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L?-DATA DIRICHLET PROBLEM FOR
WEIGHTED FORM LAPLACIANS

BY

WOJCIECH KOZLOWSKI (Lodz)

Abstract. We solve the L?-data Dirichlet boundary problem for a weighted form
Laplacian in the unit Euclidean ball. The solution is given explicitly as a sum of four
series.

1. Introduction and preliminaries. We work with weighted form
Laplacians L = L, = add+bdd, a,b > 0, acting on the space of p-differential
forms in R™. These operators give a subclass of so called non-minimal op-
erators (cf. |2]). If @ = b = 1, L,y is just the Laplace-Beltrami operator
A=dé+dd. Ifa=(n—-1)/n,b=1/2and p =1, then L, corresponds
to the Ahlfors—Laplace operator S*S. The correspondence is given by the
natural duality between the space of vector fields and one-forms. For more
details see [9, 10].

Since L = (v/ad+v/bd)*(v/ad+v/bd), L is strongly elliptic, but in contrast
to A, the principal symbol of L is not of metric type except when a = b.
This causes the L, theory to be more complicated than the theory of A.

In [1] Ahlfors solved the Dirichlet boundary problem for S*S in the hy-
perbolic ball. Reimann [11] solved the L2?-data Dirichlet problem for the
Ahlfors—Laplace operator for the Euclidean ball and vector fields; the solu-
tion is given as a sum of three series. Next Lipowski [7] solved the equation
S*S = 0 for some boundary conditions of Neumann type.

In [5, 4] the author investigated the operator L, in the space of poly-
nomial p-forms in R™ and solved the polynomial-data Dirichlet boundary
problem for L and the Euclidean ball in [5]. Next in [6] A. Pierzchalski and
the author solved the so called elliptic boundary problems in the sense of
Gilkey and Smith for the operator L in the Euclidean ball for polynomial
p-forms.

In the present paper we adopt Reimann’s method and solve the L?-data
Dirichlet problem for the operator L, in the Euclidean unit ball and for
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differential forms of arbitrary degree. By analogy with [11], our solution is
given as a sum of four series. In the special case of p =1, L = §*5, one of
the series degenerates and our solution coincides with that from [11]. The
main tool we use is an SO(n)-invariant decomposition of ker L.

1.1. Spherical harmonics—basic facts. We briefly review some basic
properties of homogeneous polynomials and spherical harmonics. For more
details we refer to [3] and [12, Ch. IV §2|.

We work in R™, n > 3. Y, d¥ and do denote the unit sphere in R”, the
Lebesgue measure and the normalized Lebesgue measure on X, respectively.
B and B denote the open and closed unit ball in R, respectively. If a =
(ai,...,aqy) is a multi-index then a! = aj!--- !, 2% = (2™ ... (a)n,
D* = (9/dx1)r .- (8/dx™) . If f =, anz® is a polynomial in R™ then
f(D)=>,a.D".

Pi denotes the space of all homogeneous polynomials in R™ of degree k.
Obviously, f(D) maps P; into P;_j. Define an inner product (-,-) = (-, )
in Py as follows; (f,g) = f(D)g for f,g € Pk. (Since f and g are both
homogeneous polynomials of the same degree, (f,g) = f(D)g is a constant
function. We may and we will identify this function with its unique value.)
Clearly, for any f € P, g c Py and h € j)kJrl) (gf, h)kJrl = (f,g(D)h)k

|-| = \/(-,-) denotes the Euclidean norm in R". The polynomial r2(x)
= |2|? belongs to Ps. The differential operator —r2(D) is the classical Laplace
operator A = — Z?Zl(a/axj)z.

Let Hy = {h € Py : Ah = 0} be the space of all harmonic homogeneous
polynomials of degree k. The spherical harmonics of degree k are the restric-
tions of the members of JH{; to Y. For the sake of the homogeneity, we may
and will identify the space of spherical harmonics of degree k& with Hp.

