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In memory of Andrzej Makowski

Abstract. The paper is concentrated on two issues: presentation of a multivariate
polynomial over a field K, not necessarily algebraically closed, as a sum of univariate
polynomials in linear forms defined over K, and presentation of a form, in particular
a zero form, as the sum of powers of linear forms projectively distinct defined over an
algebraically closed field. An upper bound on the number of summands in presentations
of all (not only generic) polynomials and forms of a given number of variables and degree
is given. Also some special cases of these problems are studied.

1. Introduction. Let d be a positive integer and K a field of character-
istic not dividing d. If char K = 0 or char K > d it is known (see [12]) that
every polynomial F' € K|[z1,...,x,] of degree d can be written as

(1) F=3 full),
pn=1

where m < (”+g_1), fu € Klz] and [, € Klx1,...,2,] is a linear form
(1 <pu <m). For d < 3 we have a better bound m < ("3512) (see [13]) and
we conjecture that this holds in general. For infinite fields and for finite fields
of not too small cardinality this conjecture follows from Theorem 1 below.
But before we present the theorem, we recall that an n-ary form is said to
essentially depend on n wvariables if it cannot be expressed in fewer than n
variables after an invertible linear substitution (sometimes such a form is
called nondegenerate, see e.g. [5]). Later we shall also use this terminology
for collections of forms: a collection essentially depends on n variables if the
forms from the collection cannot be simultaneously expressed in fewer than
n variables after the same linear substitution.
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THEOREM 1. Let either char K = 0, or char K > d and |K| > 2d — 3.
Every polynomial F € K|z1,...,xy,] of degree d has a presentation (1), where

m < <n+d—2>‘
d—1

Moreover, if K is infinite and the leading form of F essentially depends on
n variables, then for every finite subset {py,...,ps} of K™\ {0}, there exists
a presentation (1) with m < (n:lrilf) and l,(p,) #0 (1 <r <s).

This theorem contains as special cases Theorem 4 of [12] (n = 2) and
Theorem 1 of [13] (d = 3). It also implies immediately

COROLLARY 1. Under the same assumption on K as in Theorem 1, every

form F € K[x1,...,x,] of degree d has a presentation
m
d
(2) Z a’/ll;u al/« € Kv
pn=1

where m < (n;ilf), and if F' essentially depends on n variables, the linear

forms 1, can be chosen in such a way that l,(p,) # 0 (1 < r < s) for any
given finite subset {py,...,p,} of K™\ {0}.

If K is algebraically closed, we may put a, = 1, p = 1,...,m. For
K = C this improves the result of Ellison [4]. For K = C, the first part of
the corollary has been ascribed in [3] to B. Reznick, but his proof was never

published.

COROLLARY 2. Under the assumption of Theorem 1 every polynomial
F € Klzi,...,xy,) of degree d can be written as

Z au(ly + bu)d’
pn=1

where m < (";ﬁ;l), ay, b, € K, and [, is a linear form over K.

Let §x(n,d) denote the space of forms with coefficients in K of degree
d in n variables x1,...,x,. We shall sometimes write Lx(n) in place of
Sk(n,1). In case K is fixed, we shall write §(n,d) and L(n) instead of
Sk (n,d) and L (n), respectively.

For char K = 0, K algebraically closed, n = 3, d = 3,4, F € §x(n,d),
Kleppe [8, Chapters 2 and 3|, obtained better bounds for m than that given
in Corollary 1, namely m < 5 and m < 7, respectively, while our Corollary 1
gives in these cases m < 6 and m < 10 and the easy (Ellison) bound gives
m < 10 and m < 15. However, in Corollary 1, we require that the linear
forms [;, whose dth powers appear in the presentation, do not belong to a
union of a fixed finite family of hyperplanes in F(n, 1), and it may be the
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case that under such restrictions our bound is the best possible. A better
but incorrect result for d = 3, n arbitrary is claimed in [3, p. 106].

