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SOME PROPERTIES OF α-HARMONIC MEASUREBYDIMITRIOS BETSAKOS (Thessaloniki)Abstra
t. The α-harmoni
 measure is the hitting distribution of symmetri
 α-stablepro
esses upon exiting an open set in R
n (0 < α < 2, n ≥ 2). It 
an also be de�ned in the
ontext of Riesz potential theory and the fra
tional Lapla
ian. We prove some geometri
estimates for α-harmoni
 measure.1. Introdu
tion. In the 1930's, O. Frostman and M. Riesz developed apotential theory on R

n, n ≥ 2, based on the Riesz kernel(1.1) kα(x) =
A(n, α)

|x|n−α
, x ∈ R

n \ {0},where 0 < α < 2 and A(n, α) is a 
onstant. When α = 2, the Riesz kernel 
o-in
ides with the kernel of the 
lassi
al potential theory, the Newtonian kernel(n ≥ 3). The α-harmoni
 fun
tions are de�ned by a mean value property (in-volving the parameter α), analogous to the 
lassi
al one. Equivalently, theyare the solutions of the equation ∆α/2u = 0, where ∆α/2 is the fra
tionalLapla
ian, a non-lo
al integro-di�erential operator.A fun
tion u : R
n → R whi
h is α-harmoni
 in an open set D is deter-mined by its exterior values (its values in Dc := R

n \D). If B is a Borel setin Dc, the α-harmoni
 measure of B with respe
t to D is the α-harmoni
fun
tion u in D with exterior values u = χB on Dc. The α-harmoni
 measureof B with respe
t to D, evaluated at the point x ∈ R
n, will be denoted by

ωD
α (x, B). For �xed x ∈ D, ωD

α (x, ·) is a Borel probability measure on Dc.Both 
lassi
al and α-harmoni
 measures have symmetry properties andsatisfy the Carleman prin
iple (domain monotoni
ity) and the Harna
k prin-
iple. The latter implies that if ωD
α (x, B) = 0 for some x ∈ D, then ωD

α (y, B)
= 0 for all y ∈ D; we then say that B is a D-null set. There are, how-ever, essential di�eren
es. The 
lassi
al harmoni
 measure is de�ned (as afun
tion) in a domain D and is supported (as a measure) on the boundaryof D. The α-harmoni
 measure is de�ned (as a fun
tion) in the whole R

nand is supported (as measure) in the exterior of D. These properties be-2000 Mathemati
s Subje
t Classi�
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ity.The author was supported by the EPEAEK programm Pythagoras II (Gree
e).[297℄ 
© Instytut Matematy
zny PAN, 2008



298 D. BETSAKOS

ome transparent when 
onsidered from the probabilisti
 point of view. The
lassi
al harmoni
 measure is the hitting distribution of a Brownian motionupon exiting D, while the α-harmoni
 measure is the hitting distributionof a symmetri
 α-stable pro
ess. This is a Hunt pro
ess with dis
ontinuouspaths. Thus its paths may jump from one 
omponent of D to another andmay hit Dc (upon exiting D) at points of (D)c and not ne
essarily at pointsof ∂D.The basi
 fa
ts of Riesz potential theory are presented in the book ofN. S. Landkof [12℄. Re
ently there has been a renewed interest in Riesz po-tential theory, mainly from the probabilisti
 point of view. K. Bogdan [4℄proved the boundary Harna
k prin
iple for α-harmoni
 fun
tions on Lip-s
hitz open sets. R. Song and J.-M. Wu [14℄ proved extensions of Bogdan'sresults. Bogdan [5℄ and Z.-Q. Chen and Song [11℄ gave a Martin representa-tion for non-negative α-harmoni
 fun
tions. Bogdan and T. By
zkowski [6℄,[7℄ developed the theory of the S
hrödinger operator based on the fra
tionalLapla
ian. Wu [15℄ found ne
essary and su�
ient 
onditions for a bound-ary set to have zero α-harmoni
 measure. R. Bañuelos, R. Lataªa and P. J.Méndez-Hernández [1℄ proved isoperimetri
 type inequalities for transitionprobabilities, Green fun
tions and eigenvalues asso
iated with symmetri
stable pro
esses. Various other properties and appli
ations of α-harmoni
fun
tions and the fra
tional Lapla
ian are presented in [10℄, [2℄, [9℄, [8℄ andthe referen
es therein. A review of the basi
 fa
ts about Riesz potential the-ory and symmetri
 stable pro
esses appears in Se
tion 2.In Se
tion 3, we prove some geometri
 estimates for α-harmoni
 measureinvolving symmetri
 or polarized open sets D. Although the 
orrespondinginequalities for the 
lassi
al harmoni
 measure are almost trivial, we will seethat the proofs for the α-harmoni
 measure are not simple. Theorems 1 and2 were proved in [2℄ under more restri
tive 
onditions (in [2, Theorem 3℄, theopen set D is assumed to be bounded with boundary satisfying an exterior
one 
ondition).2. Ba
kground2.1. α-harmoni
 fun
tions. The M. Riesz kernels in R

n, n ≥ 2, are thefun
tions(2.1) kα(x) =
A(n, α)

|x|n−α
, x ∈ R

n \ {0},where 0 < α < n and(2.2) A(n, γ) =
Γ ((n − γ)/2)

|Γ (γ/2)| 2γπn/2
, −n < γ < n, γ 6= 0,−2,−4, . . . .These kernels in
lude as spe
ial and limiting 
ases the kernels of the 
lassi
alpotential theory: the Newtonian kernel (n ≥ 3, α = 2) and the logarithmi
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kernel (n = 2, α → 2); see [12, Ch. I℄. From now on, we assume that 0 <
α < 2. We denote the n-dimensional Lebesgue measure by mn.Definition 1. Let D be an open set in R

n, n ≥ 2. A fun
tion u : R
n →

R is 
alled α-harmoni
 in D if(a) u is 
ontinuous in D;(b) u is in L1; that is, u is lo
ally integrable on R
n and(2.3) \

|x|>1

|u(x)|

|x|n+α
mn(dx) < ∞;

