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PROBABILITY THAT AN ELEMENT OF A FINITE GROUP
HAS A SQUARE ROOT

BY

M. S. LUCIDO (Udine) and M. R. POURNAKI (Tehran)

Abstract. Let G be a finite group of even order. We give some bounds for the
probability p(G) that a randomly chosen element in G has a square root. In particular,
we prove that p(G) < 1 — |/|G|]/|G|. Moreover, we show that if the Sylow 2-subgroup
of G is not a proper normal elementary abelian subgroup of G, then p(G) < 1 —1/,/]G].
Both of these bounds are best possible upper bounds for p(G), depending only on the
order of G.

1. Introduction. Let G be a finite group and let g € G. If there exists
an element h € G for which g = h?, then we say that ¢ has a square root.
Clearly, g may have one or more square roots, or it may have none. Let G2
be the set of all elements of G which have at least one square root, i.e.,

G? = {g € G | there exists h € G such that g = h?},
or simply G2 = {¢? | g € G}. Then

|G|
p(G) ]
is the probability that a randomly chosen element in G has a square root.
The properties of p(Sy), where S, denotes the symmetric group on n
letters, have been studied by some authors. Asymptotic properties of p(Sy,)
were studied in [1], [2], [8] and in [3], which is devoted to the proof of a
conjecture of Wilf [9] that p(S,) is non-increasing in n. Recently, the basic
properties of p(G) for an arbitrary finite group G have been studied by the
authors of this paper (see [7]). Moreover, they calculated p(G) when G is
a simple group of Lie type of rank 1 or when G is an alternating group.
A table of p(G) for the sporadic finite simple groups was also given.
In this paper we give some bounds for the probability that a randomly
chosen element in a given finite group has a square root. In particular, we
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give the following best possible upper bounds for p(G), depending only on
|G| (see Theorems 2.11 and 2.13).

MAIN THEOREM. Let G be a finite group of even order. Then

p(@) <1-[VIGl)/IGl.
Moreover, if the Sylow 2-subgroup of G is not a proper normal elementary
abelian subgroup of G, then p(G) < 1 — 1/1/|G|, and both bounds are the
best possible.

2. The best possible bounds. By [7, Proposition 2.1(ii)], p(G) = 1
if and only if |G| is odd. Therefore we deal with even order groups. The
following theorem presents an upper bound for p(G) when G has even order,
improving the bound p(G) < 1.

THEOREM 2.1. Let G be a finite group of even order, and P be a Sylow
2-subgroup of G. Then p(G) <1—1/|P|.

Let P be the additive group of the field GF(2") and let H = GF(2")*
be its multiplicative group. Let G = PH be the semidirect product of these
groups, with H acting on P by multiplication. Then p(G) = 1—1/|P|, which
shows that the bound in Theorem 2.1 is sharp.

The following corollary is just a combination of Theorem 2.1 and Propo-
sition 2.3 of [7].

COROLLARY 2.2. Let G be a finite group of even order, and P be a Sylow
2-subgroup of G. If G is solvable, then 1/|P| < p(G) <1—1/|P]|.

We recall that if a Sylow 2-subgroup of a finite group is cyclic, then
the group has a normal 2-complement (see for example [6, 7.2.2]), and it is
therefore solvable. We thus get the following corollary.

COROLLARY 2.3. Let G be a finite group such that |G| = 2m, where m
is odd. Then p(G) =1/2.

In order to prove Theorem 2.1, we must first explain a few things about
decomposition of an element in a finite group. So let G be a finite group. We
can uniquely decompose each element z € G into x = xoxer = Torxo, Where
xo is a 2-element of G and xo/ is an element of G of odd order. Moreover,
if  has a square root then so also does xo. In the following, when we speak
about z9 and xo/, we always mean this unique decomposition of . We also
need the following result originally proved by Frobenius (see [5] and also
Corollary 41.11 of [4] as a more accessible reference).