For generic forms over an algebraically closed field of characteristic 0 or
> d, Corollary 1 can be much improved, namely as deduced by Iarrobino [6]
and Iarrobino and Kanev [7, Corollary 1.62] from a result of Alexander and
Hirschowitz [1], (n;rilf) can be replaced by

¢

n if d=2,

E (”*j_ 1)} F1 A (dn) = (3,5), (4,3), (4,4) or (4,5),

1 d—1
{— (n + )-‘ otherwise.
n d
\

Though Theorem 1 can be considered as the main result of the paper, we
also present other results. They mainly concern representability of a given
form as a linear combination or, in particular, as a sum of powers of linear
forms and are connected with the Waring problem and its extensions to the
case where one considers representability not only of generic forms but also of
specific forms. In the rest of the introduction we shall describe these results.

ro =

Problems of representability of a given form as a linear combination of
powers of linear forms, in particular problems of uniqueness of such represen-
tations, lead to questions concerning linear dependence of powers of linear
forms and related problems concerning presentations of the zero form. First,
we explain our results concerning linear dependence of powers of linear forms.
In a recent paper [2] A. Chlebowicz and M. Wolowiec-Musial considered the
problem of when linear forms 1, ...,[,, over a field of characteristic 0 have
the property that lil, ..., 12 are linearly independent or, in their terminology,
l1,...,lm are d-independent. In order to describe our results in this direction,
let us notice that §(n, d) is spanned by dth powers of linear forms. Moreover,
forms Iy, ..., are d-independent if and only if the matrix of coefficients of
their d-powers is of rank r. Next,

ifr < (”jﬁ;l) = dim§(n,d), then a generic collection of linear forms
l1,..., 1l in n variables is d-independent. Moreover, every d-independent col-
lection of linear forms can be extended to a collection of linear forms whose
d-powers form a base of §(n,d).

In particular, in the space §(n, 1)" of all collections (1,...,1l,), where l; €
F(n,1) and r < (”g‘_ifl), the subset composed of d-independent collections
(l1,...,1,) is non-empty and open.

In general, checking if a given family is d-independent can be a cumber-
some task. In the case of forms in one variable the theory is trivial. For two
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variables, dim(F(n,d)) = d+1 and a collection [y, ..., I, where r < d+1, is
d-independent iff the forms I1,...,[, are projectively different. This follows
immediately from the well known properties of the Vandermonde determi-
nant. As pointed out to us by A. Stadek, it follows easily from Lemma 2.4
of [2] that if char K =0, m =d(n—1)+1, and l; € K[z1,..., x| are linear
forms (1 < i < m) such that any n of them are linearly independent, then
the [; are d-independent. We shall complete this result by showing that it
also holds if char K > d and that, for all fields in question of cardinality at
least m, it is best possible.

THEOREM 2. Let char K = 0 or char K > d. If linear forms

where m = d(n — 1) + 1, have the property that any n of them are linearly
independent, then lil, e lffl are linearly independent. This is no longer true
ifm=dn—-1)+2<|K|+1.

If n = 2, then the theorem gives the above mentioned facts concerning
d-independence of linear forms. Hence Theorem 2 can be considered as a
multivariable generalization of properties of the Vandermonde determinant.
It seems that other similar results concerning relations between d-dependence
and d’-dependence for different d and d’ would also be of some interest.

The above results concerning linear dependence do not depend on arith-
metical properties of the field K. However, in order to go further, we assume
that the field K is algebraically closed. Then in (2) we may assume that
a,=1forp=1,...,m.

As already mentioned, the problems of presentation of a given form and
in particular problems of uniqueness of such presentations, lead to questions
concerning presentations of the zero form. We will be interested in presen-
tations of the zero form by powers of forms jointly essentially depending on
n variables. To describe our results in this direction we introduce some ter-
minology. We shall call a presentation (2) of F' a presentation of length m
or an m-presentation. We shall call a presentation (2) of F' a representation
of length m or an m-representation if f, = z% (1 < p < m), the forms 1,
are non-zero and projectively different. In [7] such a presentation is called
normalized.

