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CHARACTERIZING SIDON SETS BY

INTERPOLATION PROPERTIES OF SUBSETS

BY

COLIN C. GRAHAM (Vancouver) and KATHRYN E. HARE (Waterloo)

Abstract. Pisier’s characterization of Sidon sets as containing proportional-sized
quasi-independent subsets is given a sharper form for groups with only a finite num-
ber of elements having orders a power of 2. No such improvement is possible for a general
Sidon subset of a group having an infinite number of elements of order 2. The method used
also gives several sharper forms of Ramsey’s characterization of Sidon sets as containing
proportional-sized I0-subsets in a uniform way, again in groups containing but a finite
number of elements of order 2.

1. Introduction. A subset E of a discrete abelian group Γ is called
Sidon (respectively, I0) if every bounded E-function is the restriction of
the Fourier–Stieltjes transform of a finite (resp., discrete) measure on the
dual compact group G. Obviously, I0 sets are Sidon, but the converse is not
true [13].

Sidon and I0 sets have been extensively studied and examples can be
found in every infinite subset of Γ (cf. [3], [7], [9], [10], [12]). Significant efforts
have been made to characterize Sidon and I0 sets in terms of more restricted
classes of sets. Pisier [16] obtained an important arithmetic characterization
of Sidon sets in terms of quasi-independent sets (1), a notion more general
than independence as it includes Hadamard sets (2) with Hadamard ratio
greater than 3.

Definition 1. Given two classes of sets A,B that each contain all finite
sets, we say that E ∈ A contains B proportionally (or is proportional B)
if there is a constant C > 0 such that for every finite F ⊂ E there exists
H ⊂ F such that CardH ≥ C CardF and H ∈ B.

Using probabilistic arguments, Pisier [16] showed a set E not containing
the identity character 1 is Sidon if and only if it is proportionally quasi-
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(1) {γi} is quasi-independent if whenever

∑
εiγi =0 for εi =0,±1, then εi = 0 for all i.

(2) {n1 < n2 < · · · } ⊂ N is Hadamard if there is q > 1 (the ratio) such that qnj < nj+1

for all j.
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independent. Subsequently, Ramsey [17] showed Sidon sets contain propor-
tional subsets that are I0 in a uniform way.

Here we characterize Sidon sets in several ways as proportional B where
each of the collections B considered will have properties stronger than quasi-
independence or simple I0.

We assume throughout the paper that the Sidon set E does not contain
the identity character 1. We write T for the boundary of the unit disk in the
complex plane.

We now introduce our collections B which have properties stronger than
than quasi-independence or simple I0.

Definition 2.

(a) E ⊂ Γ is an ε-Kronecker set if for every {rγ}γ∈E ⊆ TE there exists
g ∈ G such that

|γ(g) − rγ | < ε for all γ ∈ E.

(b) E ⊂ Γ is an RI0(U) set (respectively, FZI0(U)) if for every Hermit-
ian (defined below) φ ∈ B(ℓ∞(E)) there exists a discrete real (resp.,
non-negative) measure µ supported on U satisfying µ̂ = φ|H on E.
When U = G we suppress the U .

Combining Definitions 1 and 2, we have proportional ε-Kronecker, pro-
portional RI0, etc. sets. In the case of RI0(U) and FZI0(U) sets, we actually
work with (exhaustive) collections of subclasses of those sets; we give those
definitions later, to avoid cluttering the introduction with technicalities.

Sets that are ε-Kronecker for all ε > 0 are independent. Hadamard
sets with ratio greater than 3 are ε-Kronecker for some ε <

√
2, but not

all ε-Kronecker sets in Z are finite unions of Hadamard sets. Moreover, ε-
Kronecker sets with ε <

√
2 are examples of I0 sets, but

√
2-Kronecker sets

need not be. For proofs of these facts and of other properties of ε-Kronecker
sets, see, for example, [4], [5], [7], [8], [11], and [19].

In this paper we show that if the discrete group Γ has no elements of
order 2 (this includes all duals of compact, connected groups), then E ⊂ Γ
is Sidon if and only if it is proportional ε-Kronecker for some ε <

√
2.

This improves Pisier’s quasi-independent result for such groups. An example
illustrates that if Γ contains infinitely many elements of order 2 then this
characterization need not hold. One step in proving our improvement is
to first establish that if arbitrary choices of ±1’s can be interpolated on
E ⊆ Γ to within ε, then E is ε′-Kronecker for any ε′ > 2ε. In particular,
if arbitrary choices of ±1’s can be interpolated on E to within any ε > 0,
then E is Kronecker. These results are in Sections 3 and 4.

The subclasses where the discrete interpolating measure can be taken to
be real (the RI0 sets), positive (FZI0) and/or supported on an open set U
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(I0(U), RI0(U) or FZI0(U) respectively) were investigated in [6] and [7].
There are I0 sets that are not RI0 and RI0 sets that are not FZI0. One
can similarly speak of Sidon(U) sets; it is known [1] that all Sidon sets in
duals of connected groups are Sidon (U) for all open U . For the continuous
measure analogue of FZI0(U) sets, see [2]. Whether all I0 sets are I0(U)
for all open U is unknown (when G is connected), as are the corresponding
questions for RI0 and FZI0 sets, even on Z.

Here we show that Sidon sets can be characterized as containing pro-
portional FZI0 sets if Γ has only finitely many elements of order 2, and as
proportional RI0(U) for all open sets U if G is connected. As singletons need
not be FZI0(U), a necessarily slightly weaker result holds for the FZI0(U)
property. These results are in Sections 5 and 6. We remark that there are
interpolation constants that appear in these last mentioned proportionality
results, so the preceding description is slightly incomplete.

It remains open if all Sidon sets are finite unions of I0 sets.

2. Definitions and notation. We write Md(U) for the discrete mea-
sures on U ⊆ G. A superscript of r or + indicates the real or positive discrete
measures on U . We write the set of functions φ ∈ ℓ∞(E) of sup norm at

most one as B(ℓ∞(E)), and φ is said to be Hermitian if φ(γ) = φ(γ−1) for
γ, γ−1 ∈ E.

Every Sidon set has an interpolation constant (the Sidon constant) as-
sociated with it. Pisier [16] proved that a set E is Sidon if and only if there
is a constant C such that E is proportionally Sidon, where proportions have
Sidon constant at most C.

Kalton (see [17]) proved that a set E is I0 if and only if there exists some
0 < ε < 1 (equivalently, for every 0 < ε < 1) and integer N such that for

every φ ∈ B(ℓ∞(E)), there exists µ =
∑N

j=1 ajδxj
with |aj | ≤ 1 and

‖µ̂− φ|E‖∞ = sup
γ∈E

|µ(γ) − φ(γ)| ≤ ε.

We refer to N as the length of µ and say that E is I0(N, ε). If the xj

may always be chosen in a fixed open set U , we say E is I0(U,N, ε). Sim-
ilar definitions can be made when the interpolating measures are not just
discrete, but also real or positive, when we use the notations RI0(U,N, ε)
and FZI0(U,N, ε). Then the functions to be interpolated must be Her-
mitian, as the Fourier transform of a real measure is Hermitian. Even so,
RI0 sets are I0. In fact, E is RI0(U) if and only if E ∪ E−1 is I0(U)
([7, Theorem 2.5]).

A subset E of Γ is an RI0(U) (respectively, FZI0(U)) set if and only
if it is RI0(U,N, ε) (resp. FZI0(U,N, ε)) for some N ≥ 1 and 0 < ε < 1
[7, Proposition 2.1], provided U is compact.
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Finite sets are always I0 and FZI0 ([7, Proposition 2.9]) and are RI0(U)
sets for all open U if the group G is connected ([7, Corollary 2.6]), with
constants depending only on the cardinality of the finite set and on U in the
latter case (see Section 7).

Because of that finite set property, we slightly abuse language with the
following definition.

Definition 3. E is proportional I0(U), RI0(U), or FZI0(U) if E is
proportional I0(U,N, ε), RI0(U,N, ε) or FZI0(U,N, ε) for some N ≥ 1 and
0 < ε < 1.

The motivation for considering proportional RI0(U) and FZI0(U) sets
is a result of Ramsey [17]: Sidon sets are proportional I0 sets.

