad-
mits nontrivial compact or Euclidean factors has to vanish (see Lemma 5)
and that the corresponding proportionality constant is consequently equal
to +∞, the noncompact type case is more interesting:

Theorem 2. Let M be a closed , oriented , locally symmetric space of

noncompact type of dimension n. Let G be the connected component of the

identity of the isometry group of the universal cover M̃ of M and let ω ∈
An(M̃)G ∼= Hn

c (G) be the volume form. Then

‖M‖ =
Vol(M)

‖ω‖∞
.

It follows from [LaSch06] that ‖ω‖∞ < ∞. Indeed, Lafont and Schmidt
answer affirmatively the conjecture of Gromov that the simplicial volume
of a closed locally symmetric space of noncompact type is strictly positive
(relying on [Gr82] and [Bu05] in the cases where the universal cover of M
has an SL(2, R)/SO(2) or SL(3, R)/SO(3) factor respectively).

The advantage of our approach is that, with the techniques developed
in [Mo01], the proportionality constant as expressed in Theorem 2 becomes
easier to compute. It is elementary to show that for hyperbolic manifolds,
the norm ‖ω‖∞ is equal to the maximal volume of regular ideal geodesic
simplices in the hyperbolic space (Theorem 8 here), so that we obtain Gro-
mov’s well known result in Corollary 9. Furthermore, we show in [Bu07] that
the Gromov norm of the volume form ωH2×H2 on the product H

2 × H
2 of

two copies of the hyperbolic plane is equal to

‖ωH2×H2‖∞ =
2

3
π2.

We can hence compute the simplicial volume of closed Riemannian manifolds
whose universal cover is H

2 × H
2. In particular, if Σg and Σh are surfaces

of genus g ≥ 1 and h ≥ 1, we obtain

‖Σg × Σh‖ =
3

2
‖Σg‖ ‖Σh‖ = 24(g − 1)(h − 1).

Thus, Theorem 2 is the fundamental ingredient in the computation of the
first example of a nonvanishing simplicial volume for a manifold not admit-
ting a metric of constant curvature.

Observe that if M is a generic manifold, then the isometry group of its
universal cover is discrete and the proportionality principle is trivial. At
the other end of the genericity scale, M is locally symmetric and we have
a simple, conceptual proof using continuous bounded cohomology theory.
This proof generalizes to arbitrary manifolds, but the continuous (bounded)
cohomology of the isometry group of the universal cover of M needs to be
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replaced by some adapted cohomology theories. The proportionality con-
stant which one henceforth obtains, already present in [Gr82], is perhaps,
in contrast with the symmetric space case, not so useful for explicit compu-
tations. The proof of the proportionality principle for arbitrary manifolds
is presented in the last section of this paper. For enlightening comments
concerning that section, I am grateful to Clara Strohm-Löh.

Note also that the argument exposed here only applies to closed man-
ifolds. In fact, for open manifolds, the situation is still mysterious. While
it is proven in [Gr82] that the proportionality principle holds for all finite
volume hyperbolic manifolds, the author also shows that the proportional-
ity principle fails in general for open manifolds, since he proves that the
simplicial volume of the Cartesian product of three open manifolds always
vanishes [Gr82, p. 59, Example (a)].

2. Simplicial volume and bounded cohomology. Let M be an
n-dimensional oriented closed manifold. On the space of real-valued chains
C∗(M) on M consider the L1-norm with respect to the canonical basis of
singular simplices, that is,

∥∥∥
r∑

i=1

aiσi

∥∥∥
1

=
r∑

i=1

|ai|

for
∑r

i=1 aiσi in Cq(M). This induces a seminorm, which we still denote
by ‖ − ‖1, on the real-valued homology H∗(M) of M : the seminorm of a
homology class is defined as the infimum of the norms of its representatives.
The simplicial volume of M , denoted by ‖M‖, is defined to be the seminorm
of the real-valued fundamental class [M ] ∈ Hn(M) of M . It is elementary
to see that if f : N → M is a q-covering, then ‖N‖ = q‖M‖. This in
particular shows that the simplicial volume of tori is zero. Other examples
of vanishing simplicial volumes can be obtained from Lemma 4 below. Of
course, we could have considered the L1-norm in the singular homology of
any topological space—although a simplicial volume could not have been
defined without a fundamental class.

