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WEAK COMPACTNESS AND ORLICZ SPACESBYPASCAL LEFÈVRE (Lens), DANIEL LI (Lens),HERVÉ QUEFFÉLEC (Lille) and LUIS RODRÍGUEZ-PIAZZA (Sevilla)Abstrat. We give new proofs that some Banah spaes have Peªzy«ski's prop-erty (V ).1. Introdution. Reall that a Banah spae X is said to have Peªzy«-ski's property (V ) if one has a good weak-ompatness riterion in the dualspae X∗ of X, namely: every subset A of X∗ is relatively weakly ompatwhenever it has the following property (easily seen to be neessary):
lim

n→∞
sup
x∗∈A

|x∗(xn)| = 0for every weakly unonditionally Cauhy sequene (xn)n in X (i.e. suh that∑
n≥1 |x∗(xn)| < ∞ for any x∗ ∈ X∗). Equivalently, X has Peªzy«ski'sproperty (V ) if and only if for every Banah spae Z and every non-weaklyompat operator T : X → Z, there exists a subspae X0, isomorphi to c0,suh that T is an isomorphism between X0 and T (X0). Besides the re�exivespaes (and in partiular the Lp spaes for 1 < p < ∞), the spaes C(S) ofontinuous funtions on ompat spaes S have property (V ); in partiular

L∞ has (V ). Another general lass of Banah spaes having property (V )is that of Banah spaes whih are M -ideals in their bidual, i.e. those forwhih the anonial deomposition of their third dual is an ℓ1 deomposi-tion:
X∗∗∗ = X∗ ⊕1 X⊥(see [8, 9℄). Note that every subspae of a Banah spae M -ideal of itsbidual is itself an M -ideal of its bidual; hene every suh subspae hasproperty (V ).On the ontrary, a non-re�exive Banah spae that does not ontain

c0 annot have property (V ). In partiular, L1 does not have this prop-erty. Thus, the Lp spaes have (V ) for 1 < p ≤ ∞, whereas L1 does not.2000 Mathematis Subjet Classi�ation: Primary 46B20; Seondary 46E30.Key words and phrases: M -ideal, Morse�Transue spae, Orliz spae, Peªzy«ski'sproperty (V ). [23℄ © Instytut Matematyzny PAN, 2008
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For the Orliz spaes, whih are, in a natural sense, intermediate between
L1 and L∞, D. Leung [12℄ proved that, when the dual spae is weakly se-quentially omplete, not only does the Orliz spae have property (V ), butit atually has the loal property (V ), i.e. all its ultrapowers have prop-erty (V ).D. Leung's proof uses non-trivial properties of Banah latties. In thispaper, we shall give an elementary proof of the (weaker) result that theOrliz spae LΨ has property (V ) when the omplementary funtion of Ψsati�es the ∆2 ondition.Aknowledgements. This work was done during the stay of the fourth-named author in Lens, in May�June 2005, as Professeur invité of the Uni-versité d'Artois.We are grateful to the referee for having simpli�ed the proof of Theo-rem 2, making it shorter and muh more elegant and oneptual, by givingus the statement and proof of Proposition 5.

2. The Morse�Transue spae. In this paper, we shall onsider Orlizspaes de�ned on a probability spae (Ω, P), whih we shall assume to benon-purely atomi.By an Orliz funtion, we shall mean a non-dereasing onvex funtion
Ψ : [0,∞] → [0,∞] suh that Ψ(0) = 0 and Ψ(∞) = ∞. To avoid pathologies,we shall assume that we work with an Orliz funtion Ψ having the followingadditional properties: Ψ is ontinuous at 0, stritly onvex (hene stritlyinreasing), and suh that

Ψ(x)/x −→
x→∞

∞.This is essentially to exlude the ase of Ψ(x) = ax. The Orliz spae LΨ (Ω)is the spae of all (equivalene lasses of) measurable funtions f : Ω → Cfor whih there is a onstant C > 0 suh that\
Ω

Ψ(|f(t)|/C) dP(t) < ∞,

and then ‖f‖Ψ (the Luxemburg norm) is the in�mum of all possible onstants
C suh that this integral is ≤ 1.To every Orliz funtion is assoiated the omplementary Orliz funtion
Φ = Ψ∗ : [0,∞] → [0,∞] de�ned by

Φ(x) = sup
y≥0

(xy − Ψ(y)).The extra assumptions on Ψ ensure that Φ is itself stritly onvex.