(
) for every ball B(x0, r) with 
losure in D,(2.4) u(x0) =
\

Rn

u(x)ε(r)
α (x − x0) mn(dx),where(2.5) ε(r)

α (x) =






Γ (n/2) sin(πα/2)

πn/2+1

rα

(|x|2 − r2)α/2|x|n
, |x| > r,

0, |x| < r.Definition 2. Let f ∈ L1. For ε > 0 and x ∈ R
n, we de�ne(2.6) ∆α/2

ε f(x) = A(n,−α)
\

|y−x|>ε

f(y) − f(x)

|y − x|n+α
mn(dy)

and(2.7) ∆α/2f(x) = lim
ε↓0

∆α/2
ε f(x),whenever the limit exists.By [6, Theorem 3.9℄, a fun
tion u de�ned on R

n is α-harmoni
 in an openset D if and only if it is 
ontinuous in D and ∆α/2u = 0 in D.2.2. The Diri
hlet problem for α-harmoni
 fun
tions (see [12, Ch. IV℄,[3, Ch. VII℄, [15℄). The Perron�Wiener�Brelot method 
an be applied forthe solution of the Diri
hlet problem for α-harmoni
 fun
tions. Let D be anopen set in R
n. An α-subharmoni
 fun
tion in D is an L1 fun
tion whi
h isupper semi
ontinuous in D and satis�es the inequality(2.8) u(x0) ≤

\
Rn

u(x)ε(r)
α (x − x0) mn(dx),for every ball B(x0, r) with 
losure in D.Let C(Dc) be the 
lass of fun
tions f 
ontinuous in Dc satisfying\

Dc∩{|x|>1}

|f(x)|

|x|n+α
mn(dx) < ∞,
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and H(D) be the 
lass of fun
tions on R

n, α-harmoni
 in D. The lowerPerron family of a fun
tion f ∈ C(Dc) is the family Pf of all fun
tions uwhi
h are α-subharmoni
 in D and satisfy the inequalities u ≤ f in (D)cand
lim sup
D∋x→ζ

u(x) ≤ f(ζ), ∀ζ ∈ ∂D.De�ne
Hf (x) := sup{u(x) : u ∈ Pf}, x ∈ R

n.Then Hf is α-harmoni
 in D. The de�nition of regular and irregular bound-ary points and their 
hara
terization byWiener's 
riterion are similar to their
lassi
al analogs. The fun
tion Hf has limit f(ζ) at ea
h regular boundarypoint ζ. We say that Hf is the Perron solution of the Diri
hlet problem in
D with exterior values f .The operator f 7→ Hf is a positive linear operator from C(Dc) into
H(D). Hen
e for ea
h x ∈ R

n, there is a measure ωD
α (x, ·) on Dc su
h that

Hf (x) =
\

Dc

f(y) ωD
α (x, dy), x ∈ R

n.This measure is the α-harmoni
 measure for D evaluated at x.In a similar manner, one 
an de�ne the upper and the lower Perron familyfor any Borel fun
tion on Dc and 
onsider the 
orresponding generalizedsolution for the Diri
hlet problem; see [3℄ for more details.2.3. Symmetri
 stable pro
esses (see [4℄, [5℄, [6℄, [10℄, [11℄, [14℄, [3℄, [8℄).The fra
tional Lapla
ian ∆α/2 is the 
hara
teristi
 operator of the sym-metri
 α-stable pro
ess {Xt, t ∈ [0,∞)} in R
n. This is a Lévy pro
ess(homogeneous and with independent in
rements) with transition density

pt(x, y) = pt(y, x) = pt(x − y) (relative to the Lebesgue measure) uniquelydetermined by its Fourier transform(2.9) \
Rn

eix·ξpt(x) mn(dx) = e−t|ξ|α .When α = 2, we get a Brownian motion running at twi
e the speed. Theprobability measures and the 
orresponding expe
tations of the pro
ess {Xt}starting at x ∈ R
n will be denoted by P

x and E
x.The symmetri
 α-stable pro
ess {Xt} is a strong Feller and a Hunt pro-
ess. For A ⊂ R

n, we put(2.10) TA = inf{t > 0 : Xt /∈ A},the �rst exit time from A. A Borel fun
tion u de�ned on R
n is α-harmoni
in an open set D ⊂ R

n if and only if(2.11) u(x) = E
xu(XT U ), x ∈ U,
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for every bounded open set U with 
losure U 
ontained in D. If D ⊂ R
n isopen and B is a Borel subset of Dc, then(2.12) ωD

α (x, B) = P
x(XT D ∈ B), x ∈ R

n.2.4. Riesz 
apa
ity (see [12, Ch. II℄). If K is a 
ompa
t set in R
n and µis a probability Borel measure on K, then the α-energy of µ is(2.13) Iα(µ) =