The dual L∞-norm (or Gromov norm) on the space of real-valued co-
chains C∗(M) on M is given, for every cochain c in Cq(M), by

‖c‖∞ = sup{|c(z)| | z ∈ Cq(M) with ‖z‖1 = 1}

= sup{|c(σ)| | σ : ∆q → M continuous}.

Define the space of bounded cochains C∗

b(M) on M as the subspace of
C∗(M) consisting of those cochains for which the Gromov norm is finite.
Clearly, the coboundary operator of C∗(M) restricts to C∗

b(M) and we de-
fine the bounded cohomology H∗

b(M) of M as the cohomology of the co-
complex C∗

b(M). The inclusion of cocomplexes C∗

b(M) ⊂ C∗(M) induces a
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comparison map c : H∗

b(M) → H∗(M) which is in general neither injective
nor surjective. The Gromov norm on the space of (bounded) cochains defines
a seminorm both on H∗

b(M) and H∗(M) and we continue to denote those
by ‖ − ‖∞. (Note that on H∗(M) we allow the value +∞.) By definition,
for any α in Hq(M) we have

(1) ‖α‖∞ = inf{‖αb‖∞ | αb ∈ Hq
b(M), c(αb) = α},

where the right hand side of the above equation is understood to be equal
to infinity when the infimum is taken over the empty set. Again, observe
that the theory of bounded cohomology can more generally be defined for
topological spaces.

Let βM ∈ Hn(M) denote the dual of the fundamental class of M , so that
the Kronecker product 〈βM | [M ]〉 is equal to 1. From the duality of the L1-
and L∞-norms, it is easy to show, using the Hahn–Banach theorem, that

(2) ‖M‖ =
1

‖βM‖∞
.

For a detailed proof, see for example [BePe92, Proposition F.2.2].
Suppose now that M is a Riemannian manifold, and let ωM ∈ Hn(M)

be the image, under the de Rham isomorphism, of the volume form. The
Kronecker product 〈ωM | [M ]〉 is clearly equal to Vol(M), the volume of M ,
and βM = (1/Vol(M))ωM . In particular, we can rewrite equality (2) as

(3) ‖M‖ =
Vol(M)

‖ωM‖∞
.

Note that the proportionality principle now reduces to showing that ‖ωM‖∞
only depends on the universal covering of M . This will be done in Corollary 7
in the symmetric space case and in Corollary 13 in the general case.

3. Bounded group cohomology. In this section, we define bounded
group cohomology and give the few easy and known properties which we
need for our proof of Theorem 2. For more details we invite the reader
to consult [Gui80] or [BoWa00] for continuous cohomology and [Mo01] for
bounded continuous cohomology.

Let G be a topological group. Recall that the continuous cohomology
H∗

c (G) of G can be computed as the cohomology of the cocomplex C∗

c (G)G

endowed with its natural symmetric coboundary operator, where

Cq
c (G) = {c : Gq+1 → R | c is continuous}

and Cq
c (G)G denotes the subspace of G-invariant cochains, where the action

of G is given by the diagonal action by left multiplication on the Cartesian
product Gq+1. For c in Cq

c (G), we define its sup norm as

‖c‖∞ = sup{|c(g0, . . . , gq)| | (g0, . . . , gq) ∈ Gq+1}.
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Clearly, the coboundary operator restricts to the cocomplex C∗

c,b(G)G of
continuous bounded cochains, where

Cq
c,b(G) = {c ∈ Cq

c (G) | ‖c‖∞ < ∞},

and the continuous bounded cohomology H∗

c,b(G) of G is defined as the coho-

mology of this cocomplex. The inclusion of cocomplexes C∗

c,b(G)G ⊂ C∗

c (G)G

induces a comparison map c : H∗

c,b(G) → H∗

c (G). As in the singular case,
the sup norm induces seminorms on both H∗

c,b(G) and H∗

c (G) (where in the

latter space we again allow the value +∞) and we have, for any α in Hq
c (G)

(4) ‖α‖∞ = inf{‖αb‖∞ | αb ∈ Hq
b(M), c(αb) = α}.

