COLLOQUIUM MATHEMATICUM

CHARACTERIZING SIDON SETS BY INTERPOLATION PROPERTIES OF SUBSETS

BY
COLIN C. GRAHAM (Vancouver) and KATHRYN E. HARE (Waterloo)

Abstract

Pisier's characterization of Sidon sets as containing proportional-sized quasi-independent subsets is given a sharper form for groups with only a finite number of elements having orders a power of 2 . No such improvement is possible for a general Sidon subset of a group having an infinite number of elements of order 2 . The method used also gives several sharper forms of Ramsey's characterization of Sidon sets as containing proportional-sized I_{0}-subsets in a uniform way, again in groups containing but a finite number of elements of order 2 .

1. Introduction. A subset E of a discrete abelian group Γ is called Sidon (respectively, I_{0}) if every bounded E-function is the restriction of the Fourier-Stieltjes transform of a finite (resp., discrete) measure on the dual compact group G. Obviously, I_{0} sets are Sidon, but the converse is not true [13].

Sidon and I_{0} sets have been extensively studied and examples can be found in every infinite subset of Γ (cf. [3], [7], [9], [10], [12]). Significant efforts have been made to characterize Sidon and I_{0} sets in terms of more restricted classes of sets. Pisier [16] obtained an important arithmetic characterization of Sidon sets in terms of quasi-independent sets $\left({ }^{1}\right)$, a notion more general than independence as it includes Hadamard sets $\left({ }^{2}\right)$ with Hadamard ratio greater than 3.

Definition 1. Given two classes of sets \mathcal{A}, \mathcal{B} that each contain all finite sets, we say that $E \in \mathcal{A}$ contains \mathcal{B} proportionally (or is proportional \mathcal{B}) if there is a constant $C>0$ such that for every finite $F \subset E$ there exists $H \subset F$ such that Card $H \geq C \operatorname{Card} F$ and $H \in \mathcal{B}$.

Using probabilistic arguments, Pisier [16] showed a set E not containing the identity character 1 is Sidon if and only if it is proportionally quasi-

[^0]independent. Subsequently, Ramsey [17] showed Sidon sets contain proportional subsets that are I_{0} in a uniform way.

Here we characterize Sidon sets in several ways as proportional \mathcal{B} where each of the collections \mathcal{B} considered will have properties stronger than quasiindependence or simple I_{0}.

We assume throughout the paper that the Sidon set E does not contain the identity character 1 . We write \mathbb{T} for the boundary of the unit disk in the complex plane.

We now introduce our collections \mathcal{B} which have properties stronger than than quasi-independence or simple I_{0}.

Definition 2.

(a) $E \subset \Gamma$ is an ε-Kronecker set if for every $\left\{r_{\gamma}\right\}_{\gamma \in E} \subseteq \mathbb{T}^{E}$ there exists $g \in G$ such that

$$
\left|\gamma(g)-r_{\gamma}\right|<\varepsilon \quad \text { for all } \gamma \in E
$$

(b) $E \subset \Gamma$ is an $R I_{0}(U)$ set (respectively, $F Z I_{0}(U)$) if for every Hermitian (defined below) $\phi \in B\left(\ell^{\infty}(E)\right)$ there exists a discrete real (resp., non-negative) measure μ supported on U satisfying $\widehat{\mu}=\left.\phi\right|_{H}$ on E. When $U=G$ we suppress the U.

Combining Definitions 1 and 2, we have proportional ε-Kronecker, proportional $R I_{0}$, etc. sets. In the case of $R I_{0}(U)$ and $F Z I_{0}(U)$ sets, we actually work with (exhaustive) collections of subclasses of those sets; we give those definitions later, to avoid cluttering the introduction with technicalities.

Sets that are ε-Kronecker for all $\varepsilon>0$ are independent. Hadamard sets with ratio greater than 3 are ε-Kronecker for some $\varepsilon<\sqrt{2}$, but not all ε-Kronecker sets in \mathbb{Z} are finite unions of Hadamard sets. Moreover, ε Kronecker sets with $\varepsilon<\sqrt{2}$ are examples of I_{0} sets, but $\sqrt{2}$-Kronecker sets need not be. For proofs of these facts and of other properties of ε-Kronecker sets, see, for example, [4], [5], [7], [8], [11], and [19].

In this paper we show that if the discrete group Γ has no elements of order 2 (this includes all duals of compact, connected groups), then $E \subset \Gamma$ is Sidon if and only if it is proportional ε-Kronecker for some $\varepsilon<\sqrt{2}$. This improves Pisier's quasi-independent result for such groups. An example illustrates that if Γ contains infinitely many elements of order 2 then this characterization need not hold. One step in proving our improvement is to first establish that if arbitrary choices of ± 1 's can be interpolated on $E \subseteq \Gamma$ to within ε, then E is ε^{\prime}-Kronecker for any $\varepsilon^{\prime}>2 \varepsilon$. In particular, if arbitrary choices of ± 1 's can be interpolated on E to within any $\varepsilon>0$, then E is Kronecker. These results are in Sections 3 and 4.

The subclasses where the discrete interpolating measure can be taken to be real (the $R I_{0}$ sets), positive $\left(F Z I_{0}\right)$ and/or supported on an open set U
($I_{0}(U), R I_{0}(U)$ or $F Z I_{0}(U)$ respectively) were investigated in [6] and [7]. There are I_{0} sets that are not $R I_{0}$ and $R I_{0}$ sets that are not $F Z I_{0}$. One can similarly speak of $\operatorname{Sidon}(U)$ sets; it is known [1] that all Sidon sets in duals of connected groups are Sidon (U) for all open U. For the continuous measure analogue of $F Z I_{0}(U)$ sets, see [2]. Whether all I_{0} sets are $I_{0}(U)$ for all open U is unknown (when G is connected), as are the corresponding questions for $R I_{0}$ and $F Z I_{0}$ sets, even on \mathbb{Z}.

Here we show that Sidon sets can be characterized as containing proportional $F Z I_{0}$ sets if Γ has only finitely many elements of order 2 , and as proportional $R I_{0}(U)$ for all open sets U if G is connected. As singletons need not be $F Z I_{0}(U)$, a necessarily slightly weaker result holds for the $F Z I_{0}(U)$ property. These results are in Sections 5 and 6 . We remark that there are interpolation constants that appear in these last mentioned proportionality results, so the preceding description is slightly incomplete.

It remains open if all Sidon sets are finite unions of I_{0} sets.
2. Definitions and notation. We write $M_{\mathrm{d}}(U)$ for the discrete measures on $U \subseteq G$. A superscript of r or + indicates the real or positive discrete measures on U. We write the set of functions $\phi \in \ell^{\infty}(E)$ of sup norm at most one as $B\left(\ell^{\infty}(E)\right)$, and ϕ is said to be Hermitian if $\phi(\gamma)=\overline{\phi\left(\gamma^{-1}\right)}$ for $\gamma, \gamma^{-1} \in E$.

Every Sidon set has an interpolation constant (the Sidon constant) associated with it. Pisier [16] proved that a set E is Sidon if and only if there is a constant C such that E is proportionally Sidon, where proportions have Sidon constant at most C.

Kalton (see [17]) proved that a set E is I_{0} if and only if there exists some $0<\varepsilon<1$ (equivalently, for every $0<\varepsilon<1$) and integer N such that for every $\phi \in B\left(\ell^{\infty}(E)\right)$, there exists $\mu=\sum_{j=1}^{N} a_{j} \delta_{x_{j}}$ with $\left|a_{j}\right| \leq 1$ and

$$
\left\|\widehat{\mu}-\left.\phi\right|_{E}\right\|_{\infty}=\sup _{\gamma \in E}|\mu(\gamma)-\phi(\gamma)| \leq \varepsilon .
$$

We refer to N as the length of μ and say that E is $I_{0}(N, \varepsilon)$. If the x_{j} may always be chosen in a fixed open set U, we say E is $I_{0}(U, N, \varepsilon)$. Similar definitions can be made when the interpolating measures are not just discrete, but also real or positive, when we use the notations $R I_{0}(U, N, \varepsilon)$ and $F Z I_{0}(U, N, \varepsilon)$. Then the functions to be interpolated must be Hermitian, as the Fourier transform of a real measure is Hermitian. Even so, $R I_{0}$ sets are I_{0}. In fact, E is $R I_{0}(U)$ if and only if $E \cup E^{-1}$ is $I_{0}(U)$ ([7, Theorem 2.5]).

A subset E of Γ is an $R I_{0}(U)$ (respectively, $\left.F Z I_{0}(U)\right)$ set if and only if it is $R I_{0}(U, N, \varepsilon)$ (resp. $F Z I_{0}(U, N, \varepsilon)$) for some $N \geq 1$ and $0<\varepsilon<1$ [7, Proposition 2.1], provided U is compact.

Finite sets are always I_{0} and $F Z I_{0}$ ([7, Proposition 2.9]) and are $R I_{0}(U)$ sets for all open U if the group G is connected ([7, Corollary 2.6]), with constants depending only on the cardinality of the finite set and on U in the latter case (see Section 7).

Because of that finite set property, we slightly abuse language with the following definition.

Definition 3. E is proportional $I_{0}(U), R I_{0}(U)$, or $F Z I_{0}(U)$ if E is proportional $I_{0}(U, N, \varepsilon), R I_{0}(U, N, \varepsilon)$ or $F Z I_{0}(U, N, \varepsilon)$ for some $N \geq 1$ and $0<\varepsilon<1$.

The motivation for considering proportional $R I_{0}(U)$ and $F Z I_{0}(U)$ sets is a result of Ramsey [17]: Sidon sets are proportional I_{0} sets.

Sometimes it is convenient to identify \mathbb{T} with $[0,2 \pi]$:
Definition 4. We say E is angular ε-Kronecker if for every $\left\{r_{\gamma}\right\}_{\gamma \in E} \subseteq$ $[0,2 \pi]^{E}$ there exists $g \in G$ such that

$$
d\left(\arg \gamma(g), r_{\gamma}\right)<\varepsilon \quad \text { for all } \gamma \in E .
$$

An absence of elements of order 2 in Γ is significant because it allows us to take square roots in G. We remind the reader of some easy facts:
(i) Γ has no elements of order 2 if and only if every element of G is a square;
(ii) Γ has only finitely many elements of order 2 if and only if the quotient of G by the subgroup of squares in G is finite;
(iii) a compact group is connected if and only if it is divisible if and only if the dual has no elements of finite order.

Throughout the paper, we let G_{0} be the annihilator of Γ_{0}, the 2-subgroup of Γ, i.e. $\Gamma_{0}=\left\{\right.$ characters of order 2^{k} for some $\left.k\right\}$. Since Γ / Γ_{0} has no elements of order 2 , every element of G_{0} has a square root.

Summary of proportional equivalences for Sidon sets. Here is a summary of what is known to us. E is a subset of $\Gamma, 1 \leq N<\infty$, and $0<\varepsilon<\sqrt{2}$; the constants may be different in different assertions. The following are equivalent to E being Sidon.
(1) No conditions on E, Γ :

- E is proportional quasi-independent ([16]),
- E is proportional N-Sidon ([16]),
- E is proportional $I_{0}([17])$.
(2) The 2-subgroup of Γ is finite and E has no elements of order 2:
- E is proportional ε-Kronecker (Theorem 4.4).
(3) Γ has only finitely many elements of order 2 :
- E is proportional $R I_{0}$ (Theorem 5.1),
- E is cofinitely proportional $R I_{0}(U)$ for an (all) open $U \subset G$ (Theorem 5.1),
- E is proportional $F Z I_{0}$ (Theorem 6.2),
- E is cofinitely proportional $F Z I_{0}(U)$ for an (all) open $U \subset G$ (Theorem 6.2).