Let L?(X) denote the Hilbert space of square integrable functions ¥ — R

with the inner product (f,g)s = {5 fgdo and the norm ||f|l, = \/(f, f)o-
The inner products in L?(X) and in H;, are related as follows ([3, p. 147]):

k
(111) (fag)a‘:(n_2)l_[2]_'_%(fvg)ka fageg{k
3=0

It is very well known (|12, Ch. IV, §2|) that if k£ # [ then Hj; and H; are
mutually orthogonal (in L?(X)) and

(1.1.2) [3(%) = éL 3,
k=0

ie., if hy,, i=1,...,d; =dim Hy, is an orthonormal (in L?(X)) basis of Hy,
then hy;, k=0,1,...,i=1,...,dy, is an orthonormal basis of L?(X).
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Suppose h € Hy, k > 0. Fix R,R' € (0,1), R' < R, and put C(R) =
(1-R*)(1 - R)™ and ¢ = R'/R. Clearly ¢ < 1. Then for any |y| < R/,
(1.1.3) k()| < " C(R)||llo-

Proof of (1.1.3). If y = 0 then (1.1.3) is obvious. Let y # 0. By the
Poisson formula

h(y) = | P(x,y)h(z)do(z), Plz,y) =
P
By the above, the homogeneity of A and the estimates

ly|[R~' <e, Pz, Ry 'y) < C(R),

1— |y
ly — x|

we obtain

()| < | | Pa, Rlyl ™' y)h(z) do(a)

X
<" | |C(R)h(z)| do(z) < " C(R)| 5.
X

Let (gr,j : k> 0,1 < j < < dj) be any sequence of spherical harmonics
such that gi ; € Hy. Suppose that (g ;) is bounded in L?(X). Put

s = ngyj’
k.j

LEMMA 1.1.1. Let a ; be a sequence of reals such that Zk,j ai’j < 00.

Then for any sequence wy, of polynomial growth (i.e., |wy| < MEN for some
positive integer N and M > 0) and |x| < R' we have

1/2 1/2
> larjwrge (@) < C(R (Zam) (D utlonsl2) " < oo
k:j kJ

LEMMA 1.1.2. The series s converges absolutely and uniformly on com-
pact sets in the unit ball to a harmonic function. Moreover, for any multi-
index «, the series Zk,i D“%gy ; converges absolutely and uniformly on com-
pact sets to D*s.

Lemma 1.1.1 follows from (1.1.3) and the fact that the series >, dk™¥ ek
converges. Lemma 1.1.2 also follows from those two properties and the Weier-
strass theorem. The details are left to the reader.

1.2. Spaces /li and L*P(X)). Consider any p-form w defined in a subset
A C R™. If p = 0 we identify w with a function on A. Assume that any
p-form, p < 0, is the zero form. If p > 1 then w has the unique expression

741, ’Zp_l
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where the coefficients Wiy,....i, are skew-symmetric with respect to their in-
dices. Let A be any subset of R™. We say that w is a differential p-form on A,
and we write w € AP(A), if w is defined and smooth, i.e., C°°, on some open
set containing A. If o and 3 are p-forms defined in A, their pointwise inner
product is simply the function a3 : A — R given by

1 n
(1.2.1) aﬁzﬁ Z iy ..oinBin i -

i1yeyip=1

Let d and ¢ denote the (exterior) differential and co-differential, respec-
tively. Put v* = (1/2)dr?, i.e., v2 = xldat + - - + 2"da"™.

Let ¢, = v*A and 1, = v*V denote the operators of exterior product
and contraction with v*. Recall that ¢, is adjoint to ¢, with respect to the
pointwise inner product defined above, i.e., (e,a)8 = a(t,3). We have

(1.2.2) r’w = (Lwey + vty )w.

Relations between d, 9, ¢, and ¢, will play an important role in our
considerations. For example, Theorem 1.2.1 shows that with respect to the
inner product (+|-) (introduced below) the adjoint operators to d and § are
t, and —¢,. Combining Theorem 1.2.1 with (1.1.1) we get in a simple way
some orthogonality relations in the space L?P(X) (defined below). In fact,
the kernel of a weighted form Laplacian (in the space of polynomial forms)
can be reconstructed from the space ker A Nkeré Nkere,.

As a consequence of the above and the Green formula we find that for
any smooth w,n € AP(B),

(1.2.3) S (dw)ndx = S w(dn) dz + S w(wn)dX,
B B p)
where dx denotes Lebesgue measure in R™.

REMARK. (1.2.3) is a very special case of a much more general formula
for manifolds with boundary (cf. [8, Ch. IV]).