REMARK 2.4. Let G be a finite group, a € GG, and n be a positive integer.
Then the number of solutions of the equation 2™ = a in G is a multiple of
ged(n, |Cg(a)]). In particular, the number of solutions of the equation 2" = 1
in G is a multiple of ged(n, |G]).
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Proof of Theorem 2.1. Choose a € G such that a is a 2-element of max-
imal order in G. We claim that if z € G and © = xoxy with o a conjugate
of a, then = does not have a square root. To prove the claim, suppose that
a = h? for some h € G. Then by [7, Remark 2.2] we have |h| = 2|a|, which
contradicts the definition of a. Therefore a does not have a square root and
the same is true for its conjugates. Hence, x2 does not have a square root,
which in turn implies that x does not have a square root. Therefore the
claim holds and we have

{x € G| x3 is conjugate to a} C G\ G>.

Observe also that the number of x € G for which x5 is conjugate to a is
equal to |G : Cg(a)|t, where t is the number of elements of odd order of
Cga(a). Therefore

|G : Cala)|t < |G| —|G?.

We now write |G| = 2¥m where k > 1 and m is odd. Then it is clear
that |Cq(a)| = 28'm’ for some positive integers k' and m’ such that k' < k
and m’ | m. On the other hand, it is easy to see that an element = in Cg(a)
has odd order if and only if ™ = 1. Therefore, ¢ is equal to the number
of solutions of the equation 2z = 1 in Cg(a). By Remark 2.4, this is a
multiple of ged(m/,2¥'m’) = m/. Hence, m’ < t and thus |G : Cg(a)|m’ <
|G : Cq(a)|t < |G| — |G?|. By dividing both sides by |G| we obtain

!/

[Ca(a)l
which in turn implies that
m’ 1 1 1
O<l—-——=1-—F<1—-==1—-—
p( ) — 2k/m, 2kl — 2k) ‘P”

as required. m

The following theorem gives another upper bound for p(G) when G has
even order, depending only on the order of G and the number of 2-elements
of G.

THEOREM 2.5. Let G be a finite group of even order, and denote by Q
the set of 2-elements of G. Then p(G) <1 —|Q|/2|G]|.

Proof. Suppose a € Q. By Remark 2.4, the number of solutions of the
equation 22 = a in G is a multiple of ged(2, |Cg(a)|). Hence, this number
is either 0 or > 2. But by [7, Remark 2.2] all solutions of this equation lie
in Q. Therefore, |G| — |G?| > |Q|/2, or p(G) <1 —|Q|/2|G| as required. =

We now prove an easy but useful lemma.

LEMMA 2.6. Let G be a finite group, and N be a normal subgroup of G.
Then p(G) < p(G/N).
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Proof. Note that gN € G/N has a square root if and only if there is
xN € G/N for which gN = (acN)2 if and only if 22 € gN. Therefore,
gN € G/N does not have a square root if and only if there is no element
r € G with 22 € gN. Hence, if a coset in G/N does not have a square
root, then no element of this coset has a square root in G, and therefore
|G| — |G?| > |N|(|G/N| — |(G/N)?|). By dividing both sides by |G| we
obtain 1 — p(G) > 1 —p(G/N), or p(G) < p(G/N) as required. =

As corollaries of Lemma 2.6, we give an upper bound for p(G) when G
is a finite 2-group, depending only on the order of |G|, and then an upper
bound for p(G) when G is a finite nilpotent group.

COROLLARY 2.7. Let G be a finite 2-group such that |G| > 4. Then
p(G) <1-1/VIG|.

Proof. Suppose that ¢(G) is the Frattini subgroup of G. By Lemma 2.6
and Theorem 2.4(i) of [7], we have

G 1 1
p(G) < p(@(G)) I EIRE)

Since |G| > 4, we obtain 1/2 < 1 —1/4/|G|, and so the above inequality
implies that p(G) <1 —1/4/|G]| as required. =

COROLLARY 2.8. Let G be a finite nilpotent group of even order, and P
be a Sylow 2-subgroup of G. If |P| = 2, then p(G) = 1/2. If |P| > 2, then
1/|P| < p(G) < 1-1//[P] < 1—1//[G].

Proof. The first statement is Corollary 2.3. The second statement comes
from Corollary 2.7 and Proposition 2.3 of [7], which states that if G is
nilpotent, then p(G) = p(P). =

The following two propositions give upper bounds for p(G), depending
on the order of G, but only for special classes of even order groups.

PROPOSITION 2.9. Let G be a finite group of even order. If G contains
more than one Sylow 2-subgroup, then p(G) <1 —1//|G|.

