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PROBABILITY THAT AN ELEMENT OF A FINITE GROUP

HAS A SQUARE ROOT

BY

M. S. LUCIDO (Udine) and M. R. POURNAKI (Tehran)

Abstract. Let G be a finite group of even order. We give some bounds for the
probability p(G) that a randomly chosen element in G has a square root. In particular,
we prove that p(G) ≤ 1 − ⌊

√

|G|⌋/|G|. Moreover, we show that if the Sylow 2-subgroup

of G is not a proper normal elementary abelian subgroup of G, then p(G) ≤ 1 − 1/
√

|G|.
Both of these bounds are best possible upper bounds for p(G), depending only on the
order of G.

1. Introduction. Let G be a finite group and let g ∈ G. If there exists
an element h ∈ G for which g = h2, then we say that g has a square root.
Clearly, g may have one or more square roots, or it may have none. Let G2

be the set of all elements of G which have at least one square root, i.e.,

G2 = {g ∈ G | there exists h ∈ G such that g = h2},
or simply G2 = {g2 | g ∈ G}. Then

p(G) =
|G2|
|G|

is the probability that a randomly chosen element in G has a square root.

The properties of p(Sn), where Sn denotes the symmetric group on n
letters, have been studied by some authors. Asymptotic properties of p(Sn)
were studied in [1], [2], [8] and in [3], which is devoted to the proof of a
conjecture of Wilf [9] that p(Sn) is non-increasing in n. Recently, the basic
properties of p(G) for an arbitrary finite group G have been studied by the
authors of this paper (see [7]). Moreover, they calculated p(G) when G is
a simple group of Lie type of rank 1 or when G is an alternating group.
A table of p(G) for the sporadic finite simple groups was also given.

In this paper we give some bounds for the probability that a randomly
chosen element in a given finite group has a square root. In particular, we

2000 Mathematics Subject Classification: Primary 20A05, 20D60, 20P05; Secondary
05A15.

Key words and phrases: finite group, probability.
Research of the second author supported in part by grant no. 83200112 from IPM.

[147] c© Instytut Matematyczny PAN, 2008



148 M. S. LUCIDO AND M. R. POURNAKI

give the following best possible upper bounds for p(G), depending only on
|G| (see Theorems 2.11 and 2.13).

Main Theorem. Let G be a finite group of even order. Then

p(G) ≤ 1 − ⌊
√

|G|⌋/|G|.
Moreover, if the Sylow 2-subgroup of G is not a proper normal elementary

abelian subgroup of G, then p(G) ≤ 1 − 1/
√

|G|, and both bounds are the

best possible.

2. The best possible bounds. By [7, Proposition 2.1(ii)], p(G) = 1
if and only if |G| is odd. Therefore we deal with even order groups. The
following theorem presents an upper bound for p(G) when G has even order,
improving the bound p(G) < 1.

Theorem 2.1. Let G be a finite group of even order , and P be a Sylow

2-subgroup of G. Then p(G) ≤ 1 − 1/|P |.
Let P be the additive group of the field GF(2n) and let H = GF(2n)×

be its multiplicative group. Let G = PH be the semidirect product of these
groups, with H acting on P by multiplication. Then p(G) = 1−1/|P |, which
shows that the bound in Theorem 2.1 is sharp.

The following corollary is just a combination of Theorem 2.1 and Propo-
sition 2.3 of [7].

Corollary 2.2. Let G be a finite group of even order , and P be a Sylow

2-subgroup of G. If G is solvable, then 1/|P | ≤ p(G) ≤ 1 − 1/|P |.
We recall that if a Sylow 2-subgroup of a finite group is cyclic, then

the group has a normal 2-complement (see for example [6, 7.2.2]), and it is
therefore solvable. We thus get the following corollary.

Corollary 2.3. Let G be a finite group such that |G| = 2m, where m
is odd. Then p(G) = 1/2.