Let L?>P(X) be the space of p-forms (defined on X) with all coefficients
in L?(X). Equipped with the inner product (-,")y = (-,")sp, Where

(a718)0' = S afdo, a,p € L27p(2)5
P
L?P(X) is a Hilbert space. Here a3 denotes the pointwise inner product
(1.2.1).

The proofs of the properties stated below can be found in [5, §2.2]. A
p-form w is called a polynomial p-form if A = R™ and the w;, . ;,’s are
polynomials. Denote by AP the vector space of all polynomial p-forms in R".
A polynomial p-form w is called homogeneous if all coefficients are from Py,
for some k. Such a form will also be called a (p/k)-form. A} denotes the
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vector space of all (p/k)-forms. We have A = P* and A7 is isomorphic to
Pk in a natural way. Moreover, it is convenient to put Aﬁ = {0} if either
p <0 ork < 0. We extend the inner product (-, ) to A} by setting

n

1
(1.2.4) (w\n)p,kzz7 D (Wit My D

i1yeyip=1
where w,n € Ai while w;, . ;,’s and n;, . ;,’s denote their coefficients. Notice
that (:|-)o % and (-, -); coincide. We will frequently write (-|-) instead of (-|-), x
if the values of p and k are evident. We have
(1.2.5) de, = —e,d and 1, = —u,0.

PROPOSITION 1.2.1. Suppose w is a (p/k)-form. Then

depw=—c,0w—(n—p+kw, dipyw=-—t,dw+ (p+k)w.

PROPOSITION 1.2.2. For any polynomial form w we have

d(r’w) = r?dw + 2e,w,  §(r’w) = r¥dw — 2,w.

THEOREM 1.2.1. Consider d and 6 as operators d : Aﬁ — AZ—: and
§: A — Aﬁj. Let d* and &6* denote their respective adjoints (with respect
to the inner product (-,-)). Then, for any (p/k)-form w, *w = —e,w and
d*w = Lw.

1.3. Weighted form Laplacians. We briefly review the relevant facts of
L, theory. Demonstrations of the assertions listed without proofs in this sec-
tion can be found in [5, §3]. Consider a weighted form Laplacian L = L, =
add+bdd, a,b > 0. For a = b =1, Ly ; is just the Laplace-Beltrami operator
A = db+dd. Notice that in the case of differential O-forms, i.e. smooth func-
tions, the Laplace-Beltrami operator L1 1 and the classical Laplace operator
coincide.

For any differential form w in R", (Aw)i,..i, = Awi,,. . i,; thus w is
harmonic (Aw = 0) iff its coefficients are harmonic functions. In particular,
a (p/k)-form w is harmonic iff every w;, . i, € Hy.

Denote by $} the space of all harmonic (p/k)-forms, i.e., $ = ker ANA}.
Consider L = L,y as an operator L : Ai — Ai_Q, and let Sg be its kernel.
If k=0,1 then A? = 22 = ﬁi. Moreover, 22 = H}, and £} is isomorphic to
Hj in a natural way.

For any 0 < p <n and k£ > 0 put

X0 = 97 Nkerd Nker,.

It is also convenient to put XS,Z = {0} if either ¢ < 0 or I < 0. Manifestly,
99 = X)), = Hi and Hf) = AP, Next define

IL(p, k) =, — cp(p, k)rd - AL — AP”L
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where
1 2b—(b—a)in—p+k)
(1.3.1)  cplp,k)=} 2a(p+k—2)+b(n—p+k—2)
0 otherwise.

itk>2,0<p<n,

Notice that our assumption (a,b > 0 and n > 3) ensures that cp(p, k) is
well-defined. Observe that in the very special case a = b =1, i.e., L = A,
the above constant is

n+2k—4) ifk>20<p<n,
(132) catp) = { )

0 otherwise.

The decomposition below is the key step in the proof of the main the-
orem. For the proof see |5, Theorem 3.3.1|. For any 0 < p < n and k > 0
the space £} is the direct sum of four mutually orthogonal SO(n)-invariant
subspaces:

(1.3.3) L =0, &t dxh 1 k1 DT EvdXy_o g & IL(D, ) XD -1 k1-

Moreover, Xg,k;v dX2—1,k+1 and Evdxg—zk are subspaces of ﬁﬁ. In particu-
lar,

(1.3.4) A =Xk & XDy g1 B EndXy ok B Ta(D k)XY 1 k1

Note that in (1.3.3) or (1.3.4) some subspaces may degenerate or split
into finer SO(n)-subspaces (|5, §5.2]). In particular,

(1.3.5) Xpo={0} forp>0,
(1.3.6) Ip(n, 2)(X2—1,1) = {0}.