3. Interpolating arbitrary signs

Theorem 3.1. Assume $E \subseteq \Gamma$. Fix an angle $\theta \in[0, \pi]$ and assume that for any $\left\{r_{\gamma}\right\}_{\gamma \in E} \in\{\theta, \theta+\pi\}^{E}$ there exists a point $x \in G_{0}$ such that $d\left(\arg \gamma(x), r_{\gamma}\right) \leq \varepsilon$ for all $\gamma \in E$. Then E is angular $\varepsilon^{\prime}-$ Kronecker for any $\varepsilon^{\prime}>2 \varepsilon$.

Proof. We proceed by induction and show that for each positive integer k and any choice of angles $\left\{s_{\gamma}\right\}_{\gamma \in E}$ that are arguments of 2^{k} th roots of unity, there exists $x=x(k)$ in G_{0} such that for all $\gamma \in E$,

$$
d\left(\arg \gamma(x),\left(2-2^{-(k-1)}\right) \theta+s_{\gamma}\right)<\left(2-2^{-(k-1)}\right) \varepsilon
$$

Once this is established we simply choose k such that

$$
\pi 2^{-k}-\varepsilon 2^{-(k-1)}+2 \varepsilon<\varepsilon^{\prime}
$$

Since the angular distance between two adjacent 2^{k} th roots of unity is $2 \pi / 2^{k}$, given any $\left\{t_{\gamma}\right\}_{\gamma \in E} \in[0,2 \pi]^{E}$, we can choose $\left\{s_{\gamma}\right\}$, arguments of 2^{k} th roots of unity, such that

$$
d\left(t_{\gamma},\left(2-2^{-(k-1)}\right) \theta+s_{\gamma}\right) \leq \pi 2^{-k} \quad \text { for all } \gamma
$$

Choose $x=x(k)$ as above. Then for all $\gamma \in E$,

$$
\begin{aligned}
d\left(\arg \gamma(x), t_{\gamma}\right) & \leq d\left(\arg \gamma(x),\left(2-2^{-(k-1)}\right) \theta+s_{\gamma}\right)+d\left(t_{\gamma},\left(2-2^{-(k-1)}\right) \theta+s_{\gamma}\right) \\
& \leq\left(2-2^{-(k-1)}\right) \varepsilon+\pi 2^{-k}<\varepsilon^{\prime}
\end{aligned}
$$

as desired.
The result is certainly true for $k=1$, so assume it is true for k. Let $\left\{s_{\gamma}\right\}$ be the arguments of 2^{k+1} th roots of unity and consider $\left\{2 s_{\gamma}\right\}$. These are arguments of 2^{k} th roots of unity, so by induction we can find $x \in G_{0}$ such that for all $\gamma \in E$,

$$
d\left(\arg \gamma(x),\left(2-2^{-(k-1)}\right) \theta+2 s_{\gamma}\right)<\left(2-2^{-(k-1)}\right) \varepsilon .
$$

Since every element of G_{0} is a square, we can choose $y \in G_{0}$ such that $y^{2}=x$. Then $\gamma(y)^{2}=\gamma(x)$, so the argument of $\gamma(y)$ is either $\arg \gamma(x) / 2$ or $\pi+\arg \gamma(x) / 2$. Hence either

$$
d\left(\arg \gamma(y),\left(1-2^{-k)}\right) \theta+s_{\gamma}\right)<\left(1-2^{-k}\right) \varepsilon
$$

or

$$
d\left(\arg \gamma(y),\left(1-2^{-k)}\right) \theta+s_{\gamma}+\pi\right)<\left(1-2^{-k}\right) \varepsilon
$$

(respectively) for all $\gamma \in E$. In the first case, put $r_{\gamma}=\theta$; in the second case, put $r_{\gamma}=\theta+\pi$. Obtain $z \in G_{0}$ such that $d\left(\arg \gamma(z), r_{\gamma}\right)<\varepsilon$ for all $\gamma \in E$. Let $g=z y \in G_{0}$. Then we have either

$$
\begin{aligned}
d\left(\arg \gamma(g),\left(2-2^{-k}\right) \theta+s_{\gamma}\right) & \leq d(\arg \gamma(z), \theta)+d\left(\arg \gamma(y),\left(1-2^{-k}\right) \theta+s_{\gamma}\right) \\
& <\varepsilon+\left(1-2^{-k}\right) \varepsilon=\left(2-2^{-k}\right) \varepsilon
\end{aligned}
$$

or

$$
\begin{aligned}
& d\left(\arg \gamma(g),\left(2-2^{-k}\right) \theta+s_{\gamma}\right) \\
& \quad=d\left(\arg \gamma(g),\left(2-2^{-k}\right) \theta+s_{\gamma}+2 \pi\right) \\
& \quad \leq d(\arg \gamma(z), \theta+\pi)+d\left(\arg \gamma(y),\left(1-2^{-k}\right) \theta+s_{\gamma}+\pi\right)<\left(2-2^{-k}\right) \varepsilon
\end{aligned}
$$

This completes the induction step.
Corollary 3.2. Assume Γ has no elements of order 2 and $E \subseteq \Gamma$. Suppose that given any choice of signs $\left\{r_{\gamma}\right\}_{\gamma \in E} \in\{-1,+1\}^{E}$ there exists $x \in G$ such that $d\left(\arg \gamma(x), \arg r_{\gamma}\right)<\pi / 4$ for all $\gamma \in E$. Then E is ε Kronecker for some $\varepsilon<\sqrt{2}$ and is $F Z I_{0}$.

Proof. As Γ has no elements of order 2, we see that $G_{0}=G$, hence we may apply the theorem. Angular ε^{\prime}-Kronecker for some $\varepsilon^{\prime}<\pi / 2$ is equivalent to ε-Kronecker for some $\varepsilon<\sqrt{2}$. The set E is $F Z I_{0}$, being ε-Kronecker for some $\varepsilon<\sqrt{2}$.

Corollary 3.3. Assume G is connected and $E \subseteq \Gamma$. Suppose that given any choice of signs $\left\{r_{\gamma}\right\}_{\gamma \in E} \in\{-1,+1\}^{E}$ there exists $x \in G$ such that

$$
d\left(\arg \gamma(x), \arg r_{\gamma}\right)<\pi / 4 \quad \text { for all } \gamma \in E
$$

Then E is ε-Kronecker for some $\varepsilon<\sqrt{2}$.
Proof. G is connected if and only if Γ has no elements of finite order.
Corollary 3.4. Assume Γ has no elements of order 2 and $E \subseteq \Gamma$. Suppose that for any $\varepsilon>0$ and any choice of signs $\left\{r_{\gamma}\right\}_{\gamma \in E}$, there exists $x \in G$ such that $d\left(\gamma(x), r_{\gamma}\right)<\varepsilon$ for all $\gamma \in E$. Then E is Kronecker.

Proof. The assumption ensures that E is ε-Kronecker for all $\varepsilon>0$.
When we speak of the "gap" between two intervals or arcs in \mathbb{T}, we mean the smaller of the two gaps; when we speak of the "length" of an interval in \mathbb{T}, we will mean arc length.

Corollary 3.5. Let $E \subset \Gamma$. Suppose there are two intervals $I_{a}, I_{b} \subseteq \mathbb{T}$, each of length $l<\pi$, with gap between them of length $g>0$, and with the property that for any $A \subseteq E$ there exists $x \in G_{0}$ such that $\gamma(x) \in I_{a}$ for all $\gamma \in A$ and $\gamma(x) \in I_{b}$ for all $\gamma \in E \backslash A$. Then E is angular ε-Kronecker for any $\varepsilon>\pi-g$.

Proof. Let θ and $\theta+\pi$ be the two points of distance $\pi / 2$ from the centre of the gap. Since $g \leq \pi$, by symmetry (and without loss of generality) the distance from any point in the interval I_{a} (or I_{b}) to θ (or $\theta+\pi$) is at most $(\pi-g) / 2$. By Theorem 3.1, E is angular ε-Kronecker for any $\varepsilon>\pi-g$.

Remark 3.6. Suppose $G=\mathbb{T}$. If the point x in Theorem 3.1 can be chosen from the interval $U=(-a, a)$, then E is $\varepsilon^{\prime}-\operatorname{Kronecker}(2 U)$ (meaning that the interpolating points can be found in $2 U$). To see why this is so, we proceed as in the theorem, but in addition assume inductively that the point $x(k)$, constructed at step k, belongs to $\left(2-2^{-(k-1)}\right) U$. This is true by assumption for $k=1$. For the induction step, observe that we can take $y=x / 2$, and hence choose $y \in\left(1-2^{-k}\right) U$. Then $x(k+1) \equiv x(k) y$ belongs to $\left(1-2^{-k}\right) U+U \subseteq 2 U$ for all k.

If Γ has elements of order 2, Corollaries 3.3-3.4 need not be true.
Example 3.7. Consider $E=\left\{\gamma_{j}\right\}$, an independent set in \mathbb{D}_{2}. Then we can interpolate ± 1 exactly on E (so E is Sidon), but the set is clearly ε-Kronecker if and only if $\varepsilon>\sqrt{2}$.

Example 3.8. Consider $E=\left\{\left(j, \gamma_{j}\right): j \in \mathbb{N}\right\} \subseteq \mathbb{Z} \times \mathbb{D}_{2}$ where $\left\{\gamma_{j}\right\}$ is again an independent set in \mathbb{D}_{2}. Then E itself has no elements of order 2 , but the subgroup it generates does. Of course, we can interpolate ± 1 exactly on E, but as $E \cup E^{-1}$ is not I_{0} (though it is Sidon by the union theorem), the set is not $R I_{0}$ and hence it is not ε-Kronecker for any $\varepsilon<\sqrt{2}$. In fact, E is not even a finite union of ε-Kronecker sets for any $\varepsilon<\sqrt{2}$. To see this, suppose that it were a finite union of such sets. One of the sets would contain a net $\left\{\left(j_{\alpha}, \gamma_{j \alpha}\right)\right\}$ with $j_{\alpha} \rightarrow 0$ in the Bohr topology on \mathbb{Z}. Suppose

$$
\left|\left(j_{\alpha}, \gamma_{j_{\alpha}}\right)(x, y)-i\right|=\left|e^{i 2 \pi j_{\alpha} x} \gamma_{j_{\alpha}}(y)-i\right|<\varepsilon<\sqrt{2} \quad \text { for all } \alpha
$$

For some α we will have $\left|e^{i 2 \pi j_{\alpha} x}-1\right|<\delta$ (for whatever $\delta>0$ we specify). Since $\gamma_{j_{\alpha}}(y)= \pm 1$, these inequalities cannot simultaneously hold for suitably small δ.

But E is $\sqrt{2}$-Kronecker. To see this, given $\left\{t_{j}\right\} \subseteq \mathbb{T}$, let $A_{j}=\{x \in \mathbb{T}$: $\left.\left|e^{i j x}-t_{j}\right|=\sqrt{2}\right\}$. Each A_{j} is a closed set with empty interior, so by the Baire category theorem, $\bigcup_{j} A_{j} \neq \mathbb{T}$. Consequently, there exists x such that $\left|e^{i j x}-t_{j}\right| \neq \sqrt{2}$ for any j. Choosing y such that $\gamma_{j}(y)=-1$ if $\left|e^{i j x}-t_{j}\right|>\sqrt{2}$ and 1 otherwise, we have $\left|e^{i j x} \gamma_{j}(y)-t_{j}\right|<\sqrt{2}$ for all j.

In the next section we will prove that every Sidon set is a proportional ε-Kronecker set for an $\varepsilon<\sqrt{2}$ depending on the set. That will use the following interpolation result which improves Corollary 3.5 and may be of independent interest.