In order to prove Theorem 2.1, we must first explain a few things about
decomposition of an element in a finite group. So let G be a finite group. We
can uniquely decompose each element x ∈ G into x = x2x2′ = x2′x2, where
x2 is a 2-element of G and x2′ is an element of G of odd order. Moreover,
if x has a square root then so also does x2. In the following, when we speak
about x2 and x2′ , we always mean this unique decomposition of x. We also
need the following result originally proved by Frobenius (see [5] and also
Corollary 41.11 of [4] as a more accessible reference).

Remark 2.4. Let G be a finite group, a ∈ G, and n be a positive integer.
Then the number of solutions of the equation xn = a in G is a multiple of
gcd(n, |CG(a)|). In particular, the number of solutions of the equation xn = 1
in G is a multiple of gcd(n, |G|).
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Proof of Theorem 2.1. Choose a ∈ G such that a is a 2-element of max-
imal order in G. We claim that if x ∈ G and x = x2x2′ with x2 a conjugate
of a, then x does not have a square root. To prove the claim, suppose that
a = h2 for some h ∈ G. Then by [7, Remark 2.2] we have |h| = 2|a|, which
contradicts the definition of a. Therefore a does not have a square root and
the same is true for its conjugates. Hence, x2 does not have a square root,
which in turn implies that x does not have a square root. Therefore the
claim holds and we have

{x ∈ G | x2 is conjugate to a} ⊆ G \ G2.

Observe also that the number of x ∈ G for which x2 is conjugate to a is
equal to |G : CG(a)|t, where t is the number of elements of odd order of
CG(a). Therefore

|G : CG(a)|t ≤ |G| − |G2|.
We now write |G| = 2km where k ≥ 1 and m is odd. Then it is clear

that |CG(a)| = 2k′

m′ for some positive integers k′ and m′ such that k′ ≤ k
and m′ |m. On the other hand, it is easy to see that an element x in CG(a)
has odd order if and only if xm′

= 1. Therefore, t is equal to the number
of solutions of the equation xm′

= 1 in CG(a). By Remark 2.4, this is a
multiple of gcd(m′, 2k′

m′) = m′. Hence, m′ ≤ t and thus |G : CG(a)|m′ ≤
|G : CG(a)|t ≤ |G| − |G2|. By dividing both sides by |G| we obtain

m′

|CG(a)| ≤ 1 − p(G),

which in turn implies that

p(G) ≤ 1 − m′

2k′

m′
= 1 − 1

2k′
≤ 1 − 1

2k
= 1 − 1

|P | ,

as required.

The following theorem gives another upper bound for p(G) when G has
even order, depending only on the order of G and the number of 2-elements
of G.

Theorem 2.5. Let G be a finite group of even order , and denote by Q
the set of 2-elements of G. Then p(G) ≤ 1 − |Q|/2|G|.

Proof. Suppose a ∈ Q. By Remark 2.4, the number of solutions of the
equation x2 = a in G is a multiple of gcd(2, |CG(a)|). Hence, this number
is either 0 or ≥ 2. But by [7, Remark 2.2] all solutions of this equation lie
in Q. Therefore, |G| − |G2| ≥ |Q|/2, or p(G) ≤ 1 − |Q|/2|G| as required.

We now prove an easy but useful lemma.

Lemma 2.6. Let G be a finite group, and N be a normal subgroup of G.

Then p(G) ≤ p(G/N).
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Proof. Note that gN ∈ G/N has a square root if and only if there is
xN ∈ G/N for which gN = (xN)2 if and only if x2 ∈ gN . Therefore,
gN ∈ G/N does not have a square root if and only if there is no element
x ∈ G with x2 ∈ gN . Hence, if a coset in G/N does not have a square
root, then no element of this coset has a square root in G, and therefore
|G| − |G2| ≥ |N |(|G/N | − |(G/N)2|). By dividing both sides by |G| we
obtain 1 − p(G) ≥ 1 − p(G/N), or p(G) ≤ p(G/N) as required.

