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SOME PROPERTIES OF a-HARMONIC MEASURE

BY

DIMITRIOS BETSAKOS (Thessaloniki)

Abstract. The a-harmonic measure is the hitting distribution of symmetric a-stable
processes upon exiting an open set in R" (0 < a < 2, n > 2). It can also be defined in the
context of Riesz potential theory and the fractional Laplacian. We prove some geometric
estimates for a-harmonic measure.

1. Introduction. In the 1930’s, O. Frostman and M. Riesz developed a
potential theory on R™, n > 2, based on the Riesz kernel

An, o

(1) Falz) = A9)

- — )
|$|n «

z € R"\ {0},

where 0 < a < 2 and A(n, «) is a constant. When o = 2, the Riesz kernel co-
incides with the kernel of the classical potential theory, the Newtonian kernel
(n > 3). The a-harmonic functions are defined by a mean value property (in-
volving the parameter «), analogous to the classical one. Equivalently, they
are the solutions of the equation A%/2y = 0, where A%/2 is the fractional
Laplacian, a non-local integro-differential operator.

A function u : R™ — R which is a-harmonic in an open set D is deter-
mined by its exterior values (its values in D¢ :=R"\ D). If B is a Borel set
in D® the a-harmonic measure of B with respect to D is the a-harmonic
function w in D with exterior values u = yp on D°. The a-harmonic measure
of B with respect to D, evaluated at the point x € R", will be denoted by
wP(x, B). For fixed z € D, w?(x,-) is a Borel probability measure on D°.

Both classical and a-harmonic measures have symmetry properties and
satisfy the Carleman principle (domain monotonicity) and the Harnack prin-
ciple. The latter implies that if w? (2, B) = 0 for some 2 € D, then w?(y, B)
= 0 for all y € D; we then say that B is a D-null set. There are, how-
ever, essential differences. The classical harmonic measure is defined (as a
function) in a domain D and is supported (as a measure) on the boundary
of D. The a-harmonic measure is defined (as a function) in the whole R"
and is supported (as measure) in the exterior of D. These properties be-
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come transparent when considered from the probabilistic point of view. The
classical harmonic measure is the hitting distribution of a Brownian motion
upon exiting D, while the a-harmonic measure is the hitting distribution
of a symmetric a-stable process. This is a Hunt process with discontinuous
paths. Thus its paths may jump from one component of D to another and
may hit D° (upon exiting D) at points of (D)¢ and not necessarily at points
of OD.

The basic facts of Riesz potential theory are presented in the book of
N. S. Landkof [12]. Recently there has been a renewed interest in Riesz po-
tential theory, mainly from the probabilistic point of view. K. Bogdan [4]
proved the boundary Harnack principle for a-harmonic functions on Lip-
schitz open sets. R. Song and J.-M. Wu [14] proved extensions of Bogdan’s
results. Bogdan [5] and Z.-Q. Chen and Song [11] gave a Martin representa-
tion for non-negative a-harmonic functions. Bogdan and T. Byczkowski [6],
[7] developed the theory of the Schrodinger operator based on the fractional
Laplacian. Wu [15] found necessary and sufficient conditions for a bound-
ary set to have zero a-harmonic measure. R. Banuelos, R. Latata and P. J.
Méndez-Hernandez [1] proved isoperimetric type inequalities for transition
probabilities, Green functions and eigenvalues associated with symmetric
stable processes. Various other properties and applications of a-harmonic
functions and the fractional Laplacian are presented in [10], [2], [9], [8] and
the references therein. A review of the basic facts about Riesz potential the-
ory and symmetric stable processes appears in Section 2.

In Section 3, we prove some geometric estimates for a-harmonic measure
involving symmetric or polarized open sets D. Although the corresponding
inequalities for the classical harmonic measure are almost trivial, we will see
that the proofs for the a-harmonic measure are not simple. Theorems 1 and
2 were proved in |2] under more restrictive conditions (in |2, Theorem 3|, the
open set D is assumed to be bounded with boundary satisfying an exterior
cone condition).

