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THE MULTIPLICITY PROBLEM FORINDECOMPOSABLE DECOMPOSITIONS OF MODULES OVERDOMESTIC CANONICAL ALGEBRASBYPIOTR DOWBOR and ANDRZEJ MRÓZ (Toru«)Dediated to Professor Helmut LenzingAbstrat. Given a module M over a domesti anonial algebra Λ and a lassi-fying set X for the indeomposable Λ-modules, the problem of determining the vetor
m(M) = (mx)x∈X ∈ NX suh that M ∼=

⊕
x∈XXmx

x is studied. A preise formula for
dimk HomΛ(M, X), for any postprojetive indeomposable module X, is omputed inTheorem 2.3, and interrelations between various strutures on the set of all postprojetiveroots are desribed in Theorem 2.4. It is proved in Theorem 2.2 that a general method of�nding vetors m(M) presented by the authors in Colloq. Math. 107 (2007) leads to algo-rithms with the omplexity O((dimk M)4). A preise desription of algorithms determin-ing the multipliities m(M)x for postprojetive roots x ∈ X is given (Algorithms 6.1, 6.2and 6.3).

INTRODUCTIONThe problem of e�etive deomposition into a diret sum of indeompos-able objets for modules over a �xed algebra of �nite or tame representationtype seems to be a very natural and interesting question. It was intensivelystudied in modular representation theory of groups. In representation theoryof �nite-dimensional algebras over a �eld, it seems to be a method to obtainlassi�ations of indeomposable modules, rather than an independent re-searh task (see [17, 14, 11, 20, 21, 7℄). In the last thirty years, several otherpowerful researh methods have been invented. Consequently the problemof determining an e�ient deomposition lost its importane, in some sense,and not so many new results onerning this topi have been obtained. Onthe other hand, the tools developed were oriented mainly towards the ate-gorial approah, not quite adjusted to attak this kind of task.2000 Mathematis Subjet Classi�ation: 16G20, 16G60, 16G70, 68Q99.Key words and phrases: anonial algebra, module, tame representation type, tube,deomposition, algorithm, multipliity vetor.The paper was prepared on the oasion of the onferene �Representations of Algebrasand their Geometry�, organized in honour of Helmut Lenzing.[221℄ © Instytut Matematyzny PAN, 2008
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This paper is devoted to a question losely related to that disussedabove; namely, to its weaker version asking for a �normal form� of a module.The paper is a natural ontinuation of [9℄, where this problem was preiselyformulated. Below, we reall this formulation in a slightly more general set-ting.Assume that a omplete lassi�ation of all pairwise nonisomorphi inde-omposable Λ-modules is already known and it is given by means of a �xedpair X = (X, ε),where X is a so-alled lassifying set (of invariants for indeomposable Λ-modules), ε : X → indΛ/∼= a bijetion between X and the set of isomor-phism lasses of all indeomposable �nite-dimensional Λ-modules. Now wean formulate the problem as follows:Given a Λ-module M, we want to determine the sequene

m(M) = (mx) ∈ NXsuh that M ∼=
⊕

x∈XXmx
x , where Xx is a module from the isomorphismlass ε(x) for every x ∈ X.The sequene m(M) = (mx)x∈X is alled the multipliity vetor of Mwith respet to the lassifying set X. Note that, by the Krull�Remak�Shmidt theorem, m(M) is uniquely determined; moreover, it belongs to

N(X) := (
⊕

x∈X Z) ∩ NX.The problem of determining the multipliity vetors m(M) is stronglyrelated to that of desription of orbits in the variety of Λ-modules witha �xed dimension vetor and to the question how to e�etively deide if
M ∼= M ′ for a pair M,M ′ of Λ-modules (see [3, 4℄, and also [10℄ whih is theontinuation of this paper).In [9℄, a general method of handling this problem is presented. It relieson omputing the sequene

h(M) = (hx) ∈ NXof dimensions hx = dimk HomΛ(M,Xx), and the so-alled Auslander�Reitenmatrix TΛ ∈ MX×X(Z) for Λ; equivalently, the Auslander�Reiten quiver ΓΛfor Λ. (Under a suitable assumption on the algebra Λ, it is enough to �nd theCartan matrix C(Λ) ∈MX×X(Z) of the Auslander ategory for Λ). One weknow these two data and k is an algebraially losed �eld, the oordinates
m(M)x = mx of the vetor m(M) an be omputed by applying the formula
(∗) mx =

{
hx + hz −

∑
y, ε(y)∈−ε(x) dy,xhy if Xx is nonprojetive,

hx −
∑

y, ε(y)∈−ε(x) dy,xhy if Xx is projetive,where dy,x is the number of arrows ε(y) → ε(x) in the Auslander�Reitentranslation quiver ΓΛ = (ΓΛ, τ), −ε(x) denotes the set of all diret predees-
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sors of ε(x) in ΓΛ, and ε(z) = [τXx]∼= (see [9, Corollary 2.3℄). This method istested in [9℄ on the example of anonial hereditary algebras of type Ãp,q. Inthis ase preise algorithmi proedures for solving the multipliity problemare given, with pessimisti omputational omplexity (brie�y, omplexity)
O(n4), where n = dimk M (see [9, Algorithms 4.5 and 5.5℄). The main aimof this paper is to present similar results for the whole lass of domestianonial algebras over an algebraially losed �eld k.In onstruting the algorithms for domesti anonial algebras, and toimprove the e�ieny of omputations, we use general lassial results onthe struture of the relevant module ategories and information on roots ofthe assoiated quadrati Euler form. However, a ruial role in our approahis played by the following three main results.The �rst, Theorem 2.2, states that there exist algorithms omputing therestrited multipliity vetor m(M) for any individual omponent of ΓΛ,with the same omplexity as in the Ãp,q ase, where the lassifying set Xonsists of the postprojetive roots, preinjetive roots and the data alledtubular oordinates, enoding the indeomposable regular modules from the
1-parameter family of stable tubes (see 1.6 and 2.1). The problem for regularomponents is redued to an analogous one for algebras of type Ãp,q, alreadysolved in [9℄. The redution uses a ertain funtorial tehnique developed inSetion 3 (see Proposition 3.1 and Lemma 3.3). As a �side e�et� we alsoobtain a desription of anonial forms for indeomposable regular modules(see Remark 3.3(i) and Corollary 3.3, f. [18℄).To handle the problem of omputing the restrited multipliity vetor forthe postprojetive (and preinjetive) omponent we prove the seond result,Theorem 2.3, whih yields preise formulas for the oordinates h(M)x ofthe vetor h(M) for postprojetive roots x ∈ X. The result refers to thespei� struture of the set of all postprojetive roots (see Lemma 2.3). Inthe proof we apply, among other things, the desription of the anonialforms for indeomposable postprojetive modules over domesti anonialalgebras, obtained reently in [18, 15℄.The third result, Theorem 2.4, ollets all neessary information on in-terrelations between various ombinatorial strutures on the postprojetiveomponent. In partiular, it yields an alternative method (in omparison to�knitting�) of omputing onseutive dimension vetors in the postprojetiveomponent, whih together with formula (∗) and Proposition 5.7 forms a ba-sis for omputing the multipliities m(M)x for postprojetive roots x ∈ X.Setion 6, ontaining Algorithms 6.1, 6.2 and 6.3, is in some sense themost signi�ant part of the paper, as it reapitulates all previous onsidera-tions. There the algorithms are preisely formulated in an integrated pseudo-ode form. The presentation of the �nal part of the paper is intended to re-
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ate a omplete (�up to� [9℄) and self-ontained �omputer algebra projet�,whih is just ready for implementation. Therefore, in Setion 7 we providetables ontaining initial parts of the postprojetive omponents and the in-verses of the Coxeter matries, for all domesti anonial algebras Λ. (Thealgorithms use the data from the theorems and from the tables.) We alsoomment on the e�ieny and memory management aspets. In partiular,we show how to derease the omplexity of Algorithm 6.2 and to ahievethe announed one, O(n4). To this end we apply a detailed analysis of someomputational linear algebra problems, strongly related with very spei�shapes of matries whih appear in the formulation of Theorem 2.3 (see 6.4and 6.5).The paper is organized as follows. In Setion 1 we reall basi de�nitionsand �x the notation used throughout. There we introdue, in partiular, theonept of tubular oordinates (1.3). We reall the de�nition of domestianonial algebras (1.4), and the lassial theorems on the struture of mod-ule ategories and lassi�ation of indeomposables modules for this lass ofalgebras (see Theorems 1.5 and 1.6). In Setion 2 we speify the lassifyingset X (2.1) and formulate our main results: Theorems 2.2, 2.3 and 2.4. Se-tion 3 is devoted to determining the restrited multipliity vetor for regularomponents. We prove the results on funtorial redution (Proposition 3.1,Lemma 3.3) and Theorem 2.2(a+b). Setion 4 is devoted to the proof ofTheorem 2.3, preeded by several tehnial fats. In Setion 5, the proofof Theorem 2.4 is given. Setion 6 ontains the pseudo-ode desriptions ofAlgorithms 6.1, 6.2 and 6.3, a result that allows us to derease omplexityof Algorithm 6.2 (Lemma 6.4), and the proof of Theorem 2.2() (see 6.5).Setion 7 onsists of the tables ontaining the data for domesti anonialalgebras, mentioned above.

1. PRELIMINARIES AND NOTATIONThe de�nitions and notation we use are standard. Nevertheless, for thebene�t of the reader, we brie�y reall some of them. We also ollet somefats desribing the module ategories for domesti anonial algebras. Forbasi information and notation onerning representation theory of algebras(respetively, anonial algebras, ategories, linear algebra, algorithm the-ory) we refer to [2℄ (respetively, [22, 23℄, [1℄, [16℄, [6℄).1.1. For any positive n ∈ N = {0, 1, . . .}, we set [n] = {1, . . . , n} and
Zn = {0, . . . , n − 1}; by Zn = (Zn,⊕n) we always mean the group of re-mainders modulo n. For m ∈ Z, the integral quotient and remainder of mmodulo n are denoted by quon(m) and remn(m), respetively. Given a set S,we write |S| for the ardinality of S. If G is a group and g ∈ G, we denote by
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(g) the yli subgroup of G generated by g, and by |g| (= |(g)|) the orderof g.Throughout the paper, k always denotes a �eld, usually algebraiallylosed. For any m,n ∈ N, we denote by Mm×n(k) the set of all m × n-matries with oe�ients in k. The identity matrix in Mn×n(k) is denotedby In.Given M ∈Mm×n(k), we denote by r(M) the rank of M and by cor(M)
= m−r(M) its orank. For any 1 ≤ i ≤ m (resp. 1 ≤ j ≤ n),M|i (resp.M |j)is the matrix in Mi×n(k) (resp. Mm×j(k)) onsisting of the �rst i rows (resp.�rst j olumns) of M . We denote by M̂ the ehelon upper triangular matrixobtained by deleting all zero rows from the ehelon matrix resulting fromthe standard Gaussian row elimination proedure applied to M (see [16℄).1.2. By a k-algebra we always mean a �nite-dimensional assoiative on-neted basi unitary algebra over k. For a k-algebra Λ (respetively, loallybounded ategory Λ, see [5℄), we denote by modΛ the ategory of all �nite-dimensional Λ-modules, by J = J(Λ) the Jaobson radial of Λ, and by
radΛ = rad(modΛ) the Jaobson radial of the ategory modΛ. If (Q, I) isa bound quiver (see [2℄) and the algebra (resp. loally bounded ategory) Λhas the form Λ = kQ/I, then we always identify modΛ with the ategory ofall �nite-dimensional representations of the quiver Q = (Q0, Q1), satisfyingthe relations from the ideal I. For the de�nition of the path algebra kQ,we refer to [2℄. For any v ∈ Q0, we denote by S(v) (resp. P (v), Q(v)) thesimple (resp. indeomposable projetive, injetive) module orresponding tothe vertex v.Let K0(Λ) = K0(modΛ) denote the Grothendiek group of Λ, or morepreisely, of the ategory modΛ. The lass of a �nite-dimensional Λ-module
X in the Grothendiek group K0(Λ) is denoted by [X]. In ase Λ = kQ/I,where (Q, I) is a bound quiver, we use the standard identi�ation K0(Λ)
∼= ZQ0 indued by assoiating to X the dimension vetor dimX.For any pair X,Y of modules in modΛ, we set

[X,Y ] = dimk HomΛ(X,Y ),and we denote by m(Y )X the maximal integer n ∈ N suh that Xn is iso-morphi to a diret summand of Y .Throughout the paperD : modΛ→ modΛop means the standard duality
D(−) = Homk(−, k).Given a lass C of objets in modΛ we denote by add C the additivelosure of C in modΛ.Let U be an abelian ategory. Reall that U is serial if it is a lengthategory and eah of its indeomposable objets is uniquely determined,up to isomorphism, by its length and sole. In ontrast to the ategory
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modΛ, the length (resp. sole) of an objet X from U will be alled its
U -length (resp. U -sole), and denoted by ℓU (X) (resp. socU (X)). (This isespeially important if U is a full proper exat subategory of modΛ). Wesay that a serial ategory U is of type (n,∞) if there exist exatly n pairwisenonisomorphi simple objets in U , and for eah pair onsisting of a simpleobjet X0 in U and a positive integer l ∈ N, there exists an indeomposableobjet X in U suh that socU(X) ∼= X0 and ℓU(X) = l (f. [12℄).By the Auslander�Reiten quiver ΓΛ of Λ (A-R quiver, for short), wealways mean the translation quiver

Γ = (Γ0, Γ1, τ)de�ned in a standard way (the set of verties Γ0 onsists of the isolasses
[X]∼= of indeomposable objets X in modΛ, the sets Γ1([X]∼=, [Y ]∼=) of allarrows from [Y ]∼= to [X]∼= onsist of dimk(radΛ(X,Y )/rad2

Λ(X,Y )) elements,and τ [X]∼= = [τX]∼=, where τ is the Auslander�Reiten translate).For any [X]∼= ∈ Γ0, we denote by −[X]∼= (resp. [X]+∼=) the set of all im-mediate predeessors (resp. suessors) of [X]∼= in ΓΛ, i.e. the set of allverties [Y ]∼= ∈ Γ0 suh that there exists an arrow [Y ]∼= → [X]∼= (resp.
[X]∼= → [Y ]∼=) in ΓΛ. Similar notation is used for an arbitrary translationquiver Γ = (Γ, τ).Let C be a onneted omponent in ΓΛ. Then the additive losure
add(

⋃
[X]∼=∈C0

[X]∼=) is denoted for simpliity by add C. For a Λ-module Xthe phrase �X belongs to C� means �[X]∼= belongs to C0�.Following [2℄, a onneted omponent C of ΓΛ is alled postprojetive if itis ayli and for any indeomposable Λ-module M in C there exists t ∈ Nand an indeomposable projetive module P suh that M ∼= τ−nP .Finally, a onneted onvex ayli full subquiver Σ of the onnetedtranslation quiver Γ = (Γ, τ) is alled a setional subquiver (brie�y, a se-tion) in Γ if for eah x ∈ Γ0 there exists a unique n ∈ Z suh that τ−nx ∈ Σ0.1.3. Reall that a stable tube T (n) of rank n ≥ 1 is a quiver ZA∞/(τ
n)with the translation τ indued from that in the translation quiver ZA∞(see [22, 23℄). Stable tubes of rank 1 are alled homogeneous . We �x a stan-dard notation of verties in T (n) by setting T (n)0 = {(s, l) : s∈Zn, l≥ 1}.Then T (n) has the following shape:
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THE MULTIPLICITY PROBLEM 227

Let T be a onneted omponent of the A-R quiver ΓΛ of an algebra Λ,whih is a stable standard tube of rank n. Then the ategory add T is anabelian serial ategory of type (n,∞) and eah indeomposable module Xfrom add T is uniquely determined by its T -sole and T -length, de�ned by
socT (X) = socadd T (X) and ℓT (X) = ℓadd T (X).The T -simple modules (i.e. the simple objets in add T ) are exatly thoselying in the mouth of the tube T . They orrespond to the verties (s, 1) ∈

T (n)0, s ∈ Zn. Moreover, the T -sole of the module orresponding to thevertex (s, l) ∈ T (n)0 is a T -simple module orresponding to (s, 1) ∈ T (n)0,and its T -length is l. This yields a preise enoding of indeomposable mod-ules in T . It su�es to write down the preise forms of the onseutivemodules from the mouth of T and to hoose arbitrarily one of them to or-respond to the vertex (0, 1) ∈ T (n)0. We denote it by X(T , 0, 1). In pratie,one has to desribe only one of them, the remaining an be obtained as its
τ -shifts. Then the isolass of an ideomposable module X from T is uniquelyenoded in the form X ∼= X(T , s, l); this means that X is a module suhthat ℓT (X) = l and socT (X) ∼= X(T , s, 1) = τ sX(T , 0, 1). It is lear that inthe above notation, the almost split sequenes in T (more preisely, in thesubategory add T of modΛ) have the following shape:

0→ X(T , s, l)→ X(T , s⊖n 1, l − 1)⊕X(T , s, l + 1)

→ (T , s⊖n 1, l)→ 0for any s ∈ Zn, l ≥ 1 (we assume that X(T , s, 0) is a zero-module).This enoding of indeomposable objets in add T is alled the system oftubular oordinates.1.4. Consider a sublass of anonial algebras (see [22℄ for the de�ni-tion) onsisting of the �nite-dimensional k-algebras of the form Λp,q,r =
kQp,q,r/Ip,q,r, p, q, r ≥ 1, where Qp,q,r is a quiver

0
�

���α1

a1 -
α2

· · · -
αp−1

ap−1
@

@@R

αp

ω-β1

b1
-

β2

· · · -
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bq−1
-βq

@
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· · · -
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�

���
γr

and Ip,q,r is the ideal generated by α + β − γ, α = α1 · · ·αp, β = β1 · · ·βqand γ = γ1 · · · γr. (Later on, the omposition αiαi+1 · · ·αj for i ≤ j will bedenoted by αi,j and analogously for β and γ). Note that Λp,q,1 is isomorphi
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to the hereditary algebra Λp,q of type Ap,q, given by the quiver

0
�

���α1Qp,q :
a1

-α2
· · · -αp−1

ap−1
@

@@R

αp

ω-β1

b1
-

β2

· · · -
βq−1

bq−1
-βqWe often treat Qp,q as a full subquiver of Qp,q,r via the embedding (Qp,q)0

→֒(Qp,q,r)0.Let Λ = Λp,q,r for some triple (p, q, r). Then the �nite-dimensional Λ-modules an be interpreted as linear representations
M = ({Mv}v∈(Qp,q,r)0 , {Mδ}δ∈(Qp,q,r)1)of the quiver Qp,q,r, with dimension vetor dimM = (dimk Mv) ∈ N(Qp,q,r)0 ,satisfying the relation α + β = γ. For obvious reasons we will restritattention to matrix representations of the algebra Λ. More preisely, weonsider only those �nite-dimensional Λ-modules M , with dimM = n =