If Γ is a discrete group, then the continuity condition is void and we
omit the term “continuous” and the subscript “c” in the corresponding
terminology and notation. Note that the group cohomology H∗(Γ ) is then
nothing else than the standard Eilenberg–MacLane cohomology of Γ .

Let now G be a Lie group and Γ < G a cocompact lattice. There is
in this context another convenient way to compute the cohomology groups
H∗(Γ ) and H∗

b(Γ ), namely as the cohomology of the cocomplexes C∗

c (G)Γ

and C∗

c,b(G)Γ respectively. Furthermore, the sup norm on Cq
c (G) gives rise

to the same seminorms in H∗

c (Γ ) and H∗

c,b(Γ ), as proven in [Mo01, Corol-
lary 7.4.10].

The restriction maps res : H∗

c (G) → H∗(Γ ) and resb : H∗

c,b(G) → H∗

b(Γ )
induced by the inclusion Γ < G can now be realized at the cochain level
by the inclusions C∗

c (G)G ⊂ C∗

c (G)Γ and C∗

c,b(G)G ⊂ C∗

c,b(G)Γ respectively.

On the other hand, starting with a Γ -invariant cochain c : Gq+1 → R in
Cq

c (G)Γ , we can construct a G-invariant cochain c ∈ Cq
c (G)G by integrating

c over a fundamental domain F ⊂ G for Γ \ G:

c(g0, . . . , gq) =
1

µ(F )

\
c(fg0, . . . , fgq) dµ(f),

where gi ∈ G and µ is the Haar measure on G. This induces transfer maps

trans : H∗(Γ ) → H∗

c (G) and transb : H∗

b(Γ ) → H∗

c,b(G). Because the com-
positions trans ◦ res and transb ◦ resb are clearly the identity at the cochain
level, we obtain the commutative diagram

(5)

H∗

c (G)

Id ''
�

� res // H∗(Γ )
trans // // H∗

c (G)

H∗

c,b(G)

Id
66

c

OO

�

� resb // H∗

b(Γ )

c

OO

transb// // H∗

c,b(G)

c

OO

Note that for bounded cohomology the above construction carries through
also for noncocompact lattices Λ < G since it is possible to integrate bounded
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functions over Λ\G. This is however not the case in the unbounded setting:
for noncocompact lattices, H∗(Λ) vanishes in top dimension, so that the
present argument cannot be applied to open manifolds.

Because the sup norms on the G-invariant (respectively Γ -invariant)
continuous (bounded) cochains Gq+1 → R realize the seminorms on the
respective cohomology groups, it is immediate that the maps res, trans, resb
and transb do not increase seminorms: for every α in Hq

c (G), β in Hq
b(Γ ),

αb in Hq
c,b(G) and βb in Hq

b(Γ ) we have

‖res(α)‖∞ ≤ ‖α‖∞, ‖trans(β)‖∞ ≤ ‖β‖∞,

‖resb(αb)‖∞ ≤ ‖αb‖∞, ‖transb(βb)‖∞ ≤ ‖βb‖∞.

Furthermore, since transb ◦ resb is the identity of Hq
c,b(G), the restriction

map resb : H∗

c,b(G) → H∗

b(Γ ) is an isometric embedding:

‖βb‖∞ = ‖transb ◦ resb(βb)‖∞ ≤ ‖resb(βb)‖∞ ≤ ‖β‖∞,

hence

‖resb(βb)‖∞ = ‖βb‖∞.

For more details, consult the original result [Mo01, Proposition 8.6.2].

If Γ is a cocompact lattice in G, then trans ◦ res is the identity on
Hq

c (G) and removing all the subscripts “b” in the above implication, we
immediately see that the restriction map is an isometric embedding also
on the unbounded cohomology groups, as expressed in Theorem 3 below.
(By isometric embedding, we mean that the restriction map preserves the
seminorms, which possibly take the value +∞.) Note that Theorem 3 does
not hold when Γ is not cocompact (since in this case the restriction map is
not even injective).

Theorem 3. Let G be a Lie group and Γ be a cocompact lattice in G.

The restriction map

res : H∗

c (G) →֒ H∗(Γ )

is an isometric embedding.