REMARK. In view of (1.3.6), a natural question is whether X% |,
= {0}. The answer is: No. Namely, it is easy to observe that the form
w =t (det A~ Ada™) s in x)_; ;. In fact, x)_;; is one-dimensional and
is spanned by w. To see this, we use property (i) from §2.1 below. Since
d: X%_Ll — $)( is one-to-one and obviously dim ) = 1, we conclude that
X%—l,l must be one-dimensional. Therefore, X%—l,l = span{w}.

2. Dirichlet boundary problem

2.1. Bases of £} and L?P(X) and relations between them. Assume that
0 <p <nandk >0 We identify the spaces A} and {w|X : w € AV},
for any w € A? is uniquely determined by its restriction to X. As a direct
consequence of (1.1.1) we see that for any «, 8 € 97,

k

1
(211) (0476)0',]3 = Sk(aaﬁ)p.kﬁ Sk = (Tl B 2) H 2] +n— 2’
j=0

In particular, the decomposition (1.3.4) is orthogonal in L?P(X).
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Consequently, by (1.1.2) we get
o0
2, _ 1,0 1L 0 1 0 1 0
L*P(Y) = (Xp i O dXp—1k11 D EvdXp_ok O IkAXp—1 1)
k=0
Consider now the subspace Xg,l and put ,u? = dimxg’l. Moreover,
let Ef = {nlq’l. : i = 1,...,ul} be an L%*orthonormal basis of Xg,l‘ If
Xg,l = {0}, it is convenient to treat E; as a set which contains only the

zero form. Now we are going to build an L?-orthonormal basis of ﬁg
from E}’s. To do this we will need the following ([5, Proposition 3.2.1, Lem-
ma 3.2.1|):

(i) If 0 < p < m and k > 0 then for any n/,n" € X2717k+1,

(dn'|dn") = (p + k) (' In").
In particular, d : Xg—l k41 — Xpk 1s one-to-one.
(ii) If 2 <p <mnand k > 0 then for any 0/, n" € nglk’
(evdn/[evdn”) = (n —p + k) (dn'|dn").
In particular, €, : dxg_2 " 5’)2 is one-to-one.
(iii) If p > 1 and k > 1 then for any n/,n" € X2_1,k_1a

(n+k—p—2)(n+2k—2)

(n T2k 1) (n'ln").

(Ia(p, k)i [ La(p, k)n'") =

In particular, if p # n or k # 2 then Ia(p, k) : XS—Lk—l — 9 is
one-to-one.

REMARK. The constant in case (iii) is equal to 0 iff n+k—p—2 = 0. This
impliesthat p=n—1land k=1,orp=nand £k =2. Inthecase p=n—1
and k = 1, Ia(p, k) maps the space X%—Q,O' But by (1.3.5), X2—270 = {0}
for n > 3. Therefore, our map is one-to-one. In the case p = n and k = 2
the situation is quite different. Namely, we have seen (1.3.6) that Ia(n,2) is
the zero map, but X?L_Ll is one-dimensional (remark below (1.3.6)). There-
fore, the case p = n and £k = 2 must be excluded from the second part
of ().

Points (a)—(c) below are direct consequences of (i)—(iii) and (2.1.1).

(a) Let p > 0 and k > 0. If uij > 1 then the collection

1
af = dnpl.:npl.EEpl}
{ k.j \/(p+k:)(2k+n) k+1,5 k+1,5 k+1

. 2 : 0
is an L-orthonormal basis of dx;,_ ;1
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(b) Let p>2, k> 1. If ,ui_2 > 1 then the collection
» 1
ﬁk i
TV n—p+k)p+k-1
is an L2-orthonormal basis of {—:l,dxg_Q I

(c) Let p > 1and k > 1. If ,uiii > 1 then, except the case p = n and
k = 2, the collection

e LH p—1 —1 p—1
{%j “\ntk—p_2 Ia(psk)mg_y M1y € By

is an L?-orthonormal basis of IA(p, k:)xg 1k—1°

2 p-2 —2
)zsl,dngj . € By }

Moreover, we define ak pE ﬂ and ’yk o be the zero form, in all the remain-
ing cases. Summarizing we deduce

COROLLARY 2.1.1. The collection of all nonzero p-forms nij, ozgj, Bij

and ’ygj is an L2-orthonormal basis of L*P(X).