(nv) ∈ N(Qp,q,r)0 , for whih the spaes Mv over the verties 0, a1, . . . , ap−1,
b1, . . . , bq−1, c1, . . . , cr−1, ω are resp. kn0, kna1 , . . . , knap−1 , knb1 , . . . , k

nbq−1 ,
knc1 . . . , kncr−1 , knω , and the maps Mδ orresponding to the arrows
α1, . . . , αp, β1, . . . , βq, γ1, . . . , γr are left multipliations by some matries
A1, . . . , Ap, B1, . . . , Bq, C1, . . . , Cr of appropriate dimensions. We allow ma-tries with zero olumns or rows. In this situation, we simply say that a mod-ule M is given by the triple (A,B,C), where A = (Ai)i∈[p], B = (Bi)i∈[q],
C = (Ci)i∈[r]. Sometimes we identify M with (A,B,C).Analogously, we onsider only Λp,q-modules that are pairs (A,B), where
A,B are as above. In both ases, Λ = Λp,q,r and Λ = Λp,q, we will also usethe notation As,t = AsAs−1 . . . At for t ≤ s, and A = Ap,1 (and similarlyfor B).Following [23�25℄, a anonial algebra Λ is alled domesti if Λ ∼= Λp,q,r,where
(p, q, r) ∈ D := {(p, q, 1), p, q ≥ 1; (p, 2, 2), p ≥ 2; (3, 3, 2); (4, 3, 2); (5, 3, 2)}.1.5. Let Λ = Λp,q,2 be a domesti anonial algebra. The well-knownresults of Ringel [22℄ yield a desription of the ategory modΛ, and thelassi�ation of indeomposable Λ-modules, by use of the onept of rank(see also [23, 13℄).Reall that the rank funtion

rk : K0(Λ)→ Zon the Grothendiek group K0(Λ) is given by the formula
rk(d) = dω − d0



THE MULTIPLICITY PROBLEM 229

for d ∈ Z(Qp,q,2)0 , under the standard identi�ation K0(Λ) = Z(Qp,q,2)0 . Wealso onsider the so-alled growth vetor gr(d) ∈ Z(Qp,q,2)1 , de�ned by threesequenes
rα = (rα1 , . . . , rαp) = (da1 − d0, . . . , d∞ − dap−1),

rβ = (rβ1 , . . . , rβq
) = (db1 − d0, . . . , dω − dbq−1),

rγ = (rγ1 , rγ2) = (dc1 − d0, dω − dc1).The lass ob(indΛ) of all indeomposable Λ-modules splits naturallyinto a disjoint union of three sublasses P = P(Λ), Q = Q(Λ) and R =
R(Λ), onsisting of all M suh that rk(dimM) > 0, rk(dimM) < 0 and
rk(dimM) = 0, respetively. For reasons to be explained below, the modulesfrom these lasses are alled postprojetive, preinjetive and regular , respe-tively (see the theorem).It is proved in [22℄ that there is another desription of the lasses Pand Q, ommon for all anonial algebras. Namely, P (resp. Q) onsistsof all indeomposable Λ-modules M suh that all maps Mδ, δ ∈ (Qp,q,r)1,are monomorphisms and gr(dimM) 6= 0 (resp. epimorphisms and
gr(−dimM) 6= 0).The following result furnishes important information on the struture ofthe ategory modΛ.
Theorem ([22, 23℄). Let Λ be a domesti anonial algebra.(a) The isomorphism lasses of all modules from P (resp. Q) form aonneted postprojetive (resp. preinjetive) omponent in the quiver

ΓΛ ontaining the isolasses of all indeomposable projetive (resp.injetive) Λ-modules.(b) addR is an abelian serial ategory losed under extensions , and
addR ≃

∐

λ∈k∪{∞}

add Tλwhere T = {Tλ}λ∈k∪{∞}
is a 1-parameter family of stable standardtubes of (tubular) type (p, q, 2), and add Tλ is an abelian subategoryof addR.() HomΛ(Q,P) = 0; HomΛ(R,P) = 0; HomΛ(Q,R) = 0.From now on, the notation P and Q is used for the omponents of ΓΛrather than for the lasses of all postprojetive and preinjetive indeompos-able Λ-modules, respetively.1.6. We reall that gl.dimΛ = 2 and a ruial role in the preise las-si�ation of indeomposable modules over domesti anonial algebras Λ isplayed by the Euler quadrati form

q = qΛ : K0(Λ)→ Z
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assoiated to the Z-bilinear

〈−,−〉 : K0(Λ)×K0(Λ)→ Zgiven by the formula
〈dimM, dimN〉 = dimk HomΛ(M,N)

− dimk Ext1Λ(M,N) + dimk Ext2Λ(M,N)for M and N in modΛ. The quadrati form q is also de�ned in terms of theCartan matrix CΛ ∈Ms×s(k) of the algebra Λ = Λp,q,2, by the formula
q(x) = xt(Ct

Λ)−1xfor x ∈ Zs, under the identi�ation Z(Qp,q,2)0 = Zs, where s = |(Qp,q,2)0|.Let rad q = {x ∈ Z(Qp,q,2)0 : q(x) = 0} denote the radial of the form q.Sine Λ is a onealed algebra of Eulidean type, it follows that rad q is asubgroup of Z(Qp,q,2)0 , q is positive semide�nite of orank 1 and
(∗) rad q = Z · 1,where 1 ∈ Z(Qp,q,2)0 is the all-one vetor.Aording to Ringel's lassi�ation [22℄, modΛ is ontrolled by theform qΛ. In more detail and in a slightly modi�ed version, taking into aount
(∗) and Theorem 1.5(b), this an be phrased as follows:
Theorem ([22, 23℄). Let Λ be a domesti anonial algebra.(a) For an indeomposable module X in add Tλ, λ ∈ k ∪ {∞}, we have

dimX = m · 1 if and only if ℓTλ
(X) = mnλ,for m ≥ 1, where nλ is the rank of Tλ.(b) The funtion dim yields bijetions of the vertex sets P0 and Q0 withthe sets P := {x ∈ N(Qp,q,2)0 : q(x) = 1, rk(x) > 0},Q := {x ∈ N(Qp,q,2)0 : q(x) = 1, rk(x) < 0}respetively. Moreover , the set

{x ∈ N(Qp,q,2)0 : q(x) = 1, rk(x) = 0}orresponds bijetively via dim to the set of isolasses of all inde-omposable modules X in add Tλ, λ ∈ k ∪ {∞}, suh that nλ ∤ ℓTλ
(X)

(nλ ≥ 2).We allP (resp.Q) the set of all postprojetive (resp. preinjetive) positiveroots of the quadrati Euler form q = qΛ.
Remark. From (b) and the desription of postprojetive (resp. prein-jetive) modules over anonial algebras in terms of the growth vetor gr(x),it follows that for any x ∈ N(Qp,q,2)0 suh that q(x) = 1, we have rk(x) > 0
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(resp. rk(x) < 0) if and only if gr(x) ∈ N(Qp,q,2)1 \ {0} (resp. gr(−x) ∈
N(Qp,q,2)1 \ {0}).
Corollary. The sets P and Q are lassifying sets of invariants forindeomposable modules from the omponents P and Q.To de�ne a full lassifying set for the whole lass of indeomposable Λ-modules one has to speify tubular oordinates for the subategories add Tλ,

λ ∈ k ∪ {∞}. To this end we have in fat to �x those λ ∈ k ∪ {∞} forwhih nλ takes the values 2, p and q, respetively, and next to give a preisedesription of one seleted module in the mouth, for eah tube Tλ.2. THE MAIN RESULTSBefore we formulate our main results we need to establish some extranotation and �rst of all to omplete the proess of preise enoding for in-deomposable modules over domesti anonial algebras, i.e. to speify thelassifying set X.2.1. To �x the enoding for regular indeomposable modules by tubu-lar oordinates, we apply the tubular struture of the ategory addR (seeTheorem 1.5(b)).Let Λ = Λp,q,2 be a domesti anonial algebra. As already stated in 1.5,the regular Λ-modules form a 1-parameter family T = {Tλ}λ∈k∪{∞} of stabletubes of type (p, q, 2) and eah of the ategories add Tλ, λ ∈ k∪{∞}, is serialof type (nλ,∞), where nλ denotes the rank of Tλ. Additionally, one an as-sume that Tλ = T p,q,2
λ , where T p,q,2 = {T p,q,2

λ }λ∈k∪{∞} is a 1-parameter fam-ily of tubular type (p, q, 2) suh that T p,q,2
0 , T p,q,2

1 , T p,q,2
∞ , T p,q,2

λ , λ ∈ k\{0, 1},are stable tubes of rank p, 2, q and 1, respetively. Moreover, indeompos-able modules from the exeptional tubes an be enoded, aording to 1.3,as desribed below (see also [18, 23℄).We an set:
X(T0, 0, 1) = k

���
0

0 -0 . . . -0 0
@@R

0

-1 k -1 . . . -1 k -1 k
PPPPPq1

k
�����1

1and X(T0, s, 1) = S(as) for s ∈ Zp \ {0}, where X(T0, s
′, l) is the module inthe tube T0 orresponding to the vertex (s′, l) ∈ T (p)0, for all s′ ∈ Zp and

l ≥ 1;
X(T1, 0, 1) = k

���
1

k -1 . . . -1 k
@@R

1

-−1k -1 . . . -1 k -1 k
PPPPPq0

0
�����1

0
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and X(T1, 1, c1) = S(c1), where X(T1, s

′, l) is the module in the tube T1orresponding to the vertex (s′, l) ∈ T (2)0, for all s′ ∈ Z2 and l ≥ 1;
X(T∞, 0, 1) = k

���
1

k -1 . . . -1 k
@@R

1

-0 0 -0 . . . -0 0 -0 k
PPPPPq1

k
�����1

1and X(T∞, s, 1) = S(bs) for s ∈ Zq \{0}, where X(T∞, s
′, l) is the module inthe tube T∞ orresponding to the vertex (s′, l) ∈ T (q)0, for all s′ ∈ Zq and

l ≥ 1.To establish the enoding for indeomposable regular modules from thetubes Tλ, λ ∈ k \ {0, 1}, of rank 1, it su�es to give a preise desription ofthe unique Tλ-simple module, for eah λ.For λ ∈ k \ {0, 1}, we an set
X(Tλ, 0, 1) = k

���
λ

k -1 . . . -1 k
@@R

1

-−1k -1 . . . -1 k -1 k
PPPPPqλ − 1

k
�����1

1Here X(Tλ, 0, l) is the module of Tλ-length l in the tube Tλ for all l ≥ 1.Further, for simpliity, we will use the abbreviate notation: X(λ, s, l) =
X(Tλ, s, l) for λ = 0, 1,∞, and X(λ, l) = X(Tλ, 0, l) for λ ∈ k \ {0, 1}.As a onsequene, indeomposable regular modules modules are preiselyenoded by the following lassifying set:T =

⊔

λ∈k∪{∞}

Tλ,where
Tλ =





{[0, s, l] : s ∈ Zp, l ≥ 1} for λ = 0,
{[1, s, l] : s ∈ Z2, l ≥ 1} for λ = 1,
{[∞, s, l] : s ∈ Zq, l ≥ 1} for λ =∞,
{[λ, l] : l ≥ 1} for λ ∈ k \ {0, 1}.Sine postprojetive and preinjetive modules are fully desribed in termsof their dimension vetors by the sets P and Q, we have the following.

Proposition. The set X := P ⊔T ⊔Q(with the obvious map ε) is a lassifying set of invariants for indeomposable
Λ-modules.2.2. Now �x integers p≥ 1, n0, na1 , . . . nap−1 , nω ≥ 0. Let D ∈Mnω×n0(k)and A = (A1, . . . , Ap) be a system of matries of size na1 × n0, na2 × na1 ,
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. . . , nap−1 × nap−2 , nω × nap−1 , respetively. Then for any 2 ≤ i ≤
p + 1, 0 ≤ j ≤ p− 1, n ≥ −1, we de�ne a blok matrix Mi,j,n(D,A) ∈
M((n+1)nω+naj

)×((n+1)n0+nai−2)(k) by setting
Mi,j,n(D,A) =




Ap,i−1 D 0 0 · · · 0

0 −A D 0 · · · 0

0 0 −A D · · · 0... ... ... . . . ... ...
0 0 · · · 0 −A D

0 0 · · · 0 0 −Aj,1




if n ≥ 0, and
Mi,j,n(D,A) = Aj,i−1if n = −1. We set na0 = n0, A0,1 = In0 .Moreover, for a given olletion n, n0, nω1≥0, λ∈k and E,F∈Mnω×n0(k)we de�ne a blok matrixMn

λ(E,F ) ∈Mnnω×nn0(k) by setting
Mn

λ(E,F ) =




G 0 0 · · · 0

F G 0 · · · 0

0 F G · · · 0... ... ... . . . ...
0 0 · · · F G




,

where G = G(λ) = E + λF .For some tehnial reasons (explained in the proof of Theorem 2.2), wealso need the indexing map
µp : Zp × (N \ {0})→ {2, . . . , p+ 1} × Zp × (N ∪ {−1})de�ned by

µp(s, l) =

{
(s− l + 2, s,−1), l ≤ s,
(p− remp(l − s− 1) + 1, s, quop(l − s− 1)), l > s.Now, using the above notation, we formulate the main theorem of thispaper.

Theorem. Let Λ = Λp,q,2 be a domesti anonial algebra, X a lassify-ing set for indeomposable Λ-modules de�ned above, M a �nite-dimensional
Λ-module, with n = dimk M and dimM = n, given by a triple (A,B,C),
A = (Ai)i∈[p], B = (Bi)i∈[q], C = (Ci)i∈[2] (see 1.4).(a) The oordinates of the restrited multipliity vetor

m(M)|T = (m(M)x)x∈T
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of M with respet to T are:(i) m(M)[0,s,l] = h(s, l)+h(s⊖p 1, l)−h(s⊖p 1, l−1)−h(s, l+1),(ii) m(M)[1,s′,l] = f(s′, l)+f(s′⊖2 1, l)−f(s′⊖2 1, l−1)−f(s′, l+1),(iii) m(M)[∞,s′′,l] = g(s′′, l)+g(s′′⊖q 1, l)−g(s′′⊖q 1, l−1)−g(s′′, l+1),(iv) m(M)[λ,l] = 2fλ(l)− fλ(l − 1)− fλ(l + 1),where h(u, t) = corMµp(u,t)(B,A), f(u′, t) = corMµ2(u′,t)(−B,C),
g(u′′, t)=corMµq(u′′,t)(A,B) and fλ(t)=corMt

λ(A,B), λ∈ k \{0, 1},
u ∈ Zp, u′ ∈ Z2, u′′ ∈ Zq and t ≥ 1 (we set f(∗, 0) = g(∗, 0) =
h(∗, 0) = fλ(0) = 0). Moreover , if the �nite set σ(M) onsisting ofall λ ∈ k\{0, 1} suh that M ontains a diret summand from add Tλis known, then there exists an algorithm with pessimisti omplexity
O(n4), determining m(M)|T.(b) A salar λ0 ∈ k\{0, 1} belongs to σ(M) if and only if λ0 is a ommonroot of all (nω − rkP(M))-minors of the matrix A+ λB, regarded aspolynomials in k[λ], where rkP(M) denotes the rank of the maximalpostprojetive diret summand of M . Moreover , rkP(M) is equal tothe number of all postprojetive summands in a deomposition of theKroneker moduleM = (A,−B) into a diret sum of indeomposablesin modΛ1,1. Consequently , the number of summands from the tube
Tλ0 in a deomposition of M into a diret sum of indeomposables isequal to

cor(A+ λ0B)− rkP(M)and there exists an algorithm omputing the integer rkP(M) with pes-simisti omplexity O(n4), whih does not require (!) any knowledgeof the vetor m(M)|P (see Remark 3.5).() There exists an algorithm with pessimisti omplexity O(n4) whihdetermines the vetor
m(M)|P⊔Q = (m(M)x)x∈P⊔Q.The proofs of (a) and (b) are given in Setion 3. The proof of () needsa muh deeper analysis and preparation; it will be ompleted at the end ofSetion 6. In fat, we not only prove the existene of algorithms with therequired properties, but we also give a detailed desription in the integratedpseudo-ode form (f. [9℄, see Setion 6). In partiular, we preisely desribean algorithm omputing m(M)|P (see Algorithms 6.1 and 6.2 in Setion 6),but we only explain how to redue the omputation of m(M)|T to the anal-ogous problem for the Kroneker algebra Λ1,1 and hereditary algebras Λp′,q′of type Ãp′,q′ (see 3.4, f. also [9℄).2.3. The most di�ult problem is to determine the restrited multipliityvetor for the postprojetive omponent. To do this, given a Λ-module M ,
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we give preise formulas for the positive integers h(M)d for d ∈ P. We startby �xing some extra notation.For any vetor d ∈ Z(Qp,q,2)0 = K0(Λ), we set d = d − d01. We say that
d is redued provided d = d , equivalently d0 = 0. Clearly, rk(d) = rk(d) and
gr(d) = gr(d). We denote by K0(Λ)red the subgroup of K0(Λ) onsisting ofall redued vetors. Clearly, K0(Λ) = K0(Λ)red ⊕ Z[S(0)]. It is easily seenthat the mapping d 7→ (d, d01) yields another deomposition

K0(Λ) = K0(Λ)red ⊕ Z · 1(1 =
∑

v∈(Qp,q,2)0
[S(v)]). Following [18℄, for d as above, we denote by d′ theontration of d �along identities�, i.e. the vetor in Z(Q

(d)
p,q,2)0 obtained in anatural way from d , where Q(d)

p,q,2 is onstruted from Qp,q,2 by ontratingall arrows δ with rδ = 0 (see [18℄).Let Q′ = Q′
p,q,2 be the full subquiver of Qp,q,2 formed by the set

(Qp,q,2)0 \ {0} of verties and let Λ′ = kQ′. Then Q′ is a Dynkin quiver oftype ∆ = (p, q, 2). It is lear that K0(Λ
′) = ZQ′

0 an be naturally identi�edwith K0(Λ)red. Then K0(Λ) = K0(Λ
′)⊕Z[S(0)] and K0(Λ) = K0(Λ

′)⊕Z · 1.We denote by L the set of all positive roots d ∈ N
Q′

0
0 of the quadrati form

q′ = q∆, suh that all omponents rα2 , . . . , rαp , rβ2 , . . . , rβq
, rγ2 of gr(d) arenonnegative.Now we restrit our attention to the set P. It is lear that for any

d ∈ P = P (Λ), Λ = Λp,q,2, we have rk(d) > 0, gr(d) ∈ N(Qp,q,2)1 \ {0}and d ∈ N(Qp,q,2)0 \ {0}. We set P = {d ∈ P : d0 = 0} (learly, P =P ∩K0(Λ)red).The following fat summarizes the most essential properties of P (f.also [18℄).
Lemma.(a) The mappings d 7→ d|Q′

0
and d 7→ (d0, d) yield bijetions (i) P ↔ Land (ii) P↔ N×P of sets , respetively ; in partiular , the set P is�nite.(b) rk(P (Λ)) := {rk(d) : d∈P (Λ)}⊂ {1, . . . , 6}; moreover , 6∈ rk(P (Λ))if and only if Λ = Λ5,3,2.() The set Con :=

⋃
(p,q,2)∈D{d

′ : d ∈ P (Λp,q,2)} has |Con| = 18 (seeTable 1 below).Proof. Assertion (a) follows from the fats that q
|Z

(Q′
p,q,2)0

= q′ and that1 ∈ rad q, where q = qΛ, Λ = Λp,q,2. Assertions (b) and () are onsequenesof the respetive properties of root sets for Dynkin diagrams.
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From now on we will identify the sets L and P using the bijetion (i).Note, in partiular, that the bijetion (ii) equips the set P with some extra�oordinate system�.To formulate our result we need some tehnial notation. Given N ∈

Mm×n(k), for positive i ∈ N, we form the m× in-matrix
N (i) = [N | −N |N | −N | . . .] ∈Mm×in(k).Then, for any i ∈ N, we set

N (∞|i) = (N (j))|i ∈Mm×i(k),where j ∈ N is an arbitrary positive integer suh that jn ≥ i.Analogously, for any i ∈ N, we de�ne N(i) ∈ Mim×n(k) and N(∞|i) ∈

Mi×n(k), by setting
N(i) = ((N t)(i))t and N(∞|i) = (N(j))|i,where j ∈ N is suh that jm ≥ i. Clearly, we have N(∞|i) = ((N t)(∞|i))t.Let N ∈Mm×m(k). For any i ∈ N, we denote by i∗N the blok diagonalmatrix
i ∗N =




N 0 . . . 0

0 N . . . 0... ... . . . ...
0 0 . . . N



∈Mim×im(k).