Proposition 3.9. Suppose that there are two intervals $I_{a}, I_{b} \subseteq \mathbb{T}$, each of length l and having a gap between them of length $g>0$, with the property that given any $A \subseteq E$ there exists $x \in G_{0}$ such that $\gamma(x) \in I_{a}$ for all $\gamma \in A$ and $\gamma(x) \in I_{b}$ for all $\gamma \in E \backslash A$. Suppose further that $l \leq \pi / 32$ and $2 l \leq g \leq \pi / 2+\pi / 8$. Then E is angular ε-Kronecker for $\varepsilon>\pi / 2-l / 2$.

Proof.
Case I: Assume that

$$
\begin{equation*}
\frac{1}{2}\left(\frac{\pi}{2(k+1)}+\frac{\pi}{2 k}\right) \leq g<\frac{1}{2}\left(\frac{\pi}{2 k}+\frac{\pi}{2(k-1)}\right) \tag{3.1}
\end{equation*}
$$

for some $k \geq 2$. Obtain x as in the statement of the proposition and suppose $I_{a}=\left[a_{1}, a_{2}\right]$ and $I_{b}=\left[b_{1}, b_{2}\right]$.

Let θ and $\theta+\pi$ be the points of distance $\pi / 2$ from $(k+1)\left(a_{2}+b_{1}\right) / 2$, the midpoint between the nearest points in $(k+1) I_{a}$ and $(k+1) I_{b}$. (The assumptions ensure that these intervals do not overlap.) Then the distance from θ to any point of $(k+1) I_{a}$ is

$$
\begin{array}{r}
\max \left\{\left|(k+1) a_{2}-(k+1) \frac{a_{2}+b_{1}}{2}+\frac{\pi}{2}\right|,\left|(k+1) \frac{a_{2}+b_{1}}{2}-\frac{\pi}{2}-(k+1) a_{1}\right|\right\} \\
=\max \left\{\frac{\pi}{2}-(k+1) \frac{g}{2},(k+1) l+(k+1) \frac{g}{2}-\frac{\pi}{2}\right\} .
\end{array}
$$

The lower bound on g of (3.1) gives the estimate

$$
\frac{\pi}{2}-(k+1) \frac{g}{2}<\frac{\pi}{4}-\frac{\pi}{8 k}
$$

and as $2 l \leq g \leq \pi /(2(k-1))$, it follows that

$$
\begin{equation*}
\frac{\pi}{2}-(k+1) \frac{g}{2} \leq \frac{\pi}{4}-\frac{l}{4} \tag{3.2}
\end{equation*}
$$

Using these estimates and the upper bound in (3.1), we also know

$$
\begin{align*}
(k+1) l+\frac{(k+1) g}{2}-\frac{\pi}{2} & \leq(k+1) g-\frac{\pi}{2} \tag{3.3}\\
& \leq \frac{\pi}{2}\left(1+\frac{1}{2 k}+\frac{1}{k-1}\right)-\frac{\pi}{2} \\
& \leq \frac{11 \pi}{48} \quad \text { if } k \geq 4
\end{align*}
$$

But for $2 \leq k<4$,

$$
\begin{align*}
(k+1) l+\frac{(k+1) g}{2}-\frac{\pi}{2} & \leq(k+1) l+\frac{\pi}{4}\left(1+\frac{1}{2 k}+\frac{1}{k-1}\right)-\frac{\pi}{2} \tag{3.4}\\
& \leq 5 l+\frac{\pi}{16} \leq \frac{7 \pi}{32}
\end{align*}
$$

As $\pi / 4-l / 4$ is the greatest of (3.2), (3.3) and (3.4), it dominates the distance from any point of $(k+1) I_{a}$ to θ. Thus

$$
\operatorname{dist}\left(\arg \gamma\left(x^{k+1}\right), \theta\right) \leq \frac{\pi}{4}-\frac{l}{4} \quad \text { whenever } \gamma \in A
$$

By symmetry, the same statement can be made about $(k+1) I_{b}, \theta+\pi$ and

$$
\operatorname{dist}\left(\arg \gamma\left(x^{k+1}\right), \theta+\pi\right) \quad \text { for } \gamma \in E \backslash A
$$

As $x^{k+1} \in G_{0}$, we may appeal to the previous theorem to conclude that E is angular ε-Kronecker for $\varepsilon>\pi / 2-l / 2$.

Case II: Assume that

$$
g \in\left[\frac{1}{2}\left(\frac{\pi}{4}+\frac{\pi}{2}\right), \frac{\pi}{2}+\frac{\pi}{8}\right]
$$

We take θ and $\theta+\pi$ to be the points of distance $\pi / 2$ from the midpoint between $2 I_{a}$ and $2 I_{b}$. The distance from θ to any point of $2 I_{a}$ is

$$
\max \left\{\frac{\pi}{2}-g, 2 l+g-\frac{\pi}{2}\right\} \leq 2 l+\frac{\pi}{8} \leq \frac{3 \pi}{16}
$$

and we conclude the argument in the same manner as in Case I.
Remark 3.10. A similar argument can be applied if there exists $\delta>0$ such that $l(1+\delta) \leq g$ provided $l \leq l_{0}(\delta)$, with the conclusion that E is $\pi / 2-\varepsilon$-Kronecker where the choice of $\varepsilon>0$ depends on δ and l.
4. Proportional ε-Kronecker sets. Our proportional results all rely upon a variation of a technical construction due to Ramsey, which uses a combinatorial result of Pajor [14]. This construction can be found in the proof of Theorem 15 of [17]. We outline Ramsey's construction in the second subsection and then give the adaptation which we will need in the following subsection. We begin this section with an extension of a result of Pisier, needed for the construction to follow.
4.1. An extension of a result of Pisier. Here is a result of Pisier [16].

Theorem 4.1. If E is a Sidon set (not containing 1) then there exists $\tau>0$, depending only on the Sidon constant of E, with the property that for any finite subset $F \subseteq E$ there are $2^{\tau|F|}$ points g_{j} satisfying

$$
\sup _{\gamma \in F}\left|\gamma\left(g_{j}\right)-\gamma\left(g_{i}\right)\right| \geq \tau \quad \text { if } i \neq j
$$

We will need the following improvement of Theorem 4.1.
Corollary 4.2. Suppose E is a Sidon set (not containing 1) and that finitely many translates of a subset $V \subseteq G$ cover G. There are constants $\delta=\delta(E)>0$ and $\alpha=\alpha(E, V)$ with the property that for any finite subset
$F \subseteq E$ having cardinality at least α, there is a set $S_{0}=\left\{g_{j}\right\} \subset V$ having at least $2^{\delta|F|}$ points satisfying

$$
\begin{equation*}
\sup _{\gamma \in F}\left|\gamma\left(g_{j}\right)-\gamma\left(g_{i}\right)\right| \geq \delta \quad \text { for } i \neq j \tag{4.1}
\end{equation*}
$$

Proof. Assume $G=\bigcup_{k=1}^{n} a_{k} V$. By Pisier's theorem there are $2^{\tau|F|}$ points $g_{j} \in G$ such that for $i \neq j$ we have $\sup _{\gamma \in F}\left|\gamma\left(g_{i}\right)-\gamma\left(g_{j}\right)\right| \geq \tau$ where τ depends only on E. At least $2^{\tau|F|} / n$ of these points belong to one set $a_{k} V$. For such points we have $g_{j}=a_{k} v_{j}$ for some $v_{j} \in V$ and, of course, $\left|\gamma\left(g_{i}\right)-\gamma\left(g_{j}\right)\right|=$ $\left|\gamma\left(v_{i}\right)-\gamma\left(v_{j}\right)\right|$.

Thus given any $F \subseteq E$ there are at least $2^{\tau|F|} / n$ points g_{j} of V such that $\sup _{\gamma \in F}\left|\gamma\left(g_{j}\right)-\gamma\left(g_{i}\right)\right| \geq \tau$ for $i \neq j$.

Pick α such that $n \leq 2^{\alpha \tau / 2}$ and put $\delta=\tau / 2$. If Card $F \geq \alpha$, then there will be at least $2^{\delta|F|}$ points $g_{j} \in V$ satisfying (4.1).

Notice that when $V=G$ we may take $\alpha=0$.
4.2. Ramsey's technical construction, I. We start with the situation of Corollary 4.2 in mind, and in particular (4.1). Suppose F is a finite set with the property that there is a set $S_{0}=\left\{g_{j}\right\}$ of $2^{\delta|F|}$ elements satisfying (4.1). Choose any $p \in 4 \mathbb{Z}$ such that $\lambda \equiv 2 \pi / p<\delta / 2$ and put $\lambda^{\prime}=\lambda / Q$ where $Q=\left\lceil\left(1-2^{-\delta / 2}\right)^{-1}\right\rceil$. Enumerate F as $\left\{\gamma_{i}\right\}_{i=1}^{|F|}$.

As in Ramsey's argument, partition \mathbb{T} into disjoint arcs

$$
T_{k}=\left\{e^{i \theta}: k \lambda \leq \theta<(k+1) \lambda\right\}
$$

for $0 \leq k<p$ and partition each T_{k} into disjoint $\operatorname{arcs} U_{k, m}$ of the form

$$
U_{k, m}=\left\{e^{i \theta}: k \lambda+m \lambda^{\prime} \leq \theta<k \lambda+(m+1) \lambda^{\prime}\right\}
$$

for $0 \leq m<Q$.
Define S_{i} inductively, as follows: Let

$$
S_{k}^{i}=\left\{g \in S_{i-1}: \gamma_{i}(g) \in T_{k}\right\} \quad \text { and } \quad S_{k, m}^{i}=\left\{g \in S_{i-1}: \gamma_{i}(g) \in U_{k, m}\right\}
$$

for $0 \leq k<p, 0 \leq m<Q$. For each pair i, k pick the index $m=m(i, k)$ for which Card $S_{k, m}^{i}$ is minimal. Clearly, Card $S_{k, m}^{i} \leq Q^{-1} \operatorname{Card} S_{k}^{i}$. Put

$$
S_{i}=S_{i-1} \backslash \bigcup_{k=0}^{p-1} S_{k, m(i, k)}^{i}
$$

One can easily check that Card $S_{n} \geq 2^{n \delta / 2}$.
Let $I_{i, k}$ be the arc between $U_{k-1, m(i, k-1)}$ and $U_{k, m(i, k)}$. These arcs have lengths at most $2 \lambda-2 \lambda^{\prime}$ and are separated by a gap of length at least λ^{\prime}. Moreover, the choice of $p \in 4 \mathbb{Z}$ ensures that the points $0, \pm \pi / 2, \pi$ are either boundary points of $I_{i, k}$, or at distance at least λ^{\prime} from the boundary.

For $g \in S_{n}$, define $h_{g} \in \ell^{\infty}(F)$ by $h_{g}\left(\gamma_{i}\right)=k_{i}$ where $\gamma_{i}(g) \in I_{i, k_{i}}$. The construction of S_{n} ensures that these functions are all distinct, hence there are at least $2^{n \delta / 2}$ such functions, the cardinality of S_{n}.