\
K

\
K

kα(x − y) µ(dx) µ(dy).The α-
apa
ity of K is de�ned by(2.14) Cα(K) = (inf
µ

Iα(µ))−1,where the in�mum is taken over all probability Borel measures on K.For a Borel set E ⊂ R
n, we de�ne(2.15) Cα(E) = sup{Cα(K) : K ⊂ E 
ompa
t}.By the Choquet 
apa
itability theorem [12, Theorem 2.8, p. 156℄,(2.16) Cα(E) = inf{Cα(G) : E ⊂ G open}.The α-
apa
ity is a geometri
 quantity be
ause of its expression as trans�-nite diameter; see [12, Ch. II, �3℄. It 
an also be 
hara
terized in terms ofsymmetri
 stable pro
esses; see referen
es in [2℄.2.5. Null sets. There is no known geometri
 
hara
terization of null setsfor α-harmoni
 measure. If a boundary set has zero α-
apa
ity, then it alsohas zero α-harmoni
 measure; see [12℄. The following lemmas provide morere�ned ne
essary or su�
ient 
onditions.Lemma 1 ([15, Theorem 1′℄). Let D be an open set in R

n and F be asubset of ∂D with mn(F ) = 0. Suppose that there exists c > 0 su
h that forall x ∈ D,
mn(Dc ∩ B(x, 2d(x, F ))) > cd(x, F )n.Then F is D-null.Lemma 2 ([15, Theorem 3℄). Let D be an open set in R

n and F be asubset of ∂D with Cα(F ) > 0. If
lim
r→0

Cα({x ∈ Dc : 0 < d(x, F ) ≤ r}) = 0,then F is not D-null.Lemma 3. Suppose that D and Ω are open sets in R
n with D ⊂ Ω. Let

A = Ω \ D and assume that A is D-null. Then Cα(A) = 0.Proof. By the Choquet 
apa
itability theorem [12, Theorem 2.8, p. 156℄,
A is 
apa
itable. Assume �rst that A is 
ompa
t. Then d(A, ∂Ω) > 0. For
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0 < r < d(A, ∂Ω), the set

{x ∈ Dc : 0 < d(x, A) ≤ r}is empty. By Lemma 2, Cα(A) = 0.Next assume that A is bounded. Let
Ak = {x ∈ A : d(x, ∂Ω) ≥ 1/k}, k ∈ N.Then Ak is 
ompa
t. Hen
e Cα(Ak) = 0 for all k. By the subadditivity of

α-
apa
ity, Cα(A) = 0. Finally, for unbounded A we 
onsider the sequen
eof bounded sets
Am = {x ∈ A : |x| ≤ m}, m ∈ N,and 
on
lude as above that Cα(A) = 0.2.6. The minimum prin
iple in Riesz potential theory. We will need someextensions of the minimum prin
iple for α-superharmoni
 fun
tions; see [12,pp. 115, 183℄.Lemma 4. Let D be an open set in R

n and u : R
n → (−∞,∞] be afun
tion whi
h is α-superharmoni
 in D and lower semi
ontinuous on D.Suppose that there exists a 
onstant M ∈ R su
h that u ≥ M in Dc. Then

u ≥ M in R
n. If u(x0) = M for some x0 ∈ D, then u = M in R

n.Proof. De�ne v(x) = u(x)−M, x ∈ R
n. Then v is lower semi
ontinuouson D. Also, for ζ ∈ ∂D,(2.17) lim inf

D∋x→ζ
v(x) = lim inf

D∋x→ζ
u(x) − M ≥ u(ζ) − M ≥ 0.Suppose that there exists a point x0 ∈ D su
h that(2.18) min

D
v = v(x0) < 0.Take r > 0 su�
iently small so that the ball of radius r, 
entered at x0, liesin D. Then v(x0) < ε

(r)
α,x0

v; indeed, if v(x0) = ε
(r)
α,x0

v, then v = v(x0) < 0a.e. in {|x − x0| > r}, and therefore
lim inf
x→ζ∈D

v(x) ≤ v(x0) < 0,
ontradi
ting (2.17). Hen
e(2.19) v(x0) < ε(r)
α,x0

v = ε(r)
α,x0

u − M ≤ u(x0) − M = v(x0),whi
h is absurd. We 
on
lude that the minimum of v on D is non-negativeand therefore u(x) ≥ M for all x ∈ R
n.If u(x0) = M for some x0 ∈ D, then for all su�
iently small r > 0,(2.20) 0 = v(x0) ≥ ε(r)

α,x0
v.
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This implies v = 0 a.e. in R
n; that is, u = M a.e. in R

n. If x ∈ D, then [12,p. 114℄
u(x) = lim

r→0
ε(r)
α,xu = M.Hen
e u = M in D.Lemma 5. Let D be an open set in R

n and u : R
n → (−∞,∞] be afun
tion α-superharmoni
 in D. Assume that(i) u is bounded below in D;(ii) u is lower semi
ontinuous in D \E, where E is a subset of ∂D with

∞ /∈ E and Cα(E) = 0 (of 
ourse, if E ⊂ R
n then ∞ /∈ E);(iii) lim infD∋x→ζ u(x) ≥ M for some M ∈ R and all ζ ∈ ∂D \ E;(iv) u(x) ≥ M for all x ∈ (D)c.Then u(x) ≥ M for all x ∈ D. Moreover , if u(x0) = M for some x0 ∈ D,then u = M in D.Proof. For n ∈ N, let An be an open set su
h that E ⊂ An and Cα(An)