WEAK COMPACTNESS AND ORLICZ SPACES 25

Throughout this paper, we shall assume that the omplementary Orlizfuntion satis�es the ∆2 ondition (Φ ∈ ∆2), i.e., for some onstant K > 0and some x0 > 0 we have
Φ(2x) ≤ K Φ(x), ∀x ≥ x0.This is usually expressed by saying that Ψ satis�es the∇2 ondition (Ψ ∈∇2).This is equivalent to the fat that for some β > 1 and x0 > 0, one has

Ψ(x) ≤ Ψ(βx)/(2β) for x ≥ x0, and that implies that Ψ(x)/x → ∞ as
x → ∞. In partiular, this exludes the ase LΨ = L1.When Φ satis�es the ∆2 ondition, LΨ is the dual spae of LΦ.We shall denote by MΨ the losure of L∞ in LΨ . Equivalently (see[15, p. 75℄), MΨ is the spae of (lasses of) funtions suh that\

Ω

Ψ(|f(t)|/C) dP(t) < ∞, ∀C > 0.

This spae is the Morse�Transue spae assoiated to Ψ , and (MΨ )∗ = LΦ,isometrially if LΦ is provided with the Orliz norm, and isomorphially ifit is equipped with the Luxemburg norm (see [15, Chapter IV, Theorem 1.7,p. 110℄).We have MΨ = LΨ if and only if Ψ satis�es the ∆2 ondition, and LΨis re�exive if and only if both Ψ and Φ satisfy the ∆2 ondition. When theomplementary funtion Φ = Ψ∗ satis�es it (but Ψ does not, to exlude there�exive ase), we have (see [15, Chapter IV, Proposition 2.8, p. 122, andTheorem 2.11, p. 123℄)(∗) (LΨ )∗ = (MΨ )∗ ⊕1 (MΨ )⊥,or, equivalently, (LΨ )∗ = LΦ ⊕1 (MΨ )⊥, isometrially, with the Orliz normon LΦ.For more information about Orliz funtions and Orliz spaes, we referto [15℄ or [11℄.It follows from (∗) that MΨ is an M -ideal in its bidual. Hene MΨ andall its subspaes have Peªzy«ski's property (V ) ([8, 9℄; see also [10, Chap-ter III, Theorem 3.4℄, and the end of this paper). This result was shownby D. Werner ([19℄; see also [10, Chapter III, Example 1.4(d), p. 105℄), indi�erent way, using the ball intersetion property (in these referenes, it isassumed moreover that Ψ does not satisfy the ∆2 ondition, but if it does,the spae LΨ is re�exive, and so the result is obvious).The proof given in [8, 9℄ of the fat that Banah spaes whih are M -idealsin their bidual have property (V ) uses loal re�exivity and the notion ofpseudo-ball . Below we give a slightly di�erent proof, whih does not use thisnotion, and seems more transparent. Note, however, that a stronger property,
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namely Peªzy«ski's property (u), has sine been shown to be satis�ed bythe spaes that are M -ideals in their bidual (see [7℄ and, in a more generalsetting, [6℄; that also follows from [17℄).Theorem 1 (Godefroy�Saab, [8, 9℄). Every Banah spae whih is an
M -ideal in its bidual has property (V ).Proof. Assume that X∗∗∗ = X∗ ⊕1 X⊥ and let T : X → Y be a non-weakly ompat map. By Gantmaher's theorem, T ∗∗ : X∗∗ → Y ∗∗ is notweakly ompat either. This means that T (4)(X(4)) 6⊆ Y ∗∗. Sine X(4) =
X∗∗⊕ (X∗)⊥ (anonial deomposition of the third dual of X∗), there existssome u ∈ (X∗)⊥ with ‖u‖ = 1 suh that T (4)(u) 6= 0. Now the M -idealproperty of X gives X(4) = (X∗)⊥ ⊕∞ X⊥⊥. It follows that