By [14, Corollary 2] or [15, Corollary 1.6, p. 11] there is a constant $c_{1}>0$ depending only on δ, a subset H of F with cardinality at least $c_{1} \operatorname{Card} F$ and natural numbers $a<b$ satisfying

$$
\{a, b\}^{H} \subseteq\left\{\left.h_{g}\right|_{H}: g \in S_{n}\right\} .
$$

Thus this construction identifies a fixed subset $H \subset F$, and, for each index i, two arcs, $I_{i, a}$ and $I_{i, b}$ such that

$$
A \subseteq H \Rightarrow \exists g \in S_{n} \text { with } \gamma_{i}(g) \in \begin{cases}I_{i, a} & \text { if } \gamma_{i} \in A \\ I_{i, b} & \text { if } \gamma_{i} \in H \backslash A .\end{cases}
$$

If $b-a \geq 2$, then

$$
\begin{align*}
& I \equiv\left\{e^{i \theta}:(a-1) \lambda+\lambda^{\prime} \leq \theta<(a+1) \lambda-\lambda^{\prime}\right\} \supset I_{i, a}, \tag{4.2}\\
& J \tag{4.3}\\
& J \equiv\left\{e^{i \theta}:(b-1) \lambda+\lambda^{\prime} \leq \theta<(b+1) \lambda-\lambda^{\prime}\right\} \supset I_{i, b} .
\end{align*}
$$

The two arcs on the circle, I, J, are separated by a gap of size at least $(b-a-2) \lambda+2 \lambda^{\prime} \geq 2 \lambda^{\prime}$ and have length $2 \lambda-2 \lambda^{\prime}$ each. Moreover, for some $g \in S_{0}, \gamma(g)$ belongs to I if $\gamma \in A$ and belongs to J if $\gamma \in H \backslash A$.

If, instead, $b-a=1$, then for suitable y_{i},

$$
I_{i, a} \subseteq\left[(a-1) \lambda+\lambda^{\prime}, y_{i}\right], \quad I_{i, b} \subseteq\left[y_{i}+\lambda^{\prime},(b+1) \lambda-\lambda^{\prime}\right] .
$$

Hence

$$
\begin{align*}
& I \equiv\left[-3 \lambda+2 \lambda^{\prime},-\lambda^{\prime}\right] \supset I_{i, a} I_{i, b}^{-1}, \tag{4.4}\\
& J \equiv\left[\lambda^{\prime}, 3 \lambda-2 \lambda^{\prime}\right] \supset I_{i, a}^{-1} I_{i, b} . \tag{4.5}
\end{align*}
$$

The arcs I and J are of length $3 \lambda-3 \lambda^{\prime}$ each and are separated by at least $2 \lambda^{\prime}$. By choosing appropriate $g_{1}, g_{2} \in S_{0}$ and putting $g=g_{1} g_{2}^{-1} \in S_{0} S_{0}^{-1}$, we have $\gamma(g) \in I$ if $\gamma \in A$ and $\gamma(g) \in J$ if $\gamma \in H \backslash A$.

Remarks 4.3. (i) We emphasize that the proportionality constant c_{1}, and the interval and gap lengths, λ and λ^{\prime}, all depend (effectively) only on δ, which depends in turn on the Sidon constant of E.
(ii) Any Sidon set in a discrete group with a finite 2-subgroup is proportional ε-Kronecker for some $\varepsilon<2$. That is a straightforward use of §4.2, Corollary 3.5, and Corollary 4.2. However, we do not know that if that proportional property for $\varepsilon<2$ is equivalent to Sidonicity, although [5, Theorem 4.1] shows that if E is ε-Kronecker for some $\varepsilon<2$, then E does not contain arbitrarily large squares, for example. Using the extended technical construction to follow, we will obtain proportional ε-Kronecker with an $\varepsilon<\sqrt{2}$ (depending on E), which is equivalent to Sidonicity.
4.3. Ramsey's technical construction, $I I$. We continue with the notation of $\S 4.2$. Put $l=\lambda^{\prime} / 4$. Then l effectively depends only on δ (and the Sidon constant). A review of how l is found shows that

$$
\begin{equation*}
\frac{\delta}{2} \leq \frac{1}{2}, \quad Q \geq 4, \quad p \geq 8, \quad \lambda<2 \pi / 8<0.8, \quad \lambda^{\prime}<\frac{1}{5}, \quad l<\frac{1}{20} \tag{4.6}
\end{equation*}
$$

Displays (4.2)-(4.5) give us two intervals I, J, of lengths at most 3λ and gap at least λ^{\prime}, and a subset $H \subseteq F$, with Card $H \geq c_{1}$ Card F, having the property that for all $A \subseteq H$ there is some $g \in S_{0} \cup S_{0} S_{0}^{-1}$ such that $\gamma(g) \in I$ for $\gamma \in A$ and $\gamma(g) \in J$ for $\gamma \in H \backslash A$.

Partition each of I and J into $s=12 Q$ equal sized, disjoint subintervals, $I_{a_{1}}, \ldots, I_{a_{s}}$ and $J_{b_{1}}, \ldots, J_{b_{s}}$, with lengths at most $l=\lambda^{\prime} / 4$. We reduce the set of g slightly and let

$$
S=\left\{g \in S_{0} \cup S_{0} S_{0}^{-1}: \gamma(g) \in I \cup J \text { for all } \gamma \in H\right\}
$$

Let $X^{+}=\left\{a_{1}, \ldots, a_{s}\right\}, X^{-}=\left\{b_{1}, \ldots, b_{s}\right\}$ and $X=X^{+} \cup X^{-}$.
View S as a subset of X^{H} by identifying g with $\left(z_{\gamma}^{(g)}\right)_{\gamma \in H}$ according to the rule $\gamma(g) \in I_{z_{\gamma}^{(g)}}$ for $\gamma \in H$. Define $\Pi: X^{H} \rightarrow\{-1,1\}^{H}$ by

$$
\Pi\left(z_{\gamma}^{(g)}\right)=\left(r_{\gamma}\right)_{\gamma \in H} \quad \text { where } \quad r_{\gamma}= \begin{cases}1 & \text { if } z_{\gamma} \in X^{+} \\ -1 & \text { if } z_{\gamma} \in X^{-}\end{cases}
$$

i.e. $r_{\gamma}=1$ if $\gamma(g) \in I_{a}$ and $r_{\gamma}=-1$ if $\gamma(g) \in I_{b}$. By taking suitable choices of g we can obtain all elements of $\{ \pm 1\}^{H}$. Hence $\Pi(S)=\{ \pm 1\}^{H}$.

By [14, Theorem 2] there exist $a_{j} \in X^{+}, b_{k} \in X^{-}, c_{2}=c_{2}(\delta)$ and

$$
\begin{equation*}
H_{1} \subseteq H \quad \text { with } \operatorname{Card} H_{1} \geq c_{2} \operatorname{Card} H \tag{4.7}
\end{equation*}
$$

such that $\left\{a_{j}, b_{k}\right\}^{H_{1}} \subseteq P^{H_{1}}(S)$ (where $P^{H_{1}}(f)=\left.f\right|_{H_{1}}$). In other words, for every $A \subseteq H_{1}$ there exists $g \in S_{0} \cup S_{0} S_{0}^{-1}$ with $\gamma(g) \in I_{a_{j}}$ if $\gamma \in A$ and $\gamma(g) \in J_{b_{k}}$ for $\gamma \in H_{1} \backslash A$.

By construction, the gap between the intervals $I_{a_{j}}$ and $J_{b_{k}}$ is at least four times their lengths, and the interval lengths and gap size depend only on E. Moreover, Card $H_{1} \geq c_{1} c_{2} \operatorname{Card} F$. The (new) proportionality constant $C=c_{1} c_{2}$ depends only on E.

TheOrem 4.4. Suppose the 2 -subgroup of Γ is finite and that E has no elements of order 2. Then E is proportional ε-Kronecker for some $\varepsilon<\sqrt{2}$ if and only if E is Sidon.

Proof. Suppose E is Sidon. Obtain $\delta(E)$ and $\alpha\left(E, G_{0}\right)$ of Corollary 4.2, where G_{0} is, as usual, the annihilator of the 2-subgroup of Γ.

As E has no elements of order 2, a singleton subset of E is ε-Kronecker for each $\varepsilon>1$. Hence, given $F \subseteq E$ of cardinality less than α, take H to be any singleton in F to get a subset of size $\geq \operatorname{Card} F / \alpha$ that is ε-Kronecker for any $\varepsilon>1$.

If Card $F \geq \alpha$, apply the refinement of the technical construction in the beginning of this subsection taking as S_{0} the $2^{\delta|F|}$ points in G_{0} identified in $\S 4.2$. The proportionality constant C and interval length l depend only on δ and therefore only on E.

Let H_{1} be the proportional-sized subset of F that arises from the construction, i.e. from (4.7). If the gap, g, between the two identified intervals is at least $\pi / 2+\pi / 8$, by Corollary 3.5 we see that H is angular $3 \pi / 8$-Kronecker. Otherwise, since $g \geq 4 l$, we can appeal to Proposition 3.9 to conclude that H is ε-Kronecker for some $\varepsilon<\sqrt{2}$ depending only on l, and therefore only on the Sidon set E. Replacing C if necessary by the minimum of C and $1 / \alpha$, we deduce that E is proportional ε-Kronecker for some $\varepsilon<\sqrt{2}$.

For the converse, note that ε-Kronecker sets with $\varepsilon<\sqrt{2}$ are $I_{0}(N, \delta)$ for some N and δ depending only on ε ([5]). In particular, proportional ε-Kronecker sets are proportional Sidon sets and so Sidon by [16, Corollary 2.3].

Corollary 4.5. Suppose that E has no elements of order 2 and that the subgroup it generates has a finite 2-subgroup. Then E is proportional ε-Kronecker for some $\varepsilon<\sqrt{2}$ if and only if E is Sidon.

Proof. Apply Theorem 4.4 with Γ the subgroup generated by E.■
Remark 4.6. In contrast, Sidon sets and even ε-Kronecker sets need not be "proportional Hadamard" sets, meaning finite subsets contain proportio-nal-sized subsets that are Hadamard with ratios bounded away from 1. Example 5.2 of [5] provides such a counterexample.

We now show that the restriction on elements of order 2 is necessary in the statement of Theorem 4.4.

Example 4.7. Let $E=\left\{\left(j, \gamma_{j}\right): j \in \mathbb{N}\right\} \subseteq \mathbb{Z} \times \mathbb{D}_{2}$ be the set of Example 3.8. Then E is Sidon but not proportional ε-Kronecker for any $\varepsilon<\sqrt{2}$ (equivalently, not proportional angular $\pi / 2-\varepsilon$-Kronecker for any $\varepsilon>0$). However, E is $\sqrt{2}$-Kronecker.

Proof. Suppose E were proportional angular $\pi / 2-\varepsilon$-Kronecker for some $\varepsilon>0$ with proportionality constant C.

For any fixed N (to be specified later) Szemerédi's theorem [18] says there exists $M=M(C, N)$ such that any subset of $[1, \ldots, M]$, with density at least C, contains an arithmetic progression of length N. By assumption, the set $\left\{\left(j, \gamma_{j}\right): j=1, \ldots, M\right\}$ contains a subset $X=\left\{\left(j, \gamma_{j}\right): j \in F_{M}\right\}$ that is $\pi / 2-\varepsilon$-Kronecker, where F_{M} is a subset of $[1, \ldots, M]$ of density C. Hence F_{M} contains an arithmetic progression of length N.

Pick m th roots of unity (for m even) that are $\varepsilon / 2$-dense in \mathbb{T}, say $\left\{w_{1}, \ldots, w_{m}\right\}$. Pick another $\varepsilon / 2$-dense set $\left\{s_{j}\right\}$ and let p_{j} be any m th root of s_{j}.

Define numbers $t_{i}^{(k)}$ of modulus 1 recursively as follows:
(1) Let $t_{1}^{(1)}=1$.
(2) Define $t_{i+1}^{(k)}=t_{i}^{(k)} /\left(p_{k} w_{j}\right)$ for $i=(j-1) m+1, \ldots, j m$ and $j, k=$ $1, \ldots, m$.
(3) Define $t_{1}^{(k+1)}=t_{m^{2}+1}^{(k)}$.