Sometimes it is convenient to identify T with [0, 2π]:

Definition 4. We say E is angular ε-Kronecker if for every {rγ}γ∈E ⊆
[0, 2π]E there exists g ∈ G such that

d(arg γ(g), rγ) < ε for all γ ∈ E.

An absence of elements of order 2 in Γ is significant because it allows us
to take square roots in G. We remind the reader of some easy facts:

(i) Γ has no elements of order 2 if and only if every element of G is a
square;

(ii) Γ has only finitely many elements of order 2 if and only if the
quotient of G by the subgroup of squares in G is finite;

(iii) a compact group is connected if and only if it is divisible if and only
if the dual has no elements of finite order.

Throughout the paper, we letG0 be the annihilator of Γ0, the 2-subgroup
of Γ , i.e. Γ0 = {characters of order 2k for some k}. Since Γ/Γ0 has no ele-
ments of order 2, every element of G0 has a square root.

Summary of proportional equivalences for Sidon sets. Here is a summary
of what is known to us. E is a subset of Γ , 1 ≤ N < ∞, and 0 < ε <

√
2;

the constants may be different in different assertions. The following are
equivalent to E being Sidon.

(1) No conditions on E,Γ :

• E is proportional quasi-independent ([16]),
• E is proportional N -Sidon ([16]),
• E is proportional I0 ([17]).

(2) The 2-subgroup of Γ is finite and E has no elements of order 2:

• E is proportional ε-Kronecker (Theorem 4.4).
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(3) Γ has only finitely many elements of order 2:

• E is proportional RI0 (Theorem 5.1),
• E is cofinitely proportional RI0(U) for an (all) open U ⊂ G

(Theorem 5.1),
• E is proportional FZI0 (Theorem 6.2),
• E is cofinitely proportional FZI0(U) for an (all) open U ⊂ G

(Theorem 6.2).

3. Interpolating arbitrary signs

Theorem 3.1. Assume E ⊆ Γ . Fix an angle θ ∈ [0, π] and assume

that for any {rγ}γ∈E ∈ {θ, θ + π}E there exists a point x ∈ G0 such that

d(arg γ(x), rγ) ≤ ε for all γ ∈ E. Then E is angular ε′-Kronecker for any

ε′ > 2ε.

Proof. We proceed by induction and show that for each positive integer
k and any choice of angles {sγ}γ∈E that are arguments of 2kth roots of unity,
there exists x = x(k) in G0 such that for all γ ∈ E,

d(arg γ(x), (2 − 2−(k−1))θ + sγ) < (2 − 2−(k−1))ε.

Once this is established we simply choose k such that

π2−k − ε2−(k−1) + 2ε < ε′.

Since the angular distance between two adjacent 2kth roots of unity is 2π/2k,
given any {tγ}γ∈E ∈ [0, 2π]E, we can choose {sγ}, arguments of 2kth roots
of unity, such that

d(tγ , (2 − 2−(k−1))θ + sγ) ≤ π2−k for all γ.

Choose x = x(k) as above. Then for all γ ∈ E,

d(arg γ(x), tγ) ≤ d(arg γ(x), (2−2−(k−1))θ+sγ) + d(tγ , (2−2−(k−1))θ+sγ)

≤ (2 − 2−(k−1))ε+ π2−k < ε′

as desired.
The result is certainly true for k = 1, so assume it is true for k. Let {sγ}

be the arguments of 2k+1th roots of unity and consider {2sγ}. These are

arguments of 2kth roots of unity, so by induction we can find x ∈ G0 such
that for all γ ∈ E,

d(arg γ(x), (2 − 2−(k−1))θ + 2sγ) < (2 − 2−(k−1))ε.

Since every element of G0 is a square, we can choose y ∈ G0 such that
y2 = x. Then γ(y)2 = γ(x), so the argument of γ(y) is either arg γ(x)/2 or
π + arg γ(x)/2. Hence either

d(arg γ(y), (1 − 2−k))θ + sγ) < (1 − 2−k)ε
or

d(arg γ(y), (1 − 2−k))θ + sγ + π) < (1 − 2−k)ε
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(respectively) for all γ ∈ E. In the first case, put rγ = θ; in the second case,
put rγ = θ + π. Obtain z ∈ G0 such that d(arg γ(z), rγ) < ε for all γ ∈ E.
Let g = zy ∈ G0. Then we have either

d(arg γ(g), (2 − 2−k)θ + sγ) ≤ d(arg γ(z), θ) + d(arg γ(y), (1 − 2−k)θ + sγ)

< ε+ (1 − 2−k)ε = (2 − 2−k)ε,

or

d(arg γ(g), (2 − 2−k)θ + sγ)

= d(arg γ(g), (2 − 2−k)θ + sγ + 2π)

≤ d(arg γ(z), θ + π) + d(arg γ(y), (1 − 2−k)θ + sγ + π) < (2 − 2−k)ε.

This completes the induction step.

Corollary 3.2. Assume Γ has no elements of order 2 and E ⊆ Γ .

Suppose that given any choice of signs {rγ}γ∈E ∈ {−1,+1}E there exists

x ∈ G such that d(arg γ(x), arg rγ) < π/4 for all γ ∈ E. Then E is ε-

Kronecker for some ε <
√

2 and is FZI0.

Proof. As Γ has no elements of order 2, we see that G0 = G, hence we
may apply the theorem. Angular ε′-Kronecker for some ε′ < π/2 is equivalent
to ε-Kronecker for some ε <

√
2. The set E is FZI0, being ε-Kronecker for

some ε <
√

2.

Corollary 3.3. Assume G is connected and E ⊆ Γ . Suppose that given

any choice of signs {rγ}γ∈E ∈ {−1,+1}E there exists x ∈ G such that

d(arg γ(x), arg rγ) < π/4 for all γ ∈ E.

Then E is ε-Kronecker for some ε <
√

2.

Proof. G is connected if and only if Γ has no elements of finite order.

Corollary 3.4. Assume Γ has no elements of order 2 and E ⊆ Γ.
Suppose that for any ε > 0 and any choice of signs {rγ}γ∈E , there exists

x ∈ G such that d(γ(x), rγ) < ε for all γ ∈ E. Then E is Kronecker.

Proof. The assumption ensures that E is ε-Kronecker for all ε > 0.

When we speak of the “gap” between two intervals or arcs in T, we mean
the smaller of the two gaps; when we speak of the “length” of an interval in
T, we will mean arc length.

Corollary 3.5. Let E ⊂ Γ . Suppose there are two intervals Ia, Ib ⊆T,
each of length l < π, with gap between them of length g > 0, and with the

property that for any A ⊆ E there exists x ∈ G0 such that γ(x) ∈ Ia for all

γ ∈ A and γ(x) ∈ Ib for all γ ∈ E \ A. Then E is angular ε-Kronecker for

any ε > π − g.



CHARACTERIZING SIDON SETS 181

Proof. Let θ and θ+π be the two points of distance π/2 from the centre
of the gap. Since g ≤ π, by symmetry (and without loss of generality) the
distance from any point in the interval Ia (or Ib) to θ (or θ + π) is at most
(π − g)/2. By Theorem 3.1, E is angular ε-Kronecker for any ε > π − g.

Remark 3.6. Suppose G = T. If the point x in Theorem 3.1 can be
chosen from the interval U = (−a, a), then E is ε′-Kronecker(2U) (meaning
that the interpolating points can be found in 2U). To see why this is so,
we proceed as in the theorem, but in addition assume inductively that the
point x(k), constructed at step k, belongs to (2 − 2−(k−1))U . This is true
by assumption for k = 1. For the induction step, observe that we can take
y = x/2, and hence choose y ∈ (1 − 2−k)U . Then x(k + 1) ≡ x(k)y belongs
to (1 − 2−k)U + U ⊆ 2U for all k.

If Γ has elements of order 2, Corollaries 3.3–3.4 need not be true.

Example 3.7. Consider E = {γj}, an independent set in D2. Then we
can interpolate ±1 exactly on E (so E is Sidon), but the set is clearly
ε-Kronecker if and only if ε >

√
2.