As corollaries of Lemma 2.6, we give an upper bound for p(G) when G
is a finite 2-group, depending only on the order of |G|, and then an upper
bound for p(G) when G is a finite nilpotent group.

Corollary 2.7. Let G be a finite 2-group such that |G| ≥ 4. Then

p(G) ≤ 1 − 1/
√

|G|.
Proof. Suppose that Φ(G) is the Frattini subgroup of G. By Lemma 2.6

and Theorem 2.4(i) of [7], we have

p(G) ≤ p

(

G

Φ(G)

)

=
1

|G/Φ(G)| ≤
1

2
.

Since |G| ≥ 4, we obtain 1/2 ≤ 1 − 1/
√

|G|, and so the above inequality

implies that p(G) ≤ 1 − 1/
√

|G| as required.

Corollary 2.8. Let G be a finite nilpotent group of even order , and P
be a Sylow 2-subgroup of G. If |P | = 2, then p(G) = 1/2. If |P | > 2, then

1/|P | ≤ p(G) ≤ 1 − 1/
√

|P | ≤ 1 − 1/
√

|G|.
Proof. The first statement is Corollary 2.3. The second statement comes

from Corollary 2.7 and Proposition 2.3 of [7], which states that if G is
nilpotent, then p(G) = p(P ).

The following two propositions give upper bounds for p(G), depending
on the order of G, but only for special classes of even order groups.

Proposition 2.9. Let G be a finite group of even order. If G contains

more than one Sylow 2-subgroup, then p(G) ≤ 1 − 1/
√

|G|.
Proof. Let P be a Sylow 2-subgroup of G. Since G has at least two dis-

tinct Sylow 2-subgroups, P is not normal in G. By Remark 2.4, the number
of solutions of the equation x|P | = 1 in G is a multiple of gcd(|P |, |G|) = |P |.
Therefore, |P | divides the number of solutions of x|P | = 1 in G. But if we
let Q be the set of 2-elements of G, then the set of solutions of the equa-
tion x|P | = 1 in G is just Q, and this means |P | divides |Q|. Hence, either
|P | = |Q| or |P | ≤ |Q|/2. In the first case P = Q is normal in G, contrary to
hypothesis. Hence, |P | ≤ |Q|/2. On the other hand, by Theorem 2.5, we have
p(G) ≤ 1 − |Q|/2|G|, and so p(G) ≤ 1 − |P |/|G|. This inequality together
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with Theorem 2.1 now implies that (1−p(G))2 ≥ (|P |/|G|)(1/|P |) = 1/|G|,
and so p(G) ≤ 1 − 1/

√

|G| as required.

Proposition 2.10. Let G be a finite group of even order with elementary

abelian Sylow 2-subgroups. Then p(G) ≤ 1 − ⌊
√

|G|⌋/|G|.
Proof. Suppose P is an elementary abelian Sylow 2-subgroup of G. Con-

sider x 6= 1 as an element of P . If there is y ∈ G such that x = y2, then
by [7, Remark 2.2] we have |y| = 4, which is a contradiction. Therefore,
x ∈ G \ G2, and so P \ {1} ⊆ G \ G2. Hence, |P | − 1 ≤ |G| − |G2|. On the
other hand, by Theorem 2.1, p(G) ≤ 1− 1/|P | and so |G2| ≤ |G| − |G|/|P |,
which implies |G|/|P | ≤ |G|− |G2|. Therefore, |G|− |G|/|P | ≤ (|G|− |G2|)2,
or

|G| ≤ (|G|−|G2|)2+|G|/|P | ≤ (|G|−|G2|)(|G|−|G2|+1) < (|G|−|G2|+1)2.

This implies that
√

|G| < |G| − |G2|+ 1, so ⌊
√

|G|⌋ ≤ |G| − |G2|, and hence

p(G) ≤ 1 − ⌊
√

|G|⌋/|G| as required.