2. Background

2.1. a-harmonic functions. The M. Riesz kernels in R™, n > 2, are the
functions

(2.1) ko(z) = Aln, @) z € R™\ {0},

- ‘x|n—o¢ ’
where 0 < o < n and

I'((n—1)/2)
2.2 A(n,vy) = , —n<y<n, 0,—2,—4,....
These kernels include as special and limiting cases the kernels of the classical
potential theory: the Newtonian kernel (n > 3, o = 2) and the logarithmic
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kernel (n = 2, @ — 2); see [12, Ch. I]. From now on, we assume that 0 <
a < 2. We denote the n-dimensional Lebesgue measure by m,,.

DEFINITION 1. Let D be an open set in R, n > 2. A function v : R —
R is called a-harmonic in D if

(a) u is continuous in D;
(b) wis in £1; that is, u is locally integrable on R and

S |u(@)|

|x|n+a

(2.3) my(dz) < 00;
|z|>1

(c) for every ball B(xg,r) with closure in D,

(2.4) u(wo) = | w(@)el) (x — 20) mn(da),
R”
where
I'(n/2)sin(ra/2) re
(25) Eg)(l‘) = 7Tn/2+1 (’$’2 - T2)a/2’$‘n7 ‘.%" >,
07 |$| <r.

DEFINITION 2. Let f € £'. For ¢ > 0 and = € R", we define

20 A=A | I )
ly—z|>e

and

2.7) A2 (@) = iy A2/ (),

whenever the limit exists.

By [6, Theorem 3.9], a function u defined on R™ is a-harmonic in an open
set D if and only if it is continuous in D and A%2y =0 in D.

2.2. The Dirichlet problem for a-harmonic functions (see [12, Ch. IV],
[3, Ch. VII|, [15]). The Perron—Wiener—Brelot method can be applied for
the solution of the Dirichlet problem for a-harmonic functions. Let D be an
open set in R®. An a-subharmonic function in D is an £' function which is
upper semicontinuous in D and satisfies the inequality

(2.8) u(zo) < S w(x)e") (z — 20) my(dz),
Rn
for every ball B(zg,r) with closure in D.
Let C(D°) be the class of functions f continuous in D¢ satisfying

S /()]

’x|n+a

my(dz) < oo,
Den{|z|>1}
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and H(D) be the class of functions on R", a-harmonic in D. The lower
Perron family of a function f € C(D°) is the family Py of all functions u
which are a-subharmonic in D and satisfy the inequalities v < f in (D)
and

limsupu(z) < f({), V(e adD.
D3z—(

Define
Hy(x) :==sup{u(z) : u € Pr}, xe€R"™

Then H is a-harmonic in D. The definition of regular and irregular bound-
ary points and their characterization by Wiener’s criterion are similar to their
classical analogs. The function H; has limit f(¢) at each regular boundary
point (. We say that Hy is the Perron solution of the Dirichlet problem in
D with exterior values f.

The operator f +— Hy is a positive linear operator from C(D°) into

H (D). Hence for each x € R", there is a measure w2 (x,-) on D¢ such that

Hy(z) = | f(y)wl(x,dy), xeR"
DC
This measure is the a-harmonic measure for D evaluated at x.
In a similar manner, one can define the upper and the lower Perron family

for any Borel function on D and consider the corresponding generalized
solution for the Dirichlet problem; see [3] for more details.

2.3. Symmetric stable processes (see 4], [5], [6], [10], [11], [14], [3], [8])-
The fractional Laplacian A®/2 is the characteristic operator of the sym-
metric a-stable process {X;, ¢ € [0,00)} in R™. This is a Lévy process
(homogeneous and with independent increments) with transition density
pe(x,y) = pie(y,x) = pi(x — y) (relative to the Lebesgue measure) uniquely
determined by its Fourier transform

(2.9) S e Epy () my (da) = e e,
R

When a = 2, we get a Brownian motion running at twice the speed. The
probability measures and the corresponding expectations of the process {X;}
starting at x € R™ will be denoted by P* and E*.