Let now M be a manifold and Γ denote its fundamental group. As for
(unbounded) singular cohomology, the natural map M → BΓ , where BΓ
denotes the classifying space of Γ -bundles, induces a natural map in bounded
cohomology H∗

b(BΓ ) → H∗

b(M), and as in the unbounded setting, H∗

b(BΓ )
is canonically isomorphic to H∗

b(Γ ). There is however a fundamental differ-
ence for bounded cohomology, namely the remarkable result of Gromov that
the natural map H∗

b(Γ ) → H∗

b(M) is an isometric isomorphism (which more
generally holds if one replaces M by any CW-complex). Note that, in con-
trast to the unbounded case, there is no assumption that M be aspherical.
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For a proof, see [Gr82, Section 3.1] or [Iv85, Theorem 4.1]. To summarize,
we have the commutative diagram

(6)

H∗(Γ ) −−−−→ H∗(M)

c

x
xc

H∗

b(Γ )
∼=

−−−−→ H∗

b(M)

Lemma 4. Let M be an n-dimensional closed , oriented manifold , and

let Γ denote its fundamental group. If Hn(Γ ) = 0, then ‖M‖ = 0.

Proof. From (2) it is clear that ‖M‖ > 0 if and only if βM is in the image
of the comparison map c : Hn

b (M) → Hn(M). But since the diagram (6)
commutes, this comparison map factors through Hn(Γ ) = 0, and is hence
the zero map.

4. Locally symmetric spaces. Let M be a closed, connected, oriented,
locally symmetric space. Its universal cover can be decomposed as a product
U×R

k×N , where U is a compact symmetric space, k is a nonnegative integer
and N is a symmetric space of noncompact type. Before concentrating on
the more interesting purely noncompact case, let us get the case of nontrivial
compact and Euclidean factors out of the way.

Lemma 5. Let M be a closed , connected , oriented , locally symmetric

space whose universal cover has a nontrivial compact or Euclidean factor.

Then ‖M‖ = 0.

In particular, the proportionality constant is in this case equal to +∞.

Proof. Let G denote the isometry group of the universal cover M̃ of
M and let K be a maximal compact subgroup of G. Set n = dimM =
dim M̃ and observe that the fundamental group Γ of M sits in G as a
cocompact lattice. It is well known (for a proof, see for example [BoWa00,
Theorem VII.2.2]) that the cohomology of Γ is isomorphic to the cohomology

of the cocomplex of Γ -invariant differential forms on G/K. But if M̃ has
a nontrivial compact factor, then the dimension of G/K is strictly smaller
than n, because the isometry group of the compact factor is a compact Lie
group. In particular Hn(Γ ) = 0, and by Lemma 4 we get ‖M‖ = 0.

Suppose now that M̃ has no nontrivial compact factor, so that we are in
the case when M has nonpositive curvature. If M̃ has a factor R

k, then it
follows from the work of Eberlein (see for example [Eb83, Corollary 2]) that
there exists a finite q-covering M → M of M such that M is diffeomorphic
to the product of a k-torus and some closed manifold. If k > 0, then M
admits self-coverings of degree greater than 2, so that its simplicial volume
has to vanish, and hence also ‖M‖ = (1/q)‖M‖ = 0.
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Let from now on M be a closed, connected, oriented, locally symmetric
space of noncompact type of dimension n. Its universal cover can be written

as the quotient M̃ = G/K, where G is a connected semisimple Lie group of
noncompact type and K is a maximal compact subgroup of G. Denote by Γ
the fundamental group of M , and observe that Γ sits in G as a cocompact
lattice.

Because M has no higher homotopy, we have H∗(M) ∼= H∗(Γ ). Further-
more, by the commutativity of the diagram (6) and the fact that the corre-
sponding isomorphism H∗

b(M) ∼= H∗

b(Γ ) between the bounded cohomology
groups is an isometry, it is clear that the isomorphism H∗(M) ∼= H∗(Γ ) is
also an isometry. Denote by ϕ : H∗

c (G) → H∗(M) the composition of the
restriction map and the natural isomorphism H∗(Γ ) ∼= H∗(M) and observe
that Theorem 3 now admits the following reformulation:

Theorem 6. The injection

ϕ : H∗

c (G) →֒ H∗(M)

is an isometric embedding.