Consequently, every w € L*P(X) has a unique expression as an L*-
orthogonal sum

00 Mk oo”k-«—l OO'uk
(2.1.2) w_ZZu,”n]+Zzam%]+zzl’puﬁp
k=0 j=1 k=0 j=1 k=0 j=1
oo“ki
+ZZ kﬂkﬁj’
k=0 j=1

where, of course, the coeflicients are given by
“k; (w‘”k]) o ai,j = (W|az,j)a,p7
bﬁ}j = (W|5k7j)cr,pv Cz,j = (WWZ,]')U,]D-

In particular, the L?-norm ||w/|,.p is
ol =Dl 4 Dl 2 4 D181+ 31k
k,j k,j k,j k,j

(d) Suppose uiii > 1. If p < mnor k # 2 then the collection

(2.1.3)

p—1  p—1 p—1
{evmery M1y € Bya}
is an L2-orthonormal system in L?P(X).

Proof of (d). Take any nf_{ ;,n}_} ; € EL_}. Then on X we have

p—1 _ p p p—1 D p
Evll_14: = Apﬁkak—zi +C KV G145 = Ap,kak—zj +C K Vk 50
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where

Ip+k—2 In+k—p—2
2.1.4 A =\ ——— = .
( ) Pk n+2k—4’ Cok n+2k—4

By the orthogonality relations (a) and (c), we obtain

-1 -1 n+k—p—2
(Eumiailenmca gor = = op =g Okilikg)ow
(p+k —2)(n+ 2k — 4)
(TL + 2k — 4)2 (az_Qvi’ai—Qyj)va

=0;; (the Kronecker symbol).

Our task is to build a collection of polynomial p-forms belonging to the
kernel of L such that their restrictions to the unit sphere consist a complete
basis in L?P(X). By (1.3.3) and the decomposition of L?P(X) we may sup-
pose that all p-forms 772, i 042 j and ﬂg’ j belong to our basis. The only thing
we have to do is to slightly modify the forms 757 i

(e) Suppose uij > 1. If p < n or k # 2 then the collection

c(p, k)
Cpi

1 —1
{Tlf,j = m IL<p7 k)nz—Lj T

restricted to X is an L?-orthonormal system in L?P?(X). More pre-
cisely, Tlfj = yij on Y. Each T,fj is a member of ker L. Here ¢(p, k) =
(cr(p, k) — ca(p, k)), whereas Cp . is defined in (2.1.4).

(f) Suppose ,uiii > 1.If p < nor k # 2 then the collection

-1 2 -1 —1 -1
{wlZ,] = 81/7']];_1’]- + CL(p7 k)(l =T )dnlz—l,j : 77112_1,j € Eﬁ—l}
restricted to X is an L?-orthonormal system in L?(X). More precisely,
1/157]. = sl,ni:ij on Y. Each ¢£,i is a member of ker L.

Points (e) and (f) are direct consequences of (c), (d) and the decomposi-
tion (1.3.3). Note that Tlfj and @Z)Zj are not homogeneous. Moreover, we
define T,f j and ﬁz ; to be the zero form in all the remaining cases.

Observe that
(2.15) ¥}, =Cori
+ (c(p, k) — c(p, k)r*)\/(p + k— 2)(2k + n— 4) ag—Q,j'

Consequently, there exists a constant N = N(n,p) > 0 such that for any =
and any coefficient d’fij-il iy of zpij,

(2.1.6) ¥k (x)] < Nlvg

k,j;il,---,ip

(x)| + Nk|0‘z,j;i1,...,ip (x)].

3] 38150 45p
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Now we are in a position to introduce two collections of forms, € and F?,
having properties described above. We do this as follows;

e EP consists of all non-zero p-forms nz i ai i ﬁz j and T,f I
e JFP consists of all non-zero p-forms nij, aij, ﬁgj and 1/127

(A) The members of EP lie in ker L. The collection EP restricted to X' is
an L2-orthonormal basis of L>P(X).