The symmetric a-stable process {X;} is a strong Feller and a Hunt pro-
cess. For A C R"™, we put
(2.10) T4 =inf{t >0:%; ¢ A},
the first exit time from A. A Borel function u defined on R” is a-harmonic

in an open set D C R" if and only if
(2.11) u(z) = E*u(Xpv), xeUl,
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for every bounded open set U with closure U contained in D. If D C R is
open and B is a Borel subset of D¢, then

(2.12) wP(x,B) =P*(X;p € B), x€R"

2.4. Riesz capacity (see [12, Ch. IT]). If K is a compact set in R™ and p
is a probability Borel measure on K, then the a-energy of u is

(2.13) In(p) = | | ka2 — y) p(dz) p(dy).
KK

The a-capacity of K is defined by

(2.14) Cal) = (inf Ta()) ™,

where the infimum is taken over all probability Borel measures on K.
For a Borel set E C R”, we define

(2.15) Co(FE) =sup{Cy(K) : K C E compact}.
By the Choquet capacitability theorem [12, Theorem 2.8, p. 156],
(2.16) Co(E) = inf{Cy(G) : E C G open}.

The a-capacity is a geometric quantity because of its expression as transfi-
nite diameter; see [12, Ch. II, §3]. It can also be characterized in terms of
symmetric stable processes; see references in [2].

2.5. Null sets. There is no known geometric characterization of null sets
for a-harmonic measure. If a boundary set has zero a-capacity, then it also
has zero a-harmonic measure; see [12]. The following lemmas provide more
refined necessary or sufficient conditions.

LEMMA 1 ([15, Theorem 1']). Let D be an open set in R™ and F be a
subset of 0D with m,(F) = 0. Suppose that there exists ¢ > 0 such that for
allx € D,

mn (DN B(z,2d(x, F))) > cd(x, F)".
Then F is D-null.

LEMMA 2 ([15, Theorem 3|). Let D be an open set in R" and F be a
subset of 0D with Co(F) > 0. If

lir%C’a({x eD:0<d(z,F)<r})=0,
then I is not D-null.

LEMMA 3. Suppose that D and (2 are open sets in R™ with D C §2. Let
A= 02\ D and assume that A is D-null. Then Co(A) = 0.

Proof. By the Choquet capacitability theorem |12, Theorem 2.8, p. 156],
A is capacitable. Assume first that A is compact. Then d(A,0£2) > 0. For
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0 <r<d(A,012), the set
{reD:0<d(z,A) <r}

is empty. By Lemma 2, C,(A) = 0.
Next assume that A is bounded. Let

Ap={z € A:d(z,002) > 1/k}, keN.

Then Ay is compact. Hence Cy(Ag) = 0 for all k. By the subadditivity of
a-capacity, Cy(A) = 0. Finally, for unbounded A we consider the sequence
of bounded sets

Ap={ze€A:|z|<m}, meN,
and conclude as above that C,(A) =0. =

2.6. The minimum principle in Riesz potential theory. We will need some
extensions of the minimum principle for a-superharmonic functions; see {12,
pp. 115, 183].

LEMMA 4. Let D be an open set in R™ and u : R" — (—o0,00] be a
function which is a-superharmonic in D and lower semicontinuous on D.
Suppose that there exists a constant M € R such that w > M in D¢. Then
u> M inR™. If u(xg) = M for some xo € D, then w= M in R".

Proof. Define v(z) = u(x) — M, x € R™. Then v is lower semicontinuous

on D. Also, for ¢ € 9D,

2.17 liminf v(z) = liminf u(z) — M > u(¢) — M > 0.
(2.17) églxlgcv(w) garlxlgCU(m) = u(¢) >

Suppose that there exists a point xg € D such that

(2.18) minv = v(zg) < 0.
D

Take r > 0 sufficiently small so that the ball of radius r, centered at xq, lies
in D. Then v(zg) < s&’}ov; indeed, if v(zg) = Eg,zcov, then v = v(zg) < 0
a.e. in {|x — xo| > r}, and therefore

lim inf < 0
xlEICIGHDU(:E) < w(zp) <0,

contradicting (2.17). Hence
(2.19) v(zo) < el v =elr)

a,T0 Q,

u— M <u(xg) — M = v(xg),

0

which is absurd. We conclude that the minimum of v on D is non-negative
and therefore u(x) > M for all x € R™.
If u(zg) = M for some xy € D, then for all sufficiently small r > 0,