We shall say that F' € §(n,d) has a lot of representations of length m if
for every finite subset {p,,...,p,} of K™\ {0}, F has a representation (2)
such that a, = 1 and [,(p,) #0 (1 < pu <m, 1 <r < s). We shall say
that a representation is simple if no proper subsum is zero. Let us call two
representations F' = ¢ + -+ + 1% = m{ + .- + m? disjoint if 1¢ # m? for
all i < r and j < s. We say that a form given as a sum ¢ + --- + [ has a
disjoint representation of length s if there exist forms my, ..., mgs such that
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G441 =md+ -+ md, where [ # m?’ for all i < r, j < s. Disjoint
representations of xil + -+ ajg are of particular importance, because it is
clear that they provide representations of zero by powers of forms jointly
essentially depending on m variables and vice versa. Finally, we shall say
that a representation of a given form F' is unique if any other representation
of the same length differs by a permutation of summands.

Theorem 2 implies

COROLLARY 3. For all n and d there exists a simple representation of 0
of length d(n — 1) + 2 by powers of linear forms jointly essentially depending
on n variables.

We conjecture that, if char K = 0 or char K > d, then d(n — 1) + 2 is
the least number with the above property. This is true for n < 4 by virtue
of Theorems 4, 7 and 8 below.

We next have

PROPOSITION 1. Let n>2. Assume that F' € §(n,d) admits an (r—1)-pre-
sentation. If there are no representations of F' of length r, then the dimension
of the space of r-presentations of F' is 1 greater than the dimension of the
space of (r — 1)-presentations of F.

Let ¢, q be the morphism of L(n)" into §(n,d) given by
Gngd 1y ) =184+ 12,

PROPOSITION 2. Let n > 2. Assume a generic form F in ¢p . q(L(n)")
admits two different r-representations. Then F admits two disjoint r-repres-
entations

F=l{+ - +1¢=204... 422
From the results of [6], [7] we shall draw the following consequences.

COROLLARY 4. Let n > 2 and either char K = 0 or char K > d. Then
for r > 1o the dimension of the space of r-representations of a generic form
is equal to nr — dimF(n,d) and thus is the same as the dimension of the
space of r-presentations.

COROLLARY 5. Assume that n > 2, char K = 0 or char K > d, and
F € §(n,d). Let r > rg. Assume that F' admits an r-representation and
let q be the dimension of the space of r-representations of F. Then q >
nr—dim §(n, d). Moreover, if there are no (r+1)-representations of F', then
g > nr —dimg§(n,d) +n — 1.

PROPOSITION 3. Let n > 2 and either char K = 0 or char K > d. For
every t > 2rg + 1 there exists a t-representation of the zero form whose
summands include at least r = [t/2] dth powers of algebraically independent
generic linear forms Iy, ... 1l,.
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THEOREM 3. Assume that the field K is algebraically closed and
r > max{l, (n —1)(d—1)}.
Then x4 + -+ + 2% admits a lot of r-representations.

In the rest of the introduction we shall describe our results concerning
mainly forms in two, three and four variables. In the case of forms in two
variables our results are the most complete and satisfactory. In fact, we have
the following

THEOREM 4. Let K be an algebraically closed field and r > max{2,d}.
Then z‘f + ajg has a lot of r-representations by powers of linear forms in two
variables. If either char K = 0, or char K = p, p” ||[d + 1 and p**! > d + 1,
then conversely the existence of such an r-representation implies r = 2 or
r > max{2,d}.