We think of these as ordered by fixing k and ordering in index i, and then letting k vary.

Put $N=m^{3}$. Assume $\left\{\left(j k_{0}+d_{0}, \gamma_{j k_{0}+d_{0}}\right): j=1, \ldots, N\right\} \subset X$ and that at the character $\left(j k_{0}+d_{0}, \gamma_{j k_{0}+d_{0}}\right)$ we are to interpolate t_{j}. Then there exists a point (x, y) and error term ε_{j} such that $\left|\varepsilon_{j}\right| \leq \pi / 2-\varepsilon$ so that $t_{j}=e^{i\left(j k_{0}+d_{0}\right) x} \gamma_{j}(y) e^{i \varepsilon_{j}}$. Thus, for suitable $r_{j}= \pm 1$,

$$
\frac{t_{j}}{t_{j+1}}=r_{j} e^{-i k_{0} x} e^{i\left(\varepsilon_{j}-\varepsilon_{j+1}\right)}
$$

Let I be the union of the two subintervals of \mathbb{T} of length 2ε which are at angular distance at least $\pi / 2-\varepsilon$ away from both $\pm e^{-i k_{0} x}$. For each k, the numbers $\left\{p_{k} w_{j}: j=1, \ldots, m\right\}$ are $\varepsilon / 2$-dense, hence there is some $j=j(k)$ such that $p_{k} w_{j} \in I$. This compels all the pairs $\left(t_{l}^{(k)}, t_{l+1}^{(k)}\right)$ with ratio $p_{k} w_{j}$ (there are m such pairs, those with $l=(j-1) m+1, \ldots, j m)$ to have error terms $\left(\varepsilon_{l}^{(k)}, \varepsilon_{l+1}^{(k)}\right)$ opposite in sign.

Now

$$
\frac{t_{(j-1) m+1}^{(k)}}{t_{j m+1}^{(k)}}=\left(p_{k} w_{j}\right)^{m}=s_{k}=r_{k, j}^{\prime} e^{-i m k_{0} x} e^{i\left(\varepsilon_{k, j}^{\prime}\right)}
$$

where $r_{k, j}^{\prime}= \pm 1$ and $\varepsilon_{k, j}^{\prime}=\varepsilon_{(j-1) m+1}^{(k)}-\varepsilon_{j m+1}^{(k)}$. Since m is even, $\varepsilon_{(j-1) m+1}^{(k)}$ and $\varepsilon_{j m+1}^{(k)}$ have the same sign, so $\left|\varepsilon_{k}^{\prime}\right| \leq \pi / 2-\varepsilon$.

As $\left\{s_{k}\right\}$ are $\varepsilon / 2$-dense, at least one s_{k} belongs to one of the intervals of width 2ε that are at angular distance at least $\pi / 2-\varepsilon$ from both $\pm e^{-i m k_{0} x}$, and this is a contradiction.
5. Proportional $R I_{0}$ subsets. Since ε-Kronecker sets with $\varepsilon<\sqrt{2}$ are $F Z I_{0}(N(\varepsilon), \delta(\varepsilon))$ sets [7, Theorem 3.1], Theorem 4.4 implies that Sidon sets in duals of groups with a finite 2 -subgroup are proportional $F Z I_{0}$. In the remainder of the paper we improve upon this fact.

First, we consider the problem of interpolating with real measures. We begin with a further definition.

Definition 5. We call $E \in \mathcal{A}$ cofinitely proportional \mathcal{B} if there exist constants $C, \alpha>0$ such that for every finite $F \subset E$ with Card $F>\alpha$ there exists $H \subset F$ such that $\operatorname{Card} H \geq C \operatorname{Card} F$ and $H \in \mathcal{B}$.

The "cofinite" restriction is irrelevant when $U=G$ but crucial when U is small.

Theorem 5.1. Suppose Γ has only finitely many elements of order 2. The following are equivalent:
(1) E is a Sidon set;
(2) E is a proportional $R I_{0}$ set;
(3) for each open set $U \subseteq G, E$ is cofinitely proportional $R I_{0}(U)$.

Proof. $(1) \Rightarrow(3)$. As a set is $R I_{0}(U)$ if and only if it is $R I_{0}(U g)$, there is no loss of generality in assuming U is a neighbourhood of e. Obtain a symmetric e-neighbourhood V such that $V^{10} \subseteq U$. Let $V_{1}=\left\{g^{2}: g \in V\right\}$. By compactness, G is the union of finitely many translates of V. Since Γ has only finitely many elements of order $2, G$ is the union of finitely many translates of G_{2}, the set of squares of G. Clearly, G_{2} is the union of the same number of translates of V_{1}, and consequently $G=\bigcup_{j=1}^{n} a_{j} V_{1}$ for suitable $a_{j} \in G$ and n.

By Corollary 4.2 there exist $\delta=\delta(E)>0$ and $\alpha=\alpha\left(E, V_{1}\right)$ such that given a finite subset F of E of cardinality at least α, there are at least $2^{\delta|F|}$ points $g_{j} \in V_{1}$ satisfying (4.1).

Given such a subset F, we apply $\S 4.3$, taking the set S_{0} to be these $2^{\delta|F|}$ points in V_{1}. This construction produces two arcs, I, J, with lengths at most $l \leq \pi / 16$ and separated by a gap of at least $4 l$, and a subset $H \subseteq F$ with Card $H \geq C$ Card F having the property that given any $A \subseteq H$ there is a point $g \in V_{1}^{2}$ with $\gamma(g) \in I$ if $\gamma \in A$ and $\gamma(g) \in J$ if $\gamma \in H \backslash A$. The numbers l and C depend only on δ and hence on E. It is convenient to replace I, J by their closures. This will, of course, not change their lengths or the size of the gap between them.

Indeed, because the gap between the two arcs is double the lengths of the arcs, $d>0$ can be chosen so that either the real parts (of the elements of the arcs) differ by at least d (Case I), or their imaginary parts differ by at least d and lie on opposite sides of 0 (Case II).

Case I: The real parts differ by at least d. In this case we can assume there are constants $\varepsilon_{1}, \varepsilon_{2}$ such that (without loss of generality) $\Re I \geq \varepsilon_{1}$, $\Re J \leq \varepsilon_{2}$ and $\varepsilon_{1}-\varepsilon_{2} \geq d$.

Given $\phi \in B\left(\ell^{\infty}(H)\right), \phi$ real-valued, put $A=\{\gamma \in H: \phi(\gamma) \geq 0\}$. Obtain the corresponding $g \in V_{1}^{2} \subseteq V^{4}$ such that

$$
\Re \gamma(g) \begin{cases}\geq \varepsilon_{1} & \text { if } \gamma \in A \\ \leq \varepsilon_{2} & \text { if } \gamma \in H \backslash A\end{cases}
$$

and set

$$
\mu=\frac{1}{4}\left(\delta_{g}+\delta_{g^{-1}}-\left(\varepsilon_{1}+\varepsilon_{2}\right) \delta_{e}\right) \in M_{\mathrm{d}}^{\mathrm{r}}\left(V_{1}^{2}\right) \subseteq M_{\mathrm{d}}^{\mathrm{r}}\left(V^{4}\right)
$$

It is a routine calculation to check that for all $\gamma \in H$,

$$
|\widehat{\mu}(\gamma)-\phi(\gamma)| \leq 1-d / 4<1
$$

Furthermore, length $\mu \leq 3$ and μ has real-valued transform. With m iterations we can obtain a measure $\mu \in M_{\mathrm{d}}^{\mathrm{r}}\left(V^{4}\right)$ of length at most 3 m and satisfying $|\widehat{\mu}(\gamma)-\phi(\gamma)| \leq(1-d / 4)^{m}$ for all $\gamma \in H$. (Of course, in the limit we can interpolate real ϕ by real μ with real-valued transform and supported on the closure of the set V^{4}.)

Next, we see how to interpolate i.
First, suppose one of the two arcs, I, J, does not intersect the x axis. By construction, the boundaries of the arcs are at integer multiples of l. Thus one of the arcs must be at distance at least l from either 0 or π. Choose $g \in V_{1}^{2}$ such that $\gamma(g)$ belongs to this arc for all $\gamma \in H$. Then, for the appropriate choice of sign,

$$
\left| \pm \frac{1}{2}\left(\delta_{g}-\delta_{g^{-1}}\right)^{\wedge}(\gamma)-i\right| \leq 1-l / 2 \quad \text { on } H
$$

Either way, this produces a measure in $M_{\mathrm{d}}^{\mathrm{r}}\left(V^{4}\right)$, of length 2 , that approximates i to within $1-l / 2$ on H.

Otherwise, both arcs intersect the x axis, and hence one must contain π. Choose $g \in V_{1}^{2}$ such that $\gamma(g)$ belongs to the arc containing π for all $\gamma \in H$. By definition of V_{1}, there exists some $g_{0} \in V^{2}$ such that $g_{0}^{2}=g$. As $\gamma\left(g_{0}\right)^{2} \in$ $\left\{e^{i \theta}: \theta \in[\pi-l, \pi+l]\right\}$, it must be the case that for all $\gamma \in H$,

$$
\gamma\left(g_{0}\right) \in\left\{e^{i \theta}: \theta \in\left[\frac{\pi-l}{2}, \frac{\pi+l}{2}\right] \cup\left[\frac{3 \pi-l}{2}, \frac{3 \pi+l}{2}\right]\right\}
$$

Let $A=\left\{\gamma \in H: \gamma\left(g_{0}\right)=e^{i \theta}\right.$ with $\left.\theta \in[\pi / 2-l / 2, \pi / 2+l / 2]\right\}$ and put $\phi=1$ on A and $\phi=1$ on $H \backslash A$. Pick $m=m(l)$ such that $(1-d / 4)^{m}<l$ and obtain $\mu \in M_{\mathrm{d}}^{\mathrm{r}}\left(V_{1}^{2}\right)$, with real transform, such that length $\mu \leq 3 m$ and $|\widehat{\mu}(\gamma)-\phi(\gamma)|<l$ for all $\gamma \in H$. Then $\mu * \delta_{g_{0}}$ interpolates i on H to within $2 l$ and $\mu * \delta_{g_{0}}$ is supported on $V_{1}^{2} V^{2} \subseteq V^{6}$.

Standard arguments now show that if $\phi \in B\left(\ell^{\infty}(H)\right)$, then there is a measure $\mu \in M_{\mathrm{d}}^{\mathrm{r}}\left(V^{10}\right) \subseteq M_{\mathrm{d}}^{\mathrm{r}}(U)$, of length at most $M=M(l)$, such that $\left\|\widehat{\mu}-\left.\phi\right|_{H}\right\|_{\infty} \leq 1-\varepsilon$ for some $\varepsilon=\varepsilon(l)>0$. That completes the argument if the real parts of the arcs I and J are separated by at least d.

Case II: The real parts do not differ by at least d. Since the gap is double the length of the intervals and the intervals are short, the imaginary parts must be strictly on opposite sides of 0 . This means the arcs are at distance at least l from both 0 and π, and hence their imaginary parts are bounded away from 0 by at least $l / 2$. Without loss of generality assume the imaginary part of I is positive.

Given real-valued $\phi \in B\left(\ell^{\infty}(H)\right)$, let $A=\{\gamma \in H: \phi(\gamma) \geq 0\}$. Choose $g \in V_{1}^{2}$ such that $\gamma(g) \in I$ if $\gamma \in A$ and $\gamma(g) \in J$ if $\gamma \in H \backslash A$. Next, put $\mu=\left(\delta_{g}-\delta_{g^{-1}}\right) / 4 \in M_{\mathrm{d}}^{\mathrm{r}}\left(V_{1}^{2}\right)$. Then μ has length at most $2, \widehat{\mu}$ is purely imaginary and $\left\|\widehat{\mu}-\left.i \phi\right|_{H}\right\|_{\infty} \leq 1-l / 4<1$. With the usual iteration argument we can obtain $\mu \in M_{\mathrm{d}}^{\mathrm{r}}\left(V^{4}\right)$ with length $\leq 2 m, \widehat{\mu}$ purely imaginary and $\left\|\widehat{\mu}-\left.\psi\right|_{H}\right\|_{\infty} \leq(1-l / 4)^{m}$ for any ψ purely imaginary.