Recall that H∗

c (G) is isomorphic to A∗(G/K)G, the G-invariant differ-
ential forms on G/K, which is in top degree one-dimensional, generated by
the volume form ω on the Riemannian manifold G/K. Let us abuse nota-
tion and denote also by ω the corresponding cohomology class in Hn

c (G).
Similarly, let ωM stand for both the Riemannian volume form on M and
the corresponding cohomology element in Hn(M). We claim that

ϕ(ω) = ωM .

To see this, observe once again that the cohomology of Γ is isomorphic to
the cohomology of the cocomplex A∗(G/K)Γ ([BoWa00, Theorem VII.2.2]).
The map ϕ : H∗

c (G) → H∗(M) can hence be represented, at the cochain
level, by the composition of the natural maps

An(G/K)G → An(G/K)Γ
∼=
→ An(M),

which clearly maps ω to ωM . An immediate consequence of Theorem 6 is:

Corollary 7. ‖ωM‖∞ = ‖ω‖∞.

Theorem 2 now obviously follows from equation (3) and Corollary 7.

5. Hyperbolic manifolds. As an application of our method, let us give
an elementary proof of Gromov’s result that the proportionality constant for
hyperbolic n-manifolds is

vn = sup{|Vol(σ)| | σ : ∆n → H
n a geodesic simplex}

= |volume of the regular ideal geodesic simplex in H
n|,
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where the last equality follows from [HaMu81]. Let thus G denote the
group of orientation preserving isometries of the n-dimensional hyperbolic
space H

n.

Theorem 8. Let ω ∈ Hn
c (G) be the volume form. Then

‖ω‖∞ = vn.

In view of Theorem 2, Gromov’s result is now immediate:

Corollary 9 (Gromov). Let M be an n-dimensional closed hyperbolic

manifold. Then

‖M‖ =
Vol(M)

vn
.

Proof of Theorem 8. The key is to choose appropriate cocomplexes for
H∗

c,b(G) and H∗

c (G) in order to compute the seminorm of the volume form ω.
From [Gui80, Chapitre III, Proposition 2.3] and [Mo01, Corollary 7.4.10] we
know that those cohomology groups can be obtained as the cohomology
of the cocomplexes C∗

c (Hn)G
alt and C∗

c,b(H
n)G

alt respectively, where Cq
c (Hn)alt

denotes the alternating, continuous real-valued functions on (Hn)q+1 and
Cq

c,b(H
n)G

alt is its subcomplex of bounded functions. The action of G is given

by the natural diagonal action on the Cartesian product (Hn)q+1. Monod
shows moreover that the sup norm on C∗

c,b(H
n)G

alt gives rise to the canonical
seminorm on H∗

c,b(G).

By Dupont’s expression for the Van Est isomorphism A∗(Hn)G ∼= H∗

c (G)
we can represent the volume form ω ∈ H∗

c (G) by the alternating, continuous
cocycle ν sending the (n + 1)-tuple (x0, . . . , xn) to the (signed) volume of
the geodesic simplex with vertices (x0, . . . , xn). It follows immediately that

‖ω‖∞ ≤ ‖ν‖∞ = vn.

For the other inequality we need to show that if τ : (Hn)n → R is
any G-invariant, continuous, alternating cochain, then ‖ν + δτ‖∞ ≥ ‖ν‖∞.
But such a τ , being invariant and alternating, has to vanish on regular
n-tuples (y0, . . . , yn−1), i.e. n-tuples for which any permutation yi 7→ yσ(i),
for σ ∈ Sym(n), can be realized by an isometry. It is now easy to con-
struct a sequence of (n + 1)-tuples (yk

0 , . . . , yk
n) such that each of the faces

(yk
0 , . . . , ŷk

i , . . . , yk
n) is regular and limk→∞ |ν(yk

0 , . . . , yk
n)| = vn. Assume for

a second that such a sequence has been constructed. We then have

‖ν + δτ‖∞ = sup{|(ν + δτ)(y0, . . . , yn) | (y0, . . . , yn) ∈ (Hn)n+1}

≥ sup{|(ν + δτ)(yk
0 , . . . , yk

n) | k ∈ N}

= lim
k→∞

|ν(yk
0 , . . . , yk

n)| = vn.
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As for the sequence (yk
0 , . . . , yk

n), fix an ideal regular simplex with vertices
ξ0, . . . , ξn in the boundary of H

n. Let b ∈ H
n be its barycenter (defined as

the unique point of H
n fixed by all the isometries permuting the ξi’s) and let

γi : (−∞, +∞)→H
n be the unique geodesics with γi(0)=b and γi(+∞)=ξi

for i = 0, . . . , n. Then the sequence

(yk
0 , . . . , yk

n) = (γ0(k), . . . , γn(k))

is as claimed.