Proof. Let P be a Sylow 2-subgroup of G. Since G has at least two dis-
tinct Sylow 2-subgroups, P is not normal in G. By Remark 2.4, the number
of solutions of the equation z/”'l = 1 in G is a multiple of ged(|P|, |G]|) = | P|.
Therefore, |P| divides the number of solutions of z/Fl = 1 in G. But if we
let Q be the set of 2-elements of GG, then the set of solutions of the equa-
tion 2Pl = 1 in G is just @, and this means |P| divides |Q|. Hence, either
|P| = |Q] or |P| < |Q|/2. In the first case P = @ is normal in G, contrary to
hypothesis. Hence, |P| < |@|/2. On the other hand, by Theorem 2.5, we have
p(G) < 1—1Q|/2|G|, and so p(G) < 1 — |P|/|G|. This inequality together
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with Theorem 2.1 now implies that (1 —p(G))? > (|P|/|G|)(1/|P]) = 1/|G|,
and so p(G) < 1—1/4/|G| as required. m

PROPOSITION 2.10. Let G be a finite group of even order with elementary
abelian Sylow 2-subgroups. Then p(G) <1 — |/|G|]/|G]|.

Proof. Suppose P is an elementary abelian Sylow 2-subgroup of G. Con-
sider z # 1 as an element of P. If there is y € G such that = 32, then
by [7, Remark 2.2] we have |y| = 4, which is a contradiction. Therefore,
r € G\G? and so P\ {1} C G\ G% Hence, |P| — 1 < |G| — |G?|. On the
other hand, by Theorem 2.1, p(G) < 1 —1/|P| and so |G?| < |G| - |G|/|P|,
which implies |G|/|P| < |G| — |G?|. Therefore, |G| —|G|/|P| < (|G| —|G?|)?,

or

G| < (IGI=1G?)* +GI/|P| < (IGI=IG*(IG] = 1G*|+1) < (1G] =|G*|+1)*.
This implies that /|G| < |G| — |G?|+1, so [/|G]] < |G| —|G?|, and hence
p(G) <1-[+/|G|]/|G| as required. =

The bound of Proposition 2.10 is the best possible. In fact, if G is the
group described just after the statement of Theorem 2.1, then p(G) =1 —
VIGT/IG.

We can now state the following theorem which gives lower and upper
bounds for p(G), depending only on the order of G.

THEOREM 2.11. Let G be a finite group of even order. Then

1/|G| < p(@) < 1= [VIGI/IGI.

Proof. 1t is clear that 1/|G| < p(G) (see also Proposition 2.1 of [7]).
Therefore we prove the second inequality. We first consider groups G with
|G| < 26. Among these, by Corollary 2.3, we only need to deal with groups
whose order is divisible by 4. Moreover, if G is nilpotent, then by Proposi-
tion 2.3 of [7] and by Corollary 2.7, we have

1 ViG]
(7Y re Rk e

and we are done. Therefore we should prove the second inequality only for
groups of order 12, 20 and 24. In these cases, if the Sylow 2-subgroup is
normal, we are done, and otherwise we can use Proposition 2.9. Hence, the
second inequality holds for groups G with |G| < 26.

We now suppose that |G| > 26. Let N # 1 be a minimal normal subgroup
of G.

Suppose that G/N has odd order. In this case |N| is even. Since N is
minimal normal, it is isomorphic to a direct product of isomorphic simple
groups. There are two possibilities. If N = Zg X --- X Zg is an elemen-
tary abelian 2-group, then N is the unique Sylow 2-subgroup of GG. Hence,

p(G)=p(P)<1-
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Proposition 2.10 implies that p(G) < 1—|+/|G]] /|G|, which gives the second
inequality. If N =2 § x --- x S, where S is a non-abelian simple group, then
G has at least two distinct Sylow 2-subgroups and so, by Proposition 2.9,
we obtain p(G) < 1 —1/4/|G| < 1 - |/|G]]/|G|, which gives the second
inequality.