Given any $\phi \in B\left(\ell^{\infty}(H)\right)$, we write $\phi=-i\left(i \phi_{1}\right)+i \phi_{2}$ where $i \phi_{1}, i \phi_{2}$ are purely imaginary, and then consider $\mu=\mu_{0} * \mu_{1}+\mu_{2} \in M_{\mathrm{d}}^{\mathrm{r}}\left(V^{8}\right) \subseteq M_{\mathrm{d}}^{\mathrm{r}}(U)$, where $\widehat{\mu}_{j}$ approximates $i \phi_{j}$ on H for $j=1,2$ and $\widehat{\mu}_{0}$ approximates $-i$. We have

$$
\left\|\widehat{\mu_{0} * \mu_{1}}+\widehat{\mu}_{2}-\left.\left(-i\left(i \phi_{1}\right)+i \phi_{2}\right)\right|_{H}\right\|_{\infty} \leq 4(1-l / 4)^{m}<1
$$

(for suitably large m) and the length of μ is at most $6 \mathrm{~m}^{2}$.
This completes the argument in Case II and thus E is cofinitely proportional $R I_{0}(U)$.
$(3) \Rightarrow(2)$. In Corollary 7.3 we show that finite sets are $R I_{0}$ with constants depending only on their cardinality. Thus if E is cofinitely proportional $R I_{0}(G)$, then it is also proportional $R I_{0}$.
$(2) \Rightarrow(1)$. This follows from Ramsey's work as proportional $R I_{0}$ sets are proportional I_{0}.

Corollary 5.2. If G is connected and E is Sidon, then E is proportional $R I_{0}(U)$ for all open U.

Proof. When G is connected, Γ has no elements of finite order; thus any Sidon set is cofinitely proportional $R I_{0}(U)$ for all open sets U. Since finite sets are $R I_{0}(U)$ when the group is connected, with constants depending only on the cardinality of the set (Corollary 7.3), the result follows.

REMARK 5.3. It would be interesting to know if an alternative proof that all Sidon sets in duals of connected groups are $\operatorname{Sidon}(U)$ could be derived from this characterization.

Example 5.4. Consider $G=\prod G_{j}$, where G_{1} is finite and none of the groups has elements of order 2. Then Γ has no elements of order 2. Let E be the set of projections π_{j} onto the factors G_{j}. This set is independent and hence Sidon. Let $U=e \times \prod_{j \neq 1} G_{j}$. Then E is not proportional $R I_{0}(U)$ since the singleton $\left\{\pi_{1}\right\}$ is not $R I_{0}(U)$. Thus without connectedness we can only be sure of Sidon sets being cofinitely proportional $R I_{0}(U)$.

Definition 6. We call a set E a real $R I_{0}(U, N, \varepsilon)$ (respectively, real $\left.F Z I_{0}(U, N, \varepsilon)\right)$ set if for every real-valued Hermitian $\phi \in B\left(\ell^{\infty}(E)\right)$ there exists $\mu \in M_{\mathrm{d}}^{\mathrm{r}}(U)$ (resp., $\mu \in M_{\mathrm{d}}^{+}(U)$) of length at most N and satisfying $\left\|\widehat{\mu}-\left.\phi\right|_{H}\right\|_{\infty}<\varepsilon$. We suppress the N, ε in practice.

Real $R I_{0}$ (respectively, real $F Z I_{0}$) sets E are precisely those for which every real-valued, bounded Hermitian function on E is the restriction of the Fourier transform of a real, discrete (resp., positive and discrete) measure to E. We can define proportional real $R I_{0}$ and proportional real $F Z I_{0}$ in the obvious fashion.

Notice that in the proof of the theorem, the restriction on the number of order 2 elements (used to ensure the ability to take square roots) was only needed to interpolate i. Thus we have the following corollary:

Corollary 5.5. $E \subseteq \Gamma$ is Sidon if and only if it is proportional real $R I_{0}$.
6. Proportional $F Z I_{0}$ subsets. To upgrade the results from $R I_{0}$ to $F Z I_{0}$ we need to show how to interpolate -1 with the transform of a positive discrete measure.

Lemma 6.1. Suppose E is Sidon and V is a neighbourhood of e. There are constants $k_{0}=k_{0}(E), \alpha=\alpha(E, V)$ and $C=C(E, V)$ such that, given any finite $F \subseteq E$ with Card $F \geq \alpha$, there are $H \subseteq F$ with Card $H \geq$ $C \operatorname{Card} F$, and a measure $\varrho \in M_{\mathrm{d}}^{+}\left(V^{k_{0}}\right)$ of real transform and length two, which satisfy $|\widehat{\varrho}(\gamma)+1|<1-\sin \pi / 8$ for all $\gamma \in H$.

In Lemma 6.1, the independence of k_{0} from V is surprising at first. This independence can occur because if characters whose values are near 1 on V were included in F, the large $\alpha(E, V)$ would mean that they could not be all of F, so those characters would then be excluded from H by the small $C(E, V)$. It is crucial, of course, that this is a cofinitely proportional result.

Proof of Lemma 6.1. Apply $\S 4.3$ to find the number $l=l(\delta)$ where $\delta=\delta(E)$ arises from Corollary 4.2. Put $k_{0}=\lfloor 2 \pi / 3 l\rfloor$ (and notice that k_{0} is independent of the choice of V, but not of E).

Now choose a symmetric e-neighbourhood W such that $W^{k_{0}} \subseteq V$. Get $\alpha(E, W)$ from Corollary 4.2, so that if $\operatorname{Card} F \geq \alpha$, then there are points $g_{1}, \ldots, g_{n} \in W$, with $n \geq 2^{\delta|F|}$, such that (4.1) holds.

Obtain a proportionality constant $C=C(\delta)>0$, a subset H of F with Card $H \geq C \operatorname{Card} F$, and two arcs on the circle of lengths at most l and gap between them of size at least $4 l$, as in $\S 4.2$. At least one of these arcs is separated from the angle 0 by at least $4 l$. Choose such an arc and call it K. The construction ensures that there is some $g=g_{i} g_{j}^{-1} \in W^{2}$ such that $\chi(g)$ belongs to K for all $\chi \in H$. We can assume $K=[\theta, \theta+l]$ with (without loss of generality) $4 l \leq \theta \leq \pi$. (We may replace K by $-K(\bmod 2 \pi)$ if needed.) If $\pi \in K$ then $\varrho=\left(\delta_{g}+\delta_{g^{-1}}\right) / 2$ will satisfy

$$
|\widehat{\varrho}(\chi)+1|<1-\cos l \leq 1-\cos (1 / 20)<1-\sin \pi / 8 \quad \text { for all } \chi \in H
$$

So we can assume, without loss of generality, that K lies entirely within quadrants 1 and 2.

We consider several cases.
If $\theta \geq \pi / 2+\pi / 8$, then $|\widehat{\varrho}(\chi)+1|<1-\sin \pi / 8$ for all $\chi \in H$.
If $\theta \in[\pi / 3, \pi / 2+\pi / 8)$, then $\chi\left(g^{2}\right) \in[2 \pi / 3,5 \pi / 4]$, and consequently $\varrho=\left(\delta_{g^{2}}+\delta_{g^{-2}}\right) / 2$ also satisfies $|\widehat{\varrho}(\chi)+1| \leq 1 / 2<1-\sin \pi / 8$ for all $\chi \in H$.

Otherwise, $\theta \in[4 l, \pi / 3)$. Put $k_{\theta}=\lceil 2 \pi / 3 \theta\rceil \leq k_{0}$. Then for all $\chi \in H$,

$$
\chi\left(g^{k_{\theta}}\right) \in\left[k_{\theta} \theta, k_{\theta}(\theta+l)\right] \subseteq\left[\frac{2 \pi}{3},\left(\frac{2 \pi}{3 \theta}+1\right)(\theta+l)\right]
$$

As $4 l \leq \theta \leq \pi / 3$ and $l \leq \pi / 24$,

$$
\left(\frac{2 \pi}{3 \theta}+1\right)(\theta+l)=\frac{2 \pi}{3}+\theta+l+\frac{2 \pi}{3} \frac{l}{\theta} \leq \pi+l+\frac{\pi}{6} \leq \frac{3 \pi}{2}-\frac{\pi}{8}
$$

Thus the positive, discrete measure $\varrho=\left(\delta_{g^{k_{\theta}}}+\delta_{g^{-k_{\theta}}}\right) / 2$ will satisfy

$$
|\widehat{\varrho}(\chi)+1|<1-\sin \pi / 8 \quad \text { for all } \chi \in H
$$

Moreover, in all cases, ϱ has length 2, real transform and is supported on $W^{k_{\theta}} \subseteq W^{k_{0}} \subseteq V$.

The independence of k_{0} from V is important in the application of this lemma.

Theorem 6.2. Assume Γ has only finitely many elements of order 2. The following are equivalent:
(1) $E \subset \Gamma$ is Sidon;
(2) E is proportional $F Z I_{0}$;
(3) E is cofinitely proportional $F Z I_{0}(U)$ for all open sets U.

Proof. $(1) \Rightarrow(3)$. Pick a symmetric e-neighbourhood U_{1} with $U_{1}^{2} \subseteq U$. By Theorem 5.1, E is cofinitely proportional $R I_{0}\left(U_{1}\right)$ with, say, constants $C^{\prime}, n, \varepsilon, \alpha_{1}$. Choose an even integer k_{1} such that

$$
(1-\sin \pi / 8)^{k_{1}} \leq(1-\varepsilon) /(2 n)
$$

and take $k_{0}=k_{0}(E)$ as in Lemma 6.1. Select a symmetric neighbourhood V of the identity such that $V^{k_{0} k_{1}} \subset U_{1}$. Let $C=C(E, V)$ and $\alpha=\alpha(E, V)$ also be given by Lemma 6.1. Put $\alpha_{0}=\max \left(\alpha, \alpha_{1} / C\right)$.

Suppose F is a finite subset of E with Card $F \geq \alpha_{0}$. Apply Lemma 6.1 to find $H \subseteq F$ with Card $H \geq C \operatorname{Card} F$ and a measure $\varrho \in M_{\mathrm{d}}^{+}\left(V^{k_{0}}\right)$ of length 2 with real transform and satisfying $|\widehat{\varrho}(\gamma)+1|<1-\sin \pi / 8$ for all $\gamma \in H$. Let

$$
\nu=\sum_{j=1}^{k_{1}}\binom{k_{1}}{j} \varrho^{j} \in M_{\mathrm{d}}^{+}\left(V^{k_{0} k_{1}}\right) \subseteq M_{\mathrm{d}}^{+}\left(U_{1}\right)
$$

Then the length of ν is at most $k_{1} 2^{2 k_{1}}$ and

$$
|\widehat{\nu}(\gamma)+1|=\left|\sum_{j=0}^{k_{1}}\binom{k_{1}}{j} \widehat{\varrho}^{j}(\gamma)\right|=|\widehat{\varrho}(\gamma)+1|^{k_{1}} \leq \frac{1-\varepsilon}{2 n} .
$$

As Card $H \geq \alpha_{1}$, a further subset $H^{\prime} \subseteq H$ is $R I_{0}\left(U_{1}, n, \varepsilon\right)$ and satisfies

$$
\operatorname{Card} H^{\prime} \geq C^{\prime} \operatorname{Card} H \geq C C^{\prime} \operatorname{Card} F
$$

Given Hermitian $\phi \in B\left(\ell^{\infty}\left(H^{\prime}\right)\right)$, let $\mu \in M_{\mathrm{d}}^{\mathrm{r}}\left(U_{1}\right)$ have length at most n (as in the first paragraph of the proof) and satisfy $\left\|\widehat{\mu}-\left.\phi\right|_{H^{\prime}}\right\|<\varepsilon$. Write $\mu=\sum_{k=1}^{n}\left(a_{k}^{+}-a_{k}^{-}\right) \delta_{x_{k}}$ where $0 \leq a_{k}^{+}, a_{k}^{-} \leq 1$.