≤ 1/n. Then E1 :=
⋂∞

n=1 An is a Gδ-set su
h that E ⊂ E1 and Cα(E1) = 0.There exists a measure λ on R
n su
h that the Riesz potential Uλ

α of λhas the following properties (see [12, p. 179℄):
Uλ

α(x) = ∞, ∀x ∈ E1 ∩ ∂D, and Uλ
α(x) < ∞, ∀x /∈ E1 ∩ ∂D.For ε > 0, de�ne

u1(x) = u(x) + εUλ
α(x), x ∈ R

n.The fun
tion u1 is α-superharmoni
 in D. Moreover,(2.21) lim inf
D∋x→ζ

u1(x) ≥ M, ∀ζ ∈ ∂D,be
ause Uλ
α(x) ≥ 0, ∀x ∈ R

n, and Uλ
α(x) = ∞, ∀x ∈ E1 ∩ ∂D. Also, sin
e

Uλ
α is lower semi
ontinuous in R

n and
lim inf

D∋x→ζ∈E
[u(x) + εUλ

α(x)] = ∞ = u(ζ) + εUλ
α(ζ),we see that u1 is lower semi
ontinuous in D.We apply Lemma 4 to the fun
tion u1 and 
on
lude

u1(x) = u(x) + εUλ
α(x) ≥ M, ∀x ∈ D.Sin
e ε > 0 is arbitrary and Uλ

α < ∞ in D, it follows that u ≥ M in D.Suppose next that u(x0) = M for some x0 ∈ D. By the α-mean valueinequality, M = u(x0) ≥ ε
(r)
α,x0

u for all su�
iently small r > 0. It followsthat u = M a.e. in R
n. If x ∈ D, then [12, p. 114℄

u(x) = lim
r→0

ε(r)
α,xu = M.Hen
e u = M in D.
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3. Some geometri
 properties of α-harmoni
 measure Let Π =

{(x1, . . . , xn) ∈ R
n : xn = 0}. For E ⊂ R

n, we denote by Ê the re�e
tion of
E in the (n − 1)-dimensional plane Π. Thus we have

Ê = {(x1, . . . , xn−1, xn) : (x1, . . . , xn−1,−xn) ∈ E}.We will also use the following notation: if x = (x1, . . . , xn−1, xn) then x̂ :=
(x1, . . . , xn−1,−xn); E+ := {(x1, . . . , xn−1, xn) ∈ E : xn > 0}; E0 := E ∩Π;
E− = {(x1, . . . , xn−1, xn) ∈ E : xn < 0}.Let E be any set in R

n. We divide E into three subsets S, U, V :
S = SE = {x ∈ E : x̂ ∈ E} = E ∩ Ê,

U = UE = {x ∈ E : x ∈ E+, x̂ /∈ E} = E+ \ SE ,

V = VE = {x ∈ E : x ∈ E−, x̂ /∈ E} = E− \ SE .

S is the symmetri
 part of E, U is the upper non-symmetri
 part of E,and V is the lower non-symmetri
 part of E. The sets S, U, V are disjointand E = S ∪ U ∪ V . Note that if E is open, then its symmetri
 part S isalways open, while the sets U, V are not ne
essarily open. We say that E issymmetri
 with respe
t to Π if U = V = ∅ and hen
e E = S. We say that Eis polarized with respe
t to Π if V = ∅ and hen
e E = S ∪ U .Theorem 1. Let S be an open set in R
n. Suppose that S is symmetri
with respe
t to Π. Let B ⊂ R

n
+ ∩ Sc be a Borel set. Then:(i) ωS

α(x, B) ≥ ωS
α(x̂, B), x ∈ R

n
+;(ii) ωS

α(x, B) ≥ ωS
α(x, B̂), x ∈ R

n
+.

S

Π

~
B x

x̂

q

q

Fig. 1. An illustration for Theorem 1
Proof. For x ∈ R

n
+ \ S+, the inequalities (i) and (ii) are trivial. So weprove them for x = s ∈ S+. Be
ause of symmetry, (i) and (ii) are equivalent.So we only prove (i). By the inner regularity of α-harmoni
 measure, wemay and do assume that B is a 
ompa
t set in R

n
+ ∩ Sc. Take a de
reasingsequen
e of 
ompa
tly supported 
ontinuous fun
tions fk : Sc → [0, 1] with
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suppfk ↓ B, fk ↓ χB and fk = 0 in (Sc)−. Then for the sequen
e of fun
tions
Hfk

(x) :=
\

Sc

fk(y) ωS
α(x, dy), x ∈ R

n,

we have Hfk
(s) ↓ ωS

α(s, B), s ∈ S. It therefore su�
es to prove that(3.1) Hfk
(s) ≥ Hfk

(ŝ), s ∈ S+, k ∈ N.Let E be the set of irregular points of ∂S. By a 
lassi
al result (see e.g.[12, p. 296℄), Cα(E) = 0. There exists a Gδ-set E1 ⊃ E with Cα(E1) = 0and a measure λ on R
n su
h that (see [12, p. 179℄)

Uλ
α(x) = ∞, ∀x ∈ E1 ∩ ∂D, and Uλ

α(x) < ∞, ∀x ∈ R
n \ (E1 ∪ ∂D).Be
ause of symmetry, we may also assume that Uλ

α(x̂) = Uλ
α(x).Fix k ∈ N and ε > 0 and de�ne(3.2) v(x) = Hfk

(x) − Hfk
(x̂) + εUλ

α(x), x ∈ R
n.We look at the boundary values of v in S+. Let ζ ∈ ∂(S+).