6. The proportionality principle for arbitrary manifolds. In this
last section, we present a proof of the proportionality principle for arbitrary
manifolds. This proof is essentially based on the one in [Gr82], but we give
it here for the sake of completeness, as it naturally and straightforwardly
generalizes the argument we give above for the symmetric space case. To do
so, we need to replace the continuous and continuous bounded cohomology
of G by appropriate cohomology theories. Those theories will be defined
in Subsections 6.1 and 6.3 respectively, and the comparison map relating
them in Subsection 6.4. Note that the cohomology theory of Subsection 6.3
already appears in [Gr82].

Observe that we cannot work with the continuous cohomology of the
isometry group of the universal cover of M since this cohomology group can
be zero, while we want it to contain some universal (nonzero) volume form
(see Subsection 6.2).

Throughout this section, we establish the elementary properties which
we need our present cohomology theories to satisfy in order to conclude in
Subsection 6.5 that the analogue of Corollary 7, namely Corollary 13, also
holds for arbitrary manifolds.

6.1. Continuous singular cohomology. Let Sq(M) denote the set of all
smooth singular simplices σ : ∆q → M and endow it with the compact-
open topology. From now on we suppose that C∗(M) denotes the space
of cochains on smooth singular simplices (as opposed to merely continuous
singular simplices). This restriction has no consequence for the cohomology
of the cocomplex. Define the space of continuous singular q-cochains on M
as

Cq
c (M) = {c ∈ Cq(M) | c|Sq(M) : Sq(M) → R continuous}.

The coboundary operator clearly restricts to C∗

c (M). Now, for “reasonable
spaces”, and in particular for manifolds, the cohomology of this cocomplex
is nothing else than the usual singular cohomology, as can be read in [Bo75]:

Theorem 10. The inclusion of cocomplexes C∗

c (M) ⊂ C∗(M) induces

an isomorphism

H∗(C∗

c (M)) ∼= H∗(M).
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Let G denote the isometry group of the universal cover M̃ of the Rie-
mannian manifold M and note that the fundamental group Γ of M sits as
a cocompact lattice in the Lie group G. As a replacement for H∗

c (G) we
will consider the cohomology of the cocomplex of G-invariant continuous
singular cochains on M̃ . The inclusion of cocomplexes

Cq
c (M̃)G →֒ Cq

c (M̃)Γ ∼= Cq
c (M)

induces a restriction map

res : H∗(C∗

c (M̃)G) → H∗(C∗

c (M̃)Γ ) ∼= H∗(M).

Let µ denote the Haar measure on G. Choose a fundamental domain
F ⊂ G for Γ \ G and define

trans : Cq
c (M̃)Γ → Cq

c (M̃)G

as

trans(c)(σ) =
1

µ(F )

\
F

c(f · σ) dµ(f),

for c in Cq
c (M̃)Γ and σ in Sq(M̃). To see that the map trans is well defined,

we need to check that trans(c) is G-invariant and that its restriction to

Sq(M̃) is continuous:

G-invariance: Pick g in G. We have three partitions of G: two given by
the tiling of G by F and Fg respectively, and the third one as the intersection
of the former two partitions, namely,

G =
∐

δ,γ∈Γ

δF ∩ γFg.

Because F has compact closure, it admits a partition F =
∐r

i=1 Fi into
finitely many Fi = F ∩ γ−1

i Fg, for γi in Γ . But then, since γiFi ∩ γjFj = ∅
whenever i 6= j, and γiFi ⊂ Fg, it follows that Fg admits the finite partition
Fg =

∐r
i=1 γiFi.