(B) The members of FP lie in ker L. The collection FP restricted to X' is
an L2-complete (but not orthogonal) basis in L*P(X).

Proof. (A) is a direct consequence of (¢) and (e). Consider (B). Clearly,
each member of F? lies in ker L. We must show that the restrictions of
members of FP to X are linearly independent and that F? restricted to X' is
a complete system in L?P(X). By (2.1.5), on X we have

kg = Apk_aj + Cpr
On the other hand, directly by the definition of EP, we have C),; # 0, and
:i’j = 0. This means that on X: (1) Each vi’j is a
linear combination of members of FP, thus FP restricted to X' is complete,
for €P is. (2) The members of FP are linearly independent, for the members

of EP are. Points (1) and (2) together imply (B). m

moreover v, ;=0 iff ny,

REMARK. The collection F? is a generalization of the complete basis
found by H. M. Reimann in [11]. Unfortunately, FP restricted to X' is not an
orthonormal basis. Of course, any member FP has unit length, but zbi j and

O‘ifz,j may not be perpendicular, for (zbz’j]azilj)g’p = Ap,k|]a£727j||§p

Let us conclude this section with the following observation. Let w €
L?P(X). Then comparing coefficients on each level of homogeneity we con-
clude that

o My 0o M1 oo Mk
(217) W = Zzuk]n] + Z Z ak]ak?,] + Z Z 7]
k=0 j=1 k=0 j=1 k=0 j=1
-1
oo M1
D
D IP I
k=0 j=1

where uz’ ; and bz’ ; are defined by (2.1.3), whereas
1

~p ~p ~p
(2.1.8) =g Cojo =) — Apri2Cl s,
p7

- n+2k—4 - _ P p+k
Ck,j—\/nJrk_p_gcﬁ,jv g = Vg — n_p+kc£+2,j'

i.e.,
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Next by the estimate 2|st| < s +¢2, s,t € R, we see that (cf. [11, p. 169])
Ptk 2 2
(1= e ) (P +
p+k

p |2 2 2 2
< lag 4 +’CZ+2J| = <1+ n+2k)( i +|Ck+2]| -

Consequently, there exists a positive constant M = M (n,p) (depending on
p and n only) such that

@w>—wms2mf+ZMﬁ+ZWF+ZMa
kg

< Mllwlli-

2.2. L?-data Dirichlet boundary problem. Suppose 7 is any p-form in
the unit ball B. For any 0 < ¢t < 1 let 7 be the t-dilatation of n, i.e.,
(Nt)ir,...rip () = Miy...i, (tz). Clearly 7 is defined in the open ball (1/t)B. In
particular, if n is a (p/k)-form then n; = t*n. We say that w € L*P(X) is
the L2-boundary value of 1, and we write

nY=w in L*P(X),
if (1) mr € L?P(X) for any 0 < ¢ < 1 and (2) lim¢— |7 — w||po = 0.

Fix w € L*P(X). Let a%j, ?i%j, bg’j, cg’j, E%j and uﬁ’j be defined as in
(2.1.3) and (2.1.8). By (2.1.2) and (2.1.7), w can be expressed as a sum of
four series that converge in L?P(X):

w=n+a+p8+v=n+a+p+r,

where
P p—1 p—1
oo My oo HMr41 oo HMi41
_ P P _ P ~ ~p p
= Z Z Wk "Mk, = Z A& o= Z Z U, Yk, j0
k=0 j:1 k=0 j=1 k=0 j=1
—1 —1
oo :“k % “271 0o “271
_ P _ ~p P
B=2_ D Wiy 7= Ay Y= iy
k=0 j=1 k=0 j=1 k=0 j=1

By Lemma 1.1.2 and the local description of d, § and ¢, it follows that
each of the above series converges uniformly on compact sets in the unit ball
B to a smooth form belonging to the kernel of L. In fact, o, o, n, (3 are
even harmonic forms in B. Thus for any 0 < ¢t < 1, ny = Zk,j ui’jni’j’t,

ap =y, ko ay jozg i et while the series converge uniformly on B. Clearly,
(2:2.1) we ="+ ar+ B+ =m+ o+ B+ 7
On the other hand, w; € L?P(X), so in view of (2.1.2) and (2.1.7), w; can be
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expressed as a sum of four series

(2.2.2)  wr =) +a(t) + B(E) +P(t) = n(t) + at) + 6(t) + 7(1).