Case 1: ζ ∈ S0. Then
lim inf
S+∋s→ζ

v(s) = lim inf
S+∋s→ζ

εUλ
α(s) ≥ 0.

Case 2: ζ ∈ ∂(S+) \ (S0 ∪ E1). Then
lim inf
S+∋s→ζ

v(s) = fk(ζ) − 0 + lim inf
S+∋s→ζ

εUλ
α(s) ≥ 0.

Case 3: ζ ∈ E1. Then by the lower semi
ontinuity of Uλ
α ,

lim inf
S+∋s→ζ

v(s) = εUλ
α(ζ) = ∞.

Case 4: S is unbounded and ζ = ∞. Let B1 be the support of fk. For
s ∈ S, we have

Hfk
(s) =

\
Sc

fk(y) ωS
α(s, dy) ≤

\
B1

ωS
α(s, dy) = ωS

α(s, B1)

≤ ω
Bc

1
α (s, B1) = P

s(TBc
1 < ∞).By a formula of S. Port [13℄,

Cα(B1) = lim
s→∞

A(n, α)−1 |s|n−α
P

s(TBc
1 < ∞).Hen
e lims→∞ Hfk

(s) = 0. This implies that(3.3) lim inf
S+∋s→∞

v(s) = lim inf
S+∋s→∞

εUλ
α(s) ≥ 0.Note here that we 
annot apply the minimum prin
iple of Subse
tion 2.6be
ause the 
ondition v ≥ 0 in (S+)c is not satis�ed. Nevertheless, we will
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prove that v ≥ 0 in S+. Suppose that v takes on stri
tly negative valuesin S+. Let

β := inf{v(s) : s ∈ S+}.Take a sequen
e {sk} in S+ su
h that v(sk) → β. By passing to a subse-quen
e if ne
essary, we may assume that {sk} 
onverges in S+. By Cases1�4 examined above, we may assume that limk sk = s0 ∈ S+. The measure
λ is not ne
essarily 
on
entrated on E (see [12, p. 181℄). However, λ maybe taken so that its support is as 
lose to E as we wish (see the proof ofTheorem 3.1 in [12℄). It is also known [12, Ch. I, �6℄ that the potential Uλ

αis an α-harmoni
 fun
tion in the 
omplement of the support of λ. Hen
e vis α-harmoni
 in a neighborhood of s0. Hen
e
0 = ∆α/2v(s0) =

\
Rn

v(x) − v(s0)

|x − s0|n+α
mn(dx)(3.4)

=
\

R
n
+

v(x) − v(s0)

|x − s0|n+α
mn(dx) +

\
R

n
+

v(x̂) − v(s0)

|x̂ − s0|n+α
mn(dx)

≥
\

R
n
+

[
v(x) − v(s0)

|x − s0|n+α
−

v(x) + v(s0)

|x − ŝ0|n+α

]
mn(dx) =: I1.

We used above the equalities v(x̂) = −v(x) + 2εUλ
α(x), Uλ

α(x̂) = Uλ
α(x), and

|x− ŝ0| = |x̂− s0|, whi
h 
ome from symmetry. Now we set A1 = {x ∈ R
n
+ :

v(x) + v(s0) ≥ 0} and A2 = {x ∈ R
n
+ : v(x) + v(s0) < 0}. Using also theobvious inequality |x − ŝ0| > |x − s0|, we get

I1 =
\

A1

[
v(x) − v(s0)

|x − s0|n+α
−

v(x) + v(s0)

|x − ŝ0|n+α

]
mn(dx)

+
\

A2

[
v(x) − v(s0)

|x − s0|n+α
−

v(x) + v(s0)

|x − ŝ0|n+α

]
mn(dx)

≥
\

A1

[
v(x) − v(s0)

|x − s0|n+α
−

v(x) + v(s0)

|x − s0|n+α

]
mn(dx) +

\
A2

v(x) − v(s0)

|x − s0|n+α
mn(dx)

=
\

A1

−2v(s0)

|x − s0|n+α
mn(dx) +

\
A2

v(x) − v(s0)

|x − s0|n+α
mn(dx).Sin
e v(s0) < 0, the �rst integrand is positive. The se
ond integrand isnon-negative; indeed, if x ∈ R

n
+ \S+, then v(x)− v(s0) = fk(x)+ εUλ

α(x)−
v(s0) ≥ 0, and if x ∈ S+, then v(x) − v(s0) ≥ 0, by the de�nition of s0.Be
ause of (3.4), we 
on
lude that mn(A1) = 0 and v = v(s0) a.e. in A2.Hen
e v = v(s0) < 0 a.e. in R

n
+.We proved above that the fun
tion v is equal to a negative 
onstant a.e.in R

n
+. This is absurd; indeed: (a) if mn(Rn

+ \S+) > 0 and x ∈ R
n
+ \S+, then
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v(x) = fk(x) + εUλ
α(x) ≥ 0, (b) if mn(Rn