Let P = [pi,j ] ∈ Mm1×n1(k) and Q ∈ Mm2×n2(k). Then we denote by
P ⊗ Q the matrix in Mm1m2×n1n2(k) that, under the standard identi�a-tion

Mm1m2×n1n2(k)
∼= Mm1×n1(Mm2×n2(k)),has the form

P ⊗Q = [pi,j ·Q]1≤i≤m1, 1≤j≤n1.

P ⊗Q an be interpreted as the matrix of the tensor produt (P ·)⊗ (Q·) :
kn1⊗kn2 → km1⊗km2 of the linear maps P · : kn1 → km1 andQ· : kn2 → km2 ,with respet to the standard bases of kn1 ⊗ kn2 and km1 ⊗ km2 , respetively,ordered lexiographially.Let M be a Λp,q-module with dimM = n, de�ned by the pair (A,B),
A = (Ai)i∈[p], B = (Bj)j∈[q], and d ∈ N(Qp,q)0 be a vetor suh that its growthvetor gr(d) ∈ Z(Qp,q)1 , whih is given by sequenes rα and rβ as above,
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belongs to N(Qp,q)1 . For the pair (M,d) as above, we denote by W (A,B, d)the matrix W = [W1 |W2 |W3] ∈Mdωnω×c(k) of the form



rβq
∗Bq,q Ap,1. . . . . .

rβ1 ∗Bq,1
. . .

−Bq,1
. . .. . . Ap,1. . . rα1 ∗Ap,1. . . . . .
−Bq,1 rαp ∗Ap,p,




,

where all entries lying outside the two blok diagonals are zero and c =

(rβq
nbq−1 + · · ·+ rβ1n0) + d0n0 + (rα1n0 + · · ·+ rαpnap−1).Now we an formulate the announed result.
Theorem. Let Λ = Λp,q,2 be a domesti anonial algebra and M a Λ-module with dimM = n, given by the triple (A,B,C), where A = (Ai)i∈[p],

B = (Bi)j∈[q] and C = (C1, C2) are sequenes of matries de�ning the stru-ture maps in M orresponding to arrows {αi}i∈[p], {βi}j∈[q] and {γ1, γ2},respetively. Then for any d ∈ P (Λ) we have
h(M)d = corM(M,d)where

M(M,d) =

[
W (A,B, d|(p,q))

∣∣∣∣
([
−Irγ2

U(d)

]

(∞| dω )

)
⊗ C2

]
,

d|(p,q) = d|(Qp,q)0
, and U(d) ∈ Mdc1×rγ2

(k) is uniquely determined by d.Moreover :(a) If rk(d) = 1, equivalently d′ = [0, 1], then U(d) depends only on dc1 ,
dc1 = 0 or 1, and it is a trivial matrix in M0×1(k) or in M0×0(k),respetively.(b) If char(k) 6= 2 and 2 ≤ rk(d), or char(k) = 2 and 2 ≤ rk(d) ≤ 5, then
U(d) depends only on d′, and U(d) = U(d′) belongs to the 17-element ,in fat 13-element , list onsisting of all matries U(e), e ∈ Con (seeTable 1).() If char(k) = 2 and rk(d) = 6 (onsequently , Λ = Λ5,3,2), then U(d)depends only on the pair (d′, rem6(d0)), and U(d) = U(d′, rem6(d0))belongs to the 30-element list onsisting of all matries U(e, i), (e, i) ∈
{f ∈ Con : rk(f) = 6} × Z6 (see Table 2).
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Table 1. The shapes of the matries U(d′)

d′ U(d′) d′ U(d′)0 1 � 1

0 1 2

1

[1℄
1 2

0 1 2 3

1

[1 1℄ 1 2

0 1 2 3

2

[
1

−1

]

1 2 3

0 2 3 4

2

[
1 1

1 0

] 1 2 3

0 1 3 4

2

[
1 1

−1 −1

]

1 2 3

0 1 2 4

2

[
0 1

1 −1

]

1 2 3 4

0 1 3 5

2

[
0 1 0

1 1 1

] 1 2 3 4

0 2 3 5

2

[
1 1 1

0 1 0

]

1 2 3 4

0 1 3 5

3




1 1

0 −1

0 1




1 2 3 4

0 2 4 5

3




1 0

1 1

1 0




1 2 3 4

0 2 3 5

3




0 −1

1 −1

0 1




1 2 3 4

0 2 4 5

2

[
1 1 −1

0 0 1

]

2 3 4 5

0 2 4 6

3




1 1 0

0 1 1

−1 −1 1




1 3 4 5

0 2 4 6

3




1 1 0

0 1 1

−1 −1 1




1 2 4 5

0 2 4 6

3




1 1 0

0 1 1

−1 −1 1




1 2 3 5

0 2 4 6

3




1 1 0

0 1 1

−1 −1 1




1 2 3 4

0 2 4 6

3




1 1 0

0 1 1

−1 −1 1




Table 2. The shapes of the matries U(d′, rem6(d0))

d′ = d(1) d′ = d(2) d′ = d(3) d′ = d(4) d′ = d(5)

rem6(d0) = 0 U1 U2 U1 U4 U5

rem6(d0) = 1 U2 U1 U2 U3 U2

rem6(d0) = 2 U1 U2 U1 U2 U1

rem6(d0) = 3 U2 U1 U2 U4 U5

rem6(d0) = 4 U1 U2 U1 U2 U1

rem6(d0) = 5 U2 U1 U2 U3 U2
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The matries U1, . . . , U5 are de�ned as follows:
U1 =




0 1 1

1 0 1

1 1 0


, U2 =




1 1 1

0 1 1

1 0 1


, U3 =




1 1 0

1 0 1

1 1 1


, U4 =




1 0 1

1 1 1

0 1 0


, U5 =




1 1 1

0 1 0

1 1 1


;

whereas d(1), . . . , d(5) denote the last �ve vetors d′ in Table 1, whih asvetors from K0(Λ5,3,2) are distinguished by the onditions rk(d(i)) = 6 and
rαi

(d(i)) = 2, i = 1, . . . , 5.The full proof of the theorem is given in Setion 4.2.4. Now we onsider the problems essential for omputing the vetor
m(M)|P for a Λ-module M . We formulate a long theorem olleting veryspei�, detailed properties of the set of all positive postprojetive roots.These properties are mainly onneted with the shape of the omponent
P and with the various strutures P is equipped with (f. Lemma 2.3(a)and the onsiderations below). In partiular, we give formulas ontrollingthe �hanges of oordinates� resulting from individual strutures. The theo-rem determines the nature and sheme of the algorithms, disusses the stopproblem for them and indiates how to improve their e�ieny.Let Λ = Λp,q,2 be a domesti anonial algebra. Then, as already stated,the omponent P in ΓΛ ontaining all indeomposable projetive Λ-modulesis postprojetive in the sense of 1.2. It is also in�nite, sine Λ is a onealedalgebra of Eulidean type (see [23℄). In partiular, P admits setions and allof them are Eulidean quivers of the same type. For eah setion Σ in P wehave |Σ0| = |(Qp,q,2)0|, and P is isomorphi, as a translation quiver, to thefull subquiver of ZΣ, formed by all verties (n, x) ∈ (ZΣ)0 = Z×Σ0 suhthat τnx is de�ned in P. Moreover, under the identi�ation τnx 7→ (n, x),eah hoie of a setion Σ yields a disjoint splitting P0 = (P0)0 ∪ (P ′)0,where P0 = P0(Σ) and P ′ = P ′(Σ) are full subquivers of ZΣ suh that P0is the �nite full translation subquiver of (N \ {0})Σ and P ′ = −NΣ, sinethere are no injetive modules in P (see [23℄).We know that dim yields a bijetion

P0 ↔ P(see Theorem 1.6(b)). Consequently, P is endowed with the anonial stru-ture of translation quiver, transported from P along dim. (The translation inP is denoted by the same letter τ .) We assume that all notions and notationsintrodued above for P are automatially transported to P.Let
φ = φΛ : K0(Λ)→ K0(Λ)be the Coxeter transformation for Λ. Reall that φ is a Z-linear map, whih
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an be interpreted as the map

φ = (−CtC−1)· : Zs → Zs,under the identi�ation K0(Λ) = Zs, where C = CΛ ∈Ms×s(k) is the Cartanmatrix of Λ and s = |(Qp,q,2)0|. Note that φ is an isomorphism, sine gl.dimΛis �nite and C is nonsingular (see [2, Setion III.3℄ and [22℄).We set K0(Λ) = K0(Λ)/rad qΛ, where rad qΛ is the radial of qΛ. Sine
φ(1) = 1 (and rad qΛ = Z · 1), φ indues the so-alled redued Coxetertransformation, whih is a Z-isomorphism

φ : K0(Λ)→ K0(Λ)de�ned by the formula
φ(x+ rad qΛ) = φ(x) + rad qΛfor x ∈ K0(Λ) (see [8℄ and [23, Setion XI.1℄). Observe that π| : K0(Λ)red →

K0(Λ) is an isomorphism, where π : K0(Λ) → K0(Λ) denotes the anonialprojetion; the inverse of π| is indued by the epimorphism : K0(Λ) →
K0(Λ)red, x 7→ x = x − x01. We often use the identi�ations K0(Λ

′) =
K0(Λ)red = K0(Λ) (see also 2.3). In this way we view φ as a map K0(Λ)red →
K0(Λ)red given by the formula

φ(x) = φ(x)for x ∈ K0(Λ) (similarly for K0(Λ
′)).It turns out that φ furnishes some important extra struture on the setL = P , and onsequently, on the set P (f. Lemma 2.3(a)).

Theorem. Let Λ = Λp,q,2 be a domesti anonial algebra, φ = φΛ :

K0(Λ) → K0(Λ) the Coxeter transformation for Λ, φ : K0(Λ) → K0(Λ) theredued Coxeter transformation for Λ, and let the subsets L (= P), P ⊂
K0(Λ) be as before. Then:(a) The set L is φ-invariant and , for any �xed setion Σ in P,L = O(x(1)) ∪ · · · ∪ O(x(s)),where Σ0 = {x(1), . . . , x(s)} and O(x(i)) is the orbit of the reduedvetor x(i) under the ation of the �nite yli group G = (φ) on

K0(Λ).(b) Given a setion Σ as above, �x a sequene i1, . . . , ir suh that L =
O(x(i1)) ∪ · · · ∪ O(x(ir)) is a disjoint union. Set yl,j = (φ)−l(x(ij))for any pair (l, j) ∈ {0, . . . , νj} × [r], and κj = u1,j + · · ·+ uνj ,j forany j ∈ [r], where νj = |O(x(ij))| and the integers ul,j are de�ned bythe equalities φ−1(yl−1,j) = yl,j + ul,j1. Then:
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• O(x(ij)) = {y0,j , . . . , yνj−1,j} and yνj ,j = y0,j for every j ∈ [r];hene the mapping (l, j) 7→ yl,j yields a bijetionL↔ {(l, j) : j ∈ [r], l ∈ Zνj
}.Moreover , for any i ∈ [s], there exist unique j = j(i) ∈ [r] suhthat O(x(i)) = O(x(ij)) and l = l(i) ∈ Zνj

suh that x(i) = yl,j.
• νΣ = ν = lcm{νj : j ∈ [r]}, where ν = |φ|, νΣ = |φΣ | and
φΣ is the redued Coxeter transformation for the Eulidean typequiver Σ.

• κj > 0 and κj = |[s]j| for every j ∈ [r], where [s]j = {i ∈ [s] :
j(i) = j}; onsequently , ∑r

j=1 κj = s. Moreover , set ̺j(l, i) =
remκj

(̺j(l, i)) for any j = 1, . . . , r and (l, i) ∈ Zνj
× [s]j, where

̺j(l, i)

=





x(i)0 if l = l(i),
x(i)0 + ul(i)+1,j + · · ·+ ul,j if l > l(i),
x(i)0 + ul(i)+1,j + · · ·+ uνj ,j + u1,j + · · ·+ ul,j if l < l(i).Then

(∗) {̺j(l, i) : i ∈ [s]j} = Zκjfor every l ∈ Zνj
.() Set x(n, i) = τ−n(x(i)) for any pair (n, i) ∈ N× [s]. Then

x(n, i) =

{
yn⊕l(i),j(i) + ̺j(i)(n⊕ l(i), i)1 if n < νj(i),
x(remνj(i)

(n), i) + quoνj(i)
(n)κj(i)1 if n ≥ νj(i),where ⊕ denotes addition in Zνj(i)

.(d) Let x ∈ NQ0 be a vetor from P, and (j, l, i) ∈ [r] × Zνj
× [s]j thetriple uniquely determined by the equalities x = yl,j and ̺j(l, i) =

remκj
(x0), where Q = Qp,q,2. Then:

• x ∈ P ′ if and only if x0 ≥ ̺j(l, i).
• If x ∈ P ′ then

x =

{
x(l − l(i) + (x0 − ̺j(l, i))νj/κj , i) if l ≥ l(i),
x(l − l(i) + νj + (x0 − ̺j(l, i))νj/κj , i) if l < l(i).(e) For any m,m′ ∈ N, the inequality

∑

v∈Q0

x(n, i)v > m (resp. x(n, i)v > m′, v ∈ Q0),holds for all i ∈ Σ0 and n ≥ m/sη + ν (resp. n ≥ m′/η + ν), where
η = min{κj/νj : j ∈ [r]}.
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(f) There exists a setion Σ in P with the property that for any pair

x = x(n, i), y = x(n′, i′) in P ′ = P ′(Σ) suh that x = y the followinghold :
• The inequalities n ≤ n′ and x0 ≤ y0 are equivalent.
• If n < n′ and z 6= x for all z = x(n′′, i′′) with n < n′′ < n′, then
y0 = x0 + 1.A omplete proof of Theorem 2.4 is given in Setion 5.
3. THE RESTRICTED MULTIPLICITY VECTORFOR REGULAR COMPONENTSThe �rst part of this setion (Subsetions 3.1�3.3) is devoted to prepa-rations for the proof of Theorem 2.2(a+b). Subsetions 3.4 and 3.5 ontainthe proofs of assertions (a) and (b), respetively.3.1. We start by proving a useful general fat.

Proposition. Let k be a �eld , R,S two �nite-dimensional k-algebras ,
C a onneted omponent of the quiver ΓR, and let

modR
Φ
−→←−

Ψ
modSbe a pair of k-linear funtors suh that Ψ is left adjoint for Φ. Assume that

Φ is exat and the restrited funtor Φ|add C : add C → modS �preserves theAuslander�Reiten struture�, i.e.:(a) Φ(X) is indeomposable for any indeomposable X in add C,(b) for any indeomposable X in add C, Φ(f) is a right (resp. left)minimal almost split homomorphism in modS provided that so is
f : Y → X (resp. f : X → Y ) in modR,() for any indeomposable X in add C, Φ(X) is a simple projetive in
modS provided that so is X in modR.Then

m(M)Φ(X) = m(Ψ(M))Xfor any M in modS and any indeomposable X in add C.Proof. For any nonprojetive X in C there exists an almost split sequene
0→ τX →

⊕

Z∈−X

Zd′Z,X → X → 0in modR. Sine Φ|add C is exat and satis�es (a) and (b), the sequene
0→ Φ(τX)→

⊕

Z∈−X

Φ(Z) d′Z,X → Φ(X)→ 0
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is almost split in modS. Therefore, for any S-module M ,
m(Ψ(M))X = [Ψ(M), X] + [Ψ(M), τX]−

∑

Z∈−X

d′Z,X [Ψ(M), Z],

m(M)Φ(X) = [M,Φ(X)] + [M,Φ(τX)]−
∑

Z∈−X

d′Z,X [M,Φ(Z)]

(see formula (∗) in the Introdution). Sine (Ψ, Φ) is a pair of adjoint funtors,we get m(M)Φ(X) = m(Ψ(M))X .It remains to prove the assertion for X projetive in C. In this ase thereexists a right minimal almost split homomorphism
⊕

Z∈−X

Z d′Z,X ∼= JX →֒ X

in modR. By similar arguments to those above, applying (a)�(), we get
m(Ψ(M))X = [Ψ(M), X]−

∑

Z∈−X

d′Z,X [Ψ(M), Z]

= [M,Φ(X)]−
∑

Z∈−X

d′Z,X [M,Φ(Z)] = m(M)Φ(X)for any S-module M , and the proof is omplete.
Remark.(i) Let (Ψ, Φ) be as in Proposition 3.1. Then there exists a unique on-neted omponent C′ in ΓS suh that Φ(X) ∈ add C′, for any X in
C, and the indued funtor Φ|add C : add C → add C′ is dense. More-over, the problem of determining the restrited multipliity vetorof an S-module M for the subategory add C′ ⊂ modS an be re-dued to the analogous one for the module Ψ(M) and the subategory
add C ⊂ modR.(ii) Assume that there are no projetive (resp. injetive) modules in Cand, in addition, the funtor Φ|add C is full and faithful. Then theassertion of the proposition remains valid if instead of the assump-tion on preserving the Auslander�Reiten struture, we require that
Φ(τRX) ∼= τSΦ(X) (resp. Φ(τ−1

R X) ∼= τ−1
S Φ(X)) for any indeompos-able module X in C. (This follows by the properties of almost splitsequenes, in partiular from [2, Corollary 3.2(a)℄.)3.2. Now we introdue four pairs of speial funtors whih satisfy theassumptions of Proposition 3.1. Given a moduleM over a domesti anonialalgebra Λ, we use them to redue the problem of determining the restritedmultipliity vetors m(M)|C for all regular omponents C in ΓΛ to the anal-
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ogous one for algebras of type Ãp,q for p, q ≥ 2, in some ases even Ã1,1 (theKroneker algebra). For this lass of algebras, the problem is already solvedin [9℄.Let Λ = Λp,q,2 be a domesti anonial algebra with p, q ≥ 2. We de�nethe funtors

modΛp,q

Φ0−→←−
Ψ0

modΛp,q,2, modΛ2,q

Φ1−→←−
Ψ1

modΛp,q,2,

modΛq,p

Φ∞−→←−
Ψ∞

modΛp,q,2, modΛ1,1

Φ
−→←−

Ψ
modΛp,q,2.Without loss of generality, we an restrit our attention to matrix represen-tations (see 1.4 for the preise de�nition).For a module M given by a triple (A,B,C), with A = (Ai)i∈[p], B =

(Bi)i∈[q], and C = (Ci)i∈[2], we set
Ψ0(M) = (A,B), Ψ∞(M) = (B,A),

Ψ1(M) =(C,B′), Ψ(M) = (A,−B),where B′ = (B′
i)i∈[q] with B′

1 = −B1 and B′
i = Bi for i ≥ 2.To de�ne the remaining four funtors we need some extra notation. Forany D ∈ Mv×w(k) and integer i ≥ 2, we set I(i)(D) = (D1, . . . , Di), where