Using successively the fact that c is Γ -invariant, and that the Haar mea-
sure µ is G- and hence Γ -invariant, we compute

(7)
\
Fi

c(fσ) dµ(f) =
\
Fi

c(γifσ) dµ(f) =
\

γiFi

c(fσ) dµ(f).

Finally, we conclude, using the G-invariance of the Haar measure, equality
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(7) and the two described partitions of F and Fg, that

trans(c)(gσ) =
1

µ(F )

\
F

c(f · gσ) dµ(f) =
1

µ(F )

\
Fg

c(f · σ) dµ(f)

=
1

µ(F )

r∑

i=1

\
γiFi

c(f · σ) dµ(f) =
1

µ(F )

r∑

i=1

\
Fi

c(fσ) dµ(f)

=
1

µ(F )

\
F

c(f · σ) dµ(f) = trans(c)(σ).

Continuity : Pick σ in Sq(M̃) and fix ε > 0. Consider the continuous

map ̺ : G → Cq
c (M̃) sending an element g in G to the continuous singular

cochain mapping the singular simplex τ : ∆q → M̃ to ̺(g)(τ) = c(gτ).

Because the closure F of F is compact, so is ̺(F ) ⊂ Cq
c (M̃). By the Arzelà–

Ascoli theorem, this now implies that the family of maps {̺(f)}
f∈F

, and by

restriction also {̺(f)}f∈F , are equicontinuous. This means that there exists
a neighborhood U of σ such that, for every σ′ in U and f in F , we have

|̺(f)(σ) − ̺(f)(σ′)| = |c(fσ) − c(fσ′)| < ε,

whence

|trans(c)(σ) − trans(c)(σ′)| =

∣∣∣∣
1

µ(F )

\
F

(c(f · σ) − c(f · σ′)) dµ(f)

∣∣∣∣

≤
1

µ(F )

\
F

|c(f · σ) − c(f · σ′)| dµ(f) < ε.

The map trans is obviously a map of cocomplexes, so that it induces the
transfer map

trans : H∗(M) → H∗(C∗

c (M̃)G).

Note that the composition trans ◦ res is the identity on H∗(C∗

c (M̃)G) since
it is the identity at the cochain level.

6.2. The volume form. Suppose that M and hence M̃ are n-dimensional
Riemannian manifolds and let ωM and ω be their Riemannian volume forms
in An(M) and An(M̃) respectively. The form ω gives rise to a cocycle

σ 7→
\
σ

ω

in Cn
c (M̃)G; we denote the corresponding cohomology class in Hn(C∗

c (M̃)G)
also by ω. Note that for this cocycle to be continuous for the compact-open
topology, it is essential that the volume form is a top-dimensional form. The
same construction for ωM gives a cohomology class ωM in Hn(M) which is
nothing else than the image of ωM under the de Rham isomorphism. We
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clearly have
res(ω) = ωM .

Because Hn(M) is 1-dimensional, generated by ωM , the restriction map is
an isomorphism in top degree, with inverse the transfer map.

6.3. A cocomplex for H∗

b(M). In this subsection, we introduce a cocom-
plex from which we can compute the bounded cohomology of M . Probably,
we could instead have used the cocomplex of continuous, bounded cochains
on M , in which case we would not have had to redefine the restriction and
transfer maps in the bounded context as we do below. However, we pre-
fer to work with the following cocomplex, so that we can simply refer to a
particular case of [Mo01, Theorem 7.4.5] for a proof of Theorem 11. Set

Bq(M̃) = {h : M̃ q+1 → R | h continuous and bounded}

and observe that the natural symmetric coboundary operator turns B∗(M̃)

into a cochain complex. Endow Bq(M̃) with its natural sup norm.

Theorem 11. The cohomology of the cocomplex

B0(M̃)Γ → B1(M̃)Γ → B2(M̃)Γ → · · ·

is canonically isometrically isomorphic to H∗

b(M).

As a replacement for H∗

c,b(G) we will here consider the cohomology of

the cocomplex B∗(M̃)G. The inclusion of cocomplexes

Bq(M̃)G →֒ Bq(M̃)Γ

induces a restriction map

resb : H∗(B∗(M̃)G) → H∗(B∗(M̃)Γ ) ∼= H∗

b(M).