Assume $\nu=\sum b_{j} \delta_{y_{j}}$ and put

$$
\omega=\sum_{k} a_{k}^{+} \delta_{x_{k}}+\sum_{k} \sum_{j} a_{k}^{-} b_{j} \delta_{x_{k} y_{j}}
$$

Clearly, $\omega \in M_{\mathrm{d}}^{+}(U)$, the length of ω is $\leq 2 n k_{1} 2^{2 k_{1}} \equiv N$, and one can easily check that for $\chi \in H^{\prime}$,

$$
\begin{aligned}
|\widehat{\omega}(\chi)-\phi(\chi)| & \leq|\widehat{\mu}(\chi)-\phi(\chi)|+\sum a_{k}^{-}|\widehat{\nu}(\chi)+1| \\
& <\varepsilon+\frac{n(1-\varepsilon)}{2 n}=\frac{1+\varepsilon}{2}=\varepsilon^{\prime}<1
\end{aligned}
$$

Thus H^{\prime} is $F I_{0}\left(U, N, \varepsilon^{\prime}\right)$ and so E is cofinitely proportional $F Z I_{0}(U)$.
$(3) \Rightarrow(2)$ follows from the fact (Corollary 7.7) that finite sets not containing the identity are $F Z I_{0}$ with constants depending on their cardinality.
$(2) \Rightarrow(1)$ holds as proportional $F Z I_{0}$ sets are proportional Sidon.
Remarks 6.3. (i) We note that even in the connected group case, Sidon sets need not be proportional $F Z I_{0}(U)$ for all open sets since singletons fail to be $F Z I_{0}(U)$ for U sufficiently small; that is, "cofinitely" is essential.
(ii) It is known that if U is an open subset of a connected group and E is ε-Kronecker for some $\varepsilon<\sqrt{2}$, then a cofinite subset of E is $F Z I_{0}(U)([6])$, but it is not clear if this fact can be used to show that Sidon sets are cofinitely proportional $F Z I_{0}(U)$.

Since the assumption on the number of order 2 elements was not needed to interpolate -1 , these arguments imply that all Sidon sets are proportional real $F Z I_{0}$. Indeed, we have the following improvement on Ramsey's proportional I_{0} result:

Corollary 6.4. $E \subseteq \Gamma$ is Sidon if and only if there exist positive constants $C, N, \varepsilon<1$ such that whenever $F \subseteq E$ is finite, then there is a subset $H \subseteq F$ with Card $H \geq C \operatorname{Card} F$ and having the property that whenever $\phi \in B\left(\ell^{\infty}(H)\right)$ there is a measure $\mu=\mu_{1}+i \mu_{2}$ such that μ_{1}, μ_{2}
are positive discrete measures of length at most N and

$$
\sup _{\gamma \in H}|\widehat{\mu}(\gamma)-\phi(\gamma)|<\varepsilon
$$

7. Interpolation on finite sets

7.1. I_{0} and $R I_{0}$ properties. In this subsection we prove that all finite sets are $R I_{0}$ sets (or $R I_{0}(U)$ sets in the connected group case) with constants depending only on the cardinality of the set (and U).

Lemma 7.1. Assume $V^{m}=G$ for some m. Then there exists a constant $n=n(m)$ such that for each $\gamma_{1} \neq \gamma_{2}$ there is some $\mu \in M_{\mathrm{d}}(V)$ satisfying $\widehat{\mu}\left(\gamma_{1}\right)=1, \widehat{\mu}\left(\gamma_{2}\right)=0$ and length $\mu \leq n$.

Proof. For any character $\alpha \neq 1$, the range of α is a non-trivial subgroup of \mathbb{T} and so there is some $g \in G$ such that $\arg \alpha(g) \in[2 \pi / 3,4 \pi / 3]$. Consequently, $\left|\gamma_{1} \gamma_{2}^{-1}(g)-1\right| \geq 3 / 2$. Now $g=v_{1} \ldots v_{m}$ for $v_{i} \in V$, thus

$$
\begin{aligned}
\left|\gamma_{1} \gamma_{2}^{-1}(g)-1\right| & \leq\left|\gamma_{1} \gamma_{2}^{-1}\left(v_{1}\right)-1\right|+\sum_{i=1}^{m-1}\left|\gamma_{1} \gamma_{2}^{-1}\left(v_{1} \ldots v_{i+1}\right)-\gamma_{1} \gamma_{2}^{-1}\left(v_{1} \ldots v_{i}\right)\right| \\
& \leq \sum_{i=0}^{m-1}\left|\gamma_{1} \gamma_{2}^{-1}\left(v_{i+1}\right)-1\right|
\end{aligned}
$$

It follows that $\left|\gamma_{1}(v)-\gamma_{2}(v)\right|=\left|\gamma_{1} \gamma_{2}^{-1}(v)-1\right| \geq 3 /(2 m)$ for some $v \in V$.
Now consider the discrete measure

$$
\mu=\frac{\delta_{v}-\gamma_{2}(v) \delta_{e}}{\gamma_{1}(v)-\gamma_{2}(v)} \in M_{\mathrm{d}}(V)
$$

It is of length at most $4 m / 3$ and satisfies $\widehat{\mu}\left(\gamma_{1}\right)=1, \widehat{\mu}\left(\gamma_{2}\right)=0$.
Proposition 7.2.
(i) There exists a constant N_{k} such that any set of cardinality k is $I_{0}\left(N_{k}, 0\right)$.
(ii) If G is connected, then for any open set U there is a constant N_{k}, depending on k and U, such that any set of cardinality k is $I_{0}\left(U, N_{k}, 0\right)$.
Proof. If F is a singleton, $\{\gamma\}$, given ϕ simply put $\mu=\phi(\gamma) \delta_{e}$.
Otherwise, assume $F=\left\{\gamma_{i}\right\}_{i=1}^{k}$ with $k>1$ and choose an open set V, $V=G$ in (i) and satisfying $V^{k-1} \subset U$ in (ii). The connectedness of G in (ii) ensures that $V^{m}=G$ for some m.

For each $i \neq j$ apply Lemma 7.1 to get $\mu_{i j} \in M_{\mathrm{d}}(V)$ with length at most n and satisfying $\widehat{\mu}_{i j}\left(\gamma_{i}\right)=1, \widehat{\mu}_{i j}\left(\gamma_{j}\right)=0$. Put $\mu_{i}=*_{j \neq i} \mu_{i j} \in$ $M_{\mathrm{d}}^{+}\left(V^{k-1}\right)$ so that $\widehat{\mu}_{i}\left(\gamma_{i}\right)=1, \widehat{\mu}_{i}(\gamma)=0$ for all $\gamma \neq \gamma_{i}$ in F and length $\mu_{i} \leq n^{k-1}$.

If we are given $\phi \in B\left(\ell^{\infty}(F)\right)$, we can take $\mu=\sum_{i=1}^{k} \phi\left(\gamma_{i}\right) \mu_{i}$ and thus $N_{k}=k n^{k-1}$.

Corollary 7.3. Suppose F has cardinality k.
(i) F is $R I_{0}\left(2 N_{2 k}, 0\right)$.
(ii) If G is connected and U is an open set, then F is $R I_{0}\left(U, 2 N_{2 k}(U), 0\right)$.

Proof. Given Hermitian $\phi \in B\left(\ell^{\infty}(F)\right)$, extend ϕ to $F^{-1} \backslash F$ by

$$
\phi\left(\gamma^{-1}\right)=\overline{\phi(\gamma)}
$$

The set $F \cup F^{-1}$ is $I_{0}\left(U, N_{2 k}, 0\right)$, hence there exists $\mu \in M_{\mathrm{d}}(U)$ such that length $\mu \leq N_{2 k}$ and $\widehat{\mu}(\gamma)=\phi(\gamma)$ for all $\gamma \in F \cup F^{-1}$. Put $\nu=(\mu+\bar{\mu}) / 2$ to obtain a real, discrete measure, supported on U, of length at most $2 N_{2 k}$ and interpolating ϕ on F.
7.2. $F Z I_{0}$ properties. Lastly, we prove that all finite sets not containing 1 are $F Z I_{0}$ sets with constants depending only on the cardinality of the set. The corresponding question about $F Z I_{0}(U)$ sets is more subtle as singletons are not $F Z I_{0}(U)$ if U is "too small".

We need another definition.
Definition 7. We will say F is local $F Z I_{0}(U, N, \varepsilon)$ if each singleton $\{\gamma\}$, $\gamma \in F$, is $F Z I_{0}(U, N, \varepsilon)$.

Lemma 7.4. Suppose U is a symmetric e-neighbourhood. For each integer $n_{0} \geq 1$ there exists an integer $n_{1}=n_{1}\left(n_{0}\right)$ such that if F is local $F Z I_{0}\left(U, n_{0}, 1 / 2\right)$, then F is local $F Z I_{0}\left(U, n_{1}, 0\right)$.

Proof. Without loss of generality $F=\{\gamma\}$. If γ has order 2 , then find $\mu \in M_{\mathrm{d}}^{+}(U)$ such that $|\widehat{\mu}(\gamma)+1| \leq 1 / 2$ and take $\mu_{1}=(\mu+\widetilde{\mu}) /(-2 \Re \widehat{\mu}(\gamma))$ to interpolate -1 exactly with a length $2 n_{0}$ measure. Given $\phi(\gamma)$ real-valued, either $\phi(\gamma) \delta_{e}$ or $\phi(\gamma) \mu_{1}$ does the required interpolation.

Otherwise, choose $\mu_{1}, \mu_{2} \in M_{\mathrm{d}}^{+}(U)$ with lengths at most n_{0} and such that $\left|\widehat{\mu}_{1}(\gamma)-e^{i 3 \pi / 4}\right| \leq 1 / 2$ and $\left|\widehat{\mu}_{2}(\gamma)-e^{i 5 \pi / 4}\right| \leq 1 / 2$. Then $\Re \widehat{\mu}_{j}(\gamma) \leq$ $-(\sqrt{2}-1) / 2 \leq-1 / 5$. The imaginary parts of $\widehat{\mu}_{j}(\gamma)$ are opposite in sign and both are also bounded away from zero by $-1 / 5$.

Given Hermitian $\phi(\gamma)=a^{+}-a^{-}+i\left(b^{+}-b^{-}\right)$of norm 1, we can interpolate exactly at γ with the Fourier transform of the measure $\mu \in M_{\mathrm{d}}^{+}(U)$ given by

$$
\begin{aligned}
\mu= & a^{+} \delta_{e}+a^{-} \frac{\left(\mu_{1}+\widetilde{\mu}_{1}\right) / 2}{\left|\Re \widehat{\mu}_{1}(\gamma)\right|} \\
& +b^{+}\left(\frac{\mu_{1}-\Re \widehat{\mu}_{1}(\gamma) \delta_{e}}{\Im \widehat{\mu}_{1}(\gamma)}\right)+b^{-}\left(\frac{\mu_{2}-\Re \widehat{\mu}_{2}(\gamma) \delta_{e}}{-\Im \widehat{\mu}_{2}(\gamma)}\right) .
\end{aligned}
$$

The length of μ is at most $13 n_{0}$.