Example 3.8. Consider E = {(j, γj) : j ∈ N} ⊆ Z × D2 where {γj} is
again an independent set in D2. Then E itself has no elements of order 2,
but the subgroup it generates does. Of course, we can interpolate ±1 exactly
on E, but as E ∪ E−1 is not I0 (though it is Sidon by the union theorem),
the set is not RI0 and hence it is not ε-Kronecker for any ε <

√
2. In fact,

E is not even a finite union of ε-Kronecker sets for any ε <
√

2. To see
this, suppose that it were a finite union of such sets. One of the sets would
contain a net {(jα, γjα)} with jα → 0 in the Bohr topology on Z. Suppose

|(jα, γjα)(x, y) − i| = |ei2πjαxγjα(y) − i| < ε <
√

2 for all α.

For some α we will have |ei2πjαx − 1| < δ (for whatever δ > 0 we speci-
fy). Since γjα(y) = ±1, these inequalities cannot simultaneously hold for
suitably small δ.

But E is
√

2-Kronecker. To see this, given {tj} ⊆ T, let Aj = {x ∈ T :

|eijx − tj | =
√

2}. Each Aj is a closed set with empty interior, so by the
Baire category theorem,

⋃
j Aj 6= T. Consequently, there exists x such that

|eijx−tj | 6=
√

2 for any j. Choosing y such that γj(y) = −1 if |eijx−tj | >
√

2

and 1 otherwise, we have |eijxγj(y) − tj | <
√

2 for all j.

In the next section we will prove that every Sidon set is a proportional
ε-Kronecker set for an ε <

√
2 depending on the set. That will use the

following interpolation result which improves Corollary 3.5 and may be of
independent interest.
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Proposition 3.9. Suppose that there are two intervals Ia, Ib ⊆ T, each

of length l and having a gap between them of length g > 0, with the property

that given any A ⊆ E there exists x ∈ G0 such that γ(x) ∈ Ia for all

γ ∈ A and γ(x) ∈ Ib for all γ ∈ E \ A. Suppose further that l ≤ π/32 and

2l ≤ g ≤ π/2 + π/8. Then E is angular ε-Kronecker for ε > π/2 − l/2.

Proof.

Case I: Assume that

(3.1)
1

2

(
π

2(k + 1)
+

π

2k

)
≤ g <

1

2

(
π

2k
+

π

2(k − 1)

)

for some k ≥ 2. Obtain x as in the statement of the proposition and suppose
Ia = [a1, a2] and Ib = [b1, b2].

Let θ and θ + π be the points of distance π/2 from (k + 1)(a2 + b1)/2,
the midpoint between the nearest points in (k + 1)Ia and (k + 1)Ib. (The
assumptions ensure that these intervals do not overlap.) Then the distance
from θ to any point of (k + 1)Ia is

max

{∣∣∣∣(k + 1)a2 − (k + 1)
a2 + b1

2
+
π

2

∣∣∣∣,
∣∣∣∣(k + 1)

a2 + b1
2

− π

2
− (k + 1)a1

∣∣∣∣
}

= max

{
π

2
− (k + 1)

g

2
, (k + 1)l + (k + 1)

g

2
− π

2

}
.

The lower bound on g of (3.1) gives the estimate

π

2
− (k + 1)

g

2
<
π

4
− π

8k
,

and as 2l ≤ g ≤ π/(2(k − 1)), it follows that

(3.2)
π

2
− (k + 1)

g

2
≤ π

4
− l

4
.

Using these estimates and the upper bound in (3.1), we also know

(k + 1)l +
(k + 1)g

2
− π

2
≤ (k + 1)g − π

2
(3.3)

≤ π

2

(
1 +

1

2k
+

1

k − 1

)
− π

2

≤ 11π

48
if k ≥ 4.

But for 2 ≤ k < 4,

(k + 1)l +
(k + 1)g

2
− π

2
≤ (k + 1)l +

π

4

(
1 +

1

2k
+

1

k − 1

)
− π

2
(3.4)

≤ 5l +
π

16
≤ 7π

32
.
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As π/4 − l/4 is the greatest of (3.2), (3.3) and (3.4), it dominates the
distance from any point of (k + 1)Ia to θ. Thus

dist(arg γ(xk+1), θ) ≤ π

4
− l

4
whenever γ ∈ A.

By symmetry, the same statement can be made about (k + 1)Ib, θ + π and

dist(arg γ(xk+1), θ + π) for γ ∈ E \A.
As xk+1 ∈ G0, we may appeal to the previous theorem to conclude that E
is angular ε-Kronecker for ε > π/2 − l/2.

Case II: Assume that

g ∈
[
1

2

(
π

4
+
π

2

)
,
π

2
+
π

8

]
.

We take θ and θ + π to be the points of distance π/2 from the midpoint
between 2Ia and 2Ib. The distance from θ to any point of 2Ia is

max

{
π

2
− g, 2l + g − π

2

}
≤ 2l +

π

8
≤ 3π

16
,

and we conclude the argument in the same manner as in Case I.

Remark 3.10. A similar argument can be applied if there exists δ > 0
such that l(1 + δ) ≤ g provided l ≤ l0(δ), with the conclusion that E is
π/2 − ε-Kronecker where the choice of ε > 0 depends on δ and l.

4. Proportional ε-Kronecker sets. Our proportional results all rely
upon a variation of a technical construction due to Ramsey, which uses
a combinatorial result of Pajor [14]. This construction can be found in the
proof of Theorem 15 of [17]. We outline Ramsey’s construction in the second
subsection and then give the adaptation which we will need in the following
subsection. We begin this section with an extension of a result of Pisier,
needed for the construction to follow.

4.1. An extension of a result of Pisier. Here is a result of Pisier [16].

Theorem 4.1. If E is a Sidon set (not containing 1) then there exists

τ > 0, depending only on the Sidon constant of E, with the property that

for any finite subset F ⊆ E there are 2τ |F | points gj satisfying

sup
γ∈F

|γ(gj) − γ(gi)| ≥ τ if i 6= j.

We will need the following improvement of Theorem 4.1.

Corollary 4.2. Suppose E is a Sidon set (not containing 1) and that

finitely many translates of a subset V ⊆ G cover G. There are constants

δ = δ(E) > 0 and α = α(E, V ) with the property that for any finite subset
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F ⊆ E having cardinality at least α, there is a set S0 = {gj} ⊂ V having at

least 2δ|F | points satisfying

(4.1) sup
γ∈F

|γ(gj) − γ(gi)| ≥ δ for i 6= j.

Proof. Assume G =
⋃n

k=1 akV . By Pisier’s theorem there are 2τ |F | points
gj ∈ G such that for i 6= j we have supγ∈F |γ(gi)−γ(gj)| ≥ τ where τ depends

only on E. At least 2τ |F |/n of these points belong to one set akV . For such
points we have gj = akvj for some vj ∈ V and, of course, |γ(gi) − γ(gj)| =
|γ(vi) − γ(vj)|.

Thus given any F ⊆ E there are at least 2τ |F |/n points gj of V such that
supγ∈F |γ(gj) − γ(gi)| ≥ τ for i 6= j.

Pick α such that n ≤ 2ατ/2 and put δ = τ/2. If CardF ≥ α, then there
will be at least 2δ|F | points gj ∈ V satisfying (4.1).

Notice that when V = G we may take α = 0.

4.2. Ramsey’s technical construction, I. We start with the situation of
Corollary 4.2 in mind, and in particular (4.1). Suppose F is a finite set with

the property that there is a set S0 = {gj} of 2δ|F | elements satisfying (4.1).
Choose any p ∈ 4Z such that λ ≡ 2π/p < δ/2 and put λ′ = λ/Q where

Q = ⌈(1 − 2−δ/2)−1⌉. Enumerate F as {γi}|F |
i=1.

As in Ramsey’s argument, partition T into disjoint arcs

Tk = {eiθ : kλ ≤ θ < (k + 1)λ}
for 0 ≤ k < p and partition each Tk into disjoint arcs Uk,m of the form

Uk,m = {eiθ : kλ+mλ′ ≤ θ < kλ+ (m+ 1)λ′}
for 0 ≤ m < Q.

Define Si inductively, as follows: Let

Si
k = {g ∈ Si−1 : γi(g) ∈ Tk} and Si

k,m = {g ∈ Si−1 : γi(g) ∈ Uk,m}
for 0 ≤ k < p, 0 ≤ m < Q. For each pair i, k pick the index m = m(i, k) for
which CardSi

k,m is minimal. Clearly, CardSi
k,m ≤ Q−1 CardSi

k. Put

Si = Si−1 \
p−1⋃

k=0

Si
k,m(i,k).