Clearly, for every αb in H∗(B∗(M̃)G), we have

(8) ‖resb(αb)‖∞ ≤ ‖αb‖∞

and we will see below that this inequality is in fact an equality.
Again, let µ denote the Haar measure on G and let F ⊂ G be a funda-

mental domain for Γ \ G. Define a map

transb : Bq(M̃)Γ → Bq(M̃)G

as

transb(h)(x0, . . . , xq) =
1

µ(F )

\
F

h(fx0, . . . , fxq) dµ(f)

for h in Bq(M̃)Γ and (x0, . . . , xq) in M̃ q+1. To see that the map transb
is well defined, we need to check that transb(h) is G-invariant, continuous
and bounded. The former two properties are checked identically to the un-
bounded case treated in the previous subsection: just replace c by h and σ
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by (x0, . . . , xq). As for the boundedness, we have

|transb(h)(x0, . . . , xq)| ≤ sup
f∈F

|h(fx0, . . . , fxq)|,

and hence

(9) ‖transb(h)‖∞ ≤ ‖h‖∞.

It is obvious that transb is a map of cocomplexes, so that it induces the
transfer map

transb : H∗

b(M) → H∗(B∗(M̃)G).

From (9) it is immediate that

(10) ‖transb(αb)‖∞ ≤ ‖αb‖∞

for every αb in Hq
b(M). Note that the composition transb ◦ resb is the iden-

tity on H∗(B∗(M̃)G) since it is the identity at the cochain level. This fact,
together with inequalities (8) and (10), immediately implies, as in the sym-

metric space case, that the inclusion resb : H∗(B∗(M̃)G) → H∗

b(M) is iso-
metric.

6.4. The comparison map. Let e0, . . . , eq be the vertices of the standard

simplex ∆q and consider the cocomplex map c : Bq(M̃) → Cq
c (M̃) given by

c(h)(σ) = h(σ(e0), . . . , σ(eq)).

Note that c clearly restricts to a cocomplex map c : Bq(M̃)H → Cq
c (M̃)H

for any subgroup H of the isometry group G of M̃ . The comparison map
H∗

b(M) → H∗(M) is given, at the cochain level and for the cocomplexes

B∗(M̃)Γ and C∗

c (M̃)Γ respectively, by

c : Bq(M̃)Γ → Cq
c (M̃)Γ .

Indeed, it is a standard fact from homological algebra that all the cochain
maps B∗(M̃) → C∗

c (M̃) extending c : B0(M̃) → C0
c (M̃) are chain homo-

topic, where the homotopy can be made up of Γ -equivariant maps. In degree
zero, B0(M̃) and C0

c (M̃) are isomorphic to the space of continuous bounded,

respectively continuous functions on M̃ and it is not hard to see that the
comparison map H0

b(M) → H0(M) has to be induced by the natural in-
clusion, which is precisely what the cocomplex map c amounts to in degree
zero.

Similarly, we let c : Bq(M̃)G → Cq
c (M̃)G induce a comparison map

c : H∗(B∗(M̃)G) → H∗(C∗

c (M̃)G).

In analogy to (1), we define

(11) ‖α‖∞ = inf{‖αb‖∞ | αb ∈ Hq(B∗(M̃)G), c(αb) = α}

for every α in Hq(C∗

c (M̃)G).
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6.5. Conclusion. To summarize, we have a commutative diagram

H∗(C∗

c (M̃)G)

Id ))
�

� res // H∗(M)
trans// // H∗(C∗

c (M̃)G)

H∗(B∗(M̃)G)
Id

55

c

OO

�

� resb // H∗

b(M)

c

OO

transb// // H∗(B∗(M̃)G)

c

OO

with the additional properties that resb and transb do not increase semi-
norms. Those are the only ingredients which entered the proof of Theorem 3,
so that we immediately obtain the analogous result:

Theorem 12. The restriction map

res : H∗(C∗

c (M̃)G) →֒ H∗(M)

is an isometric embedding.

Corollary 13. ‖ωM‖∞ = ‖ω‖∞.

In view of the relation ‖M‖ = Vol(M)/‖ωM‖∞ exhibited in (3) and the
fact that the constant ‖ω‖∞ only depends on the universal cover of M , the
proportionality principle is now proven in all generality.
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