D1 = D and Dj = Iv for all j = 2, . . . , i. If the value of i is obvious then weomit the upper index and write simply I(D).Now, for a Λ′-module N given by the pair (A,B), where Λ′ is equal to
Λp,q, Λ2,q, Λq,p and Λ1,1, respetively, we set

Φ0(N) = (A,B, I(A+B)), Φ1(N) = (I(A+B), B′, A),

Φ∞(N) = (B,A, I(A+B)), Φ(N) = (I(A1), I(−B1), I(A1 −B1)),where B′ is as above.The eight mappings introdued above an be extended to k-linear fun-tors by de�ning their values on morphisms in an obvious way. These funtorshave the following properties.
Lemma.(a) The funtors Φ1, Φ0, Φ∞, Φ are full , faithful and exat.(b) (Ψ0, Φ0), (Ψ1, Φ1), (Ψ∞, Φ∞), (Ψ, Φ) are pairs of adjoint k-linear fun-tors.Proof. An easy hek on the de�nitions.3.3. By Remark 3.1(ii), to apply Proposition 3.1 for regular omponents,it su�es to show that the funtors Φ0, Φ1, Φ∞, Φ, restrited to appropriatesubategories, ommute with the Auslander�Reiten translate. We show this



THE MULTIPLICITY PROBLEM 245

by proving that Φ0|add T p,q
0

, Φ1|add T 2,q
0

, Φ∞|add T q,p
0

, Φ
|add T 1,1

λ
, λ ∈ k \ {0, 1},yield, respetively, the equivalenes

(∗)
add T p,q

0 ≃ add T p,q,2
0 , add T 2,q

0 ≃ add T p,q,2
1 ,

add T q,p
0 ≃ add T p,q,2

∞ , add T 1,1
λ ≃ add T p,q,2

λ , λ ∈ k \ {0, 1},of serial ategories, where T ′ = {T p′,q′

λ }λ∈k∪{∞}, for p′, q′ ≥ 1, denotes the1-parameter family of stable tubes of type (p′, q′), ontaining all regular in-deomposable modules over the hereditary algebra Λ′ = Λp′,q′ of type Ãp′,q′ .The following fat plays a ruial role in the proof of (∗).
Lemma. Let Υ : modR→ modS be a full faithfull exat funtor and U(resp. U ′) a full subategory of modR (resp. modS) losed under isomor-phisms, whih as an exat subategory is a serial (and abelian) ategory oftype (n,∞) for some n ≥ 1. Assume that :(a) U ′ is losed under extensions ,(b) for any simple objet X in U , Υ (X) is a simple objet in U ′.Then Υ|U yields an equivalene U ≃ U ′ of abelian ategories. In partiular ,if an objet X in U with U-sole X1 has U-length l then Υ (X) has U ′-length

l and its U ′-sole is isomorphi to Υ (X1).Proof. We �rst prove that Υ (X) ∈ U ′ for any X in U . We apply indutionon l = ℓU (X). If l = 1 then the laim holds by (b). Assume that l ≥ 2 and thelaim holds for all X ′ in U with ℓU(X ′) < l. For any �xed X with ℓU (X) = l,there exists an exat sequene
0→ X ′ → X → X ′′ → 0in U suh that ℓU(X ′), ℓU(X ′′) < l. Then the sequene

0→ Υ (X ′)→ Υ (X)→ Υ (X ′′)→ 0is exat in U ′, sine Υ is an exat funtor. The objets Υ (X ′) and Υ (X ′′)belong to U ′ by the indutive assumption. Hene, by (a), so does Υ (X),and the proof of the laim is omplete. Consequently, Υ indues a funtor
Υ|U : U → U ′. We have to show that Υ|U is dense.Denote by X0, . . . , Xn−1 all (up to isomorphism) pairwise nonisomorphisimple objets in U . We an assume that their numbering is suh that allpairwise nonisomorphi objets X(s, l), s ∈ Zn, of U -length l ≥ 1 in Uare uniquely determined by omposition series of the form (Xs, . . . , Xs−l+1),where Xi = Xremn(i) for i ≥ n. Then applying (b) and the fat that Υ isfull and faithful, we infer that the objets Ys := Υ (Xs), s ∈ Zn, are allnonisomorphi simple objets in U ′. Next, we show by indution on l thatthe pairwise nonisomorphi indeomposable objets Y (s, l) := Υ (X(s, l)),
s ∈ Zn, in U ′ have U ′-length l and are determined by omposition series of
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the form (Ys, . . . , Ys−l+1), s ∈ Zn, where Yi = Yremn(i) for i ≥ n. This follows,by exatness of Υ , from the existene of exat sequenes

0→ X(s, 1)→ X(s, l)→ X(s⊖n 1, l − 1)→ 0,

s ∈ Zn, for any l ≥ 2. Consequently, Υ|U : U → U ′ is dense and yieldsthe required equivalene of abelian ategories. Now the �nal assertion isstraightforward.Let Λ′ = Λp′,q′ be a hereditary algebra of type Ãp′,q′ , where p′, q′ ≥ 1.As already mentioned, the regular Λ-modules form a 1-parameter family
T ′ = {T p′,q′

λ }λ∈k∪{∞} of stable tubes of type (p′, q′) and eah of the ategories
add T p′,q′

λ , λ ∈ k∪{∞}, is serial of type (nλ,∞), where nλ is the rank of T p′,q′

λ .Assume that T p′,q′

0 , T p′,q′
∞ and T p′,q′

λ , λ ∈ k\{0}, are stable tubes of rank p, qand 1, respetively. Below we list all, onseutive with respet to the �yliorder�, regular simple modules from the mouth of eah tube T p′,q′

λ , aordingto the onvention of 1.3. The list yields the enodings of all indeomposableregular Λ′-modules given by tubular oordinates.We set:
X(T p′,q′

0 , 0, 1) =
k

���
0

0 -0 . . . -0 0
@@R

0

-
1

k -
1

. . . -
1

k -
1

kand X(T p′,q′

0 , s, 1) = S(as) for s ∈ Zp′ \ {0}, where X(T p′,q′

0 , s′, l) is themodule in the tube T p′,q′

0 orresponding to the vertex (s′, l) ∈ T (p′)0 for all
s′ ∈ Zp′ and l ≥ 1;

X(T p′,q′
∞ , 0, 1) =

k
���
1

k -1 . . . -1 k
@@R

1

-
0

0 -
0

. . . -
0

0 -
0

kand X(T p′,q′
∞ , s, 1) = S(bs) for s ∈ Zq′ \ {0}, where X(T p′,q′

∞ , s′, l) is themodule in the tube T p′,q′
∞ orresponding to the vertex (s′, l) ∈ T (q′)0 for all

s′ ∈ Zq′ and l ≥ 1.To �x a preise list of regular simple Λ′-modules lying in homogeneoustubes, we simply give a desription of all indeomposable regular modulesfrom tubes T p′,q′

λ , λ ∈ k \ {0}, of rank 1. We set
X(Tλ, 0, l) =

kl
���

Jl(λ) kl -Il . . . -Il
kl

@@R
Il

-
Il

kl -
Il

. . . -
Il

kl -
Il

klwhere X(T p′,q′

λ , 0, l) is the module of add T p′,q′

λ -length l in the tube T p′,q′

λ forall l ≥ 1.
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Further on, for λ ∈ k\{0}we use the abbreviated notationXp′,q′(λ, s, l) =

X(T p′,q′

λ , s, l) for λ = 0,∞, and Xp′,q′(λ, l) = X(T p′,q′

λ , 0, l) for λ ∈ k \ {0}.
Corollary.(a) The funtors Φ0|add T p,q

0
, Φ1|add T 2,q

0
, Φ∞|add T q,p

0
, Φ|add T 1,1

λ
yield theequivalenes (∗).(b) We have the isomorphisms(i) Φ0(X

p,q(0, s, l)) ∼= X(0, s, l),(ii) Φ1(X
2,q(0, s′, l)) ∼= X(1, s′, l),(iii) Φ∞(Xq,p(0, s′′, l)) ∼= X(∞, s′′, l),(iv) Φ(X1,1(λ, l)) ∼= X(λ, l)for all s ∈ Zp, s′ ∈ Z2, s′′ ∈ Zq, l ≥ 1 and λ ∈ k \ {0, 1}.Proof. The funtors Φ0, Φ1, Φ∞, Φ and the pairs (add T p,q

0 , add T p,q,2
0 ),

(add T 2,q
0 , add T p,q,2

1 ), (add T q,p
0 , add T p,q,2

∞ ), (add T 1,1
λ , add T p,q,2

λ )λ∈k\{0,1} ofserial subategories of the respetive module ategories satisfy the �rst as-sumptions and ondition (a) of Lemma 3.3 (see Lemma 3.2(a) and [22, 23℄).It is easy to hek that for l = 1, the isomorphisms (i)�(iv) hold trivially(they are in fat equalities), so (b) is also satis�ed for eah of the four fun-tors. Consequently, (a) holds automatially by Lemma 3.3. Assertion (b)follows immediately from the �nal assertion of Lemma 3.3 and the de�nitionof tubular oordinates.
Remark.(i) By the de�nition of the funtor Φ, the Λp,q,2-modules X(λ, l) in thehomogeneous tubes T p,q,2

λ , λ ∈ k \ {0, 1}, have the form
X(λ, l) = kl

���
Jl(λ)

kl -Il . . . -Il
kl

@@R
Il

-−Il
kl -Il . . . -Il kl -Il kl

PPPPPqJl(λ − 1)
kl

�����1
Il(see also [18℄). The formulas for the remaining indeomposable regu-lar modules from the tubes T p,q,2

0 , T p,q,2
1 and T p,q,2

∞ do not have suhregular shape but of ourse an be reonstruted, by applying thefuntors Φ0, Φ1 and Φ∞ and the desription of regular nonhomoge-neous modules over hereditary algebras Λ′ of type Ãp′,q′ in terms ofwalks in the quiver Qp′q′ (see for example [9℄).(ii) The funtor Φ∞ indues a homomorphism
ϕ∞ : K(Λq,p)→ K(Λp,q,2)of Grothendiek groups, given by [M ] 7→ [Φ∞(M)] forM in modΛq,p.Applying only additivity of the dimension vetor on exat sequenes,
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exatness of Φ∞ and the isomorphisms (i)�(iv) for l = 1, one aneasily obtain the formula ϕ∞([Xq,p(s, l)]) = [X(∞, s, l)] for all s ∈ Zqand l ≥ 1. Consequently,

Φ∞(Xq,p(0, s, l)) ∼= X(∞, s, l)for all s ∈ Zq and l suh that q ∤ l, sine the modules X(∞, s, l) areuniquely determined by their dimension vetors in this ase (see [23℄).It remains to de�ne an analogous isomorphism in ase q | l. The sit-uation for the funtors Φ0|add T p,q
0

and Φ1|add T 2,q
0

is analogous.3.4. Proof of Theorem 2.2(a). The pairs of funtors (Ψ0, Φ0),(Ψ1, Φ1),
(Ψ∞, Φ∞), (Ψ, Φ) satisfy the assumptions of Proposition 3.1 (see Lemma 3.2,Corollary 3.3 and Remark 3.1(ii)). Thus, the following formulas hold:
(∗)

m(M)[0,s,l] = m(Ψ0(M))Xp,q(0,s,l),

m(M)[1,s′,l] = m(Ψ1(M))X2,q(0,s′,l),

m(M)[∞,s′′,l] = m(Ψ∞(M))Xq,p(0,s′′,l),

m(M)[λ,l] = m(Ψ(M))X1,1(λ,l),for all s ∈ Zp, s′ ∈ Z2, s′′ ∈ Zq, l ≥ 1 and λ ∈ k \ {0, 1}.Following the notation introdued in [9℄, for any p′, q′ ≥ 1, s ∈ Zp′ and
l ≥ 1, there exist i ∈ {2, . . . , p′ + 1}, j ∈ Zp′ and n ≥ 0 suh that anindeomposable module Xp′,q′(0, s, l) is given by the walk w(i, j,−1) = αi,jor w(i, j, n) = αi,p′(β

−1α)nβ−1α1,j in the quiverQp′,q′ , where αp′+1,p′ = (∞),
αi+1,i = (ai), α1,0 = (0) are trivial walks in Qp′,q′ (see [9℄ for details).Applying simple indution, one an show the equality

(i, j, n) = µp′(s, l),where µp′ is the indexing map de�ned in 2.2. Now, given a Λp′,q′-module
M de�ned by the pair (A,B), A = (Ai)i∈[p′], B = (Bi)i∈[q′], and integers
s ∈ Zp′ , m ≥ 1, we have
(∗∗) [M,Xp′,q′(0, s, l)] = corMi,j,n(B,A),where (i, j, n) = µp′(s, l) (see [9, Lemma 5.6℄). Moreover, for any s ∈ Zp′ and
l ≥ 1 we have the formula
(∗∗∗) m(M)Xp′,q′(0,s,l)

= [M,Xp′,q′(0, s, l)]− [M,Xp′,q′(0, s⊖p′ 1, l − 1)]

− [M,Xp′,q′(0, s, l + 1)] + [M,Xp′,q′(0, s⊖p′ 1, l)],where Xp′,q′(0, s, 0) = 0 (see [9, Corollary 5.3℄).Now we an omplete the proof. Combining formulas (∗∗∗) and (∗∗), for
(p′, q′) equal to (p, q), (2, q) and (q, p), respetively, with (∗), we obtain (i),
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(ii), (iii) of Theorem 2.2(a). Formula (iv) holds by analogous arguments andthe equality
[M,X1,1(λ, l)] = corMl

λ(A1,−B1)for any λ ∈ k \ {0, 1}, l ≥ 0 (see [9, Lemma 4.6℄).Assume now that for a Λ-moduleM the set σ(M) is known. Observe thatthe existene of the algorithm with the required properties follows from theformulas (∗). They redue the problem of determining the restrited multi-pliity vetors m(M)|C, for all regular omponents C in ΓΛ, to the analogousone for onrete four modules, Ψ0(M), Ψ1(M), Ψ∞(M) and Ψ(M), over fouralgebras Λ′ of type Ãp′,q′ , and a �nite number of already determined regularonneted omponents C′ in ΓΛ′ , for eah of these algebras. Following [9℄, fora Λ′-module M ′ with dimk M
′ = n′ and a regular omponent C′, there existsan algorithm of pessimisti omplexity O(n′4) whih omputes m(M ′)|C′ .Sine n′ ≤ dimk M for M ′ = Ψ0(M), Ψ1(M), Ψ∞(M), or Ψ(M), the proof ofthe existene of the algorithm, and hene Theorem 2.2(a), is omplete.

Corollary. Let T{0,1,∞} =
⊔

λ∈k\{0,1}Tλ. Then m(M)|T{0,1,∞}
=

m(Ψ(M))|R′
{0,1,∞}

and the problem of algorithmi omputing of the vetor
m(M)|T{0,1,∞}

, in partiular determining the set σ(M), is fully redued to theanalogous problems for the Kroneker algebra, Λ1,1,, for the restrited vetor
m(Ψ(M))|R′

{0,1,∞}
and the set σ(ψ(M)), where R′

{0,1,∞} =
⊔

λ∈k\{0,1}(T
1,1

λ )0and σ(ψ(M)) onsists of all λ ∈ k suh that Ψ(M) ontains a diret sum-mand from add T 1,1
λ (f. [9, Proposition 4.4 and Algorithm 4.4(3)℄).

Remark. The algorithmi determining of the vetor m(M)|Tλ
, for a�xed λ ∈ k∪{∞}, relies on an appropriate redution and is desribed in the�nal part of the proof above. To determine the integer m(M)x, for a �xedsingle x ∈ T, we an apply diretly formulas (i)�(iv) from Theorem 2.2(a).3.5. Proof of Theorem 2.2(b). Let Λ′ = Λ1,1 = k(0 →→ ω) be the Kro-neker algebra and Ψ : modΛ → modΛ′ the funtor de�ned in 3.2. Firstwe prove that rkP(M) is equal to the number of postprojetive summandsin a deomposition of the module Ψ(M) = (A,−B) into a diret sum ofindeomposable Λ′-modules, where M is given by a triple (A,B,C).Denote by addP ′, addR′ and addQ′ the subategories of all postproje-tive, regular and preinjetive modules in modΛ′, respetively. Reall that thedimension vetor dimP ′ of an indeomposable module P ′ in addP ′ has theform dimP ′ = [m,m+ 1] for some m ≥ 0. Denote by res : modΛ→ modΛ′the standard restrition funtor, given by res(M) = (A,B) for M as above.Let M be a �xed Λ-module given by a triple (A,B,C), and

M ∼= P ⊕R⊕Q
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a deomposition of M with P in addP, R in addR and Q in addQ. Then,by [23, Chapter 12℄, the modules res(P ), res(R) and res(Q) belong to thesubategories addP ′, addR′ and addQ′, respetively. Observe that Ψ anbe presented as a omposite funtor

modΛ
res
−→ modΛ′ Θ

−→ modΛ′,where Θ is the autoequivalene de�ned by the formula Θ(N) = (A′,−B′)for a Λ′-module N given by the pair (A′, B′) of appropriate matries. Theequivalene Θ preserves the subategories addP ′, addR′ and addQ′, sineit preserves the dimension vetors. Hene, Ψ(P ), Ψ(R) and Ψ(Q) belong to
addP ′, addR′ and addQ′, respetively. Thus, Ψ(P ) is a maximal postpro-jetive diret summand of Ψ(M).Let

Ψ(P ) ∼=

t⊕

i=1

P ′
ibe a deomposition of Ψ(P ) into a diret sum of postprojetive indeompos-able Λ′-modules. Then

dimΨ(P ) =
t∑

i=1

[si, si + 1],where dimP ′
i = [si, si + 1] for i = 1, . . . , t; on the other hand,

dimΨ(P ) = [s, s+ r],where s = dimk P0 and r = rk(P ) = rkP(M). Consequently, t = rkP(M)and our laim is proved.Now we prove the remaining assertions of Theorem 2.2(b).Fix λ0 ∈ k \ {0, 1}. Then λ0 belongs to σ(M) if and only if m(M)[λ0,l] =
m(Ψ(M))X1,1(λ0,l) 6= 0 for some l ≥ 1 (see 3.4(∗)). By [9, Proposition 4.4℄and the equality t = rkP(M), this is equivalent to λ0 being a ommon rootof all (nω − rkP(M))-minors of the matrix A+λB, regarded as polynomialsin k[λ], and we are done.The formula for the number of indeomposable diret summands of Mfrom one tube Tλ0 follows immediately, by the equality t = rkP(M), from[9, Corollary 4.4℄.Finally, the required algorithm omputing rkP(M) with low omplexityan be obtained by applying the algorithm omputing the vetor m(N)|P ′for modules N over the Kroneker algebra Λ′, to the module N = Ψ(M)(see [9℄). In this way the proof of Theorem 2.2(b) is omplete.
Remark. Suppose we want to determine the vetorm(M)|T{0,1,∞}

. Thenwe apply the method desribed above. More preisely, we exeute [9, Algo-rithm 4.5(1)℄ to ompute m(Ψ(M))|P ′ , and hene the integer t, whih is ne-
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essary to determine σ(Ψ(M)). Next, applying [9, Algorithm 4.5(3)℄, we om-pute m(Ψ(M))|R{0,1,∞}
and m(M)|T{0,1,∞}