Let §(n,d,s) be the subset of §(n,d) consisting of all forms for which
the minimal length of a representation is equal to s. For binary forms over
a field of characteristic 0 or > d we have

THEOREM 5. Let K be an algebraically closed field of characteristic O or
>d. If F € §(2,d,s) and F' has an r-representation, then either r = s <
(d+1)/2 or F has infinitely many r-representations.

Moreover, for every binary form of degree d:

(a) the set of representations of length d+ 1 has a component of dimen-
ston d+ 1,

(b) the set of representations of length r > d + 1 has a component of
dimension 2r — (d + 1),

(c) there are a lot of representations of any length r > d + 1.

THEOREM 6. Let K be an algebraically closed field of characteristic 0 or
> d. Every binary form over K of degree d > 2 essentially depending on two
variables admits a lot of representations of length d.

The existence of representations of length at most d has already been
proved by Kleppe [8, Chapter 1]. Theorem 6 is best possible as shown by

PROPOSITION 4. Let F = :Eclllng, ¢ =max(dy,ds) < dy + dy. Then

FeF(2,di+dy,c+1)
and there are a lot of representations of F' of length ¢+ 1.
The first part of this proposition for d; = 1 can be found both in |[8,
p. 11] and in [12, p. 656].
We know from Theorem 5 that every form F € F(2,d,s), where s >

(d+1)/2, admits infinitely many representations of any length r > s, if it
has at least one such r-representation. However, it is not known if it admits



REPRESENTATIONS OF MULTIVARIATE POLYNOMIALS 207

a representation of every length r > s, and whether it admits a lot of r-
representations when it admits infinitely many r-representations. Moreover,
Kleppe [8] proved that F(2,d, d) consists exactly of the forms equivalent to
xlxg_l by a linear invertible substitution. A similar description of §(2,d,r),
where (d+3)/2 < r < d—1, is not known, but it is evident that all these
sets are not empty.

Every binary form F' over an algebraically closed field can be written as
a product

J
(%) F = [ J(aizy + bia2)*,
i=1
where the factors a;x1 + b;xo are projectively different.

However, except in the cases where 7 = 1,2, or 3, the minimal length
of representations of F' depends not only on j and the sequence of expo-
nents di, ..., d;, but also on specific arithmetic properties of a1, b1, ..., a;,b;.
Hence the description of the minimal length of a representation of a specific
form F given as in (x) may be a difficult task. However, it would also be
interesting to know the minimal length of a representation of a generic form
F, given as in (%), for fixed dy,...,d;.

We are only able to partially extend the above results about binary forms
to forms in three or four variables. We have the following results in these
directions.

THEOREM 7. Letd > 2, K be an algebraically closed field, and r > 2d—1.
Then x’jl—i-xg—i—xg has a lot of r-representations. Conversely, if char K = 0 or
char K > d, and x?—l-xg—i-xg has a disjoint r-representation, then r > 2d—1.

COROLLARY 6. If, under the assumptions of Theorem 7, a form F €
3(3,d) over K essentially depends on three variables and admits two disjoint
representations of length s and r, respectively, then s +r > 2d + 2.

COROLLARY 7. If, under the assumptions of Theorem 7, a form F €
5(3,d, s) admits some but only finitely many representations of length r <
2d+1—s, thenr = s.

COROLLARY 8. If F' € §(3,4,s) has some but only finitely many r-
representations over an algebraically closed field K with char K # 2,3, then
r=s<25.

THEOREM 8. Let K be an algebraically closed field. Let the number n of
variables be even, n = 2m. Then xil+' - +ad admits a disjoint representation
of every length v > md.

Moreover, if char K = 0 or char K > d, and if n = 4 and r < 3d—3, then
every disjoint r-representation is obtained by adding an s-representation of
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zd + :13? and an (r — s)-representation of z¢ + x, where {i,j} U {k,1} =
{1,2,3,4} and r —d > s > d. In particular r > 2d.

COROLLARY 9. Let K be an algebraically closed field and char K = 0
or char K > d. If a form F € §(4,d) over K essentially depends on four
variables and admits two disjoint representations of lengths s and r, then
s+r>2d+4.