Lemma 7.5. Suppose that F has cardinality k and that V is a symmetric e-neighbourhood. Assume that F is local $F Z I_{0}(V, n, 0)$ and that either G is connected or $V=G$. Then there is an integer $n_{2}=n_{2}(n, V)$ such that for all $\gamma_{1}, \gamma_{2} \in F$, the doubleton $\left\{\gamma_{1}, \gamma_{2}\right\}$ is $F Z I_{0}\left(V^{2}, n_{2}, 0\right)$.

Proof. As F is local $F Z I_{0}(V, n, 0)$ there is some $\mu_{1} \in M_{\mathrm{d}}^{+}(V)$ such that $\widehat{\mu}_{1}\left(\gamma_{1}\right)=-1$ and length $\mu_{1} \leq n$. By Corollary 7.3 there is some $n_{1}=n_{1}(V)$ such that all two-element sets are $R I_{0}\left(V, n_{1}, 0\right)$.

Consider the strip $S=\{z \in \mathbb{C}:|\Re z+1| \leq \varepsilon\}$ where $\varepsilon n_{1}=1 / 2$.
If $\widehat{\mu}_{1}\left(\gamma_{2}\right) \notin S$, then $\widehat{\mu}_{1}\left(\gamma_{1}\right)=-1$ implies $\left|\Re \widehat{\mu}_{1}\left(\gamma_{1}\right)-\Re \widehat{\mu}_{1}\left(\gamma_{2}\right)\right| \geq \varepsilon$. Without loss of generality we can assume $\Re \widehat{\mu}_{1}\left(\gamma_{1}\right) \geq \Re \widehat{\mu}_{1}\left(\gamma_{2}\right)$. We define

$$
\mu=\frac{\left(\mu_{1}+\widetilde{\mu}_{1}\right) / 2-\Re \widehat{\mu}_{1}\left(\gamma_{2}\right) \delta_{e}}{\Re \widehat{\mu}_{1}\left(\gamma_{1}\right)-\Re \widehat{\mu}_{1}\left(\gamma_{2}\right)}
$$

The choice ensures that $\mu \in M_{\mathrm{d}}^{+}(V), \widehat{\mu}$ is 1,0 -valued on γ_{1}, γ_{2}, respectively, and the length of μ is at most $(2 n+1) / \varepsilon=(2 n+1) 2 n_{1}$. As F is local $F Z I_{0}(V, n, 0)$, routine arguments show that $\left\{\gamma_{1}, \gamma_{2}\right\}$ is $F Z I_{0}\left(V^{2}, n_{2}, 0\right)$ for a suitable n_{2}.

Otherwise, $\widehat{\mu}_{1}\left(\gamma_{2}\right) \in S$. We put $\mu=\left(\mu_{1}+\widetilde{\mu}_{1}\right) / 2 \in M_{\mathrm{d}}^{+}(V)$. Given Hermitian $\phi \in B\left(\ell^{\infty}\left\{\gamma_{1}, \gamma_{2}\right\}\right)$ obtain $\nu \in M_{\mathrm{d}}^{\mathrm{r}}(V)$ of length n_{1} such that $\widehat{\nu}\left(\gamma_{i}\right)=\phi\left(\gamma_{i}\right)$. Assume $v=\sum\left(a_{k}^{+}-a_{k}^{-}\right) \delta_{x_{k}}$ with $a_{k}^{+}, a_{k}^{-} \geq 0$. Now set

$$
\omega=\sum a_{k}^{+} \delta_{x_{k}}+\sum a_{k}^{-} \mu * \delta_{x_{k}} \in M_{\mathrm{d}}^{+}\left(V^{2}\right)
$$

One can easily see that the length of ω is bounded by a function of n, n_{1}, and

$$
\left|\widehat{\omega}\left(\gamma_{i}\right)-\phi\left(\gamma_{i}\right)\right| \leq\left|\widehat{\nu}\left(\gamma_{i}\right)-\phi\left(\gamma_{i}\right)\right|+\sum a_{k}^{-}\left|\Re \widehat{\mu}_{1}\left(\gamma_{i}\right)+1\right| \leq n_{1} \varepsilon=1 / 2
$$

Thus $\left\{\gamma_{1}, \gamma_{2}\right\}$ is $F Z I_{0}\left(V^{2}, n_{2}^{\prime}, 1 / 2\right)$. By approximating ± 1, we can find $\sigma \in$ $M_{\mathrm{d}}^{+}(V)$ of length n_{2}^{\prime} with $\left|\Re \widehat{\mu}_{1}\left(\gamma_{1}\right)-\Re \widehat{\mu}_{1}\left(\gamma_{2}\right)\right| \geq 1$. This essentially reduces the problem to the first part of the argument.

Proposition 7.6. Assume F is a set of cardinality k. Suppose U is an e-neighbourhood and that there exists a symmetric e-neighbourhood V with $V^{2 k} \subseteq U$ such that F is local $F Z I_{0}(V, n, 0)$. Assume that either G is connected or $V=G$. Then there is an integer $N_{k}=N_{k}(U, k, n)$ such that F is $F Z I_{0}\left(U, N_{k}, 0\right)$.

Proof. Let $F=\left\{\gamma_{i}\right\}_{i=1}^{k}$. By the previous lemma, for each $i \neq j$, obtain a measure $\mu_{i j} \in M_{\mathrm{d}}^{+}\left(V^{2}\right)$, of length $\leq n_{2}$, satisfying $\widehat{\mu}_{i j}\left(\gamma_{i}\right)=1, \widehat{\mu}_{i j}\left(\gamma_{j}\right)=0$. Put $\mu_{i}=*_{j \neq i} \mu_{i j} \in M_{\mathrm{d}}^{+}\left(V^{2(k-1)}\right)$. Given Hermitian $\phi \in B\left(\ell^{\infty}(F)\right)$, we can obtain $\nu_{i} \in M_{\mathrm{d}}^{+}(V)$ with $\widehat{\nu}_{i}\left(\gamma_{i}\right)=\phi\left(\gamma_{i}\right)$. Put $\omega=\sum_{i=1}^{k} \mu_{i} * \nu_{i}$ to obtain the appropriate interpolating measure.

Corollary 7.7. There is a constant N_{k} such that if F is any set of cardinality k, not containing the identity, then F is $F Z I_{0}\left(N_{k}, 0\right)$.

Proof. It suffices to prove that singletons $\{\gamma\}$ (other than the identity character) are $F Z I_{0}(2, \pi / 4)$. To see this, first suppose γ is of order 2 . Then we need only interpolate values $\phi(\gamma)$ in $[-1,1]$, which we can do with either $\phi(\gamma) \delta_{e}$ or $\phi(\gamma) \delta_{x}$ where $\gamma(x)=-1$. Thus the order 2 elements are actually $F Z I_{0}(1,0)$.

If γ has order at least 4 (including infinite order), then given any $t \in \mathbb{T}$ there exists $x \in G$ such that $\left|\widehat{\delta}_{x}(\gamma)-t\right| \leq \pi / 4$. This suffices as every point in the unit ball is a convex combination of two points of modulus 1 .

Otherwise, γ has order 3 and we can find either a point x or pair x, y such that $|\gamma(x)-t| \leq \pi / 6$ or $|\gamma(x)+\gamma(y)-t| \leq \pi / 6$. In either case we can obtain a length 2 measure μ satisfying $|\widehat{\mu}(\gamma)-t| \leq \pi / 6$.

REFERENCES

[1] M. Déchamps-Gondim, Ensembles de Sidon topologiques, Ann. Inst. Fourier (Grenoble) 22 (1972), no. 3, 51-79.
[2] J. Florek, Interpolation by the Fourier-Stieltjes transform of a positive compactly supported measure, Colloq. Math. 54 (1987), 113-120.
[3] J. Galindo and S. Hernández, The concept of boundedness and the Bohr compactification of a MAP abelian group, Fund. Math. 159 (1999), 195-218.
[4] B. N. Givens and K. Kunen, Chromatic numbers and Bohr topologies, Topology Appl. 131 (2003), 189-202.
[5] C. C. Graham and K. E. Hare, ε-Kronecker and I_{0} sets in abelian groups, $I:$ Arithmetic properties of ε-Kronecker sets, Math. Proc. Cambridge Philos. Soc. 140 (2006), 475-489.
[6] -, -, ε-Kronecker and I_{0} sets in abelian groups, III: Interpolation by measures on small sets, Studia Math. 171 (2005), 15-32.
[7] -, -, ε-Kronecker and I_{0} sets in abelian groups, IV: Interpolation by non-negative measures, ibid. 177 (2006), 9-24.
[8] —, —, Characterizations of classes of I_{0} sets in discrete abelian groups, Rocky Mountain J. Math., to appear.
[9] C. C. Graham and A. T.-M. Lau, Relative weak compactness of orbits in Banach spaces associated with locally compact groups, Trans. Amer. Math. Soc. 359 (2007), 1129-1160.
[10] S. Hartman and C. Ryll-Nardzewski, Almost periodic extensions of functions, Colloq. Math. 12 (1964), 23-39.
[11] K. Kunen and W. Rudin, Lacunarity and the Bohr topology, Math. Proc. Cambridge Philos. Soc. 126 (1999), 117-137.
[12] J. M. López and K. A. Ross, Sidon Sets, Lecture Notes in Pure Appl. Math. 13, Dekker, New York, 1975.
[13] J.-F. Méla, Sur les ensembles d'interpolation de C. Ryll-Nardzewski et de S. Hartman, Studia Math. 29 (1968), 167-193.
[14] A. Pajor, Plongement de l_{1}^{n} dans les espaces de Banach complexes, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 741-743.
[15] -, Sous-espaces l_{1}^{n} des espaces de Banach, Travaux en Cours 16, Hermann, Paris, 1985.
[16] G. Pisier, Conditions d'entropie et caractérisations arithmétiques des ensembles de Sidon, in: Topics in Modern Harmonic Analysis (Torino/Milano, 1982), Ist. Naz. Alta Mat. Francesco Severi, Roma, 1983, 911-944.
[17] L. T. Ramsey, Comparisons of Sidon and I_{0} sets, Colloq. Math. 70 (1996), 103-132.
[18] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199-245.
[19] N. Th. Varopoulos, Tensor algebras over discrete spaces, J. Funct. Anal. 3 (1969), 321-335.

Department of Mathematics
University of British Columbia
Vancouver, B.C., Canada
Mailing address:
Department of Pure Mathematics
University of Waterloo
Waterloo, Ont. N2L 3G1, Canada
E-mail: kehare@uwaterloo.ca
RR\#1-D-156
Bowen Island, B.C. V0N 1G0, Canada
E-mail: ccgraham@alum.mit.edu

[^0]: 2000 Mathematics Subject Classification: Primary 42A55, 43A46; Secondary 43A25.
 Key words and phrases: Sidon set, interpolation set, I_{0} set, ε-Kronecker set.
 Both authors are partially supported by NSERC.
 $\left.{ }^{(1}\right)\left\{\gamma_{i}\right\}$ is quasi-independent if whenever $\sum \varepsilon_{i} \gamma_{i}=0$ for $\varepsilon_{i}=0, \pm 1$, then $\varepsilon_{i}=0$ for all i.
 ${ }^{(2)}\left\{n_{1}<n_{2}<\cdots\right\} \subset \mathbb{N}$ is Hadamard if there is $q>1$ (the ratio) such that $q n_{j}<n_{j+1}$ for all j.