. In ase the integer rkP(M) = tis already known (in partiular, if m(M)|P as a solution of a partial taskin determining m(M) is already omputed), we an learly omit omput-ing m(Ψ(M))|P ′ and pass at one to further steps of the proedure (f.Remark 6.2()). One should stress that the algorithm omputing m(M)|P,onstruted in Setion 6, has the same omplexity, O(n4), as [9, Algo-rithm 4.5(1)℄, but it is muh more ompliated and uses rather deep knowl-edge of postprojetive indeomposable modules over domesti anonial al-gebras.
4. COMPUTING THE INTEGERS h(M)d, d ∈ PThis setion is devoted to the proof of Theorem 2.3.4.1. We start with some general observation.LetM,N be modules over some loally bounded ategory R (i.e. k-linearfuntors from R to mod k). Assume that there exists a full subategory R′ of

R suh that for every x ∈ obR \ obR′ there exists a morphism α ∈ R(x, y),for some y ∈ obR′, suh that N(α) : N(x) → N(y) is a monomorphism.Then the linear map
ι = ιR′

M,N HomR(M,N)→ HomR′(M|R′ , N|R′)indued by the standard restrition funtor res : modR → modR′ is amonomorphism.We preisely desribe the image of ι in some partiular situations. Forthis we need some extra notation.Following [18℄, for any r ≥ s we onsider the blok matries
Xr,s =

[
Is

0

] and Yr,s =

[
0

Is

]

in Mr×s(k), where 0 denotes the zero matrix in M(r−s)×s(k).
Lemma.(a) Let Λ = Λ1,1,2 and M,M ′ be �nite-dimensional Λ-modules of di-mension vetors n, n′, whih are given by the triples (A,B,C) and

(A′, B′, C ′), respetively. Assume that C ′
2 : kn′

c1 → kn′
ω is a monomor-phism and D2 ∈ Mn′

c1
×n′

c1
(k) is invertible, where C ′

2 =
[

D1

D2

]
∈

Mn′
ω×n′

c1
(k), D1 ∈ M(n′

ω−n′
c1

)×n′
c1

(k). Then ιΛ
′

M,M ′ , for Λ′ = Λ1,1,yields a k-isomorphism
HomΛ(M,M ′)∼={(y, x)∈HomΛ′(M|Λ′ ,M ′

|Λ′) :x(1)C2 =D1D
−1
2 x(2)C2},
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where (y, x) ∈ Mn′

0×n0
(k) ×Mn′

ω×nω
(k) and x =

[
x(1)

x(2)

] with x1 ∈

M(n′
ω−n′

c1
)×nω

(k) and x2 ∈Mn′
c1

×nω
(k).(b) Let Λ = Λp,q and M,M ′ be �nite-dimensional Λ-modules of dimen-sion vetors n, n′, whih are given by the pairs (A,B) and (A′, B′),respetively. Assume that gr(n′) ∈ N(Qp,q)1 , all the matries A′

i areof the form X∗,∗ and all the matries B′
j are of the form Y∗,∗. Then

ιΛ
′

M,M ′ , for Λ′ = kω( = k), yields a k-isomorphism
HomΛ(M,M ′)∼=




x =




x1...
xn′

ω


 ∈Mn′

ω×nω
(k) : [x1| . . . |xn′

ω
] ·W = 0




,

where W = W (A,B, n′) (see 2.3).Proof. (a) We start by proving that a triple (y, x, u) ∈ Mn′
0×n0

(k) ×

Mn′
ω×nω

(k)×Mn′
c1

×nc1
(k) belongs to HomΛ(M,M ′) if and only if it satis�esthe system of three matrix equations:





(i) xA1 = A′
1y,

(ii) xB1 = B′
1y,

(iii) xC2 = C ′
2u.Fix (y, x, u) satisfying (i)�(iii). We have to show that for (y, x, u) also

(iv) uC1 = C ′
1y.To this end we use another form of (iii), namely,

{
(iii)1 x(1)C2 = D1u,

(iii)2 x(2)C2 = D2u,obtained from (iii) by using the blok matrix presentations of x and C ′
2. Bythe assumptions, (iii)2 is equivalent to

(iii)′2 D−1
2 x(2)C2 = u.The relations in Λ and (i), (ii), (iii)′2 yield

uC1 = D−1
2 x(2)C2C1 = D−1

2 x(2)(A1 +B1) = D−1
2 π2x(A1 +B1)

= D−1
2 π2(A

′
1 +B′

1)y = (D−1
2 π2C

′
2)C

′
1y = C ′

1y,where π2 = [0 | In′
c1

] ∈Mn′
c1
×n′

ω
(k). Consequently, the laim is proved.Now we show (a). By the above we have

HomΛ(M,M ′) = {(y, x, u) : (i), (ii), (iii)1, (iii)
′
2}.Observe that subtrating from (iii)1 equation (iii)′2 multiplied by D1 fromthe left, we obtain a new system ((iii)′1, (iii)

′
2), equivalent to ((iii)1, (iii)

′
2),
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where
(iii)′1 D1D

−1
2 x(2)C2 = x(1)C2.Moreover, by the shape of (iii)′2, the projetion (y, x, u) 7→ (y, x) yields a

k-isomorphism
HomΛ(M,M ′) ∼= {(y, x) ∈Mn′

0×n0
(k)×Mn′

ω×nω
(k) : (i), (ii), (iii)′1}.In this way the proof of (a) is omplete.(b) To show the required isomorphism, we interpret HomΛ(M,M ′) as theset of all tuples

ϕ = (y, v(1), . . . , v(p−1), w(1), . . . , w(q−1), x)in
Mn′

0×n0
(k)×

p−1∏

i=1

Mn′
ai
×nai

(k)×

q−1∏

i=1

Mn′
bj
×nbj

(k)×Mn′
ω×nω

(k)satisfying a system (v) = ((v)α1
, . . . , (v)αp

; (v)β1
, . . . , (v)βq

) of p + q matrixequations, given by the ommutativity of struture maps in M and M ′ or-responding to all arrows of Qp,q, with the omponents of ϕ orrespondingto the appropriate verties of Qp,q,. To better understand the system (v),we present eah oordinate of ϕ in blok matrix form given by rows, in thefollowing way:
y =




y1...
yn′

0


 , v(i) =




v
(i)
1...
v

(i)
n′

ai


 , w(j) =




w
(j)
1...

w
(j)
n′

bj


 , x =




x1...
xn′

ω


 ,

where i = 1, . . . , p− 1 and j = 1, . . . , q − 1. Then, by applying the formulasde�ning the matries A′
i and B′

j , the system (v) has the form
(v)′α1

:




v
(1)
1...

v
(1)
n′

a1


 A1 =




y1...
yn′

0

0...
0




, (v)′β1
:




w
(1)
1...

w
(1)

n′
b1


 B1 =




0...
0

y1...
yn′

0




,

(v)′α2
:




v
(2)
1...

v
(2)
n′

a2


 A2 =




v
(1)
1...

v
(1)
n′

a1

0...
0




, (v)′β2
:




w
(2)
1...

w
(2)

n′
b2


 B2 =




0...
0

w
(1)
1...

w
(1)

n′
b1




,

... ...
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(v)′αp−1

:




v
(p−1)
1 ...

v
(p−1)
n′

ap−1


 Ap−1 =




v
(p−2)
1 ...

v
(p−2)
n′

ap−2

0...
0




, (v)′βq−1
:




w
(q−1)
1 ...

w
(q−1)

n′
bq−1




Bq−1 =




0...
0

w
(q−2)
1 ...

w
(q−2)

n′
bq−2




,

(v)′αp
:




x1...
xn′

ω


 Ap =




v
(p−1)
1 ...

v
(p−1)
n′

ap−1

0...
0




, (v)′βq
:




x1...
xn′

ω


 Bq =




0...
0

w
(q−1)
1 ...

w
(q−1)

n′
bq−1




,

Eah of the above equations an be written in the form [
(v)′αi,1

(v)′αi,2

] (resp.[
(v)′βj,1

(v)′βj,2

]), where the divisions are indiated by horizontal lines in the ve-tors on the right hand sides. Now we indutively transform the systems
(v)′α = ((v)′α1

, . . . , (v)′αp
) and (v)′β = ((v)′β1

, . . . , (v)′βq
), separately, to equiv-alent systems (v)′′α = ((v)′′α1

, . . . , (v)′′αp
) and (v)′′β = ((v)′′β1

, . . . , (v)′′βq
) of asimpler form, in the following way.We start with (v)′α and set (v)′′αp

= (v)′αp
. Assume that (v)′′αi

for 1< i≤ pis already onstruted. Then we de�ne (v)′′αi−1
as the sum of (v)′αi−1

and
(v)′′αi,1

multiplied from the right by the matrix Ai. The resulting system (v)′′α,onsisting of n′a1
+ · · ·+ n′ap−1

+ n′ω equations, looks as follows:
(v)′′α1

:





x1Ap,1 = y1,

· · · · · · · · · · · · · · ·

xn′
0
Ap,1 = yn′

0
,

xn′
0+1 Ap,1 = 0,

· · · · · · · · · · · · · · ·

xn′
a1

Ap,1 = 0,

(v)′′α2
:





x1Ap,2 = v
(1)
1 ,

· · · · · · · · · · · · · · ·

xn′
a1

Ap,2 = v
(1)
n′

a1

,

xn′
a1

+1 Ap,2 = 0,

· · · · · · · · · · · · · · ·

xn′
a2

Ap,2 = 0,...
(v)′′αp−1

:





x1Ap,p−1 = v
(p−2)
1 ,

· · · · · · · · · · · · · · · · · ·

xn′
ap−2

Ap,p−1 = v
(p−2)
n′

ap−2

,

xn′
ap−2+1

Ap,p−1 = 0,

· · · · · · · · · · · · · · · · · ·

xn′
ap−1

Ap,p−1 = 0,

(v)′′αp
:





x1Ap = v
(p−1)
1 ,

· · · · · · · · · · · · · · ·

xn′
ap−1

Ap = v
(p−1)
n′

ap−1

,

xn′
ap−1+1

Ap = 0,

· · · · · · · · · · · · · · ·

xn′
ω

Ap = 0.Similarly we proeed with (v)′β. We set (v)′′βq
= (v)′βq

. Assume that (v)′′βj
,for 1 < j ≤ q, is already onstruted. Then we de�ne (v)′′βj−1

to be the sum of
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(v)′βj−1
and (v)′′βj,2

multiplied from the right by the matrix Bj . The resultingsystem (v)′′β, onsisting of n′b1 + . . .+ n′bq−1
+ n′ω equations, looks as follows:

(v)′′β1
:






xn′
ω−n′

b1
+1Bq,1 = 0,

· · · · · · · · · · · · · · · · · ·

xn′
ω−n′

0
Bq,1 = 0,

xn′
ω−n′

0+1Bq,1 = y1,

· · · · · · · · · · · · · · · · · ·

xn′
ω

Bq,1 = yn′
0
,

(v)′′β2
:






xn′
ω−n′

b2
+1 Bq,2 = 0,

· · · · · · · · · · · · · · · · · ·

xn′
ω−n′

b1
Bq,2 = 0,

xn′
ω−n′

b1
+1Bq,2 = w

(1)
1 ,

· · · · · · · · · · · · · · · · · ·

xn′
ω

Bq,2 = w
(1)

n′
b1

,...
(v)′′βq−1

:





xn′
bω

−n′
bq−1

+1Bq,q−1 = 0,

· · · · · · · · · · · · · · · · · · · · · · · ·

xn′
bω

−n′
bq−2

Bq,q−1 = 0,

xn′
bω

−n′
bq−2

+1Bq,q−1 = w
(q−2)
1 ,

· · · · · · · · · · · · · · · · · · · · · · · ·

xn′
ω

Bq,q−1 = w
(q−2)

n′
bq−2

,

(v)′′βq
:





x1Bq = 0,

· · · · · · · · · · · · · · · · · ·

xn′
ω−n′

bq−1

Bq = 0,

xn′
ω−n′

bq−1
+1 Bq = w

(q−1)
1 ,

· · · · · · · · · · · · · · · · · ·

xn′
ω

Bq = w
(q−1)

n′
bq−1

.Now we omplete the proof. It is easily seen that the projetion
(y, v(1), . . . , v(p−1), w(1), . . . , w(q−1), x) 7→ x =




x1...
xn′

ω


yields a k-isomorphism

HomΛ(M,M ′) ∼=





x =




x1...
xn′

ω


 ∈Mn′

ω×nω
(k) : (∗)





,where (∗) denotes system

((v)′′α1,2, . . . , (v)′′αp,2; (v)′′β1,1, . . . , (v)′′βq ,1; (v)′′α1,1 − (v)′′β1,2).Note that the matrix of (∗) is W , one we interpret x ∈Mn′
ω×nω

(k) as a rowvetor [x1 | . . . |xn′
ω
] ∈ M1×nωn′

ω
(k). In this way the proof of assertion (b),and of the whole lemma, is omplete.4.2. Now we prove an important fat onerning speial homomorphismspaes for modules over domesti anonial algebras.

Proposition. Let Λ = Λp,q,2, p, q ≥ 2, and M,M ′ be �nite-dimensional
Λ-modules of dimension vetors n, n′, whih are given by the triples (A,B,C)and (A′, B′, C ′), respetively. Assume that C ′

2 and (A′, B′) satisfy the as-sumptions of (a) and (b) of Lemma 4.1, respetively. Then
[M,M ′] = cor[W |W ′],where W = W (A,B, n′|(p,q)) and W ′ =

[
−In′

ω−n′
c1

(D1D−1
2 )t

]
⊗ C2.
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Proof. Consider the ommutative diagram

H
ι′2−→ H2yι′1

yι2

H1
ι1−→ H3

ι3−→ H4
∼= Mn′

ω×nω
(k)of k-vetor spaes, where H = HomΛ(M,M ′), H1, H2, H3, H4 stand for thehomomorphism spaes HomΛ′(M|Λ′ ,M ′

|Λ′) for Λ′ = Λp,q, Λ1,1,2, Λ1,1, kω, re-spetively, and ι′1, ι′2, ι1, ι2, ι3 denote the maps given by the respetive restri-tions. Observe that by the introdutory remark in 4.1 and the assumptionson M ′ all �ve homomorphisms in the diagram are monomorphisms. More-over, it is easily seen that the pair (ι′1, ι
′
2) indues a k-isomorphism

H ∼= H1 ⊓H3 H2,where H1 ⊓H3 H2 is the �bre produt of H1 and H2 along the pair (ι1, ι2) ofhomomorphisms. Consequently, the monomorphisms ι1 ◦ ι′1 (= ι2 ◦ ι
′
2) and ι3yield a k-isomorphism

H ∼= Im ι1 ∩ Im ι2 ∼= Im(ι3 ◦ ι1) ∩ ι3(Im ι2).Hene, by Lemma 4.1,
H ∼= {x ∈Mn′

ω×nω
(k) : [x1 | . . . |xn′

ω
] ·W = 0; D1D

−1
2 x(2)C2 = x(1)C2}.Note that the seond equation, as a matrix equation in M(n′

ω−n′
c1

)×nc1
(k),looks as follows:

[−In′
ω−n′

c1
|D1D

−1
2 ] ·

[
x(1)

x(2)

]
· C2 = 0.By the lemma below, it is equivalent to the equation

[x1| . . . |xn′
ω
] ·

([
−In′

ω−n′
c1

(D1D
−1
2 )t

]
⊗ C2

)
= 0

in M1×(n′
ω−n′

c1
) nc1

(k). This �nishes the proof.
Lemma. For any P ∈ Mm1×m(k), x ∈ Mm×n(k) and Q ∈ Mn×n2(k),

PxQ = 0 in Mm1×n2(k) if and only if [x1| . . . |xm] · (P t ⊗ Q) = 0 in
M1×m1n2(k), where x1, . . . , xm ∈M1×n(k) are the rows of x.Proof. An easy hek on de�nitions.4.3. Let Z ∈ Mr×s(k). Following [18℄, for any n ∈ N, we denote by
Z[n] the nth enlargement of Z. Reall that Z[n] ∈ M(r+n)×(s+n)(k) is
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given by
Z[n] =




Z
1 . . .

0

1 1. . .
1




,

where all entries o� the two diagonals of length n (onsisting of ones) arezeros. We set Z(0) = Z.Assume now that r ≥ s. Then Z an be written in the form
Z =

[
Z1

Z2

]
,where Z1 ∈M(r−s)×s(k) and Z2 ∈Ms×s(k). Analogously, for any n ∈ N,

Z[n] =

[
Z[n]1

Z[n]2

]
,where Z[n]1 ∈ M(r−s)×(n+s)(k) and Z[n]2 ∈ M(n+s)×(n+s)(k). Observe that

Z[n]2 is a blok upper triangular matrix, so Z[n]2 is invertible if and only if
Z2 is.
Lemma. Let Z ∈Mr×s(k), r ≥ s, be suh that Z2 is invertible. Then forany n ∈ N, we have the equality

[−Ir−s |Z[n]1Z[n]−1
2 ] = [−Ir−s |U ](∞|n+r)of matries in M(r−s)×(n+r)(k), where U = Z1Z

−1
2 ∈M(r−s)×s(k).Proof. Reall that the matrix [−Ir−s |U ](∞|n+r) ∈ M(r−s)×(n+r)(k) is byde�nition given by the formula

[−Ir−s |U ](∞|n+r) = ([−Ir−s |U ](i))|n+r,where (i− 1)r ≥ n, and [−Ir−s |U ](i) ∈M(r−s)×ir(k) has the form
[−Ir−s |U ](i) = [Ir−s |U | Ir−s | −U | − Ir−s |U | . . .].Fix n ≥ 1 and set, for simpliity, Z̃1 = Z[n]1 and Z̃2 = Z[n]2. To showthe assertion we have to ompute the matrix Z̃1Z̃

−1
2 . To this end, we write

Z̃1 ∈M(r−s)×(n+s)(k) and Z̃2 = M(n+s)×(n+s)(k) in blok matrix form
Z̃1 = [Z1 | Ir−s | 0] and Z̃2 =

[
Z2 Z ′

2

0 Z ′′
2

]
,
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where Z ′

2 ∈Ms×n(k) and Z ′′
2 ∈Mn×n(k). Here

Z ′
2 = [0r−s | Is | 0] and Z ′′

2 = In +N r,where 0r−s ∈ Ms×(r−s)(k) is the zero matrix and N = Jn(0) ∈ Mn×n(k) isthe (nilpotent) upper triangular Jordan blok with eigenvalue 0.The matrix Z ′′
2 is learly invertible. We laim that its inverse is

Z ′′
2
−1

=

∞∑

i=0

(−1)iN ir.Sine the mapping T 7→ N yields an algebra isomorphism between the trun-ated polynomial algebra k[T ]/(Tn) and the subalgebra k[N ] ⊆ Mn×n(k),where T = T + (Tn), the laim follows from the fat that the inverse of theinvertible element 1 + T r ∈ k[T ]/(Tn) is equal to ∑∞
i=0(−1)i T ir.Next observe that Z̃2 is a blok upper triangular matrix, so the inverseof Z̃2 has the form

Z̃−1
2 =

[
Z−1

2 −Z−1
2 Z ′

2 Z
′′
2
−1

0 Z ′′
2
−1

]
.Consequently,

Z̃1Z̃
−1
2 = [Z1Z

−1
2 | −Z1Z

−1
2 Z ′

2 Z
′′
2
−1

+ [Ir−s | 0]Z ′′
2
−1

],Moreover, applying the formula for Z ′′
2
−1, we have

−Z1Z
−1
2 Z ′

2 Z
′′
2
−1

= −Z1Z
−1
2 ([0r−s | Is | 0]Z ′′

2
−1

)

= −Z1Z
−1
2 [0r−s | Is | −0r−s | −Is | . . .]

