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Abstract. It is proved that if an n-dimensional compact connected Riemannian man-
ifold (M, g) with Ricci curvature Ric satisfying

0 < Ric ≤ (n − 1)

(

2 −
nc

λ1

)

c

for a constant c admits a nonzero conformal gradient vector field, then it is isometric to
Sn(c), where λ1 is the first nonzero eigenvalue of the Laplacian operator on M . Also, it is
observed that existence of a nonzero conformal gradient vector field on an n-dimensional
compact connected Einstein manifold forces it to have positive scalar curvature and ulti-
mately to be isometric to Sn(c), where n(n− 1)c is the scalar curvature of the manifold.

1. Introduction. One of the interesting questions in the geometry of
Riemannian manifolds is to characterize spheres among the class of compact
connected Riemannian manifolds. Also, one of the interesting properties of
a sphere Sn(c) is that there exist nonconstant functions f on Sn(c) which
satisfy ∇X∇f = −cfX where ∇f is the gradient of f and ∇X is the covari-
ant derivative operator with respect to the smooth vector field X. In fact
Obata [4] has proved that a compact connected Riemannian manifold that
admits a nonconstant solution of the above differential equation is necessar-
ily isometric to Sn(c). Indeed there are nonzero conformal gradient vector
fields on Sn(c) (vector fields of type u = ∇f with a smooth function ϕ

satisfying ∇Xu = ϕX), and we can interpret Obata’s differential equation
as defining a specific conformal gradient vector field u = ∇f with ϕ = −cf

on Sn(c). This naturally raises the question: Under what conditions does
an n-dimensional compact and connected Riemannian manifold that admits
a nonzero conformal gradient vector field have to be isometric to a sphere
Sn(c)? In this paper we answer this question by proving the following:
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Theorem 1. Let (M, g) be an n-dimensional compact connected Rie-

mannian manifold whose Ricci curvature satisfies

0 < Ric ≤ (n − 1)

(

2 −
nc

λ1

)

c

for a constant c, where λ1 is the first nonzero eigenvalue of the Laplace

operator. If M admits a nonzero conformal gradient vector field , then M is

isometric to Sn(c).

Theorem 2. Let (M, g) be an n-dimensional compact connected Ein-

stein manifold with Einstein constant λ = (n − 1)c. If M admits a nonzero

conformal gradient vector field , then c > 0 and M is isometric to Sn(c).

We express our sincere thanks to Professor Derdziński for his kind help
in improving this paper.

2. Preliminaries. Let (M, g) be a Riemannian manifold with Lie alge-
bra X(M) of smooth vector fields on M . A vector field X ∈ X(M) is said to
be conformal if

(2.1) LXg = 2ϕg

for a smooth function ϕ : M → R, where LX is the Lie derivative with
respect to X. If u = ∇f is the gradient of a smooth function f on M

and u is a conformal vector field, then u is said to be a conformal gradient

vector field. Since u is then also closed, it follows from (2.1) that a conformal
gradient vector field u satisfies

(2.2) ∇Xu = ϕX, X ∈ X(M),

where ∇X is the covariant derivative operator with respect to X, corre-
sponding to the Riemannian connection on M .

The following lemma is a direct consequence of (2.2).

Lemma 2.1. Let u be a conformal gradient vector field on a compact

Riemannian manifold (M, g). Then, for ϕ = n−1 div u,\
M

ϕdv = 0.

For a smooth function f on M , we define an operator A : X(M) → X(M)
by A(X) = ∇X∇f , ∇f being the gradient of f . The Ricci operator Q is
a symmetric (1, 1)-tensor field defined by g(QX, Y ) = Ric(X, Y ), X, Y ∈
X(M), where Ric is the Ricci tensor of the Riemannian manifold.

Lemma 2.2. Let (M, g) be a Riemannian manifold and f be a smooth

function on M . Then the operator A corresponding to the function f satisfies
∑

i

(∇A)(ei, ei) = ∇(∆f) + Q(∇f)
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where {e1, . . . , en} is a local orthonormal frame, ∆ is the Laplace operator

on M and (∇A)(X, Y ) = ∇XAY − A(∇XY ), X, Y ∈ X(M).

Proof. It follows from the definition of A that (∇A)(X, Y )−(∇A)(Y, X)
= R(X, Y )∇f , where R is the curvature tensor of M . Thus using the fact
that ∆f =

∑

i
g(Aei, ei) and that the operator A is symmetric, we arrive at

X(∆f) = g(X,
∑

i

(∇A)(ei, ei)) − Ric(X,∇f),

which proves the lemma.