One can easily check that CardSn ≥ 2nδ/2.
Let Ii,k be the arc between Uk−1,m(i,k−1) and Uk,m(i,k). These arcs have

lengths at most 2λ − 2λ′ and are separated by a gap of length at least λ′.
Moreover, the choice of p ∈ 4Z ensures that the points 0,±π/2, π are either
boundary points of Ii,k, or at distance at least λ′ from the boundary.
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For g ∈ Sn, define hg ∈ ℓ∞(F ) by hg(γi) = ki where γi(g) ∈ Ii,ki
. The

construction of Sn ensures that these functions are all distinct, hence there
are at least 2nδ/2 such functions, the cardinality of Sn.

By [14, Corollary 2] or [15, Corollary 1.6, p. 11] there is a constant c1 > 0
depending only on δ, a subset H of F with cardinality at least c1 CardF
and natural numbers a < b satisfying

{a, b}H ⊆ {hg|H : g ∈ Sn}.
Thus this construction identifies a fixed subset H ⊂ F , and, for each index
i, two arcs, Ii,a and Ii,b such that

A ⊆ H ⇒ ∃g ∈ Sn with γi(g) ∈
{
Ii,a if γi ∈ A,

Ii,b if γi ∈ H \A.

If b− a ≥ 2, then

I ≡ {eiθ : (a− 1)λ+ λ′ ≤ θ < (a+ 1)λ− λ′} ⊃ Ii,a,(4.2)

J ≡ {eiθ : (b− 1)λ+ λ′ ≤ θ < (b+ 1)λ− λ′} ⊃ Ii,b.(4.3)

The two arcs on the circle, I, J, are separated by a gap of size at least
(b− a− 2)λ+ 2λ′ ≥ 2λ′ and have length 2λ− 2λ′ each. Moreover, for some
g ∈ S0, γ(g) belongs to I if γ ∈ A and belongs to J if γ ∈ H \A.

If, instead, b− a = 1, then for suitable yi,

Ii,a ⊆ [(a− 1)λ+ λ′, yi], Ii,b ⊆ [yi + λ′, (b+ 1)λ− λ′].

Hence

I ≡ [−3λ+ 2λ′,−λ′] ⊃ Ii,aI
−1
i,b ,(4.4)

J ≡ [λ′, 3λ− 2λ′] ⊃ I−1
i,a Ii,b.(4.5)

The arcs I and J are of length 3λ− 3λ′ each and are separated by at least
2λ′. By choosing appropriate g1, g2 ∈ S0 and putting g = g1g

−1
2 ∈ S0S

−1
0 ,

we have γ(g) ∈ I if γ ∈ A and γ(g) ∈ J if γ ∈ H \A.

Remarks 4.3. (i) We emphasize that the proportionality constant c1,
and the interval and gap lengths, λ and λ′, all depend (effectively) only on δ,
which depends in turn on the Sidon constant of E.

(ii) Any Sidon set in a discrete group with a finite 2-subgroup is pro-
portional ε-Kronecker for some ε < 2. That is a straightforward use of
§4.2, Corollary 3.5, and Corollary 4.2. However, we do not know that if
that proportional property for ε < 2 is equivalent to Sidonicity, although
[5, Theorem 4.1] shows that if E is ε-Kronecker for some ε < 2, then E does
not contain arbitrarily large squares, for example. Using the extended tech-
nical construction to follow, we will obtain proportional ε-Kronecker with
an ε <

√
2 (depending on E), which is equivalent to Sidonicity.
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4.3. Ramsey’s technical construction, II. We continue with the notation
of §4.2. Put l = λ′/4. Then l effectively depends only on δ (and the Sidon
constant). A review of how l is found shows that

(4.6)
δ

2
≤ 1

2
, Q ≥ 4, p ≥ 8, λ < 2π/8 < 0.8, λ′ <

1

5
, l <

1

20
.

Displays (4.2)–(4.5) give us two intervals I, J , of lengths at most 3λ and
gap at least λ′, and a subset H ⊆ F, with CardH ≥ c1 CardF, having the
property that for all A ⊆ H there is some g ∈ S0∪S0S

−1
0 such that γ(g) ∈ I

for γ ∈ A and γ(g) ∈ J for γ ∈ H \A.
Partition each of I and J into s = 12Q equal sized, disjoint subintervals,

Ia1 , . . . , Ias and Jb1 , . . . , Jbs
, with lengths at most l = λ′/4. We reduce the

set of g slightly and let

S = {g ∈ S0 ∪ S0S
−1
0 : γ(g) ∈ I ∪ J for all γ ∈ H}.

Let X+ = {a1, . . . , as}, X− = {b1, . . . , bs} and X = X+ ∪X−.

View S as a subset of XH by identifying g with (z
(g)
γ )γ∈H according to

the rule γ(g) ∈ I
z
(g)
γ

for γ ∈ H. Define Π : XH → {−1, 1}H by

Π(z(g)
γ ) = (rγ)γ∈H where rγ =

{
1 if zγ ∈ X+,

−1 if zγ ∈ X−,

i.e. rγ = 1 if γ(g) ∈ Ia and rγ = −1 if γ(g) ∈ Ib. By taking suitable choices
of g we can obtain all elements of {±1}H . Hence Π(S) = {±1}H .

By [14, Theorem 2] there exist aj ∈ X+, bk ∈ X−, c2 = c2(δ) and

(4.7) H1 ⊆ H with CardH1 ≥ c2 CardH

such that {aj , bk}H1 ⊆ PH1(S) (where PH1(f) = f |H1). In other words, for

every A ⊆ H1 there exists g ∈ S0 ∪ S0S
−1
0 with γ(g) ∈ Iaj

if γ ∈ A and
γ(g) ∈ Jbk

for γ ∈ H1 \A.
By construction, the gap between the intervals Iaj

and Jbk
is at least

four times their lengths, and the interval lengths and gap size depend only
on E. Moreover, CardH1 ≥ c1c2 CardF. The (new) proportionality constant
C = c1c2 depends only on E.

Theorem 4.4. Suppose the 2-subgroup of Γ is finite and that E has no

elements of order 2. Then E is proportional ε-Kronecker for some ε <
√

2
if and only if E is Sidon.

Proof. Suppose E is Sidon. Obtain δ(E) and α(E,G0) of Corollary 4.2,
where G0 is, as usual, the annihilator of the 2-subgroup of Γ .

As E has no elements of order 2, a singleton subset of E is ε-Kronecker
for each ε > 1. Hence, given F ⊆ E of cardinality less than α, take H to be
any singleton in F to get a subset of size ≥ CardF/α that is ε-Kronecker
for any ε > 1.
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If CardF ≥ α, apply the refinement of the technical construction in the
beginning of this subsection taking as S0 the 2δ|F | points in G0 identified in
§4.2. The proportionality constant C and interval length l depend only on δ
and therefore only on E.

Let H1 be the proportional-sized subset of F that arises from the con-
struction, i.e. from (4.7). If the gap, g, between the two identified intervals is
at least π/2+π/8, by Corollary 3.5 we see thatH is angular 3π/8-Kronecker.
Otherwise, since g ≥ 4l, we can appeal to Proposition 3.9 to conclude that
H is ε-Kronecker for some ε <

√
2 depending only on l, and therefore only

on the Sidon set E. Replacing C if necessary by the minimum of C and 1/α,
we deduce that E is proportional ε-Kronecker for some ε <

√
2.

For the converse, note that ε-Kronecker sets with ε <
√

2 are I0(N, δ)
for some N and δ depending only on ε ([5]). In particular, proportional
ε-Kronecker sets are proportional Sidon sets and so Sidon by [16, Corol-
lary 2.3].

Corollary 4.5. Suppose that E has no elements of order 2 and that

the subgroup it generates has a finite 2-subgroup. Then E is proportional

ε-Kronecker for some ε <
√

2 if and only if E is Sidon.

Proof. Apply Theorem 4.4 with Γ the subgroup generated by E.