The bound of Proposition 2.10 is the best possible. In fact, if G is the
group described just after the statement of Theorem 2.1, then p(G) = 1 −
⌊
√

|G|⌋/|G|.
We can now state the following theorem which gives lower and upper

bounds for p(G), depending only on the order of G.

Theorem 2.11. Let G be a finite group of even order. Then

1/|G| ≤ p(G) ≤ 1 − ⌊
√

|G|⌋/|G|.
Proof. It is clear that 1/|G| ≤ p(G) (see also Proposition 2.1 of [7]).

Therefore we prove the second inequality. We first consider groups G with
|G| < 26. Among these, by Corollary 2.3, we only need to deal with groups
whose order is divisible by 4. Moreover, if G is nilpotent, then by Proposi-
tion 2.3 of [7] and by Corollary 2.7, we have

p(G) = p(P ) ≤ 1 − 1
√

|P |
≤ 1 − 1

√

|G|
≤ 1 − ⌊

√

|G|⌋
|G| ,

and we are done. Therefore we should prove the second inequality only for
groups of order 12, 20 and 24. In these cases, if the Sylow 2-subgroup is
normal, we are done, and otherwise we can use Proposition 2.9. Hence, the
second inequality holds for groups G with |G| < 26.

We now suppose that |G| ≥ 26. Let N 6= 1 be a minimal normal subgroup
of G.

Suppose that G/N has odd order. In this case |N | is even. Since N is
minimal normal, it is isomorphic to a direct product of isomorphic simple
groups. There are two possibilities. If N ∼= Z2 × · · · × Z2 is an elemen-
tary abelian 2-group, then N is the unique Sylow 2-subgroup of G. Hence,



152 M. S. LUCIDO AND M. R. POURNAKI

Proposition 2.10 implies that p(G) ≤ 1−⌊
√

|G|⌋/|G|, which gives the second
inequality. If N ∼= S × · · · × S, where S is a non-abelian simple group, then
G has at least two distinct Sylow 2-subgroups and so, by Proposition 2.9,
we obtain p(G) ≤ 1 − 1/

√

|G| ≤ 1 − ⌊
√

|G|⌋/|G|, which gives the second
inequality.

Next we assume that G/N has even order. In this case, we apply induc-
tion on |G|. Since |G/N | < |G|, the inductive hypothesis implies that

(1) p(G/N) ≤ 1 − ⌊
√

|G/N |⌋
|G/N | ,

and therefore, by Lemma 2.6, we have

(2) p(G) ≤ 1 − ⌊
√

|G/N |⌋
|G/N | .

We claim that if |N | ≥ 12, then

(3) 1 − ⌊
√

|G/N |⌋
|G/N | ≤ 1 − ⌊

√

|G|⌋
|G| .

To prove the claim, observe that (3) is equivalent to ⌊
√

|G|⌋≤⌊
√

|G/N |⌋|N |.
Therefore it is enough to prove that

√

|G| ≤ (
√

|G/N | − 1)|N |, that is,
√

|G| ≥ |N |/(
√

|N |−1). Since |G| ≥ 2|N |, it is sufficient to show that
√

2 ≥
√

|N |/(
√

|N |−1), which is true for |N | ≥ 12. Therefore the claim holds and

so for |N | ≥ 12 we get, using (2), the inequality p(G) ≤ 1 − ⌊
√

|G|⌋/|G|,
which is the second inequality.

We now suppose that |N | ≤ 11. We observe that (1) is equivalent to

|G/N | − |(G/N)2| ≥ ⌊
√

|G/N |⌋.
Therefore there are at least ⌊

√

|G/N |⌋ cosets g1N, . . . , glN such that there
is no x ∈ G with x2 ∈ giN , i = 1, . . . , l. Consequently,

(4) |G| − |G2| ≥ |N |⌊
√

|G/N |⌋.
For any N such that 1 < |N | ≤ 11, it is easy to prove that

|N |
√

|N | − 1
< 5.

Since |G| ≥ 26, we have
√

|G| > 5, therefore

|N |
√

|N | − 1
< 5 <

√

|G|.