‖x + au‖ = max{‖x‖, |a|}, ∀x ∈ X, ∀a ∈ C.By loal re�exivity, we an onstrut a sequene (xn)n≥1 in X equivalentto the anonial basis of c0 and suh that ‖Txn‖ ≥ δ > 0 for every n ≥ 1.For that, let 0 < δ < ‖T (4)u‖, εn > 0 be suh that (1 − εn)‖T (4)u‖ > δand ∏
n≥1(1 + εn) ≤ 2, ∏

n≥1(1 − εn) ≥ 1/2.Assume that x1, . . . , xn have been onstruted in suh a way that
‖Txk‖ > δ and

n∏

k=1

(1 − εk) max{|a1|, . . . , |an|} ≤ ‖a1x1 + · · · + anxn‖

≤
n∏

k=1

(1 + εk) max{|a1|, . . . , |an|}for any salars a1, . . . , an.Let Vn be the linear subspae of X(4) generated by {u, x1, . . . , xn}. ByBellenot's version of the priniple of loal re�exivity ([1, Corollary 7℄), thereexists an operator An : Vn → X suh that ‖An‖, ‖A−1
n ‖ ≤ 1 + εn+1, An isthe identity on the linear span of {x1, . . . , xn} and

| ‖T (4)u‖ − ‖TAnu‖ | ≤ εn+1‖T (4)u‖.If xn+1 = Anu, it is now lear that
n+1∏

k=1

(1 − εk) max{|a1|, . . . , |an+1|} ≤ ‖a1x1 + · · · + an+1xn+1‖

≤
n+1∏

k=1

(1 + εk) max{|a1|, . . . , |an+1|}for any salars a1, . . . , an+1 and ‖Txn+1‖ > δ. Hene
1

2
max{|a1|, . . . , |an|} ≤ ‖a1x1 + · · · + anxn‖ ≤ 2max{|a1|, . . . , |an|}for any salars a1, . . . , an. Sine ‖Txn‖ > δ, this ends the proof.
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3. Peªzy«ski's property (V ) for LΨ . As we said, the following resultis a partiular ase of that of D. Leung ([12℄), but we shall give an elementaryproof.Theorem 2 ([12℄). Suppose that the onjugate funtion Φ of Ψ satis�esthe ∆2 ondition. Then the spae LΨ has Peªzy«ski's property (V ).As is well-known (and easy to prove), every dual spae with Peªzy«ski'sproperty (V ) is a Grothendiek spae: every weak-star onvergent sequenein its dual is weakly onvergent. Hene, we have:Corollary 3. Suppose that the onjugate funtion Φ of Ψ satis�es the
∆2 ondition. Then the spae LΨ is a Grothendiek spae.Proof of Theorem 2. We may assume that LΨ is a real Banah spae.The proof omes diretly from the following two results, sine E = MΨis a Banah lattie having property (V ) and LΨ = (MΨ )∗∗.Lemma 4. Suppose that the Orliz funtion Ψ does not satisfy the ∆2ondition. Then for every sequene (gn)n in the unit ball of LΨ , there exista sequene (fn)n in MΨ and a positive funtion g ∈ LΨ suh that
|gn − fn| ≤ g.Proposition 5. Let E be a Banah lattie that has property (V ). Sup-pose that for every sequene (x∗∗

n )n in BE∗∗ , there are a sequene (xn)n in
E and a positive x∗∗ ∈ E∗∗ suh that |x∗∗

n − xn| ≤ x∗∗. Then E∗∗ has prop-erty (V ).Proof of Lemma 4. Sine, by dominated onvergene,
lim
t→∞

\
Ω

Ψ(|gn| 1{|gn|>t}) dP = 0,we an hoose, for every n ≥ 1, a positive number tn so large that\
Ω

Ψ(|gn| 1{|gn|>tn}) dP ≤ 1

2n
,

and
∞∑

n=1

P(|gn| > tn) < ∞.This last ondition implies, by Borel�Cantelli's lemma, that, almost surely,
|gn| ≤ tn for n large enough. Equivalently, by setting

g̃n = gn 1{|gn|>tn},we have, almost surely, g̃n = 0 for n large enough. It follows that almost
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surely supn |g̃n| is attained. Set now

An = {ω ∈ Ω ; |g̃1(ω)|, . . . , |g̃n−1(ω)| < |g̃n(ω)| and
|g̃k(ω)| ≤ |g̃n(ω)|, ∀k ≥ n}(ω ∈ An if and only if n is the �rst time for whih supk |g̃k(ω)| is attained).The sets An are disjoint and

sup
n≥1

|g̃n| =

∞∑

n=1

|g̃n|1An
.Hene, if we set

g = sup
n≥1

|g̃n|,we have g ∈ LΨ , sine, by the disjointness of the An's,\
Ω

Ψ(g) dP =

∞∑

n=1

\
An

Ψ(|g̃n|) dP ≤
∞∑

n=1

\
Ω

Ψ(|g̃n|) dP ≤
∞∑

n=1

1

2n
= 1.