(2.20) 0=uw(zo) >el) v

o,z
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This implies v = 0 a.e. in R™; that is, u = M a.e. in R™. If x € D, then [12,
p. 114]
u(z) = hH(l) e u= M.
r— ’

Henceu =M in D. m

LEMMA 5. Let D be an open set in R™ and u : R" — (—o0, 00| be a

function a-superharmonic in D. Assume that
(1) w is bounded below in D; B
(ii) w is lower semicontinuous in D\ E, where E is a subset of 0D with
00 ¢ E and Co(E) =0 (of course, if E C R" then oo ¢ E);
(iii) liminfps, .cu(x) > M for some M € R and all ( € 0D \ E;

(iv) u(x) > M for all x € (D)°.

Then w(z) > M for all x € D. Moreover, if u(zg) = M for some x¢ € D,
then w =M in D.

Proof. For n € N, let A,, be an open set such that £ C A,, and Cy(A,)
< 1/n. Then E;:=()_, A, is a Gs-set such that £ C F; and C,(E;) = 0.

n=1
There exists a measure A on R™ such that the Riesz potential U} of A
has the following properties (see [12, p. 179)]):

UMz) =00, VYreE NdD, and Ul(z)<oo, Vz¢ ENoD.
For € > 0, define
uy(x) = u(z) + eUNz), zeR™
The function u; is a-superharmonic in D. Moreover,
(2.21) %gﬁfgul(x) > M, V(edD,

because U2 (z) > 0, Vo € R", and U2 (x) = oo, Yz € E3 NAD. Also, since
U2 is lower semicontinuous in R” and

Jliminf [u(z) + eU} (z)] = 00 = u(¢) + eUL(C),
D>x—(eFE

we see that u; is lower semicontinuous in D.
We apply Lemma 4 to the function u; and conclude
uy(x) = u(z) + eUNz) > M, VzeD.

Since € > 0 is arbitrary and U} < oo in D, it follows that u > M in D.

Suppose next that u(xg) = M for some xg € D. By the a-mean value
inequality, M = u(xg) > eg,)xou for all sufficiently small » > 0. It follows
that u = M a.e. in R™. If x € D, then [12, p. 114]

w(z) = lim e u = M.
r—0

Henceu =M in D. =
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3. Some geometric properties of a-harmonic measure Let II =
{(z1,...,2y) € R": 2, = 0}. For E C R", we denote by E the reflection of
E in the (n — 1)-dimensional plane I7. Thus we have

E = {(z1,...,xp_1,2n) : (T1,...,2p_1,—Ty) € E}.

We will also use the following notation: if z = (z1,...,2p—1,2y) then T :=
(X1, vy @1, —xn); By :={(x1,...,2n—1,2n) € E: 2y, > 0}; Ep := ENII;
E_={(z1,...,xn—1,2n) € E : 2, < 0}.

Let E be any set in R". We divide F into three subsets S, U, V:
S=Sp={x€E:Z€E}=ENE,
U=Ug={xe€FE:x€E,,2¢ E} =F,\ Sg,
V=Vp={recFE:z€E_¢ E}=E_\ Sg.

S is the symmetric part of E, U is the upper non-symmetric part of E,
and V is the lower non-symmetric part of E. The sets S, U,V are disjoint
and £ = SUU UYV. Note that if F is open, then its symmetric part S is
always open, while the sets U,V are not necessarily open. We say that E is

symmetric with respect to IT if U =V = () and hence F = S. We say that F
is polarized with respect to II if V = () and hence £ = S U U.

THEOREM 1. Let S be an open set in R™. Suppose that S is symmetric
with respect to II. Let B C R} NS¢ be a Borel set. Then:

(i) wi(z, B) > w3 (@, B), © € RY;

(ii) ws(x, B) > w3(z, B), © € R".