Remark 4.6. In contrast, Sidon sets and even ε-Kronecker sets need not
be “proportional Hadamard” sets, meaning finite subsets contain proportio-
nal-sized subsets that are Hadamard with ratios bounded away from 1. Ex-
ample 5.2 of [5] provides such a counterexample.

We now show that the restriction on elements of order 2 is necessary in
the statement of Theorem 4.4.

Example 4.7. Let E = {(j, γj) : j ∈ N} ⊆ Z × D2 be the set of Ex-

ample 3.8. Then E is Sidon but not proportional ε-Kronecker for any ε <
√

2
(equivalently, not proportional angular π/2 − ε-Kronecker for any ε > 0).
However, E is

√
2-Kronecker.

Proof. Suppose E were proportional angular π/2−ε-Kronecker for some
ε > 0 with proportionality constant C.

For any fixed N (to be specified later) Szemerédi’s theorem [18] says
there exists M = M(C,N) such that any subset of [1, . . . ,M ], with density
at least C, contains an arithmetic progression of length N . By assumption,
the set {(j, γj) : j = 1, . . . ,M} contains a subset X = {(j, γj) : j ∈ FM}
that is π/2 − ε-Kronecker, where FM is a subset of [1, . . . ,M ] of density C.
Hence FM contains an arithmetic progression of length N .

Pick mth roots of unity (for m even) that are ε/2-dense in T, say
{w1, . . . , wm}. Pick another ε/2-dense set {sj} and let pj be any mth root
of sj .
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Define numbers t
(k)
i of modulus 1 recursively as follows:

(1) Let t
(1)
1 = 1.

(2) Define t
(k)
i+1 = t

(k)
i /(pkwj) for i = (j − 1)m + 1, . . . , jm and j, k =

1, . . . ,m.

(3) Define t
(k+1)
1 = t

(k)
m2+1

.

We think of these as ordered by fixing k and ordering in index i, and then
letting k vary.

Put N = m3. Assume {(jk0 + d0, γjk0+d0) : j = 1, . . . , N} ⊂ X and
that at the character (jk0 +d0, γjk0+d0) we are to interpolate tj . Then there
exists a point (x, y) and error term εj such that |εj | ≤ π/2 − ε so that

tj = ei(jk0+d0)xγj(y)e
iεj . Thus, for suitable rj = ±1,

tj
tj+1

= rje
−ik0xei(εj−εj+1).

Let I be the union of the two subintervals of T of length 2ε which are at
angular distance at least π/2 − ε away from both ±e−ik0x. For each k, the
numbers {pkwj : j = 1, . . . ,m} are ε/2-dense, hence there is some j = j(k)

such that pkwj ∈ I. This compels all the pairs (t
(k)
l , t

(k)
l+1) with ratio pkwj

(there are m such pairs, those with l = (j − 1)m+ 1, . . . , jm) to have error

terms (ε
(k)
l , ε

(k)
l+1) opposite in sign.

Now

t
(k)
(j−1)m+1

t
(k)
jm+1

= (pkwj)
m = sk = r′k,je

−imk0xei(ε′
k,j

)

where r′k,j = ±1 and ε′k,j = ε
(k)
(j−1)m+1 − ε

(k)
jm+1. Since m is even, ε

(k)
(j−1)m+1

and ε
(k)
jm+1 have the same sign, so |ε′k| ≤ π/2 − ε.

As {sk} are ε/2-dense, at least one sk belongs to one of the intervals of
width 2ε that are at angular distance at least π/2− ε from both ±e−imk0x,
and this is a contradiction.

5. Proportional RI0 subsets. Since ε-Kronecker sets with ε <
√

2 are
FZI0(N(ε), δ(ε)) sets [7, Theorem 3.1], Theorem 4.4 implies that Sidon sets
in duals of groups with a finite 2-subgroup are proportional FZI0. In the
remainder of the paper we improve upon this fact.

First, we consider the problem of interpolating with real measures. We
begin with a further definition.

Definition 5. We call E ∈ A cofinitely proportional B if there exist
constants C,α > 0 such that for every finite F ⊂ E with CardF > α there
exists H ⊂ F such that CardH ≥ C CardF and H ∈ B.
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The “cofinite” restriction is irrelevant when U = G but crucial when U
is small.

Theorem 5.1. Suppose Γ has only finitely many elements of order 2.
The following are equivalent :

(1) E is a Sidon set ;
(2) E is a proportional RI0 set ;
(3) for each open set U ⊆ G, E is cofinitely proportional RI0(U).

Proof. (1)⇒(3). As a set is RI0(U) if and only if it is RI0(Ug), there
is no loss of generality in assuming U is a neighbourhood of e. Obtain a
symmetric e-neighbourhood V such that V 10 ⊆ U. Let V1 = {g2 : g ∈ V }.
By compactness, G is the union of finitely many translates of V . Since Γ
has only finitely many elements of order 2, G is the union of finitely many
translates of G2, the set of squares of G. Clearly, G2 is the union of the same
number of translates of V1, and consequently G =

⋃n
j=1 ajV1 for suitable

aj ∈ G and n.
By Corollary 4.2 there exist δ = δ(E) > 0 and α = α(E, V1) such that

given a finite subset F of E of cardinality at least α, there are at least 2δ|F |

points gj ∈ V1 satisfying (4.1).

Given such a subset F , we apply §4.3, taking the set S0 to be these 2δ|F |

points in V1. This construction produces two arcs, I, J , with lengths at most
l ≤ π/16 and separated by a gap of at least 4l, and a subset H ⊆ F with
CardH ≥ C CardF having the property that given any A ⊆ H there is a
point g ∈ V 2

1 with γ(g) ∈ I if γ ∈ A and γ(g) ∈ J if γ ∈ H \A. The numbers
l and C depend only on δ and hence on E. It is convenient to replace I, J
by their closures. This will, of course, not change their lengths or the size of
the gap between them.

Indeed, because the gap between the two arcs is double the lengths of
the arcs, d > 0 can be chosen so that either the real parts (of the elements
of the arcs) differ by at least d (Case I), or their imaginary parts differ by
at least d and lie on opposite sides of 0 (Case II).

Case I: The real parts differ by at least d. In this case we can assume
there are constants ε1, ε2 such that (without loss of generality) ℜI ≥ ε1,
ℜJ ≤ ε2 and ε1 − ε2 ≥ d.

Given φ ∈ B(ℓ∞(H)), φ real-valued, put A = {γ ∈ H : φ(γ) ≥ 0}.
Obtain the corresponding g ∈ V 2

1 ⊆ V 4 such that

ℜγ(g)
{≥ ε1 if γ ∈ A,

≤ ε2 if γ ∈ H \A,

and set

µ =
1

4
(δg + δg−1 − (ε1 + ε2)δe) ∈M r

d(V 2
1 ) ⊆M r

d(V
4).
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It is a routine calculation to check that for all γ ∈ H,

|µ̂(γ) − φ(γ)| ≤ 1 − d/4 < 1.

Furthermore, lengthµ ≤ 3 and µ has real-valued transform. With m iter-
ations we can obtain a measure µ ∈ M r

d(V
4) of length at most 3m and

satisfying |µ̂(γ) − φ(γ)| ≤ (1 − d/4)m for all γ ∈ H. (Of course, in the limit
we can interpolate real φ by real µ with real-valued transform and supported
on the closure of the set V 4.)

Next, we see how to interpolate i.
First, suppose one of the two arcs, I, J, does not intersect the x axis. By

construction, the boundaries of the arcs are at integer multiples of l. Thus
one of the arcs must be at distance at least l from either 0 or π. Choose
g ∈ V 2

1 such that γ(g) belongs to this arc for all γ ∈ H. Then, for the
appropriate choice of sign,

∣∣∣∣ ±
1

2
(δg − δg−1)∧(γ) − i

∣∣∣∣ ≤ 1 − l/2 on H.

Either way, this produces a measure in M r
d(V

4), of length 2, that approxi-
mates i to within 1 − l/2 on H.

Otherwise, both arcs intersect the x axis, and hence one must contain π.
Choose g ∈ V 2

1 such that γ(g) belongs to the arc containing π for all γ ∈ H.
By definition of V1, there exists some g0 ∈ V 2 such that g2

0 = g. As γ(g0)
2 ∈

{eiθ : θ ∈ [π − l, π + l]}, it must be the case that for all γ ∈ H,

γ(g0) ∈
{
eiθ : θ ∈

[
π − l

2
,
π + l

2

]
∪

[
3π − l

2
,
3π + l

2

]}
.