Let uz’j (1), agj(t) etc. denote the corresponding coefficients of 7(t), a(t) etc.
At first sight it would seem that ugj(t) = tkuk], agj(t) = tkaﬁj etc. But the
inhomogeneity of Tlf j and wz ; brovents that from being the case. Comparing
the coefficients of series in (2.2.1) and (2.2.2), we find

B =t W=, g = () = e

kg

aj () = t*af  + 1" (1 =)y (0 +E)(n+2k) c(p, k +2)Co L,
ai,j (t) = tkfiﬁ,j + tk(l t2)~£+2 ]\/(p +k)(n+2k) cr(p, k +2),
where as in (e), ¢(p,k+2) = cr(p, k +2) — ca(p, k + 2). Moreover, we put

_ k _p D ~/ _ k~p D
=D thapap @) =)t o s
k,j k.j

In the proof of the main theorem we will need to show that some series
of p-forms has zero L?-boundary value. To do this we will follow Reimann’s
approach (cf. [11, p. 171]).

LEMMA 2.2.1. Let (z) be any sequence of real or complex numbers. Then

o [o.¢]
(L =222 228z < |awl® forany 0 <t < 1.
k=0 k=0

THEOREM 2.2.1 (Dirichlet boundary problem). There exists a unique
solution ¢ of Lapp = 0 in the unit ball B with the boundary condition
©|X = w in L*>P(X). The solution may be expressed as follows:

p=n+a+p+T=n+a+ G+

Proof. Let o' =n+a+p+71and ¢ =n+a+ 3+1. As we have seen,
¢' and ¢" satisfy the differential equation L,pp = 0. We show that they
have the same L?-boundary value w.

Standard arguments show that in L?P(X) we have

limn(t) =n,  lmp) =6, lime(t) =,
1 _ : / _ . ~ o~
limr(t) =7, limd/(t)=a, limd'(t)=a.

t—

Next we show that

}gri at) = a, %gr% a(t) = a.
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Since limy_,; &/ (t) = a and limy_,1 &/(t) = @, it suffices to prove that

%E(Ztk(l— )V (P + k) (n + 2k)e(p, b+ 2) pk+2a’w> =0
k.j

%Eﬁ (Z th(1 - t2)ck+2]\/(p + Ek)(n+2k)cr(p, k + 2)(127].) =0.
7]

For brevity we will only compute the first limit; the second is analogous.
For simplicity, let D(t) and D(t, k, j) denote the expression inside the bracket
and its components, respectively. Clearly, there exists N > 0 such that

& oV 0+ E)(n+2k) c(p, k+2)C, 4L, < Nk.

Now by Lemma 2.2.1 we easily see that for any positive integer kg,

—1 p—1
% l‘k+1 oo M1

2 2

| > [ EED DU D WD
k=ko+1 j=1 k=ko+1 j=1

Take now any € > 0. There exists an integer K > 0 such that

o ,ui:r}
D Dl P < (/N
k=K+1 j=1

Since limy_1 || D(t, k, j)||op = 0, we obtain

K “k:r}
limsup || D()] Up < hm(z Z |D(t, k,7) ||gp+€> =
t—1 k=0 j—1

Summarizing,

}m% oy = hm o) =w in L*P(D).

Now we will show that the solution is unique. Suppose ¢ is a smooth p-
form in B with Ly = L, 50 = 0 and ¢| X = 0. We will show that ¢ = 0. Since
| X = 0, we have 1,¢| X = 0. Therefore, applying the integral formula (1.2.3)
we obtain

S(ch)go dx =a S(5g0)2 dx +b S(dcp)2 dx.

B B B
This implies that ¢ is both closed and co-closed, so harmonic. Hence each
coefficient of ¢ is a harmonic function in B vanishing on X, thus it is the
zero function, by the maximum principle. So ¢ = 0 in B.