B T

S

S

Fig. 1. An illustration for Theorem 1

Proof. For x € R \ S, the inequalities (i) and (ii) are trivial. So we
prove them for x = s € S . Because of symmetry, (i) and (ii) are equivalent.
So we only prove (i). By the inner regularity of a-harmonic measure, we
may and do assume that B is a compact set in R’} N S¢. Take a decreasing
sequence of compactly supported continuous functions f : S¢ — [0, 1] with
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suppfr | B, fr | xp and fr = 0in (S°)_. Then for the sequence of functions

ka( ) S fk( ) ($,dy), T € Rn’
ge

we have Hy, (s) | w3 (s, B), s € S. It therefore suffices to prove that
(3.1) Hy (s) > Hyf (5), seSq, keN

Let E be the set of irregular points of 0S. By a classical result (see e.g.
[12, p. 296]), Co(E) = 0. There exists a Gs-set Ey D E with Co(E1) = 0
and a measure A on R" such that (see [12, p. 179])

UMz) =00, VYoreE NdD, and Ul(z)<oo, VYzreR"\(E UID).

Because of symmetry, we may also assume that U} () = U2 (z).
Fix k € N and € > 0 and define

(3.2) v(z) = Hy, (x) — Hy (3) + eUNz), x€R™
We look at the boundary values of v in S;. Let ¢ € 9(S4).
CASE 1: ( € Sp. Then

lim inf v(s) = liminf eU)(s) > 0.
S13s5—(¢ S135—¢

CASE 2: ¢ € 9(S4+) \ (SoU Eq). Then
liminf v(s) = fi(¢) — 0 + liminf eU)(s) > 0.
S4+3s—( S4+3s5—C

CASE 3: ¢ € E1. Then by the lower semicontinuity of U,

hmmf v(s) = eUN¢) = 0.
S43s—

CASE 4: S is unbounded and { = co. Let By be the support of fj. For
s € 5, we have

3 (6) = § ) oSssdy) < § o) = (s, )
Se B
< wii(s,By) = PS(T5 < o).
By a formula of S. Port [13],
Co(B1) = slg& A(n, o) 1 s|" 2 P(TPI < x0).
Hence limg_.oc Hy, (s) = 0. This implies that
(3.3) liminf v(s) = liminf €U (s) > 0.

S43s—00 S43s—00

Note here that we cannot apply the minimum principle of Subsection 2.6
because the condition v > 0 in (S4)° is not satisfied. Nevertheless, we will
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prove that v > 0 in S;. Suppose that v takes on strictly negative values
in S;. Let
B :=inf{v(s): s € S4}.

Take a sequence {si} in S; such that v(sy) — (. By passing to a subse-
quence if necessary, we may assume that {s;} converges in S,. By Cases
1-4 examined above, we may assume that limg s = sg € Sy. The measure
A is not necessarily concentrated on E (see [12, p. 181]). However, A may
be taken so that its support is as close to E as we wish (see the proof of
Theorem 3.1 in [12]). It is also known [12, Ch. I, §6] that the potential U2
is an a-harmonic function in the complement of the support of A. Hence v
is a-harmonic in a neighborhood of sy. Hence

(3.4) 0= A2y(s0) = S v(@) = v(so) My, (dx)

in |z — so|te
S W o 0 R R W e ) B
_RSi |z — so|nte n(d )-FRS1 = n(dz)
v(z) —v(sg) v(z)+v(so) B
S Rxn [ |z — sg| T a |z — 5ot ] my(dz) =: 1.

We used above the equalities v(7) = —v(x) + 2eU(z), UN(Z) = U2 (), and
|z — 50| = |& — so|, which come from symmetry. Now we set A; = {z € R7} :
v(x) +v(so) > 0} and Ay = {x € R} : v(x) + v(sp) < 0}. Using also the
obvious inequality |z — S| > |z — so|, we get

L= | [U(ﬂﬁ) —v(s0)  v(z) +v(80)} o (d)

AT sl o g

[t e
gl e S
= /§1 % ma(dz) + }2 % Mo (dz).

Since v(sp) < 0, the first integrand is positive. The second integrand is
non-negative; indeed, if z € R", \ Sy, then v(x) —v(so) = fu(x) +cUl(x) —
v(sg) > 0, and if x € Sy, then v(x) — v(sp) > 0, by the definition of sg.
Because of (3.4), we conclude that m,(A;) = 0 and v = v(sp) a.e. in As.
Hence v = v(sg) < 0 a.e. in R

We proved above that the function v is equal to a negative constant a.e.

in R’. This is absurd; indeed: (a) if m, (R} \ S+) > 0 and € R’ \ Sy, then
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v(z) = fr(x) +eU2(x) > 0, (b) if m,(R% \ Sy) = 0, then S is unbounded
and, by (3.3), liminfg, 5500 v(s) > 0.