+ \ S+) = 0, then S is unboundedand, by (3.3), lim infS+∋s→∞ v(s) ≥ 0.The 
ontradi
tion shows that v(s) ≥ 0 for all s ∈ S+. Sin
e ε > 0 isarbitrary, (3.1) is proved.Theorem 2. Let D be an open set in R
n. Suppose that D is polarizedwith respe
t to the plane Π. Let B ⊂ R

n
+ ∩ Dc be a Borel set. Then:(i) ωD

α (x, B) ≥ ωD
α (x̂, B), x ∈ R

n
+ ∪ Π;(ii) ωD

α (x, B) ≥ ωD
α (x, B̂), x ∈ R

n
+ ∪ Π;(iii) ωD

α (x, B) + ωD
α (x̂, B) ≥ ωD

α (x, B̂) + ωD
α (x̂, B̂), x ∈ R

n;(iv) ωD
α (x, B) + ωD

α (x, B̂) ≥ ωD
α (x̂, B) + ωD

α (x̂, B̂), x ∈ R
n.
U

S

Π

~
B

~

B̂

x

x̂

q

q

Fig. 2. An illustration for Theorem 2
Proof. Sin
e D is polarized, the lower non-symmetri
 part of D is empty.Hen
e D = S ∪ U , where S is the symmetri
 part of D, and U is the uppernon-symmetri
 part of D.(i) If x ∈ (Rn

+ ∪ Π) \ S+, the inequality (i) is trivial. So we assume that
x = s ∈ S+. By the strong Markov property,

ωD
α (s, B) = ωS

α(s, B) +
\
U

ωS
α(s, du) ωD

α (u, B),

ωD
α (ŝ, B) = ωS

α(ŝ, B) +
\
U

ωS
α(ŝ, du) ωD

α (u, B).

By Theorem 1, ωS
α(s, B) ≥ ωS

α(ŝ, B) and ωS
α(s, du) ≥ ωS

α(ŝ, du). So (i) isproved.(ii) As in the proof of (i), we may assume that x = s ∈ S+. Set S1 :=

S ∪ U ∪ Û . Then S1 is an open set whi
h is symmetri
 with respe
t to Πand 
ontains D. By the strong Markov property,
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ωD

α (s, B) = ωS1

α (s, B) −
\̂
U

ωD
α (s, du) ωS1

α (u, B),

ωD
α (s, B̂) = ωS1

α (s, B̂) −
\̂
U

ωD
α (s, du) ωS1

α (u, B̂).

By Theorem 1, ωS1
α (s, B) ≥ ωS1

α (s, B̂) and ωS1
α (u, B̂) ≥ ωS1

α (u, B), u ∈ Û . So(ii) is proved.(iii) By the inner regularity of α-harmoni
 measure, we may and doassume that B is a 
ompa
t set in R
n
+ ∩ Dc. Take a de
reasing sequen
eof 
ontinuous fun
tions fk : Dc → [0, 1] with suppfk ↓ B, fk ↓ χB and

fk = 0 in (Dc)−. Let f̂k(x) = fk(x̂), x ∈ Dc (with f̂k = 0 in Û). Considerthe sequen
es of fun
tions
Hfk

(x) :=
\

Dc

fk(y) ωD
α (x, dy), x ∈ R

n,

H
f̂k

(x) :=
\

Dc

f̂k(y) ωD
α (x, dy), x ∈ R

n.We have Hfk
(x) ↓ ωD

α (x, B) and H
f̂k

(x) ↓ ωD
α (x, B), x ∈ R

n. Therefore itsu�
es to prove that
Hfk

(x) + Hfk
(x̂) ≥ H

f̂k

(x) + H
f̂k

(x̂), x ∈ R
n, k ∈ N.Fix k ∈ N and de�ne

v(x) = Hfk
(x) + Hfk

(x̂) − H
f̂k

(x) − H
f̂k

(x̂), x ∈ R
n.It is 
lear that v is α-harmoni
 in S. Note that for u ∈ U , v(u) = Hfk

(u) −
H

f̂k

(u). So v is α-harmoni
 in D. It is also 
ontinuous in D \ E, where Eis the set of irregular points of ∂D. We will apply the minimum prin
iple(Lemma 5) to the fun
tion v in the domain D.Let ζ ∈ Dc.
Case 1: ζ ∈ ∂D \ (E ∪ Û). Then

lim
D∋x→ζ

v(x) = fk(ζ) + fk(ζ̂) − f̂k(ζ) − f̂k(ζ̂) = 0.

Case 2: ζ ∈ (∂D ∩ Û) \ E. Then
lim

D∋x→ζ
v(x) = fk(ζ) + Hfk

(ζ̂) − f̂k(ζ) − H
f̂k

(ζ̂) = Hfk
(ζ̂) − H

f̂
(ζ̂)

=
\

Dc

fk(y) ωD
α (ζ̂, dy) −

\
Dc

f̂k(y) ωD
α (ζ̂, dy)

=
\

Dc

fk(y) ωD
α (ζ̂, dy) −

\
Dc

fk(y) ωD
α (ζ̂, d̂y)

=
\

(Dc)+

fk(y) [ωD
α (ζ̂, dy) − ωD

α (ζ̂, d̂y)] ≥ 0.
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Here ωD
α (ζ̂, d̂y) is the measure µ on (Dc)+ de�ned by µ(E) := ωD

α (ζ̂, Ê). Thelast equality holds be
ause fk is supported in (Dc)+. The inequality 
omesfrom part (ii) of Theorem 2.
Case 3: ζ ∈ (D)c \ Û . Then v(ζ) = fk(ζ) + fk(ζ̂) − f̂k(ζ) − f̂k(ζ̂) = 0.
Case 4: x = u ∈ Û \ ∂D. Then we work as in Case 2.By Lemma 5, we 
on
lude that v ≥ 0 on D.(iv) The proof is similar to that of (iii).Theorem 3. Let D be an open set in R

n. Suppose that D is polarizedwith respe
t to the plane Π. Let B ⊂ R
n
+ ∩ Dc be a Borel set. Then:(i) ωD

α (x, B) ≤ 1/2, x ∈ D− ∪ D0;(ii) ωD
α (x, B̂) ≤ 1/2, x ∈ D+ ∪ D0;(iii) ωD̂
α (x, B) ≤ 1/2, x ∈ (D̂)− ∪ D0.