= [0r−s | −Z1Z
−1
2 | −0r−s |Z1Z

−1
2 | . . .]and

[Ir−s | 0]Z ′′
2
−1

= [Ir−s | 0s | −Ir−s | 0s | . . .],where 0s ∈ M(r−s)×s(k) is the zero matrix. Now inserting these two �nalformulas into that for Z̃1Z̃
−1
2 , we immediately obtain the assertion.Let Λ = Λp,q,2, Z ∈ Mr×s(k), r > s, and let d ∈ N(Qp,q,2)0 be a vetorsuh that d0 = 0, dc1 = s, dω = r, gr(d) ∈ N(Qp,q,2)1 . Then for any l ∈ N, wedenote by d[l] the vetor

d[l] = d+ l · 1and by N [l] the Λ-module
N [l] = N(Z, d, l)of dimension vetor d[l], given by the triple (A′, B′, C ′), where A′

i = X∗,∗ for
i = 1, . . . , q, B′

j = Y∗,∗ for j = 1, . . . , q, C ′
1 = Ydc1+l,l and C ′

2 = Z[l]. (Notethat N [l] is really a Λ-module).
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Remark. If Λ = Λp,q,2 is a domesti anonial algebra then the mapping
(l, d) 7→ d[l] yields the inverse of the map whih de�nes the bijetion (ii) inLemma 2.3(a).As an immediate onsequene of Proposition 4.2 and Lemma 4.3 we ob-tain the following.
Corollary. Let Z and d be as above. Assume that Z2 ∈ Ms×s(k) isinvertible, where Z =

[
Z1

Z2

]. Then for any integer l ∈ N and Λ-module M ofdimension vetor n, given by the triple (A,B,C), we have
[M,N [l]] = cor

[
W (A,B, d[l]|(p,q))

∣∣∣∣
[
−Ir−s

U

]

(∞|l+r)

⊗ C2

]
,where U = (Z1Z

−1
2 )t.4.4. Proof of Theorem 2.3. Let d ∈ P. Then learly d = d [d0] and gr(d) ∈

N(Qp,q,2)1 . Applying the results of [18, 15℄, we know that, if rγ2(d) ≥ 1 (whihholds always if rk(d) ≥ 2), then the unique indeomposable postprojetive Λ-module Pd, with dimension vetor d = d [d0], an be represented in the form
Pd = N [d0], N [d0] = N(Z(d), d, l), where Z(d) ∈ Mdω×dc1

(k) is uniquelydetermined by d. Moreover, the set
Z = {Z : ∃e∈P, rγ2(e)≥1 Z = Z(e)}is �nite and it is desribed by two tables; the �rst from [18℄ for the ase asin Theorem 2.3(b), and the seond from [15℄ for the ase as in () (for e with

rk(e) = 1 and rγ2(e) = 1, Z(e) is a trivial matrix in M1×0(k)).One an easily hek, by inspetion, that eah Z ∈ Z has the propertythat the matrix Z2 ∈ Mdc1×dc1
(k) is invertible, where Z = Z(d) and Z =

[
Z1

Z2

] with Z1 ∈M(dω−dc1)×dc1
(k).Now we omplete the proof. For any d ∈ P suh that rγ2(d) ≥ 1, weset U(d) = (Z1Z

−1
2 )t, where Z ∈ Z is suh that Z = Z(d). Then the �rstassertion of Theorem 2.3, for d ∈ P as above, follows immediately fromCorollary 4.3. We still have to disuss the ase of d ∈ P suh that rγ2(d) = 0(and then rk(d) = 1). Note that by Proposition 4.2, the formula for h(M)dholds trivially in this ase, sine following [18℄ the unique indeomposablepostprojetive Λ-module Pd with dimPd = d is given by the triple (A′, B′, C ′)suh that A′

i = X∗,∗ for i ∈ [p], B′
j = Y∗,∗ for j ∈ [q], C ′

1 = Xdc1 ,d0 + Ydc1 ,d0and C ′
2 = Idc1

∈Mdω×dc1
(k) (notie that rγ2(d) = dω − dc1 = 0).Now the remaining assertion, in partiular Tables 1 and 2, an be ob-tained from the two tables in [18, 15℄ mentioned above by omputing thematries U(d) from the de�nition. In this way the proof of Theorem 2.3 isomplete.
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5. THE STRUCTURE OF THE SET PThis setion is mainly devoted to the proof of Theorem 2.4. To do thiswe need some preparatory fats. The proof will be ompleted in 5.6. We alsode�ne a linear order relation ≺ ⊂ P0×P0 to be applied in the next setion.5.1. Let Λ = Λp,q,2 be a domesti anonial algebra, Σ a setion in thetranslation quiver P = P(Λ), and P0 = P0

0 ∪ P ′
0, P0 = P0(Σ), P ′ =P ′(Σ) = −NΣ, be a splitting of P indued by Σ (see 2.4 for de�nitionsand identi�ations). Denote by P ′′ the full subquiver of P ′ with vertex setP ′′

0 = {(−n, x) ∈ −NΣ : n 6= 0}. We start by proving the following propertyof the Auslander�Reiten translate τ .
Lemma. Let x ∈ P.(a) If x ∈ P ′ then τ−1x = φ−1(x).(b) If x ∈ P ′′ then τx = φ(x).Proof. (a) Let X be an indeomposable postprojetive module with

dimX = x ∈ P ′
0. From Theorem 1.5() we have HomΛ(D(ΛΛ), X) = 0.Moreover, HomΛ(τ−1X,Λ) = 0, sine the omponent P is standard, and bythe de�nition of setion, there is no projetive Λ-module P with dimP ∈ P ′′

0(see [22, 2℄). The last equality is equivalent to the fat that inj.dimX ≤ 1,so (a) now follows easily (see [22, 2.4.1∗, 2.4.4∗℄).(b) Let X be an indeomposable postprojetive module with dimX
= x ∈ P ′′

0 . By similar arguments, we have the equalities HomΛ(X,Λ) = 0and HomΛ(D(ΛΛ), τX) = 0. The last equality is equivalent to the fat that
pd.dim.X ≤ 1 and thus we get (b) (see [22, 2.4.1, 2.4.4℄).Let Σ0 = {x(1), . . . , x(s)}. For any (n, i) ∈ N × [s], we set x(n, i) =
τ−n(x(i)) (we assume τ0(x(i)) = x(i)). Note that the root x(n, i) ∈ P ′

0orresponds to (−n, x(i)) ∈ −NΣ. Moreover, by the lemma above we learlyhave x(n, i) = φ−n(x(i)) and x(n′ + n, i) = φ−n′
(x(n, i)) for all n, n′ ∈ N,

i ∈ [s].5.2. The following fat is ruial for the proof that the yli group
G = (φ) is �nite (f. [8℄ and [23℄, see also [19℄).
Proposition. There exists a minimal integer ν = νΛp,q,2 suh that

φν(x) = x+ ∂(x) · 1(and onsequently φ−ν(x) = x − ∂(x) · 1) for every x ∈ K0(Λ), where
∂(x) ∈ Z. The map ∂ = ∂Λ : K0(Λ)→ Z (alled the defet) is a Z-homomor-phism suh that ∂(x) < 0 for any x ∈ P. The integer ν equals 2p (resp. p)if q = 2 and p is odd (resp. even); it equals 6, 12 or 30 if the pair (p, q) isequal to (3, 3), (4, 3) or (5, 3), respetively.
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Proof. As already mentioned, Λ = Λp,q,2 is a tilted algebra of a hereditaryalgebra Λ′′ = kQ′′ of Eulidean type, where Q′′ is a quiver of type D̃p+2, Ẽ6,
Ẽ7, Ẽ8 if the pair (p, q) is equal to (p, 2), (3, 3), (4, 3), (5, 3), respetively,with p ≥ 2. (We an set Q′′ = Σ, where Σ is any setion in P.)It is well known [8, 23℄ that the radial rad q′′ of the quadrati form
q′′ = qQ′′ assoiated to Q′′ has the desription rad q′′ = Z · hQ′′ , where h =

hQ′′ ∈ NQ′′
0 is the vetor uniquely determined by Q′′, with all omponentspositive and at least one of them equal to 1. Moreover, let φ′′ = φΛ′′ :

K0(Λ
′′) → K0(Λ

′′) be the Coxeter transformation for Λ′′. Then φ′′(h) = hand there exists a minimal integer ν ′′ = νQ′′ suh that (φ′′)ν ′′
(x) = x +

∂′′(x) · h and (φ′′)−ν ′′
(x) = x − ∂′′(x) · h for every x ∈ K0(Λ

′′), where
∂′′(x) ∈ Z. The map ∂′′ = ∂Λ′′ : K0(Λ

′′) → Z is a Z-homomorphism suhthat ∂′′(dimP ′′) < 0 for any indeomposable postprojetive Λ′′-module P ′′.The integer ν ′′ = νQ′′ is equal to 2p (resp. to p) if Q′ is of type D̃p+2 and pis odd (resp. even); it is equal to 6, 12 or 30 if Q′′ is of type Ẽ6, Ẽ7 or Ẽ8,respetively.To �nish the proof reall that by general results of tilting theory thereexists a Z-isomorphism f : K0(Λ
′′)→ K0(Λ) suh that

q · f = q′′, φΛ = f · φΛ′′ · f−1(see [22, 4.1℄) In partiular, f(h) = 1. Moreover, in our ase, the module usedin the tilting proedure is postprojetive. Hene, for any x ∈ P, there existsan indeomposable postprojetive Λ′′-module P ′′ suh that x = f(dimP ′′).Now, by applying the properties of f , the assertions of the propositionfollow easily from the respetive fats for Eulidean quivers, whih werementioned above.
Corollary. The following equalities hold :

ν = |φ| = ν ′′ = |φ ′′|where φ ′′ : K0(Λ′′) → K0(Λ′′) is the redued Coxeter transformation for Λ′′and K0(Λ′′) = K0(Λ
′′)/rad q′′.5.3. For the proof of the equality ν = lcm{νj : j ∈ [r]} we need thefollowing lemma.

Lemma. Let Λ = Λp,q,2 be a domesti anonial algebra, S(L) the groupof all permutations of the set L, and H = {ψ ∈ Aut(K0(Λ)red) : ψ(L) ⊂ L}.Then H is a subgroup of Aut(K0(Λ)red) and the group homomorphism R :
H → S(L), ψ 7→ ψ|L, is injetive.Proof. Note �rst that for any ψ ∈ Aut(K0(Λ)red) suh that ψ(L) ⊂ L, wehave ψ(L) = L, so ψ−1(L) ⊂ L, sine L is �nite and ψ|L is an injetion. Con-sequently, H is a subgroup of Aut(K0(Λ)red). To prove that kerR = {idL},
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it su�es to know that the subset Σ0 = {x(1), . . . , x(s)} of L generates
K0(Λ)red = K0(Λ). This follows from the fat that Σ0 forms a Z-basis of
K0(Λ), sine the unique postprojetive module T =

⊕s
i=1 T (i) suh that

dimT (i) = x(i) is tilting (see [22℄).5.4. In the proof of Theorem 2.4(e) we apply the results below.
Lemma. Let t, n ∈ N. Then x(n, i)0 ≥ tη̃ provided n ≥ tν, where η̃ =

min{−∂(x(i)) : i ∈ [s]}.Proof. Fix n ∈ N. We argue by indution on t ∈ N. The ase t = 0 isobvious. Assume that, given t > 0, the assertion holds for all t′ < t. Supposethat n ≥ tν. Then learly n − ν ≥ (t − 1)ν ≥ 0 and applying de�nitions,basi properties of the defet and the indutive assumption we have
x(n, i) = φ−ν(φ−(n−ν)(x(i))) = φ−(n−ν)(x(i))− ∂(x(i))1

= x(n− ν, i)− ∂(x(i))1and
x(n, i)0 = x(n− ν, i)0 − ∂(x(i)) ≥ (t− 1)η̃ + η̃ = tη̃.

Corollary. Let m,n ∈ N. Then x(n, i)0 > m provided n ≥ mν/η̃ + ν.Proof. We have
n ≥ mν/η̃ + ν = (m/η̃ + 1)ν ≥ (θ + 1)ν,where θ = quoη̃(m). Then, from the lemma and the properties of remainders,we infer x(n, i)0 ≥ (θ + 1)η̃ > m.5.5. To prove assertion (f) of Theorem 2.4 we show the following moregeneral fat.

Lemma. Let Σ be a setion in P and P = P0∪P ′ be the splitting of Pindued by Σ, where P0 = P0(Σ) and P ′ = P ′(Σ). If
(∗) y0 < x0 for all x ∈ Σ0 ∪P 0

0 , y ∈ P ′
0 suh that x = y,then Σ has the properties as in assertion (f) of Theorem 2.4.Proof. Let Σ be a setion satisfying (∗). Note that then x(i) 6= x(j) forany 1 ≤ i, j ≤ s, i 6= j. Sine φ is an isomorphism, by 5.1 we have(i) x(n, i) 6= x(n, j) for any i, j ∈ [s], i 6= j, and n ∈ N.Property (∗) also implies that(ii) if x(i) = x(n, j) then x(i)0 < x(n, j)0 for any i, j ∈ [s] and n > 0.To prove our assertion, for any d ∈ P we onstrut indutively a sequene

ξ(d) = {ξt}t∈N of nonnegative integers, and show that ξ(d) = idN.
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Fix d ∈ P . Set ξ0 = x
(0)
0 , . . . , ξt0 = x

(t0)
0 , t0 ≥ −1, where x(0)

0 , . . . , x
(t0)
0 areall vetors x ∈ P0

0 suh that x = d. We an assume that ξ0 < ξ1 < · · · < ξt0 .To de�ne ξt0+1, let n ∈ N be minimal suh that x(n, i) = d for some i ∈ [s].Note that by (i), the index i is uniquely determined. We set ξt0+1 = x(n, i)0.Assume that for t > t0 the integer ξt is already de�ned and ξt = x(n′, i′)0for some n′ ∈ N, i′ ∈ [s]. Then we set ξt+1 = x(n′′, i′′)0, where n′′ > n′ isminimal suh that x(n′′, i′′) = d for some i′′ ∈ [s]. (Note again that i′′ isuniquely determined.)Observe that by Lemma 2.3(a), the onstruted sequene ξ(d) is surje-tive as a funtion N→ N. This follows diretly from the onstrution, sinefor eah x ∈ P with x = d, there exists t ≥ 0 suh that ξt = x0.Next we prove that the sequene ξ(d) is inreasing. Observe �rst that by
(∗) we have ξt0 < ξt0+1 if t0 ≥ 0. We now show that ξt+1 > ξt for t > t0.Referring to the de�nition above, this inequality has the shape x0 < y0, where
x = x(n′, i′), y = x(n′′, i′′)0, and n′ < n′′. Applying the obvious equalities
x = x+x01, y = y+y01 and φn′

(x) = x(i′), φn′
(y) = x(n′′−n′, i′′), we inferthat x(i′)+x(i′)01 = φn′

(x)+(t+x0)1 and x(n′′ − n′, i′′)+x(n′′ − n′, i′′)01 =

φn′
(y)+(t+y0)1 for some t ∈ Z, sine φn′

(x) = φn′
(y). Then x0 = x(i′)0−t,

y0 = x(n′′ − n′, i′′)0 − t and x(i′) = x(n′′ − n′, i′′), sine φn′
(x) = φn′

(y).Now the required inequality x0 < y0 follows immediately from (ii).To omplete the proof, note that ξ(d) = idN for every d ∈ P , sine
ξ(d) is inreasing and surjetive. Now it is easily seen that for any pair
x = x(n, i), y = x(n′, i′) of vetors in P ′, the two onditions from assertion(f) of Theorem 2.4 are satis�ed provided x = y = d.5.6. Proof of Theorem 2.4. (a) We prove that L is G-invariant, where
G = (φ ). Fix x ∈ L. Then by the shape of the bijetion in Lemma 2.3(a)(ii)and the �niteness of the subquiver P0, there exists t ≥ 0 suh that y =
x[t] ∈ P ′′

0 (see Remark 4.3). To show the �rst assertion of (a) observe that
φ(y) ∈ P, sine φ(y) = τ(y) from Lemma 5.1(b). Then

φ(x) = φ(y) = φ(y) = τ(y)and by Lemma 2.3(a), φ(x) ∈ P = L. Note that by Proposition 5.2 thegroup G is yli of order ν, so the �rst assertion is shown.Now we prove the equality L = O(x(1)) ∪ · · · ∪ O(x(s)). The set P ′is a o�nite subset of P. Therefore, for any x ∈ L, there exists y ∈ P ′,
y = x(n, i), suh that y = x (see Lemma 2.3(a)(ii)). Hene, y = φ−n(x(i))and x = y = φ−n(x(i)) = φ−n(x(i)), so x ∈ O(x(i)). In this way the proofof (a) is omplete.(b) The equality O(x(ij)) = {y0,j , . . . , yνj−1,j} follows immediately fromthe fat that G is a �nite yli group. The remaining statements of the �rstassertion of (b) are now straightforward.
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To prove the seond assertion, we only have to show the equality ν̃ = ν,where ν̃ = lcm{vj : j ∈ [r]}. The equality ν = νΣ follows immediately fromProposition 5.2. (Note that νj | ν for every j ∈ [r], so ν̃ | ν, sine |G| = ν and

|O(x(ij))| = νj .)Observe �rst that (φνj ) = Stab(x(ij)), where Stab(x(ij)) denotes thestabilizer of x(ij) under the standard ation of G on L. For l ∈ N, φl belongsto Stab(x(ij)) if and only if νj | l. Consequently, by Lemma 5.3 and theequality L = O(x(1)) ∪ · · · ∪ O(x(s)),
φl = idK0(Λ)red ⇔ φl

|L = id|L ⇔ φ ∈
⋂

j∈[r]

Stab(x(ij)) ⇔ ν̃ | l.