The contradiction shows that v(s) > 0 for all s € S;. Since € > 0 is
arbitrary, (3.1) is proved. =

THEOREM 2. Let D be an open set in R™. Suppose that D is polarized
with respect to the plane 1. Let B C R’ N D be a Borel set. Then:

(i) wy(z,B) > wl (2, B), € R UII;
(i) wP(z, B) = wP(z, B), v € RL U T
(iii) w?(z, B) +w?(z, B) > wP(z, B) + w?(z, B), € R™;
(iv) wP(z, B) + wP(z,B) > w2 (2, B) + WP (2, B), x € R™.
U
B x
N
.z

S

&)
®

Fig. 2. An illustration for Theorem 2

Proof. Since D is polarized, the lower non-symmetric part of D is empty.
Hence D = S U U, where S is the symmetric part of D, and U is the upper
non-symmetric part of D.

(i) If x € (R} UII) \ Sy, the inequality (i) is trivial. So we assume that
x = s € S;. By the strong Markov property,

wl (s, B) = w3 (s, B) + | wi(s, du) wl (u, B),

wy (8, B) = w3 (8. B) + | w3 (3, du) w (u, B).

Se— G

By Theorem 1, wS(s, B) > w3 (5, B) and w3 (s,du) > w3 (5, du). So (i) is
proved.

(ii) As in the proof of (i), we may assume that x = s € S;. Set S; :=
SUUUU. Then S1 is an open set which is symmetric with respect to IT
and contains D. By the strong Markov property,
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By Theorem 1, w51 (s, B) > wS1(s, B) and w3 (u, B) > w5 (u, B),u € U. So
(ii) is proved.

(iii) By the inner regularity of a-harmonic measure, we may and do
assume that B is a compact set in R} N D°. Take a decreasing sequence
of continuous functions fi : D¢ — [0,1] with suppfx | B, frx | xp and
fie = 01in (D°)_. Let fr(z) = fr(Z),z € D¢ (with fr = 0 in U). Consider
the sequences of functions

Hp(w) = | i) wd (. dy), =R,
DC
H; (2) = | fiy)wl(z,dy), xeR"
DC
We have Hy, (z) | w?(z, B) and ka(x) | wP(x,B), x € R". Therefore it
suffices to prove that

ka(x)+ka(fE)ZHﬁ(ac)—i-ka(ic\), reR"” keN.
Fix k£ € N and define

v(x) = Hy,(z) + Hp, (7) — Hy, (2) — Hp (7), = €R"
It is clear that v is a-harmonic in S. Note that for u € U, v(u) = Hy, (u) —

ka(u) So v is a-harmonic in D. It is also continuous in D \ E, where E

is the set of irregular points of dD. We will apply the minimum principle
(Lemma 5) to the function v in the domain D.
Let ¢ € D°.

CASE 1: ¢ € 9D\ (EUU). Then
plim v(2) = Q) + fi(Q) = Ful0) = Q) = 0.
CASE 2: ¢ € (ADNU) \ E. Then
lim v(z) = f5(¢) + Hy, (O) = fiulQ) = Hy (O) = Hp, () — HF(C)

D3z—( Tk
= | i@ wB(C dy) = | frly) wE(C. dy)
De De
= S Tr(y) wf(ady) - S fi(y) wf(adAy)
De De

= | AW WP dy) - wP(C dy)] > 0.
(D°)+
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Here wg(a @) is the measure p on (D)4 defined by p(E) := wf@, E) The
last equality holds because fi is supported in (D). The inequality comes
from part (ii) of Theorem 2.

Cask 3: ¢ € (D)°\U. Then v(¢) = f(C) + fx(Q) = fi(¢) = fu({) = 0.

CASE4d:z=ue U \ 0D. Then we work as in Case 2.

By Lemma 5, we conclude that v > 0 on D.