Suppose now that ¢ is a solution to the Dirichlet problem with zero
L?-boundary value. We have

. 2
lim [|e5., = 0.
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Since for each 0 < t < 1, ¢4 is smooth up to the boundary and satisfies
Ly, = 0, it can be expressed as a sum of four series from the theorem:
or = n(t) + a(t) + B(t) + ¥(t). Denote their coefficients by u%j(t), &id (t)
etc., respectively. Then by (2.1) we obtain

hm(Zrum HZ\% 2+ + D 1R, 0F) = 0.
k.j k.j

Take any 0 < R’ < R < 1. We show that |p|,, = |¢|% = 0, where | - |Z is
the norm of uniform convergence, i.e.,
lolhe = [l = sup sup |@iy, i, (@)].
115050 || <R/
We have

(223) el < le = @tloe + Mo + [ + 18(H) o0 + (1o

Since ¢ is uniformly continuous in the ball |z| < R, | — |/, tends to
zero. It remains to estimate |n(t)|., |@(¢)|5, |85, [t0(6)|-

We will use the notation from the end of §1.1. Fix a multi-index
(i1,...,1p). Take any coefficient ni,j;il,‘..,z‘p of 775]' and put gy ; = nidm’m’ip.
Then (g, ;) is a series of spherical harmonics and ||gy, j||o < ||77]k3;,j||07p =1.So
for each || < R/, by Lemma 1.1.1 we have

‘Zukj gka ’ Z‘uku gk,g x)|
R>(Z|uzj< )”Q(Zgzk)”?
¥

This means that
1/2

lim (1)) < (Ze%)” T (Y1, 07) " =0
k.
The same arguments show that limy_1 |a(t)], = 0 and lim; 1 |B(t)]5, = 0.
To prove that lim;_; [1(t)|, = 0 it suffices to apply (2.1.6) and preceding
arguments (Lemma 1.1.1 with the sequences wy = 1 and wy, = k, resp.).
Consequently, |¢|., =0, by (2.2.3). Since 0 < R’ < 1 was arbitrary, ¢ is
the zero form. =

As announced in the Introduction, under the natural duality given by
the canonical inner product (-, -) in R™, we may identify 1-forms with vector
fields. Then we have

d~grad, 0~—div, S*S>~—L_1)/m1/2

where grad, div and S*S denote the gradient, divergence and the Ahlfors—
Laplace operator, respectively. Denote by H* the space of vector fields in
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R™ with coefficients from 3* and by L£L2(X) the space of vector fields on
X whose coefficients belong to L?(X). Moreover, let (-|-), denote the inner
product in £2(X) induced from L?(X), i.e.,

(VIW)o = {(V(x), W(z)) do(x)
X

for vector fields V, W € L2(X). Let, as before, (hy, ;) be an L?-orthonormal

basis of H*. The spaces Q%, MF* and N*, and the vector fields q;?, m?, nf

and pg’? constructed in [11]| correspond to the following:
QF = {H = (hy,...,hy) € H* - divH =0, (H(x),z) = 0} = 3,
MF = {H = gradh € H* : h € Hpp1} =~ dx jop1,
N¥ = {H = (n+2k — A)zh—r?gradh € H* : h € Hj_1} ~ IA(l,k)ngk_l,
q;? = nli,jv
i 1

m; = rad h o~ ol
STk D2k o= Y

i n+2k —4 72 1
n; =\ —————xhp_1;— rad hp_1.; >~ Vi i,
PN k=3 T 2k D kg o T Tk

pf = ahg_1j + cses(n,k)(1 = r®) grad hy_y ; ~ ¥} ;.

The constant cg-s(n, k) is equal to cr(1,k) with L = L(,_1)/n,1/2- The
following theorem (|11, Theorem 3|) is now a direct consequence of The-
orem 2.2.1 and the identity ﬁ,ij =0.

THEOREM 2.2.2 (Reimann). Given V € L*(X), n > 3, there ezists a
unique solution @ of S*S® = 0 in the ball B with L?-boundary value V:

m | [&(tz) — V(2)]? do(x) = 0.

li
t—1

This solution is given by the formula

00 dk+1 oo dkfl oo dk

~ k ~ k k

B3 LV EDS) SLVIED B BT
k=0 j=1 k=1 j=1 k=1 j=1

with

~ kE+1

;= (VIm})o — Vixrol (VInk*2),,
~ n+ 2k —4 i

%=\ g Vi

Uk,j = <V|Q§C>J-
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