That proves the lemma, by taking fn = gn − g̃n, whih is in L∞ ⊆ MΨ .Proof of Proposition 5. Suppose that T : E∗∗ → Y is not weakly om-pat. Then there exists a sequene (x∗∗
n )n in BE∗∗ suh that (Tx∗∗

n )n is notrelatively weakly ompat. Choose (xn)n and x∗∗ as in the statement of theproposition, and set y∗∗n = x∗∗
n − xn for all n. Then either:(a) (Txn)n is not weakly ompat, or(b) (Ty∗∗n )n is not weakly ompat.If (a) holds, T|E : E → Y is not weakly ompat; hene T|E �xes a opyof c0.If (b) holds, let I be the losed lattie ideal generated by x∗∗ in E∗∗,normed so that [−x∗∗, x∗∗] is the unit ball, and let i : I → E∗∗ be the inlusionmap. Sine (y∗∗n )n lies in [−x∗∗, x∗∗], T ◦ i is not weakly ompat. But I is alattie isomorphi to a C(K) spae, and hene has property (V ). Thus T ◦ i�xes a opy of c0. So T �xes a opy of c0.

Remark. We annot expet that, for tn large enough, the funtions g̃nould have a small norm. For example, let G be a standard Gaussian randomvariable N (0, 1). For Ψ = Ψ2 (Ψ2(x) = ex2 − 1), we have, for every t > 0,\
Ω

Ψ2(|G|1{|G|>t}/ε) dP =
1√
2π

\
|x|>t

(ex2/ε2 − 1)e−x2/2 dx = ∞

for every ε <
√

2; that means that ‖G1{|G|>t}‖Ψ2
≥

√
2 for every t > 0 (reallthat ‖G‖Ψ2

=
√

8/3; see [13, p. 31℄).
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4. Conluding remarks and questions1. The full result of D. Leung that LΨ has the loal property (V ), i.e. ev-ery ultrapower of LΨ has property (V ) (see [3℄), annot be obtained straight-forwardly from our proof. Indeed, sine LΨ = (MΨ )∗∗ is 1-omplemented inevery ultrapower of MΨ , it would su�e to prove that every suh ultrapowerhas property (V ); but if [(MΨ )U ]∗ ontains (LΦ)U as a w∗-dense subspae,it is bigger. The ultraprower (LΦ)U is not exatly known in general. In thepartiular ase of Ψ = Ψ2 (Ψ2(x) = ex2 − 1), we have ([4, Propositions 4.1and 4.2℄):
(LΦ2)U ∼= LΦ2(PU) ⊕ L1(µU).However, sine (LΨ )∗ = (LΦ)∗∗ ∼= LΦ ⊕1 L1(µ), all the odd duals of LΨan be written

(LΨ )(2n+1) ∼= (LΨ )∗ ⊕1 L1(µn).Hene all the even duals of LΨ have property (V ).2. We an de�ne the Hardy�Orliz spae HΨ in a natural way: it is thesubspae of LΨ onsisting of the funtions on the unit irle T = ∂D whihhave an analyti extension to D; equivalently, it is the subspae of LΨ whosenegative Fourier oe�ients vanish. In [2℄, J. Bourgain proved that H∞ hasproperty (V ). Does HΨ have property (V )?Note that the answer annot follow trivially from our Theorem 2 sine
HΨ is omplemented in LΨ if and only if LΨ is re�exive: indeed, the Rieszprojetion from LΨ onto HΨ is bounded if and only if LΨ is re�exive ([18℄;see [16, Chapter VI, Theorem 2.8, p. 196℄), and we have:Proposition 6. Assume that Ψ ∈ ∇2. Then the Hardy�Orliz spae HΨis omplemented in LΨ if and only if the Riesz projetion is bounded on LΨ .Hene HΨ is omplemented in LΨ if and only if LΨ is re�exive.Proof. Only the neessity needs a proof. Assume that there is a boundedprojetion P from LΨ onto HΨ . For all f ∈ MΨ and g ∈ LΦ, the translations
t 7→ ft and t 7→ gt are ontinuous. Hene we an de�ne P̃ by setting