Let A = {γ ∈ H : γ(g0) = eiθ with θ ∈ [π/2 − l/2, π/2 + l/2]} and put
φ = 1 on A and φ = 1 on H \ A. Pick m = m(l) such that (1 − d/4)m < l
and obtain µ ∈ M r

d(V
2
1 ), with real transform, such that lengthµ ≤ 3m and

|µ̂(γ) − φ(γ)| < l for all γ ∈ H. Then µ ∗ δg0 interpolates i on H to within
2l and µ ∗ δg0 is supported on V 2

1 V
2 ⊆ V 6.

Standard arguments now show that if φ ∈ B(ℓ∞(H)), then there is a
measure µ ∈ M r

d(V 10) ⊆ M r
d(U), of length at most M = M(l), such that

‖µ̂− φ|H‖∞ ≤ 1 − ε for some ε = ε(l) > 0. That completes the argument if
the real parts of the arcs I and J are separated by at least d.

Case II: The real parts do not differ by at least d. Since the gap is
double the length of the intervals and the intervals are short, the imaginary
parts must be strictly on opposite sides of 0. This means the arcs are at
distance at least l from both 0 and π, and hence their imaginary parts are
bounded away from 0 by at least l/2. Without loss of generality assume the
imaginary part of I is positive.
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Given real-valued φ ∈ B(ℓ∞(H)), let A = {γ ∈ H : φ(γ) ≥ 0}. Choose
g ∈ V 2

1 such that γ(g) ∈ I if γ ∈ A and γ(g) ∈ J if γ ∈ H \ A. Next,
put µ = (δg − δg−1)/4 ∈ M r

d(V 2
1 ). Then µ has length at most 2, µ̂ is purely

imaginary and ‖µ̂−iφ|H‖∞ ≤ 1−l/4 < 1. With the usual iteration argument
we can obtain µ ∈ M r

d(V
4) with length ≤ 2m, µ̂ purely imaginary and

‖µ̂− ψ|H‖∞ ≤ (1 − l/4)m for any ψ purely imaginary.
Given any φ ∈ B(ℓ∞(H)), we write φ = −i(iφ1) + iφ2 where iφ1, iφ2 are

purely imaginary, and then consider µ = µ0 ∗ µ1 + µ2 ∈ M r
d(V

8) ⊆ M r
d(U),

where µ̂j approximates iφj on H for j = 1, 2 and µ̂0 approximates −i. We
have

‖µ̂0 ∗ µ1 + µ̂2 − (−i(iφ1) + iφ2)|H‖∞ ≤ 4(1 − l/4)m < 1

(for suitably large m) and the length of µ is at most 6m2.
This completes the argument in Case II and thus E is cofinitely propor-

tional RI0(U).

(3)⇒(2). In Corollary 7.3 we show that finite sets are RI0 with constants
depending only on their cardinality. Thus if E is cofinitely proportional
RI0(G), then it is also proportional RI0.

(2)⇒(1). This follows from Ramsey’s work as proportional RI0 sets are
proportional I0.

Corollary 5.2. If G is connected and E is Sidon, then E is propor-

tional RI0(U) for all open U .

Proof. When G is connected, Γ has no elements of finite order; thus any
Sidon set is cofinitely proportional RI0(U) for all open sets U . Since finite
sets are RI0(U) when the group is connected, with constants depending only
on the cardinality of the set (Corollary 7.3), the result follows.

Remark 5.3. It would be interesting to know if an alternative proof that
all Sidon sets in duals of connected groups are Sidon(U) could be derived
from this characterization.

Example 5.4. Consider G =
∏
Gj , where G1 is finite and none of the

groups has elements of order 2. Then Γ has no elements of order 2. Let E
be the set of projections πj onto the factors Gj . This set is independent and
hence Sidon. Let U = e×

∏
j 6=1Gj . Then E is not proportional RI0(U) since

the singleton {π1} is not RI0(U). Thus without connectedness we can only
be sure of Sidon sets being cofinitely proportional RI0(U).

Definition 6. We call a set E a real RI0(U,N, ε) (respectively, real

FZI0(U,N, ε)) set if for every real-valued Hermitian φ ∈ B(ℓ∞(E)) there
exists µ ∈ M r

d(U) (resp., µ ∈ M+
d (U)) of length at most N and satisfying

‖µ̂− φ|H‖∞ < ε. We suppress the N, ε in practice.
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Real RI0 (respectively, real FZI0) sets E are precisely those for which
every real-valued, bounded Hermitian function on E is the restriction of the
Fourier transform of a real, discrete (resp., positive and discrete) measure
to E. We can define proportional real RI0 and proportional real FZI0 in
the obvious fashion.

Notice that in the proof of the theorem, the restriction on the number of
order 2 elements (used to ensure the ability to take square roots) was only
needed to interpolate i. Thus we have the following corollary:

Corollary 5.5. E ⊆Γ is Sidon if and only if it is proportional real RI0.

6. Proportional FZI0 subsets. To upgrade the results from RI0 to
FZI0 we need to show how to interpolate −1 with the transform of a positive
discrete measure.

Lemma 6.1. Suppose E is Sidon and V is a neighbourhood of e. There

are constants k0 = k0(E), α = α(E, V ) and C = C(E, V ) such that , given

any finite F ⊆ E with CardF ≥ α, there are H ⊆ F with CardH ≥
C CardF , and a measure ̺ ∈ M+

d (V k0) of real transform and length two,
which satisfy |̺̂(γ) + 1| < 1 − sinπ/8 for all γ ∈ H.

In Lemma 6.1, the independence of k0 from V is surprising at first. This
independence can occur because if characters whose values are near 1 on
V were included in F , the large α(E, V ) would mean that they could not
be all of F , so those characters would then be excluded from H by the
small C(E, V ). It is crucial, of course, that this is a cofinitely proportional
result.

Proof of Lemma 6.1. Apply §4.3 to find the number l = l(δ) where
δ = δ(E) arises from Corollary 4.2. Put k0 = ⌊2π/3l⌋ (and notice that k0 is
independent of the choice of V , but not of E).

Now choose a symmetric e-neighbourhood W such that W k0 ⊆ V . Get
α(E,W ) from Corollary 4.2, so that if CardF ≥ α, then there are points
g1, . . . , gn ∈W , with n ≥ 2δ|F |, such that (4.1) holds.

Obtain a proportionality constant C = C(δ) > 0, a subset H of F with
CardH ≥ C CardF , and two arcs on the circle of lengths at most l and
gap between them of size at least 4l, as in §4.2. At least one of these arcs is
separated from the angle 0 by at least 4l. Choose such an arc and call it K.
The construction ensures that there is some g = gig

−1
j ∈W 2 such that χ(g)

belongs to K for all χ ∈ H. We can assume K = [θ, θ+ l] with (without loss
of generality) 4l ≤ θ ≤ π. (We may replace K by −K (mod 2π) if needed.)
If π ∈ K then ̺ = (δg + δg−1)/2 will satisfy

|̺̂(χ) + 1| < 1 − cos l ≤ 1 − cos(1/20) < 1 − sinπ/8 for all χ ∈ H.
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So we can assume, without loss of generality, that K lies entirely within
quadrants 1 and 2.

We consider several cases.
If θ ≥ π/2 + π/8, then |̺̂(χ) + 1| < 1 − sinπ/8 for all χ ∈ H.
If θ ∈ [π/3, π/2 + π/8), then χ(g2) ∈ [2π/3, 5π/4], and consequently

̺ = (δg2 + δg−2)/2 also satisfies |̺̂(χ) + 1| ≤ 1/2 < 1− sinπ/8 for all χ ∈ H.
Otherwise, θ ∈ [4l, π/3). Put kθ = ⌈2π/3θ⌉ ≤ k0. Then for all χ ∈ H,

χ(gkθ) ∈ [kθθ, kθ(θ + l)] ⊆
[
2π

3
,

(
2π

3θ
+ 1

)
(θ + l)

]
.