U

S

Π

~
B

xq

Fig. 3. An illustration for Theorem 3
Proof. We will prove only the inequality (ii). The proof of (i) is similarand (iii) is equivalent to (ii) be
ause of symmetry.We write D = S ∪ U , where S is the symmetri
 part of D and U is theupper non-symmetri
 part of D. Set S1 := D ∪ Û . Then S1 is an open set,symmetri
 with respe
t to Π, and D ⊂ S1. Using Theorem 1 we obtain

ωD
α (x, B̂) ≤ ωS1

α (x, B̂) ≤ ωS1

α (x, B), x ∈ D+ ∪ D0.Hen
e
ωD

α (x, B̂) ≤
1

2
[ωS1

α (x, B̂) + ωS1

α (x, B)] =
1

2
ωS1

α (x, B ∪ B̂) ≤
1

2
.We now turn to a sharp form of Theorem 2.Theorem 4. Let D be an open set in R

n. Suppose that D is polarizedwith respe
t to the plane Π. Let B ⊂ R
n
+ ∩ Dc be a Borel set whi
h is not
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D-null. Then for x ∈ D+, we have

ωD
α (x, B) > ωD

α (x̂, B),(3.5)
ωD

α (x, B) > ωD
α (x, B̂).(3.6)Proof. First we prove (3.5). We write D = S∪U , where S is the symmet-ri
 part of D and U is the upper non-symmetri
 part of D. If x = u ∈ U , then

ωD
α (u, B) > 0 be
ause B is not D-null. On the other hand, ωD

α (û, B) = 0be
ause û /∈ B. Therefore (3.5) is proved in this 
ase. So it remains to prove(3.5) for x = s ∈ S+.Consider the fun
tion
v(x) = ωD

α (x, B) − ωD
α (x̂, B), x ∈ R

n.Then v is α-harmoni
 in D and by Theorem 2,(3.7) v(x) ≥ 0, x ∈ R
n
+.Also, it is obvious that(3.8) v(x) + v(x̂) = 0, x ∈ R

n
+.We want to prove that(3.9) v(s) > 0, s ∈ S+.Suppose that v(s0) = 0 for some s0 ∈ S+. Sin
e v is α-harmoni
 in D,

0 = ∆α/2v(s0) =
\

Rn

v(x) − v(s0)

|x − s0|n+α
mn(dx) =

\
Rn

v(x)

|x − s0|n+α
mn(dx)

=
\

Rn
+

[
v(x)

|x − s0|n+α
−

v(x)

|x − ŝ0|n+α

]
mn(dx)

= I1 + I2 + I3 + I4,where
I1 :=

\
S+

v(s)

[
1

|s − s0|n+α
−

1

|s − ŝ0|n+α

]
mn(ds),

I2 :=
\
U

v(u)

[
1

|u − s0|n+α
−

1

|u − ŝ0|n+α

]
mn(du)

=
\
U

ωD
α (u, B)

[
1

|u − s0|n+α
−

1

|u − ŝ0|n+α

]
mn(du),
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I3 :=
\
B

v(x)

[
1

|x − s0|n+α
−

1

|x − ŝ0|n+α

]
mn(dx),

=
\
B

[
1

|x − s0|n+α
−

1

|x − ŝ0|n+α

]
mn(dx),

I4 :=
\

(D+)c\B

v(x)

[
1

|x − s0|n+α
−

1

|x − ŝ0|n+α

]
mn(dx).

Sin
e v = 0 in (D+)c \B, we have I4 = 0. Be
ause of the obvious inequality
|x − s0| < |x − ŝ0|, x ∈ R

n
+,the integrands in I1, I2, I3 are non-negative. Therefore I1 = I2 = I3 = 0. We
on
lude that mn(U) = 0, mn(B) = 0 and v = 0 mn-a.e. in S. Sin
e v is
ontinuous in D, we 
on
lude that v = 0 in S, whi
h means that(3.10) ωD

α (s, B) = ωD
α (ŝ, B), s ∈ S.The fa
t that mn(B) = 0 implies that (see [4℄, [15℄) the set B ∩ (D)c is

D-null; hen
e the set B∩∂D is not D-null. Thus, by [15, Lemma 1℄, we have
sup
x∈D

ωD
α (x, B) = 1.Take a sequen
e {xk} in D su
h that(3.11) lim

k→∞
ωD

α (xk, B) = 1.By Theorem 3, we may assume that {xk} ⊂ D+. Sin
e D+ is an open setand mn(U) = 0, every neighborhood of xk 
ontains a point sk ∈ S+, k ∈ N.So, by the 
ontinuity of α-harmoni
 measure in D, we 
an 
hoose a sequen
e
sk in S+ su
h that(3.12) lim

k→∞
ωD

α (sk, B) = 1.Then, again by Theorem 3,
lim sup

k→∞
ωD

α (ŝk, B) ≤
1

2
.This together with (3.12) 
ontradi
ts (3.10). So (3.9) is proved.We now turn to the proof of (3.6). We 
onsider the fun
tion

h(x) = ωD
α (x, B) − ωD

α (x, B̂), x ∈ R
n.We know from Theorem 2 that(3.13) h(x) ≥ 0, h(x) + h(x̂) ≥ 0, x ∈ R
n
+.We want to prove that(3.14) h(x) > 0, x ∈ D+.
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Suppose that h(x0) = 0 for some x0 ∈ D+. Sin
e h is α-harmoni
 in D,