〈P̃ f, g〉 =
\
T

〈P (ft), gt〉 dt.One has ‖P̃ f‖Ψ ≤ ‖P‖ ‖f‖Ψ , so that P̃ is bounded from MΨ into LΨ . Onthe other hand, it is immediate that for every trigonometri polynomial fand en(x) = einx,
P̃ (f) =

∑

n∈Z

f̂(n)P̂ (en)(n)en.Sine P is a projetion, we have P (en) = en for n ≥ 0; and sine P takes itsvalues in HΨ , we have P̂ (en)(k) = 0 for k < 0; in partiular, P̂ (en)(n) = 0for n < 0.
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Therefore we get

P̃ (f) =
∑

n≥0

f̂(n)en,

that is, P̃ is the restrition to MΨ of the Riesz projetion. Hene the Rieszprojetion is bounded on MΨ . By taking its bi-adjoint, we see that it isbounded on LΨ .In Ryan's paper ([18℄), it is assumed that Ψ is an N -funtion, that is,
limx→0 Ψ(x)/x = 0. But we may modify Ψ on [0, 1] to get an N -funtion
Ψ1. Sine we work on a probability spae (Ω, P), the new spae LΨ1 is equal,as a vetor spae, to LΨ , but with an equivalent norm. Hene Ryan's resultremains true without this assumption.Note that, when the probability spae (Ω, P) is separable, sine we haveassumed that Ψ ∈ ∇2, the re�exivity of LΨ is equivalent to its separability(see [15, Chapter III, Theorem 5.1, pp. 87�88℄).3. Property (V ) allows us to say that LΨ looks like Lp, 1 < p ≤ ∞. Insome sense, it may be seen as being lose to L∞ when Ψ /∈ ∆2, sine it is notre�exive. However, from other points of view, it is loser to Lp with p < ∞;on the one hand, it is a bidual spae; on the other hand, one has:Proposition 7. If Ψ ∈ ∇2, then LΨ never has the Dunford�Pettis prop-erty.Proof. We are atually going to show that MΨ does not have the Dun-ford�Pettis property. That will prove the proposition, sine LΨ = (MΨ )∗∗.Sine Ψ ∈ ∇2, there are α > 1 and c > 0 suh that Ψ(x) ≥ cxα. It followsthat LΨ ⊆ Lα and the natural injetion i : LΨ → Lα is bounded, and heneweakly ompat, sine Lα is re�exive.Take now an orthonormal sequene (rn)n≥1 in L2 with onstant modu-lus equal to 1 (for example, an independent sequene of random variablestaking the values ±1 eah with probability 1/2). One has TΩ rnf dP → 0 as
n → ∞ for every f ∈ L2. By density, this remains true for every f ∈ L1,and in partiular for every f ∈ LΦ, sine LΦ ⊆ L1. Therefore (rn)n≥1weakly onverges to 0 in MΨ . Sine ‖rn‖α = 1, (i(rn))n does not norm-onverge to 0, and hene the weakly ompat map i : MΨ → Lα is not aDunford�Pettis operator. Therefore MΨ does not have the Dunford�Pettisproperty.A slightly di�erent way to prove this is to use the fat that for everyBanah spae X whih has the Dunford�Pettis property and whih doesnot ontain ℓ1, its dual X∗ has the Shur property ([5, 14℄; see also [13,Chapitre 7, Exerie 7.2℄). But MΨ does not ontain ℓ1 (beause all its sub-spaes have property (V ); or beause its dual LΦ is separable). Hene LΦ
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would have the Shur property. The same argument as above shows that isnot the ase.4. We have required in this paper that the omplementary funtion
Φ satis�es the ∆2 ondition. Hene, in some sense, the spae LΨ is farfrom L1. We may ask what happens when we are at the other end ofthe sale, namely when LΨ is lose to L1. But if Ψ satis�es the ∆2 on-dition, then LΨ = (MΦ)∗ and MΦ, being an M -ideal in its bidual, hasproperty (V ), as said in the introdution. It follows that LΨ is weaklysequentially omplete (and in fat has property (V ∗)), and if we assumethat Φ /∈ ∆2 (so that LΨ is not re�exive), then LΨ does not have prop-erty (V ).
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