(iv) The proof is similar to that of (iii). m

THEOREM 3. Let D be an open set in R™. Suppose that D is polarized
with respect to the plane 1. Let B C R’ N D be a Borel set. Then:

(i) wP(x,B) <1/2,z € D_U Dy;
(ii) wP(z,B) <1/2, x € D4 U Dy;

(iii) wzﬁ(:c,B) <1/2,z € (D)-UDy.

S

Fig. 3. An illustration for Theorem 3

Proof. We will prove only the inequality (ii). The proof of (i) is similar
and (iii) is equivalent to (ii) because of symmetry.

We write D = S UU, where S is the symmetric part of D and U is the
upper non-symmetric part of D. Set S := D UU. Then S; is an open set,
symmetric with respect to I1, and D C S;. Using Theorem 1 we obtain

w? (2, B) < w(w, B) <wi'(x,B), x€DyUD,.
Hence

~ 1 .
Wit (z, B) + w3t (z, B)] = §w§1(a:,B UB) <

| =

wP(z,B) <

| =

We now turn to a sharp form of Theorem 2.

THEOREM 4. Let D be an open set in R"™. Suppose that D is polarized
with respect to the plane II. Let B C R} N D be a Borel set which is not
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D-null. Then for x € Dy, we have

(3.5) wy (2, B) > wg (2, B),
w?(z, B) > wP(x, B).

Proof. First we prove (3.5). We write D = SUU, where S is the symmet-
ric part of D and U is the upper non-symmetric part of D. If t = u € U, then
wP(u, B) > 0 because B is not D-null. On the other hand, w? (4, B) = 0
because u ¢ B. Therefore (3.5) is proved in this case. So it remains to prove
(3.5) for z = s € S,.

Consider the function
v(z) = w?(z,B) —wP(@,B), zcR™

Then v is a-harmonic in D and by Theorem 2,
(3.7) v(r) >0, xR},
Also, it is obvious that
(3.8) v(z) +v(Z) =0, =xecR].
We want to prove that
(3.9) v(s) >0, seS;.

Suppose that v(sg) = 0 for some sp € S,. Since v is a-harmonic in D,

0= AY2y(sg) = S Lqﬁ?mn(dx) = S %mn(dx)
o |z — sol

- [

R%
=1+ 1+ I3+ Iy,

where

G | ()

|s — so|"te  |s — So[nte

1 1
lu— so|[? T |u—Sp|* e

| ot
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1 1
T~ R )

)
=;[ ! s | matao),

|z — so|"te |z — o[t

1 1
|x — sp|?te  |x — Sp|nte

Iy = S v(z) [
(D+)°\B

Since v = 0 in (D4)°\ B, we have I; = 0. Because of the obvious inequality

] mp(dz).

|z —so| < |x — 50|, x€RY,
the integrands in I, I, I3 are non-negative. Therefore I) = Iy = Is = 0. We
conclude that m,(U) = 0, m,(B) = 0 and v = 0 my-a.e. in S. Since v is
continuous in D, we conclude that v = 0 in S, which means that
(3.10) wy (s,B) =wy(3,B), s€S.
The fact that m,(B) = 0 implies that (see [4], [15]) the set B N (D)C is
D-null; hence the set BNID is not D-null. Thus, by [15, Lemma 1], we have

supw?(z, B) = 1.
reD

Take a sequence {x} in D such that
(3.11) lim w?(xy, B) = 1.
k—o0

By Theorem 3, we may assume that {x;} C Dy. Since D, is an open set
and m,,(U) = 0, every neighborhood of xj, contains a point s € S;, k € N.
So, by the continuity of a-harmonic measure in D, we can choose a sequence
s in Sy such that

(3.12) lim w? (s, B) = 1.

k—o00

Then, again by Theorem 3,

lim sup wg(é\k, B) <
k—oo

This together with (3.12) contradicts (3.10). So (3.9) is proved.
We now turn to the proof of (3.6). We consider the function

hz) = wP(z,B) —wP(x,B), zcR"
We know from Theorem 2 that
(3.13) h(z) >0, h(z)+h(x) >0, zeR].