As 4l ≤ θ ≤ π/3 and l ≤ π/24,
(

2π

3θ
+ 1

)
(θ + l) =

2π

3
+ θ + l +

2π

3

l

θ
≤ π + l +

π

6
≤ 3π

2
− π

8
.

Thus the positive, discrete measure ̺ = (δgkθ + δg−kθ )/2 will satisfy

|̺̂(χ) + 1| < 1 − sinπ/8 for all χ ∈ H.

Moreover, in all cases, ̺ has length 2, real transform and is supported
on W kθ ⊆W k0 ⊆ V .

The independence of k0 from V is important in the application of this
lemma.

Theorem 6.2. Assume Γ has only finitely many elements of order 2.
The following are equivalent :

(1) E ⊂ Γ is Sidon;
(2) E is proportional FZI0;
(3) E is cofinitely proportional FZI0(U) for all open sets U .

Proof. (1)⇒(3). Pick a symmetric e-neighbourhood U1 with U2
1 ⊆ U .

By Theorem 5.1, E is cofinitely proportional RI0(U1) with, say, con-
stants C ′, n, ε, α1. Choose an even integer k1 such that

(1 − sinπ/8)k1 ≤ (1 − ε)/(2n)

and take k0 = k0(E) as in Lemma 6.1. Select a symmetric neighbourhood
V of the identity such that V k0k1 ⊂ U1. Let C = C(E, V ) and α = α(E, V )
also be given by Lemma 6.1. Put α0 = max(α, α1/C).

Suppose F is a finite subset of E with CardF ≥ α0. Apply Lemma 6.1
to find H ⊆ F with CardH ≥ C CardF and a measure ̺ ∈ M+

d (V k0) of
length 2 with real transform and satisfying |̺̂(γ) + 1| < 1 − sinπ/8 for all
γ ∈ H. Let

ν =

k1∑

j=1

(
k1

j

)
̺j ∈M+

d (V k0k1) ⊆M+
d (U1).
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Then the length of ν is at most k12
2k1 and

|ν̂(γ) + 1| =

∣∣∣∣
k1∑

j=0

(
k1

j

)
̺̂j(γ)| = |̺̂(γ) + 1

∣∣∣∣
k1

≤ 1 − ε

2n
.

As CardH ≥ α1, a further subset H ′ ⊆ H is RI0(U1, n, ε) and satisfies

CardH ′ ≥ C ′ CardH ≥ C C ′ CardF.

Given Hermitian φ ∈ B(ℓ∞(H ′)), let µ ∈M r
d(U1) have length at most n

(as in the first paragraph of the proof) and satisfy ‖µ̂ − φ|H′‖ < ε. Write
µ =

∑n
k=1(a

+
k − a−k )δxk

where 0 ≤ a+
k , a

−
k ≤ 1.

Assume ν =
∑
bjδyj

and put

ω =
∑

k

a+
k δxk

+
∑

k

∑

j

a−k bjδxkyj
.

Clearly, ω ∈M+
d (U), the length of ω is ≤ 2nk12

2k1 ≡ N , and one can easily
check that for χ ∈ H ′,

|ω̂(χ) − φ(χ)| ≤ |µ̂(χ) − φ(χ)| +
∑

a−k |ν̂(χ) + 1|

< ε+
n(1 − ε)

2n
=

1 + ε

2
= ε′ < 1.

Thus H ′ is FI0(U,N, ε
′) and so E is cofinitely proportional FZI0(U).

(3)⇒(2) follows from the fact (Corollary 7.7) that finite sets not contain-
ing the identity are FZI0 with constants depending on their cardinality.

(2)⇒(1) holds as proportional FZI0 sets are proportional Sidon.

Remarks 6.3. (i) We note that even in the connected group case, Sidon
sets need not be proportional FZI0(U) for all open sets since singletons fail
to be FZI0(U) for U sufficiently small; that is, “cofinitely” is essential.

(ii) It is known that if U is an open subset of a connected group and E is
ε-Kronecker for some ε <

√
2, then a cofinite subset of E is FZI0(U) ([6]),

but it is not clear if this fact can be used to show that Sidon sets are cofinitely
proportional FZI0(U).

Since the assumption on the number of order 2 elements was not needed
to interpolate −1, these arguments imply that all Sidon sets are propor-
tional real FZI0. Indeed, we have the following improvement on Ramsey’s
proportional I0 result:

Corollary 6.4. E ⊆ Γ is Sidon if and only if there exist positive

constants C,N, ε < 1 such that whenever F ⊆ E is finite, then there is

a subset H ⊆ F with CardH ≥ C CardF and having the property that

whenever φ ∈ B(ℓ∞(H)) there is a measure µ = µ1 + iµ2 such that µ1, µ2
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are positive discrete measures of length at most N and

sup
γ∈H

|µ̂(γ) − φ(γ)| < ε.

7. Interpolation on finite sets

7.1. I0 and RI0 properties. In this subsection we prove that all finite
sets are RI0 sets (or RI0(U) sets in the connected group case) with constants
depending only on the cardinality of the set (and U).

Lemma 7.1. Assume V m = G for some m. Then there exists a constant

n = n(m) such that for each γ1 6= γ2 there is some µ ∈ Md(V ) satisfying

µ̂(γ1) = 1, µ̂(γ2) = 0 and length µ ≤ n.

Proof. For any character α 6= 1, the range of α is a non-trivial sub-
group of T and so there is some g ∈ G such that argα(g) ∈ [2π/3, 4π/3].
Consequently, |γ1γ

−1
2 (g) − 1| ≥ 3/2. Now g = v1 . . . vm for vi ∈ V , thus

|γ1γ
−1
2 (g)−1| ≤ |γ1γ

−1
2 (v1)−1|+

m−1∑

i=1

|γ1γ
−1
2 (v1 . . . vi+1)−γ1γ

−1
2 (v1 . . . vi)|

≤
m−1∑

i=0

|γ1γ
−1
2 (vi+1) − 1|.

It follows that |γ1(v) − γ2(v)| = |γ1γ
−1
2 (v) − 1| ≥ 3/(2m) for some v ∈ V .

Now consider the discrete measure

µ =
δv − γ2(v)δe
γ1(v) − γ2(v)

∈Md(V ).

It is of length at most 4m/3 and satisfies µ̂(γ1) = 1, µ̂(γ2) = 0.

Proposition 7.2.

(i) There exists a constant Nk such that any set of cardinality k is

I0(Nk, 0).
(ii) If G is connected , then for any open set U there is a constant Nk, de-

pending on k and U , such that any set of cardinality k is I0(U,Nk, 0).

Proof. If F is a singleton, {γ}, given φ simply put µ = φ(γ)δe.
Otherwise, assume F = {γi}k

i=1 with k > 1 and choose an open set V ,
V = G in (i) and satisfying V k−1 ⊂ U in (ii). The connectedness of G in (ii)
ensures that V m = G for some m.

For each i 6= j apply Lemma 7.1 to get µij ∈ Md(V ) with length
at most n and satisfying µ̂ij(γi) = 1, µ̂ij(γj) = 0. Put µi = ∗j 6=i µij ∈
M+

d (V k−1) so that µ̂i(γi) = 1, µ̂i(γ) = 0 for all γ 6= γi in F and

lengthµi ≤ nk−1.
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If we are given φ ∈ B(ℓ∞(F )), we can take µ =
∑k

i=1 φ(γi)µi and thus

Nk = knk−1.

Corollary 7.3. Suppose F has cardinality k.

(i) F is RI0(2N2k, 0).
(ii) If G is connected and U is an open set , then F is RI0(U, 2N2k(U), 0).

Proof. Given Hermitian φ ∈ B(ℓ∞(F )), extend φ to F−1 \ F by

φ(γ−1) = φ(γ).

The set F ∪ F−1 is I0(U,N2k, 0), hence there exists µ ∈ Md(U) such that
lengthµ ≤ N2k and µ̂(γ) = φ(γ) for all γ ∈ F ∪ F−1. Put ν = (µ + µ)/2
to obtain a real, discrete measure, supported on U , of length at most 2N2k

and interpolating φ on F .

7.2. FZI0 properties. Lastly, we prove that all finite sets not contain-
ing 1 are FZI0 sets with constants depending only on the cardinality of
the set. The corresponding question about FZI0(U) sets is more subtle as
singletons are not FZI0(U) if U is “too small”.