This implies that |N | <
√

|G|(
√

|N | − 1), which can be rewritten as

0 <
√

|G|
√

|N | −
√

|G| − |N |,
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or

0 <
√

|N |(
√

|G| −
√

|N |) −
√

|G|.
So we have

√

|G| < |N |(
√

|G/N | − 1) < |N |⌊
√

|G/N |⌋.
Since ⌊

√

|G|⌋ ≤
√

|G|, using (4) we get ⌊
√

|G|⌋ ≤ |G| − |G|2, which gives

p(G) ≤ 1 − ⌊
√

|G|⌋/|G|.
The cyclic group of order 4 shows that the bound in Theorem 2.11 is the

best possible. In fact,

p(Z4) = 1/2 = 1 − 1/
√

4.

A natural question arises: Does the slightly stronger bound of Proposi-

tion 2.9 hold if P is normal but Φ(P ) > 1, so that only elementary abelian

normal Sylow 2-subgroups are responsible for the weaker bound of Theo-

rem 2.11?
The answer is yes, as we prove in the following theorem.

Theorem 2.12. Let G be a finite group of even order , and P be a Sylow

2-subgroup of G. If p(G) > 1−1/
√

|G|, then P is a proper normal elementary

abelian subgroup of G.

Proof. By Proposition 2.9, P is normal, and by Corollary 2.8, G is not
nilpotent and therefore P 6= G. Let Φ = Φ(P ) be the Frattini subgroup
of P . We first suppose that

√

|G| ≤ |P |/2. Then 1/
√

|G| ≤ |P |/2|G|, which
implies, by Theorem 2.5,

p(G) ≤ 1 − |P |
2|G| ≤ 1 − 1

√

|G|
,

contrary to hypothesis.
Therefore we can suppose that |Φ|2 ≤ |P |2/4 ≤ |G|. Then, by Lemma 2.6

and Theorem 2.11, we have

p(G) ≤ p(G/Φ) ≤ 1 − ⌊
√

|G/Φ|⌋
|G/Φ| ≤ 1 − |Φ|(

√

|G/Φ| − 1)

|G| .

We want to prove that

|Φ|(
√

|G/Φ| − 1)

|G| ≥ 1
√

|G|
.

This is equivalent to showing that

(5)
√

|G| ≥ |Φ|
√

|Φ| − 1
.

We first suppose that |Φ| ≥ 4; then
√

|Φ| − 1 ≥ 1 and the inequality (5)
is equivalent to |Φ|2 ≤ |G|, which we are assuming is true.
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We then suppose |Φ| = 2. If P is cyclic, then by the remark preceding
Corollary 2.3, P has a normal 2-complement Q. Hence G = P × Q and by
Corollary 2.7,

p(G) = p(P × Q) = p(P )p(Q) = p(P )

≤ 1 − 1
√

|P |
≤ 1 − 1

√

|G|
,

contrary to hypothesis. Thus P is not cyclic, and this implies |P | ≥ 8 and
|G| ≥ 24, so again

√
G ≥

√
24 >

2√
2 − 1

=
|Φ|

√

|Φ| − 1
,

which is (5).

Thus (5) holds in both cases, and this implies p(G) ≤ 1−1/
√

G, contrary
to hypothesis. This last contradiction proves that Φ = {1}.

We close this section by observing that Theorems 2.11 and 2.12 together
prove the following theorem. Moreover, the group G described just after the
statement of Theorem 2.1 shows that the bound p(G) ≤ 1 − ⌊

√

|G|⌋/|G| in
Theorem 2.11 is the best possible and the cyclic group of order 4 shows that
the better bound p(G) ≤ 1 − 1/

√
G is again the best possible.

Theorem 2.13. Let G be a finite group of even order. If the Sylow 2-
subgroup of G is not a proper normal elementary abelian subgroup of G,
then

p(G) ≤ 1 − 1/
√

G.
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