0 = ∆α/2h(x0) =
\

Rn

h(x) − h(x0)

|x − x0|n+α
mn(dx)

=
\

R
n
+

h(x)

|x − x0|n+α
mn(dx) +

\
R

n
−

h(x)

|x − x0|n+α
mn(dx)

=
\

R
n
+

h(x)

|x − x0|n+α
mn(dx) +

\
R

n
+

h(x̂)

|x̂ − x0|n+α
mn(dx)

=
\

R
n
+

{
h(x) + h(x̂)

|x − x̂0|n+α
+ h(x)

[
1

|x − x0|n+α
−

1

|x − x̂0|n+α

]}
mn(dx) =: J.

As in the proof of (3.5), we �nd that J = J1 + J2 + J3, where
J1 :=

\
S+

{
h(s) + h(ŝ)

|x − x̂0|n+α
+ h(s)

[
1

|s − x0|n+α
−

1

|s − x̂0|n+α

]}
mn(ds),

J2 :=
\
U

h(u)

|u − x0|n+α
mn(du),

J3 :=
\
B

[
1

|x − x0|n+α
−

1

|x − x̂0|n+α

]
mn(dx).

Using (3.13) we 
on
lude that mn(B) = 0 and that v = 0 in S, whi
hmeans that(3.15) ωD
α (s, B) = ωD

α (s, B̂), s ∈ S.By (3.15) and the fa
t that B is not D-null we infer that B̂ is not D-null.As mn(B̂) = mn(B) = 0, the set B̂ ∩ ∂D is not D-null. By [15, Lemma 1℄,we thus have
sup
x∈D

ωD
α (x, B̂) = 1.Take a sequen
e {yk} in D with ωD

α (yk, B̂) → 1. As B̂ ⊂ R
n
−, Theorem 3implies that we may assume yk ∈ D− = S−, k ∈ N. Then (3.15) gives

ωD
α (yk, B) → 1. But Theorem 3 implies ωD

α (yk, B) ≤ 1/2. This 
ontradi
tionproves (3.14).Theorem 5. Let D be an open set in R
n. Suppose that D is polarizedwith respe
t to the hyperplane Π, i.e. D = S ∪ U , where S is the symmetri
part of D and U is the upper non-symmetri
 part of D. Let B ⊂ R

n
+ ∩Dc bea Borel set whi
h is not D-null. Then we have:(3.16) ωD

α (s0, B) + ωD
α (ŝ0, B) = ωD

α (s0, B̂) + ωD
α (ŝ0, B̂)
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for some s0 ∈ S if and only if Cα(U) = 0;(3.17) ωD
α (s0, B) + ωD

α (s0, B̂) = ωD
α (ŝ0, B) + ωD

α (ŝ0, B̂)for some s0 ∈ S if and only if Cα(U) = 0;(3.18) ωD
α (s0, B) = ωD

α (s0, B̂)for some s0 ∈ S0 := S ∩ Π if and only if Cα(U) = 0.Proof. We only prove the �rst equivalen
e; the proofs of the remainingones are similar.Suppose that (3.16) holds for some s0 ∈ S. By the strong Markov prop-erty,
ωD

α (s0, B) = ωS
α(s0, B) +

\
U

ωS
α(s0, du) ωD

α (u, B),(3.19)
ωD

α (ŝ0, B) = ωS
α(ŝ0, B) +

\
U

ωS
α(ŝ0, du) ωD

α (u, B),(3.20)
ωD

α (s0, B̂) = ωS
α(s0, B̂) +

\
U

ωS
α(s0, du) ωD

α (u, B̂),(3.21)
ωD

α (ŝ0, B̂) = ωS
α(ŝ0, B̂) +

\
U

ωS
α(ŝ0, du) ωD

α (u, B̂).(3.22)Hen
e\
U

[ωS
α(s0, du) + ωS

α(ŝ0, du)] ωD
α (u, B)

=
\
U

[ωS
α(s0, du) + ωS

α(ŝ0, du)] ωD
α (u, B̂).

By Theorem 4, ωD
α (u, B) > ωD

α (u, B̂) for all u ∈ U . Hen
e ωS
α(s0, du) +

ωS
α(ŝ0, du) is the zero measure on U . This implies ωS

α(s0, U) = 0, i.e. U is
S-null. By Lemma 3, Cα(U) = 0.Conversely, if Cα(U) = 0, then U is S-null. Therefore (3.19)�(3.22) imply

ωD
α (s, B) + ωD

α (ŝ, B) = ωD
α (s, B̂) + ωD

α (ŝ, B̂)for all s ∈ S.Theorem 6. Let D be an open set in R
n. Suppose that D is polarizedwith respe
t to the hyperplane Π, i.e. D = S ∪ U , where S is the symmetri
part of D and U is the upper non-symmetri
 part of D. Let B ⊂ Dc be aBorel set whi
h is symmetri
 with respe
t to Π and is not D-null. Then

ωD
α (s, B) = ωD

α (ŝ, B)for some s ∈ S+ if and only if Cα(U) = 0.Proof. Similar to the proof of Theorem 5.
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