We need another definition.

Definition 7. We will say F is local FZI0(U,N, ε) if each singleton {γ},
γ ∈ F, is FZI0(U,N, ε).

Lemma 7.4. Suppose U is a symmetric e-neighbourhood. For each in-

teger n0 ≥ 1 there exists an integer n1 = n1(n0) such that if F is local

FZI0(U, n0, 1/2), then F is local FZI0(U, n1, 0).

Proof. Without loss of generality F = {γ}. If γ has order 2, then find
µ ∈M+

d (U) such that |µ̂(γ)+1| ≤ 1/2 and take µ1 = (µ+ µ̃)/(−2ℜµ̂(γ)) to
interpolate −1 exactly with a length 2n0 measure. Given φ(γ) real-valued,
either φ(γ)δe or φ(γ)µ1 does the required interpolation.

Otherwise, choose µ1, µ2 ∈ M+
d (U) with lengths at most n0 and such

that |µ̂1(γ) − ei3π/4| ≤ 1/2 and |µ̂2(γ) − ei5π/4| ≤ 1/2. Then ℜµ̂j(γ) ≤
−(

√
2−1)/2 ≤ −1/5. The imaginary parts of µ̂j(γ) are opposite in sign and

both are also bounded away from zero by −1/5.
Given Hermitian φ(γ) = a+−a−+i(b+−b−) of norm 1, we can interpolate

exactly at γ with the Fourier transform of the measure µ ∈ M+
d (U) given

by

µ = a+δe + a−
(µ1 + µ̃1)/2

|ℜµ̂1(γ)|

+ b+
(
µ1 −ℜµ̂1(γ)δe

ℑµ̂1(γ)

)
+ b−

(
µ2 −ℜµ̂2(γ)δe

−ℑµ̂2(γ)

)
.

The length of µ is at most 13n0.
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Lemma 7.5. Suppose that F has cardinality k and that V is a symmetric

e-neighbourhood. Assume that F is local FZI0(V, n, 0) and that either G is

connected or V = G. Then there is an integer n2 = n2(n, V ) such that for

all γ1, γ2 ∈ F , the doubleton {γ1, γ2} is FZI0(V
2, n2, 0).

Proof. As F is local FZI0(V, n, 0) there is some µ1 ∈M+
d (V ) such that

µ̂1(γ1) = −1 and lengthµ1 ≤ n. By Corollary 7.3 there is some n1 = n1(V )
such that all two-element sets are RI0(V, n1, 0).

Consider the strip S = {z ∈ C : |ℜz + 1| ≤ ε} where εn1 = 1/2.
If µ̂1(γ2) /∈ S, then µ̂1(γ1) = −1 implies |ℜµ̂1(γ1)−ℜµ̂1(γ2)| ≥ ε. With-

out loss of generality we can assume ℜµ̂1(γ1) ≥ ℜµ̂1(γ2). We define

µ =
(µ1 + µ̃1)/2 −ℜµ̂1(γ2)δe

ℜµ̂1(γ1) −ℜµ̂1(γ2)

The choice ensures that µ ∈M+
d (V ), µ̂ is 1, 0-valued on γ1, γ2, respectively,

and the length of µ is at most (2n + 1)/ε = (2n + 1)2n1. As F is local
FZI0(V, n, 0), routine arguments show that {γ1, γ2} is FZI0(V

2, n2, 0) for
a suitable n2.

Otherwise, µ̂1(γ2) ∈ S. We put µ = (µ1 + µ̃1)/2 ∈ M+
d (V ). Given

Hermitian φ ∈ B(ℓ∞{γ1, γ2}) obtain ν ∈ M r
d(V ) of length n1 such that

ν̂(γi) = φ(γi). Assume v =
∑

(a+
k − a−k )δxk

with a+
k , a

−
k ≥ 0. Now set

ω =
∑

a+
k δxk

+
∑

a−k µ ∗ δxk
∈M+

d (V 2).

One can easily see that the length of ω is bounded by a function of n, n1,
and

|ω̂(γi) − φ(γi)| ≤ |ν̂(γi) − φ(γi)| +
∑

a−k |ℜµ̂1(γi) + 1| ≤ n1ε = 1/2.

Thus {γ1, γ2} is FZI0(V
2, n′2, 1/2). By approximating ±1, we can find σ ∈

M+
d (V ) of length n′2 with |ℜµ̂1(γ1)−ℜµ̂1(γ2)| ≥ 1. This essentially reduces

the problem to the first part of the argument.

Proposition 7.6. Assume F is a set of cardinality k. Suppose U is

an e-neighbourhood and that there exists a symmetric e-neighbourhood V
with V 2k ⊆ U such that F is local FZI0(V, n, 0). Assume that either G is

connected or V = G. Then there is an integer Nk = Nk(U, k, n) such that

F is FZI0(U,Nk, 0).

Proof. Let F = {γi}k
i=1. By the previous lemma, for each i 6= j, obtain a

measure µij ∈ M+
d (V 2), of length ≤ n2, satisfying µ̂ij(γi) = 1, µ̂ij(γj) = 0.

Put µi = ∗j 6=i µij ∈ M+
d (V 2(k−1)). Given Hermitian φ ∈ B(ℓ∞(F )), we can

obtain νi ∈M+
d (V ) with ν̂i(γi) = φ(γi). Put ω =

∑k
i=1 µi ∗ νi to obtain the

appropriate interpolating measure.

Corollary 7.7. There is a constant Nk such that if F is any set of

cardinality k, not containing the identity , then F is FZI0(Nk, 0).
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Proof. It suffices to prove that singletons {γ} (other than the identity
character) are FZI0(2, π/4). To see this, first suppose γ is of order 2. Then
we need only interpolate values φ(γ) in [−1, 1], which we can do with either
φ(γ)δe or φ(γ)δx where γ(x) = −1. Thus the order 2 elements are actually
FZI0(1, 0).

If γ has order at least 4 (including infinite order), then given any t ∈ T

there exists x ∈ G such that |δ̂x(γ) − t| ≤ π/4. This suffices as every point
in the unit ball is a convex combination of two points of modulus 1.

Otherwise, γ has order 3 and we can find either a point x or pair x, y
such that |γ(x) − t| ≤ π/6 or |γ(x) + γ(y) − t| ≤ π/6. In either case we can
obtain a length 2 measure µ satisfying |µ̂(γ) − t| ≤ π/6.
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[1] M. Déchamps-Gondim, Ensembles de Sidon topologiques, Ann. Inst. Fourier (Gre-
noble) 22 (1972), no. 3, 51–79.

[2] J. Florek, Interpolation by the Fourier–Stieltjes transform of a positive compactly

supported measure, Colloq. Math. 54 (1987), 113–120.
[3] J. Galindo and S. Hernández, The concept of boundedness and the Bohr compacti-

fication of a MAP abelian group, Fund. Math. 159 (1999), 195–218.
[4] B. N. Givens and K. Kunen, Chromatic numbers and Bohr topologies, Topology

Appl. 131 (2003), 189–202.
[5] C. C. Graham and K. E. Hare, ε-Kronecker and I0 sets in abelian groups, I: Arith-

metic properties of ε-Kronecker sets, Math. Proc. Cambridge Philos. Soc. 140
(2006), 475–489.

[6] —, —, ε-Kronecker and I0 sets in abelian groups, III: Interpolation by measures on

small sets, Studia Math. 171 (2005), 15–32.
[7] —, —, ε-Kronecker and I0 sets in abelian groups, IV: Interpolation by non-negative

measures, ibid. 177 (2006), 9–24.
[8] —, —, Characterizations of classes of I0 sets in discrete abelian groups, Rocky

Mountain J. Math., to appear.
[9] C. C. Graham and A. T.-M. Lau, Relative weak compactness of orbits in Banach

spaces associated with locally compact groups, Trans. Amer. Math. Soc. 359 (2007),
1129–1160.

[10] S. Hartman and C. Ryll-Nardzewski, Almost periodic extensions of functions, Col-
loq. Math. 12 (1964), 23–39.

[11] K. Kunen and W. Rudin, Lacunarity and the Bohr topology, Math. Proc. Cambridge
Philos. Soc. 126 (1999), 117–137.
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