N =

We want to prove that
(3.14) h(z) >0, ze€Dy.
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Suppose that h(xg) = 0 for some xy € D. Since h is a-harmonic in D,

0= A*2h(zo) = | hiz) = hlzo) i (de)

R~ |z — @[
h(z) h(z)
= mp(dr)+ \ ————— m,,(dx
in |$ _ xo|n+o¢ ( ) RST_L |$ _ x0|n+a ( )
h(z) h(z)
= mp(dz) + = my(dz
Rsn |IL’ _ xo|n+o¢ ( ) RS" ’x _ xo‘n-ﬁ-a ( )
+ +
h(z) + h(Z) { 1 1 } }
- 4 h(x — — my(dz) =: J.
Rxn{ ’x_m0’n+o¢ ( ) ‘.Z‘—.%‘()‘TH'O‘ ’x_m0’n+o¢ ( )
+

As in the proof of (3.5), we find that J = J; + Jy + J3, where
h h(s 1 1
Jyp = S {M + h(s) [ - — } }mn(ds),

|x — Zo|te |s — zo|?te  |s — Zp|nte
Sy
h(u)
J2 = S Wﬂ”m(d'u),
1 1
Jg = S |:’x — xo’n+a — ‘J} — /x\o‘”+a:| mn(da:)
B

Using (3.13) we conclude that m,(B) = 0 and that v = 0 in S, which
means that

(3.15) wP(s,B) =wP(s,B), se&.

By (3.15) and the fact that B is not D-null we infer that B is not D-null.
As mp(B) = mp(B) = 0, the set BN D is not D-null. By [15, Lemma 1],
we thus have

~

supw?(z, B) = 1.

zeD
Take a sequence {y;} in D with w?(ys, B) — 1. As B C R™, Theorem 3
1mphes that we may assume y, € D_ = S_ k N. Then (3.15) gives
w® (yr, B) — 1. But Theorem 3 implies w2 (yx, B) < 1/2. This contradiction

proves (3.14). m

THEOREM 5. Let D be an open set in R™. Suppose that D s polarized
with respect to the hyperplane II, i.e. D = SUU, where S is the symmetric
part of D and U 1is the upper non-symmetric part of D. Let B C Ry N D° be
a Borel set which s not D-null. Then we have:

(3.16) w? (s0, B) + wP (30, B) = w2 (s, B) + wP (3, B)
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for some sy € S if and only if Co(U) = 0;

(3.17) wP(s0, B) + wP (50, B) = wP (30, B) + wP (50, B)
for some sy € S if and only if Co(U) = 0;
(3.18) w?(so, B) = w?(s0, B)

for some sy € Sy := S NII if and only if Co(U) = 0.

Proof. We only prove the first equivalence; the proofs of the remaining
ones are similar.

Suppose that (3.16) holds for some sy € S. By the strong Markov prop-
erty,

(3.19) wP(s0,B) = so, )+ S (s0,du) w? (u, B),
U
(3.20) wP(50,B) = w (50, B) + S w? (30, du) w? (u, B),
U
(3.21) wP(s0, B) = w?(so, B) + S w3 (sg, du) w? (u, B),
U
(3.22) wP (50, B) = w (30, B) + S w3 (50, du) wP (u, B).
U
Hence
| (w8 (50, du) + w3 (50, du)] Wk (u, B)
U

= | (w3 (s0, du) + w3 (S0, du)] w? (u, B).
U

By Theorem 4, wP(u, B) > wP(u,B) for all u € U. Hence w’(sq, du) +
w3 (30, du) is the zero measure on U This implies w2 (so,U) = 0, i.e. U is
S-null. By Lemma 3, C,(U) = 0.

Conversely, if Co(U) = 0, then U is S-null. Therefore (3.19)—(3.22) imply

wf (s, B) +w? (3, B) = wf (s, B) + w? (3, B)

foralls€ S. n

THEOREM 6. Let D be an open set in R™. Suppose that D is polarized
with respect to the hyperplane I, i.e. D = SUU, where S is the symmetric
part of D and U is the upper non-symmetric part of D. Let B C D°® be a
Borel set which is symmetric with respect to II and is not D-null. Then

WP (s, B) = wP(5, B)

for some s € Sy if and only if Co(U) = 0.

Proof. Similar to the proof of Theorem 5.
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