Next we assume that G/N has even order. In this case, we apply induc-
tion on |G|. Since |G/N| < |G|, the inductive hypothesis implies that

LVIG/N|]
(1) P(G/N) = 1= =am
and therefore, by Lemma 2.6, we have
LVIG/N]]
(2) p(G) <1 G/N
We claim that if |N| > 12, then
" L WIEm _, iED
|G/N] |G|
To prove the claim, observe that (3) is equivalent to | \/|G]] < [1/]G/N]]|N|.
Therefore it is enough to prove that /|G| < (y/|G/N]| — 1)|N|, that is,
VIG| > |N|/(\/W 1). Since |G| > 2| N, it is sufficient to show that /2 >
VINT/(\/IN|—1), which is true for |[N| > 12. Therefore the claim holds and

so for |N| > 12 we get, using (2), the inequality p(G) < 1 — |/|G||/|G],
which is the second inequality.
We now suppose that |[N| < 11. We observe that (1) is equivalent to

|G/N| = [(G/N)?| = [VIG/N].
Therefore there are at least |\/|G/N|| cosets g1 N, ..., g N such that there
is no x € G with 22 € ¢; N, i =1,...,1. Consequently,

(4) |G| —|G?| = [N|[VIG/N]].
For any N such that 1 < |[N| < 11, it is easy to prove that
[NV

_— 51
NI

Since |G| > 26, we have /|G| > 5, therefore

_ N <5< VIG.

INT -
This implies that |[N| < v/|G|(y/|N| — 1), which can be rewritten as

0 < VIGIVIN| = VG| - N,
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or

0 < VINI(VIG] = VIN]) — VIGl.

VIGI < IN|(vIG/N| = 1) < IN|V/|G/N]J.
Since [1/|G|] < /]G], using (4) we get |\/|G]| < |G| — |G|?, which gives
p(G) <1-[VIGIJ/IG]. =

The cyclic group of order 4 shows that the bound in Theorem 2.11 is the
best possible. In fact,

So we have

p(Zy) =1/2=1—1/V4.

A natural question arises: Does the slightly stronger bound of Proposi-
tion 2.9 hold if P is normal but ®(P) > 1, so that only elementary abelian
normal Sylow 2-subgroups are responsible for the weaker bound of Theo-
rem 2.117

The answer is yes, as we prove in the following theorem.

THEOREM 2.12. Let G be a finite group of even order, and P be a Sylow
2-subgroup of G. If p(G) > 1—1/+/|G]|, then P is a proper normal elementary
abelian subgroup of G.

Proof. By Proposition 2.9, P is normal, and by Corollary 2.8, G is not
nilpotent and therefore P # G. Let @ = &(P) be the Frattini subgroup
of P. We first suppose that /|G| < |P|/2. Then 1/,/|G| < |P|/2|G|, which
implies, by Theorem 2.5,

1P| 1
<

p(G) < el <1 el

contrary to hypothesis.
Therefore we can suppose that |®#|? < |P|?/4 < |G|. Then, by Lemma 2.6
and Theorem 2.11, we have

|VIG/®|] 12|(/|G/P| - 1)
P(G)SP(G/@)Sl—Wﬁl— Te :

We want to prove that
91(/IG/A - 1) 1
|G ~ VG
This is equivalent to showing that
2]
5 Gl > —.
(5) ViGTz

We first suppose that |®| > 4; then /|®| — 1 > 1 and the inequality (5)
is equivalent to |®|? < |G|, which we are assuming is true.
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We then suppose |@| = 2. If P is cyclic, then by the remark preceding
Corollary 2.3, P has a normal 2-complement (). Hence G = P x @ and by
Corollary 2.7,

p(G) =p(P x Q) =p(P)p(Q) = p(P)
1 1

VIR Vel

contrary to hypothesis. Thus P is not cyclic, and this implies |P| > 8 and
|G| > 24, so again

e 2 2]
G>+v24> = ,
- V2-1 /9| -1

which is (5).
Thus (5) holds in both cases, and this implies p(G) < 1—1/+/G, contrary
to hypothesis. This last contradiction proves that ¢ = {1}. =

We close this section by observing that Theorems 2.11 and 2.12 together
prove the following theorem. Moreover, the group G described just after the
statement of Theorem 2.1 shows that the bound p(G) < 1 — [1/|G][|/|G] in
Theorem 2.11 is the best possible and the cyclic group of order 4 shows that
the better bound p(G) <1 —1/v/G is again the best possible.

THEOREM 2.13. Let G be a finite group of even order. If the Sylow 2-
subgroup of G is not a proper normal elementary abelian subgroup of G,
then

p(G) <1-1/VG.
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