Then the nonempty sets onsisting of all l ∈ N that satisfy separately theleftmost and rightmost onditions oinide. Taking now the minimal valuein these two sets we obtain the equality ν̃ = ν.Now we show the third assertion. By Proposition 5.2, the inequality
κj > 0 follows immediately from the formula
(∗∗) ∂j =

ν

νj
κj ,where ∂j = −∂(x(ij)) for j ∈ [r]. To prove (∗∗), note �rst that φ−νj (x(ij)) =

x(ij) + κj1, sine φ−νj (yl,j) = yl,j + κj1. Applying this equality, we have
φ−ν(x(ij)) = (φ−νj )(ν/νj)(x(ij)) = x(ij) +

ν

νj
κj1and on the other hand also

φ−ν (x(ij)) = x(ij)− ∂(x(ij))1.In this way we obtain (∗∗), hene κj > 0.Next we show formula 2.4(∗). We start by some general observation. Forany y ∈ L we set P (y) = {x ∈ P : x = y}. Then by Lemma 2.3(a)(ii), forany o�nite subset J ⊂ P(y) and positive integer κ ∈ N, we have π(J) = Zκ,where π = πκ : K0(Λ)→ Zκ is given by π(x) = remκ(x0), x ∈ K0(Λ).Now we �x j ∈ [r] and l ∈ {0, . . . , νj − 1}. Then for any i ∈ [s]j, i.e.
j = j(i), the set P ′(j, l, i) := {x = x(n, i) ∈ P ′ : x = yl,j}is nonempty, sine O(x(i)) = O(x(ij)) = {y0,j, . . . , yνj−1,j} and x(n, i) −

x(n, i)01 = φ−n(x(i)) = φ−n(x(i)) = φ−n(yl(i),j) = yl,j for a suitable n ∈ N.Observe that for the vetor x = x(n, i) ∈ P ′(j, l, i) suh that n = n(j, l, i) isminimal, the integer x0 is given by the formula
x0 = ̺j(l, i),



THE MULTIPLICITY PROBLEM 265

where ̺j(l, i) is as in Theorem 2.4(b). Then we have the equality
{x0 : x ∈ P ′(j, l, i)} = ̺j(l, i) + κjN,or equivalently, P ′(j, l, i) = yl,j + (̺j(l, i) + κjN)1,sine φ−νj (yl,j) = yl,j +κj1, so φ−νj (x(n′, i)) = x(n′, i)+κj1 for all x(n′, i)with x(n′, i) = yl,j . Consequently, applying the introdutory general obser-vation, we have

Zκj
=

⋃

i∈[s]j

πκj
(P ′(j, l, i)) = {̺j(l, i) : i ∈ [s]j},

sine ⋃
i∈[s]j

P ′(j, l, i) is a o�nite subset of P(yl,j), and in this way 2.4(∗)is proved.In partiular, 2.4(∗) implies immediately κj ≤ |[s]j|. We now show theopposite inequality. Suppose that ̺j(l, i) = ̺j(l, i
′) for some i, i′ ∈ [s]j.Then the sets ̺j(l, i) + κjN and ̺j(l, i

′) + κjN interset nontrivially. Hene,there exist n, n′ ∈ N suh that x(n, i)0 = x(n′, i′)0 and x(n, i) = x(n′, i′).Consequently, x(n, i) = x(n, i′), so i = i′. Thus κj = |[s]j| and the proofof (b) is omplete.() For n < νj the required formula follows from the equality x(n, i) =

x(n, i) + x(n, i)01, sine x(n, i) = yn⊕l(i),j(i) and x(n, i)0 = ̺j(i)(n ⊕ l(i), i)(see the interpretation of the integers ̺j(l, i) in the proof of (b)). The formulafor n ≥ νj is an immediate onsequene of the equality x(n′ + νj , i) =
x(n′, i) + κj(i)1.(d) Let x and (j, l, i) be as in the assumptions of (d). Clearly, we have
x = yl,j+x01 ∈ P(yl,j). Then, by 2.4(∗), x ∈ P ′ if and only if x ∈ P ′(j, l, i) =
yl,j +(̺j(l, i)+κjN)1 (see the proof of (b) for the de�nitions). Consequently,
x ∈ P ′ is equivalent to the inequality x0 ≥ ̺j(l, i).Now we prove the formula for the oordinates of x ∈ P ′ in the presenta-tion x = x(n, i). Note �rst that for (j, l, i) as above, we have

n(j, l, i) =

{
l − l(i) if l ≥ l(i),
l − l(i) + νj if l < l(i),where ̺j(l, i) = x(n(j, l, i), i)0 (see proof of (b)). On the other hand, both

x = x(n, i) = yl,j + x01 and z = x(n(j, l, i), i) = yl,i + ̺j(l, i)1 belong toP ′(j, l, i), so x0 − ̺j(l, i) = ζκj for some ζ ∈ N. Then, by applying theformula φ−νj (z) = z + κj1, we have
x = z + ζκj1 = φ−ζνj (z) = x(n(j, l, i) + ζνj , i).Now, the required formula for n follows from those for n(j, l, i) and from theequality ζ = (x0 − ̺j(l, i))κj

−1.
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(e) Note �rst that −∂(x(i)) = ∂j(i) for any i ∈ [s]. Consequently, by (∗∗),we have η̃ = ην. Now the assertions follow easily from Corollary 5.4, prop-erties of remainders and the fat that x(n, i)v ≥ x(n, i)0 for every v ∈ Q0.(f) In Tables 7.1 below, for any domesti anonial algebra Λp,q,2, weprovide one seleted setion Σ together with the subquiver P0 = P0(Σ). Itis easily seen that all these setions satisfy the assumptions of Lemma 5.5,sine x0 = 0 for all but one x ∈ P0

0 ∪ Σ, y = dimP (0) belongs to Σ0 and
y = dimS(ω) belongs to P0

0. Consequently, (f) holds by the lemma quotedabove, and the proof of Theorem 2.4 is omplete.5.7. Keeping the notation of 2.4 and 5.1, we introdue the announedrelation ≺⊂ P0 ×P0.Given an enumeration x(1), . . . , x(s) of the verties in Σ, we de�ne therelation
≺′ =≺′

(x(1),...,x(s))⊂ P′
0 ×P′

0by setting
x(n′, i′) ≺′ x(n, i) if and only if either n′ < n, or n′ = n and i′ < i.It is lear that ≺′ yields a lexiographi order on the set N×Σ, so also in P ′.This relation has the following simple property.
Lemma. If (x(1), . . . , x(s)) is a full admissible sequene of soures (inthe sense of [2℄) in the setion Σ, then x(n′, i′) ≺′ x(n, i) for any x(n′, i′) ∈

∈ −x(n, i), n ≥ 1.Proof. Assume x(n′, i′) ∈ −x(n, i) for n ≥ 1. Clearly, n′ ≤ n. If n′ = nthen there exists an arrow x(i′) → x(i) in Σ and, by the assumption on
(x(1), . . . , x(s)), we have i′ < i; Consequently, x(n′, i′) ≺′ x(n, i). The ase
n′ < n is trivial.Let Σ, with Σ0 = {x(1), . . . , x(s)}, be the seleted setion, and P0

0 =

{z(1), . . . , z(t)}, t = |P0
0|, be the enumeration of the verties in P0 estab-lished for Λ in 7.1. The olletion of these two data sets for an individualdomesti anonial algebra Λ is denoted further by 7.1.I(P)Λ. We extend

≺′ =≺′
x(1),...,x(s) to a relation

≺=≺(x(1),...,x(s);z(1),...,z(t))⊂ P0 ×P0.For x, y ∈ P0, we set x ≺ y if and only if one of the following, pairwiseexlusive, onditions holds:
• x = z(i), y = z(j) and i < j,
• x ∈ P0 and y ∈ P ′,
• x, y ∈ P ′ and x ≺′ y.
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Proposition. The relation ≺ de�nes the struture of a partially orderedset on P0 suh that(a) (P0,≺) ≃ (N, <),(b) τx ≺ x and y ≺ x for any x ∈ P0 and y ∈ −x.Proof. Assertion (a) is an immediate onsequene of the de�nitions. Toprove (b), note that the sequene (x(1), . . . , x(2)) from 7.1.I(P)Λ is an ad-missible sequene of soures in Σ for any domesti anonial algebra Λ.Then, by Lemma 5.7, we have y ≺ x for x = x(n, i) ∈ P ′
0 and y ∈ −x, pro-vided n ≥ 1. Moreover, τx = x(n− 1, i) in this ase. In the remaining ase,

x ∈ P0
0∪Σ0 and the assertion follows easily by inspetion (see 7.1.I(P)Λ).6. ALGORITHMS AND OPTIMIZATIONIn this setion, using a pseudo-ode, we desribe the onseutive steps ofthe announed algorithms. The most important one omputes diretly therestrited multipliity vetor m(M)|P for modules M over a �xed domestianonial algebra Λ. We also disuss some optimization of the algorithmsand omplete the proof of Theorem 2.2.We apply the results of the previous setions and the tables of Setion 7.The semantis of the pseudo-ode is lear from the ontext (see also [6℄). Theonly nonstandard instrution we use is �read y from Y �. It means that thedata y, whih is �situated in the element Y � of the paper, is further availablein the ode as a value of the variable (or variables) named y. (�An element�is usually a table or a theorem.)6.1. We start with a preparatory algorithm.

Algorithm (omputing the initial parameters for a domesti anonialalgebra Λp,q,2).Input: A pair of integers (p, q) suh that the algebra Λ = Λp,q,2 is do-mesti anonial.Output: The following olletion of parameters for Λ desribed in The-orem 2.4:(i) r; νj , κj , [s]j , for 1 ≤ j ≤ r; j(i), l(i), for 1 ≤ i ≤ s,where s = p + q + 1; yl,j , for (l, j) ∈ Zνj
× [r]; ul,j , for

(l, j) ∈ [νj ]× [r];(ii) ̺j(l, i), for j ∈ [r], (l, i) ∈ Zνj
× [s]j; x(n, i), for i ∈ [s],

n ∈ Zνj(i)
.(1) Determining the set of distint orbits {O(x(ij))}j∈[r] and the param-eters (i) onneted to them, as in Theorem 2.4(b):
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Λp,q,2

from 7.2;set r := 0;for i := 1 to s do {read x(i) from 7.1.I(P)Λp,q,2
;set x := x(i); found := false; j := 1;while not found and j ≤ r do {set l := 1;while not found and l ≤ νj − 1 do {if x = yl,j then {set l(i) := l; j(i) := j;set [s]j := [s]j ∪ {i};set found := true;

}set l := l + 1;
}set j := j + 1;
}if not found then {set r := r + 1; j(i) := r; [s]r := {i}; l(i) := 0;set νr := 0; y := x; κr := 0;do {set yνr,r := y;set y := φ−1

Λp,q,2
(y); νr := νr + 1;set uνr,r := y0; κr := κr + uνr,r;

} while y 6= x;
}
}(2) Computing the parameters ̺j(l, i) for j ∈ [r], (l, i) ∈ Zνj

× [s]j , usingformulas from Theorem 2.4(b):for j := 1 to r dofor eah i ∈ [s]j {set ̺j(l(i), i) := x(i)0;for l := l(i) + 1 to νj − 1 doset ̺j(l, i) := ̺j(l − 1, i) + ul,j ;if l(i) > 0 then {set ̺j(0, i) := ̺j(νj − 1, i) + uνj ,j ;for l := 1 to l(i)− 1 doset ̺j(l, i) := ̺j(l − 1, i) + ul,j ;}}(3) Computing the �initial� dimension vetors x(n, i) for i∈ [s], n∈Zνj(i)
,using the �rst formula from Theorem 2.4():for i := 1 to s dofor n := 0 to νj(i) − 1 doset x(n, i) := yn⊕νj(i)

l(i) + ̺j(i)(n⊕νj(i)
l(i), i)1;
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Remark.(a) The algorithm prepares only the initial parameters for a �xed domes-ti anonial algebra Λ. In ontrast to the next algorithms, whih areinvoked separately for eah moduleM , it is exeuted exatly one foreah algebra and learly does not depend on M at all.(b) After full exeution of the algorithm for an algebra Λ = Λp,q,2, wean observe that ν = max{νj : j ∈ [r]} (f. assertion ()), and that
κj ≤ 2, so ∣∣[s]j

∣∣ ≤ 2 for all j ∈ [r]. Moreover, ν = νj(i) for i ∈ [s] suhthat x(i) = dimP (0).6.2. Let M be a �nite-dimensional Λ-module. We give an algorithmstarting from x = z(1) and omputing suessively, with respet to the linearorder ≺⊂ P0 × P0 de�ned in 5.7, the multipliities m(M)x, x ∈ P0. Thefat that we proeed aording to the order ≺ has some nie onsequenes formanaging the memory in a possible implementation (see also Remark (b)).In the desription of the algorithm we use the following onventions andonstrutions:
• We assume that the funtion −( ) : ((−N\{0})Σ)0 → 2(−NΣ)0 , whihassigns to the vertex (−n, i) ∈ (−N \ {0})Σ the set −(−n, i) of itsdiret predeessors, is already available (it an be easily implementedapplying the de�nition of the translation quiver −NΣ, see [2℄).
• The string �h(M)x�, for x ∈ P0, appearing in the ode an have oneof the following two meanings: either(i) �return the value h(M)x� if it is already determined by thealgorithm (it should have been stored; it depends on a possibleimplementation), or(ii) �form the matrix M = M(M,x), ompute the value of h(M)x(= corM, see Theorem 2.3) and then return it� if the integer

h(M)x has not been determined yet (it also should then be storedfor later use).
• The funtion ompute is realized by applying the standard Gaussian-row elimination. The funtion form, given a Λ-moduleM = (A,B,C)and x ∈ P, onstruts the matrix M(M,x) using the matrix U(x),hosen from a �nite list (see Tables 1 and 2 in 2.3) and next �om-bined� with C2, and some matries from the �nite list Ap,1, . . . , Ap,p;
Bq,1, . . . , Bq,q. Seletion of the matries depends on x and is doneaording to the rules from Theorem 2.3. The list above onsists ofonseutive �partial produts� and an be omputed only one forthe module M .
• We set h(M)0 = 0; also, τx = 0 if it is not de�ned for x ∈ P0

0 ∪Σ0.
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Algorithm (omputing the restrited multipliity vetor m(M)|P for amodule M over a �xed domesti anonial algebra Λ). Fix a pair (p, q) ofintegers suh that the anonial algebra Λ = Λp,q,2 is domesti.Input: A �nite-dimensional Λ-module M given by the triple (A,B,C).Output: The restrited multipliity vetor m(M)|P.(0) Preparation: loading the following olletion of parameters for Λ =

Λp,q,2 desribed in Theorem 2.4 (it an be omputed by applying Algo-rithm 6.1 for the pair (p, q)):(i) νj , κj, for 1 ≤ j ≤ r; j(i), for 1 ≤ i ≤ s, where s = p+ q + 1.(ii) x(n, i) for i ∈ [s], n ∈ Zνj(i)
.(1) Computing the vetor m(M)|P0∪Σ :read |P0

0| from 7.1.I(P)Λp,q,2
;for i := 1 to |P0

0| do {read z(i), τz(i),−z(i) from 7.1.I(P)Λp,q,2
;set m(M)z(i) := h(M)z(i) + h(M)τz(i) −
∑

y∈−z(i) h(M)y;}for i := 1 to s do {read x(i), τx(i),−x(i) from 7.1.I(P)Λp,q,2
;set m(M)x(i) := h(M)x(i) + h(M)τx(i) −

∑
y∈−x(i) h(M)y;}(2) Computing the vetor m(M)|P ′′ :read νΛp,q,2

from Proposition 5.2;set m := dimM ;set η := min{κj/νj : j ∈ [r]};set ξ := min{mi/η + νΛp,q,2
: i ∈ (Qp,q,2)0};set n := 1;while n < ξ do {for i := 1 to s do {if n < νj(i) then set x := x(n, i);else set x := x(remνj(i)

(n), i) + quoνj(i)
(n)κj(i) 1;set −x := ∅;for eah (−n′, i′) ∈ −(−n, i) doif n′ < νj(i′) then set −x := −x ∪ {x(n′, i′)};else set −x := −x ∪ {x(remνj(i′)

(n′), i′) + quoνj(i′)
(n′)κj(i′) 1};if n− 1 < νj(i) then set τx := x(n− 1, i);else set τx := x(remνj(i)

(n− 1), i) + quoνj(i)
(n− 1)κj(i) 1;set m(M)x := h(M)x + h(M)τx −

∑
y∈−x h(M)y;set m := m−m(M)x(n,i) · x(n, i);set ξ := min{mi/η + νΛp,q,2

: i ∈ (Qp,q,2)0};}set n := n+ 1;}
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Remark.(a) The orretness of the algorithm follows from Theorem 2.4 and for-mulas (∗) from the Introdution. Note that after the stop of loopsin step (2) we obtain the multipliities for all postprojetive diretsummands of M . Sine the stop ondition in (2) is based on Theo-rem 2.4(f), the possible next run of these loops would test an inde-omposable postprojetive module X whose dimension vetor x doesnot satisfy the inequality x ≤ dim M − dim P , so learly X ouldnot be a diret summand of M (P is a postprojetive summand of
M deteted up to that stage).(b) The loops in steps (1) and (2) are onstruted in suh a way thatthe multipliities m(M)x, x ∈ P, are omputed in the algorithmsuessively aording to the order ≺. Consequently, by Proposi-tion 5.7, when the instrution �set m(M)x := h(M)x + h(M)τx −∑

y∈−x h(M)y� is being exeuted, the integers h(M)τx, h(M)y, for
y ∈ −x, are already determined. So, determining h(M)x is the onlyomputation that is exeuted in this step (see also the ommentsbefore Algorithm 6.2). Thus, in a possible omputer implementation,some data struture for storing the integers h(M)x already omputedshould be used. Note that if x = x(n, i), n ≥ 1, then τx = x(n′, i′),
y = x(n′′, i′′) and n′, n′′ ∈ {n − 1, n}, for y ∈ −x. Consequently, toompute m(M)x, only the integers h(M)x(n′′′,i′′′) for n′′′ ∈ {n−1, n},
i′′′ ∈ [s] should be stored.() Algorithm 6.2 an also be applied to ompute the integer rkP(M).Now we give a �rst estimate of the omplexity of Algorithm 6.2.

Lemma. Let M be a �nite-dimensional module with dimk M = n over a�xed domesti anonial algebra Λ = Λp,q,2. Then the pessimisti omplexityof Algorithm 6.2 is O(n7).Proof. Let n = dimM . We start by estimating the omplexity of deter-mining m(M)x, x ∈ P(d), for a �xed vetor d ∈ L = P, whereP(d) = {y ∈ P : y = d}.By the stop ondition in part (2), the integers m(M)x, x ∈ P(d), are om-puted only at most for those vetors x that belong to the �nite setP(d)n = {y ∈ P(d) : y = x(i, l), l < n/sη + νΛp,q,2} ∪ {d}.Let us arrange all elements of P(d)n in a hain x(0) ≺ x(1) ≺ · · · ≺ x(t), t ≥ 0.From the de�nition of ≺ and Theorem 2.4(f), we have x(i)
0 = i, so x(i) = d[i],and t < n/sη + νΛp,q,2 . Note that determining the multipliity m(M)x(i) , fora �xed i, relies in fat only on omputing the integer h(M)x(i) (see Re-
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mark (b)). By Theorem 2.3, h(M)x(i) = corM, where M = M(M,x(i))is a matrix of size (i + r)nω × ((rβq

nbq−1 + · · · + rβ1n0) + in0 + (rα1n0 +
· · · + rαpnap−1) + rγ2nc1), r = rk(d), 1 ≤ r ≤ 6. On the other hand, obvi-ously

(i+ r)nω ≤ (2r + rγ2 + i)nand
(rβq

nbq−1 + · · ·+ rβ1n0) + in0 + (rα1n0 + · · ·+ rαpnap−1) + rγ2nc1

≤ (2r + rγ2 + i)n.Reall also that the omplexity of standard Gaussian row elimination for an
m × m-matrix (equivalently, determining the orank) is just O(m3). Con-sequently, one we know the matrix M (in the sense of onrete values forall entries), the omplexity of omputing the integer h(M)x(i) by applyingthe funtion ompute, and hene of omputing m(M)x(i) , in the step orre-sponding to x(i), is O((in)3), sine the integer 2r+ rγ2 depends neither on nnor on i.The integers η, s, νΛp,q,2 are onstant, so to estimate the pessimisti om-plexity we an assume that t = θn for some onstant integer θ ≥ 0. There-fore, the omplexity of determining all m(M)x, x ∈ P(d)n = {xi}ti=1, byAlgorithm 6.2 is
O(13n3 + 23n3 + · · ·+ (θn)3n3) = O(n3(13 + 23 + · · ·+ (θn)3)) = O(n7).Note that the proess of forming the matries M(M,x), x ∈ P(d)n =
{xi}ti=1, does not a�et this estimation, sine the omplexity of total om-putations exeuted by form is O(n3) (f. 6.2, the introdutory omment).Sine P0 =

⋃
d∈LP(d) and L is �nite, the pessimisti omplexity ofAlgorithm 6.2 is also O(n7).We show in 6.5 that this omplexity an be redued to O(n4) and in thisway we omplete the proof of Theorem 2.2().6.3. Now we desribe the �loal version� of the algorithm above whihdetermines the multipliity for a �xed, single postprojetive root. In thealgorithm we use the onventions established for Algorithm 6.2.