Lemma 2.3. Let u be a conformal gradient vector field on an n-dimen-

sional Riemannian manifold (M, g). Then Q(u) = −(n − 1)∇ϕ, where ∇ϕ

is the gradient of the smooth function ϕ = n−1 div u.

Proof. Since u = ∇f is a conformal vector field, equation (2.2) gives
∆f = nϕ and consequently A(X) = (n−1∆f)X, X ∈ X(M). Thus for a
local orthonormal frame {e1, . . . , en} we get

∑

i
(∇A)(ei, ei) = n−1∇(∆f),

and consequently Lemma 2.2 gives Q(u) = −(n − 1)∇ϕ.

Lemma 2.4. Let (M, g) be an n-dimensional compact Riemannian man-

ifold and u be a conformal gradient vector field on M . Then, for ϕ =
n−1 div u, \

M

{Ric(u, u) − n(n − 1)ϕ2} dv = 0.

Proof. Note that Lemma 2.3 implies that Ric(u, u) = −(n−1)g(∇ϕ, u) =
−(n − 1)u(ϕ). However, div(ϕu) = u(ϕ) + ϕdiv u = u(ϕ) + nϕ2; using this
in the previous equation and integrating we get the result.

Also, as a direct consequence of Lemma 2.3, we have

Lemma 2.5. Let (M, g) be an n-dimensional compact Riemannian man-

ifold and u be a conformal gradient vector field on M . Then, for ϕ =
n−1 div u, \

M

{Ric(∇ϕ, u) + (n − 1)‖∇ϕ‖2} dv = 0.

3. Proof of Theorem 1. Let (M, g) be an n-dimensional compact
connected Riemannian manifold and u be a nonzero conformal gradient
vector field on M . For ϕ = n−1 div u, we have

Ric(∇ϕ + cu,∇ϕ + cu) = Ric(∇ϕ,∇ϕ) + c2Ric(u, u) + 2cRic(∇ϕ, u).

Integration of the above equation using Lemmas 2.3–2.5 leads to\
M

Ric(∇ϕ + cu,∇ϕ + cu) dv =
\

M

{Ric(∇ϕ,∇ϕ) + n(n − 1)c2ϕ2(3.1)

− 2(n − 1)c‖∇ϕ‖2} dv.
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Lemma 2.1 together with the minimum principle gives

(3.2)
\
M

‖∇ϕ‖2dv ≥ λ1

\
M

ϕ2 dv,

where λ1 is the first nonzero eigenvalue of the Laplacian on M . Using (3.2)
in (3.1) we get\

M

Ric(∇ϕ + cu,∇ϕ + cu) dv

≤
\

M

{

Ric(∇ϕ,∇ϕ) − (n − 1)

(

2 −
nc

λ1

)

c‖∇ϕ‖2

}

dv.

Since M has positive Ricci curvature, the condition in the statement of the
theorem together with the above inequality implies that

(3.3) ∇ϕ = −cu,

which together with (2.2) gives ∇X∇ϕ = −cϕX, X ∈ X(M). If ϕ is a
constant, Lemma 2.1 will imply ϕ = 0, and consequently ∆f = 0 on M

compact, so that f is a constant, and that in turn will lead to u = 0, a con-
tradiction. Hence ϕ is a nonconstant function satisfying Obata’s differential
equation and hence M is isometric to Sn(c).

4. Proof of Theorem 2. Since (M, g) is an Einstein manifold with
Einstein constant λ = (n − 1)c, Lemma 2.3 gives

∇ϕ = −cu;

this is just equation (3.3) except that here we need to check that c > 0. To
this end, from the above equation we get

∆ϕ = −ncϕ.

As in the proof of Theorem 1, ϕ is a nonconstant function and thus nc is
a nonzero eigenvalue of ∆, which guarantees c > 0. Thus, as in Theorem 1,
we conclude that M is isometric to Sn(c).

Remark. For a compact Riemannian manifold (M, g) of constant scalar
curvature S admitting a nonzero conformal gradient vector field u, using
Lemma 2.3 we arrive at (1 − n)∇ϕ = Q(∇f). Taking divergence in this
equation we get

n(n − 1)∆ϕ = −Sϕ;

this confirms that S > 0 as ϕ is a nonconstant eigenfunction of ∆. It is
interesting to note that a compact connected Riemannian manifold (M, g)
of nonpositive constant scalar curvature does not admit a nonzero conformal
gradient vector field.
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