Algorithm (for a given x ∈ P, omputing the multipliity m(M)x fora module M over a �xed domesti anonial algebra Λ). Fix a pair (p, q) ofintegers suh that the anonial algebra Λ = Λp,q,2 is domesti.Input: A �nite-dimensional Λ-module M given by the triple (A,B,C)and a vetor x ∈ P.Output: The multipliity m(M)x.
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(0) Preparation: loading the following olletion of parameters for Λ de-sribed in Theorem 2.4 (it an be omputed using Algorithm 6.1 for the pair
(p, q)): (i) r; νj , κj , [s]j for 1 ≤ j ≤ r; l(i), j(i), for 1 ≤ i ≤ s, where

s = p+ q + 1; yl,j for (l, j) ∈ Zνj
× [r];(ii) ̺j(l, i), for j ∈ [r], (l, i) ∈ Zνj
× [s]j; x(n, i), for i ∈ [s],

n ∈ Zνj(i)
.(1) Determining the triple (j, l, i) ∈ [r]×Zνj

× [s]j as in Theorem 2.4(d):set j := 0; found := false;while not found do {set j := j + 1; l := 0;while l < νj and not found doif x = yl,j then set found := true;else set l := l + 1;}set i := first in [s]j; found := false;while not found doif remκj
(̺j(l, i)) = remκj

(x0) then set found := true;else set i := next in [s]j;(2) Finding out if x lies in P0 or in P ′ and determining the �appropriateoordinates� of the vetors from the set −x∪ {τx} by applying parts (), (d)of Theorem 2.4 :if x0 < ̺j(l, i) thenread τx and −x from 7.1.I(P)Λp,q,2
;else {if l ≥ l(i) then set n := l − l(i) + (x0 − ̺j(l, i))νj/κj;else set n := l − l(i) + νj + (x0 − ̺j(l, i))νj/κj;if n = 0 then read τx and −x from 7.1.I(P)Λp,q,2

;else {if n− 1 < νj(i) then set τx := x(n− 1, i);else set τx := x(remνj(i)
(n− 1), i) + quoνj(i)

(n− 1)κj(i) 1;set −x := ∅for eah (−n′, i′) ∈ −(−n, i) doif n′ < νj(i′) then set −x := −x ∪ {x(n′, i′)};else set −x := −x ∪ {x(remνj(i′)
(n′), i′) + quoνj(i′)

(n′)κj(i′) 1};}}(3) Determining the multipliity m(M)x:set m(M)x := h(M)x + h(M)τx −
∑

y∈−x h(M)y;
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6.4. Now we show how to improve the e�ieny of Algorithm 6.2 andto derease the omplexity of omputations from O(n7) to O(n4). We startby a general onstrution.Let r, θ ∈ N be a �xed pair of positive integers. For any positive n ∈ Nand the triple

S = (D1, . . . , Dt;E1, . . . , Et;F1, . . . , Ft)onsisting of sequenes of matries Di, Ei ∈ Mn×n(k) and Fi ∈ Mn×rn(k),respetively, 1 ≤ t ≤ θn+ r, we de�ne a family K(S) = {Ki}i∈[t] of matries
Ki = Ki(S) ∈Min×(θn+3r)n(k) by setting

Ki =




D1 E1 F1. . . . . . ...
Di Ei Fi


 ,

where the jth blok row of Ki has the shape
[0(j−1)n |Dj | 0(r−1)n |Ej | 0 |Fj ]for j ∈ [i]. (For any s ∈ N, 0s denotes the zero matrix in Mn×s(k).)

Lemma. Let S be an arbitrary triple as above, for �xed r, θ, and L(S) =
{Li}i∈[t] be the family of matries Li = Li(S), with (θn + 3r)n olumns,de�ned indutively as follows:

L1 = Ĵ1,where J1 = [D1 | 0(r−1)n |E1 | 0 |F1], and
Li+1 =

[
L

(i)
11 L

(i)
12

0 Ĵi+1

]

for i < t, where
Li =

[
L

(i)
11 L

(i)
12

L
(i)
21 L

(i)
22

]
,

with maximal zero blok L(i)
21 ontaining i · n olumns, and

Ji+1 =

[
L

(i)
22

Di+1 | 0(r−1)n | Ei+1 | 0 | Fi+1

]
.Then

r(Kj) = r(Lj) = r(L
(j−1)
1,1 ) + r(Ĵj)and all matries Jj , j ∈ [t], have at most (2r + 1)n rows and (2r + 1)nnonzero olumns, where K(S) = {Kj}j∈[t].
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Proof. The �rst assertion follows immediately by the onstrution of thefamilies K(S) and L(S). To prove the seond, note that the number of rowsin L(j−1)
22 oinides with the number of leading oe�ients in L(j−1)

22 , so it isbounded by the number of olumns of L(j−1)
22 . The last integer is not greaterthan 2rn, sine the olumns with numbers (j−1)n+1, . . . , jn in L(j−1)

22 andlearly those with numbers jn+1, . . . , (2r+n)n in Jj are zero olumns. Nowthe laim follows immediately from the de�nition of the matrix Jj.
Remark.(a) Letting K0 = L0 be equal to the trivial matrix in M0×(θn+3r)n(k), wean extend the indutive de�nition of L(S) to {Li}i∈{0,...,t}, startingfrom L0. Clearly, the assertion of the lemma remains valid.(b) The lemma remains valid if in the sequenes de�ning the triple S weallow also retangle matries of sizes suitable for the onstrution ofthe family K(S) and bounded by n× n (resp. n× rn).() Let S be a triple as above. Then, for any 1 ≤ s ≤ t, we have

L(S|s) = {L1(S), . . . , Ls(S)},where
S|s = (D1, . . . , Ds;E1, . . . , Es;F1, . . . , Fs).6.5. Proof of Theorem 2.2(). To show assertion () we apply the generalidea of the proof of Lemma 6.2 and keep the notation established there.Clearly, it su�es to modify the algorithm omputing, for a Λ-module M =

(A,B,C), the integers h(M)x = corM(M,x), x ∈ P(d) for a �xed d ∈L = P , in suh a way that the new one already has omplexity O(n4),where n = dimk M . In fat, we have to ompute the ranks rl = r(M(M,x))for l = 0, . . . , θn, where x = d[l], i.e. x0 = l, and θ is as in the proof ofLemma 6.2.We assume �rst that either char k 6= 2, or char k = 2 and rk(d) ≤ 5.Then, for any l = 0, . . . , θn, we set
Sl = (rβq ×Bq,q, . . . , rβ1 ×Bq,1, l×B; l×A, rα1 ×Ap,1, . . . , rαp ×Ap,p; F1, . . . , Fl+r),where r = rk(d) = dω,m×N denotes the sequene onsisting ofm opies ofNfor any m ∈ N and matrix N , and the matries F1, . . . , Fl+r ∈ Mn×rγ2

(k)are determined by the formula



F1...
Fθn+r


 =

[
−Irγ2

U(d)

]

(∞|θn+r)

⊗ C2.

By Lemma 6.4, we have
rl = r(Ll+r(Sl))
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for l = 0, . . . , θn, sine M(M,x) = Kl+r(Sl). Observe that (Sl)|l = S|l forall l = 0, . . . , θn, where

S = (rβq
×Bq,q, . . . , rβ1×Bq,1, θn×B; (θn+ r)×A; F1, . . . , Fθn+r)Hene,

Ll(Sl) = Ll(S)for every l (see Remark 6.4(b)). Therefore, by Lemma 6.4, to ompute theinteger rl, we have to exeute Gaussian row elimination on the matries
Jl+1(Sl), . . . , Jl+r(Sl), provided we know the matrix Ll(S). By analogousarguments, to ompute all matries Ll(S), l = 0, . . . , θn, we have to ex-eute only the Gaussian row elimination of Jl(Sl) in eah step. Thus, inomputation of all integers rl, l = 0, . . . , θn, we exeute (θn+ 1)r+ θn elim-inations of matries with row and olumn dimensions bounded by (2r+1)n.Consequently, the total number of arithmeti operations is bounded by
((r + 1)θn + r)(2r + 1)3n3, so the pessimisti omplexity is O(n4). Notethat just as in the proof of Lemma 6.2, the proess of forming the sequenes
Sl, l = 0, . . . , θn, does not a�et this estimation.In the remaining ase, char k = 2 and rk(d) = 6, the algorithm om-puting rl, l = 0, . . . , θn, an be onstruted similarly, although in a slightlymore ompliated way. Nevertheless, the di�ulties have only a tehnialharater, and therefore we do not give any extra details.In this way the proof of Theorem 2.2 is omplete.
Remark.(a) The problem of determining the restrited multipliity vetorm(M)|Q(resp. multipliity m(M)x, for a single x ∈ Q) for a module Mover a �xed domesti anonial algebra Λ is equivalent to that ofdetermining m(D(M))|P(Λop) (resp. m(D(M))x) for x regarded asan element of P(Λop) for the opposite algebra Λop, whih is againa domesti anonial algebra of the same type. In fat, to ompute

mx, x ∈ Q, we have to apply the formula dual to (∗) in the In-trodution and use the dimensions h′x = dimk HomΛ(Xx,M), x ∈ Q(see [9, 2.3℄).(b) Dereasing the pessimisti omplexity of Algorithm 6.2 as above, oneshould also take into aount some �negative e�ets�. Namely, in apossible implementation of the improved version of the algorithm,at eah step of omputations we have to store muh more infor-mation than the in algorithm without optimizations as above (seeRemark 6.2(b)).
A final comment. The algorithmi method of determining multipliityvetors for modules, proposed in [9℄, should be possible to adapt for a larger
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lass of tame algebras with an appropriate shape of the Auslander�Reitenquiver; in partiular, for all onealed algebras of Eulidean type. We ex-pet to prove that in this situation there exist algorithms with pessimistiomplexities similar to those onsidered here. We strongly believe that toahieve this we do not need a preise desription of the anonial forms forall indeomposables. We have already obtained some results in this diretion.They will be ontained in a forthoming publiation.
7. TABLESIn this setion we give the �nite sets of disrete data used in the algo-rithms from Setion 6. They an be easily omputed by applying the de�ni-tions and standard tehniques.

7.1. We give, using the standard graphi onvention, the list of initialparts I(P) = I(P)Λ of postprojetive omponents, more preisely of thetranslation quivers P = P(Λ) , for all domesti anonial algebras Λ. Eah
I(P) is a full subquiver ofP, formed by the sets P0

0∪Σ0, where Σ is a suitablesetion in P and P0 = P0(Σ). They are obtained by applying the standard�knitting� tehnique (f. [23℄). Below the quivers I(P) we �x the notationwhih is used in the algorithms. We list the names for all onseutive vertiesin I(P)0 in the form of a �sheme� re�eting the shape of I(P). The verties
z(i) onstitute the part P0, the verties x(i) belong to the setion Σ andform there an admissible sequene of soures. The enumeration of vertiesin I(P) is ruial for the de�nition of the order relation ≺ in P (see 6.2).(a) I(P)Λp,2,2 : 00...000 0 11

ր ց00...000 0 10 →
00...000 1 10 →

00...010 1 21
ց ր ց00...010 0 10 00...0110 1 21

ց ր ց00...0110 0 10 . . .
ց ց. . . 11...110 1 21 →

11...111 1 21
ց ր ց11...110 0 10 00...000 1 11
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x(1)

z(1) x(2) x(3)

z(2) x(4)

z(3)
. . .. . . x(p+1) x(p+2)

z(p) x(p+3)(b) I(P)Λ3,3,2 : 0 00 1 1 10 0 10 0 0 11 1 10 0 1 10
ր ց ր ց ր0 00 0 1 10 0 10 1 1 21 1 20 0 1 21 1 11 1 1 21

ր ց ր ց ր ր0 00 0 0 10 →
0 00 0 0 11 →

0 10 0 1 21 →
0 10 0 1 10 →

1 20 1 2 31 →
1 10 1 1 21

ց ր ց ր ց0 10 0 0 10 1 10 0 1 21 0 10 1 2 21
ց ր ց ր ց1 10 0 0 10 0 00 0 1 11 0 10 1 1 10

z(5) z(11) x(5)

z(2) z(8) x(4) x(3)

z(1) z(3) z(6) z(9) x(1) x(2)

z(4) z(10) x(6)

z(7) z(12) x(7)() I(P)Λ4,3,2 : 1 1 11 1 1 21
ր0 0 00 1 1 10 0 0 10 0 0 11 0 1 10 0 1 10 1 1 10 1 1 21

ր ց ր ց ր ց ր0 0 00 0 1 10 0 0 10 1 1 21 0 1 20 0 1 21 1 2 20 1 2 31
ր ց ր ց ր ց ր0 0 00 0 0 10 →

0 0 00 0 0 11 →
0 0 10 0 1 21 →

0 0 10 0 1 10 →
0 1 20 1 2 31 →

0 1 10 1 1 21 →
1 2 30 1 2 42 →

1 1 20 0 1 21
ց ր ց ր ց ր ց0 0 10 0 0 10 0 1 10 0 1 21 1 1 20 1 2 31 0 1 20 1 2 32

ց ր ց ր ց ր ց0 1 10 0 0 10 1 1 10 0 1 21 0 0 10 1 2 21 0 1 20 1 1 21
ց ր ց ր ց ր ց1 1 10 0 0 10 0 0 00 0 1 11 0 0 10 1 1 10 0 1 10 0 0 11
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x(5)

z(5) z(12) z(19) x(4)

z(2) z(8) z(15) x(3)

z(1) z(3) z(6) z(9) z(13) z(16) x(1) x(2)

z(4) z(10) z(17) x(6)

z(7) z(14) z(20) x(7)

z(11) z(18) z(21) x(8)(d) I(P)Λ5,3,2 : 0 0 0 00 0 0 10
ւ ↓ ց0 0 0 10 0 0 10 0 0 0 00 0 0 11 0 0 0 00 0 1 10

ւ ց ↓ ւ ց0 0 1 10 0 0 10 0 0 0 10 0 1 21 0 0 0 00 1 1 10
ւ ց ւ ↓ ց ւ0 1 1 10 0 0 10 0 0 1 10 0 1 21 0 0 0 10 0 1 10 0 0 0 10 1 1 21

ւ ց ւ ց ↓ ւ ց1 1 1 10 0 0 10 0 1 1 10 0 1 21 0 0 1 20 1 2 31 0 0 0 10 0 0 11
ց ւ ց ւ ↓ ց ւ1 1 1 10 0 1 21 0 1 1 20 1 2 31 0 0 1 10 1 1 21 0 0 1 20 0 1 21
ւ ց ւ ց ↓ ւ ց0 0 0 00 0 1 11 1 1 1 20 1 2 31 0 1 2 30 1 2 42 0 0 1 10 0 1 10
ց ւ ց ւ ↓ ց ւ0 0 0 10 1 2 21 1 1 2 30 1 2 42 0 1 1 20 0 1 21 0 1 2 20 1 2 31
ւ ց ւ ց ↓ ւ ց0 0 0 10 1 1 10 0 0 1 20 1 2 32 1 2 3 40 1 3 52 0 1 1 10 1 1 21
ց ւ ց ւ ↓ ց ւ0 0 1 20 1 1 21 0 1 2 30 1 3 42 1 1 2 20 1 2 31 1 2 2 30 1 2 42
ւ ց ւ ց ↓ ւ ց0 0 1 10 0 0 11 0 1 2 30 1 2 31 1 2 3 40 2 4 63 1 1 1 20 0 1 21
ց ւ ց ւ ↓ ց ւ0 1 2 20 0 1 21 1 2 3 40 2 3 52 0 1 1 20 1 2 32 1 1 2 30 1 3 42
ւ ց ւ ց0 1 1 10 0 1 10 1 2 3 30 1 2 42 0 0 1 10 1 2 21
ց ւ1 2 2 20 1 2 31
ւ1 1 1 10 1 1 21

ւ1 1 1 11 1 1 21
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z(1)

z(4) z(3) z(2)

z(7) z(6) z(5)

z(11) z(10) z(9) z(8)

z(15) z(14) z(13) z(12)

z(19) z(18) z(17) z(16)

z(23) z(22) z(21) z(20)

z(27) z(26) z(25) z(24)

z(31) z(30) z(29) z(28)

z(35) z(34) z(33) z(32)

z(38) z(37) x(1) z(36)

z(39) x(5) x(2) x(3)

z(40) x(6) x(4)

x(7)

x(8)

x(9)7.2. Finally, we list the inverses φ−1
Λ of the Coxeter transformations φΛ :

K0(Λ) → K0(Λ) for the domesti anonial algebras Λ = Λp,q,2. They arepresented as matries from Ms×s(Z), under the identi�ation of K0(Λ) =
Z(Qp,q,2)0 with Zs via the mapping

n = (nv) 7→ [nω, nap−1 , . . . , na1 , nbq−1 , . . . , nb1nc1n0]
t,where s = |(Qp,q,2)0| = p + q + 1. The following matries are omputed byapplying the formula given in 2.4.

φ−1
Λp,2,2

=




0 0 0 0 0 0 1 1 1 −2

0 0 0 0 0 0 0 1 1 −1

−1 1 0 0 0 0 0 1 1 −1

−1 0 1 0 0 0 0 1 1 −1... ... ... . . . ... ... ... ... ... ...
−1 0 0 0 1 0 0 1 1 −1

−1 0 0 0 0 1 0 1 1 −1

0 0 0 0 0 0 1 0 1 −1

0 0 0 0 0 0 1 1 0 −1

−1 0 0 0 0 0 1 1 1 −1




,

φ−1
Λ3,3,2

=




0 0 1 0 1 1 −2

0 0 0 0 1 1 −1

−1 1 0 0 1 1 −1

0 0 1 0 0 1 −1

−1 0 1 1 0 1 −1

0 0 1 0 1 0 −1

−1 0 1 0 1 1 −1




,
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φ−1
Λ4,3,2

=




0 0 0 1 0 1 1 −2

0 0 0 0 0 1 1 −1

−1 1 0 0 0 1 1 −1

−1 0 1 0 0 1 1 −1

0 0 0 1 0 0 1 −1

−1 0 0 1 1 0 1 −1

0 0 0 1 0 1 0 −1

−1 0 0 1 0 1 1 −1




,

φ−1
Λ5,3,2

=




0 0 0 0 1 0 1 1 −2

0 0 0 0 0 0 1 1 −1

−1 1 0 0 0 0 1 1 −1

−1 0 1 0 0 0 1 1 −1

−1 0 0 1 0 0 1 1 −1

0 0 0 0 1 0 0 1 −1

−1 0 0 0 1 1 0 1 −1

0 0 0 0 1 0 1 0 −1

−1 0 0 0 1 0 1 1 −1




.
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