COROLLARY 10. Let K be an algebraically closed field and char K = 0 or
char K > d. If a form F € §(4,d, s) essentially depending on four variables
admits some but only finitely many representations of length r < 2d + 3 — s,
then r = s.

M. Wolowiec-Musial [15] asked whether, if a representation of a form
F over an algebraically closed field is unique, then the length of the rep-
resentation is minimal. For binary forms and char K = 0 or char K > d
the affirmative answer follows from Theorem 5. For quartic ternary forms
and char K # 2,3 the affirmative answer follows from Corollary 7. For qua-
ternary forms and char K = 0 or char K > d a partial affirmative answer
follows from Corollary 9. Here are some other results pointing towards the
affirmative answer.

THEOREM 9. If K is algebraically closed, F' € §F(n,d,s) and F has only
a < oo representations of length r, then

r=3s if s=1,a >0,
r<s+d—-3 i s>2,a>0.

COROLLARY 11. Let K be an algebraically closed field. If F € §(n,2,s),
where s > 2, then F' has infinitely many representations of length r for every
r>S.

COROLLARY 12. Let K be an algebraically closed field. If F € §(n,3,s)
and F admits some, but only finitely many, representations of length r, then
r=s.

At this point, it should be mentioned that, in general, uniqueness of
s-representations of a given form is not implied by the fact that the form
has only finitely many such representations. For example, a general form of
degree d in n variables, where d > n > 2, has a unique representation of
minimal length if and only if n = 3,d = 5 (see Theorem 1 in [10]), though
for n = 3, it has finitely many such representations whenever d > 5 is not
divisible by 3.

However, notice that (by the cited theorem of Iarrobino), for r < 7y a
generic form in §(n,d,r) admits only finitely many r-representations, and
Mella has proved (see Remark 4.6 in [10]) that, for » < rg — 1, such a
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representation is unique. This improves a theorem of Iarrobino and Kanev
[7, Theorem 2.6(ii), pp. 62—-63|.

We should like to thank A. Stadek for many remarks which have helped
to improve the presentation.

2. Proof of Theorem 1. Denote by Lin(ly,...,[l;) the linear space
spanned over K by the elements l1, ..., of Lxg(n), and by [* the coefficient
vector of [ € Lg(n).

LEMMA 2.1. Let char K = 0 or char K > d. If F € §(n,d) and | €
Lg(n)\ {0} satisfy OF /0l = 0, then F essentially depends on fewer than n
variables Uy, . .., l, which all satisfy 1;(I*) = 0.

Proof. Let Iy =1, la,...,l, be a basis for Li(n), where [;(I*) = 0 for
1 <j<nifl(l*) #0, and [;(I*) =0 for 1 < j < n otherwise. Notice that in
the second case [,,(I) # 0. We have
F = Fy(ly,la,. .., 1)
for some Fyy € F(n,d). Then, in the first case,
OF  0Fy
0=—=——1I("
al 8.%1 ( )’
and in the second case,
OF  0Fy
=— = —1,(I").
ol Oxy, (")
Hence either 0Fy/0x1 = 0 or OF/0x, = 0, and F' depends on fewer than n
variables [;, which all satisfy {;(I*) = 0.

LEMMA 2.2. Letn > 1,d > 1, s > 0, char K = 0 or char K > d and
|K| > 2s+ 1. If a form F € §(n,d) essentially depends on n variables
and l1,...,ls € Lig(n)\ {0}, then there exists a form | € L (n) such that
Ui, ¢ K (1<r<s)and

O*F O*F O*F

Proof. For fixed r = 1,..., s, the set of forms [ such that 9>F/9l0l, = 0

is a proper Zariski closed subset in L (n). In fact, if it is not a proper subset,

we should have
o (ory
oI\l )

for all [ € L (n) and hence 0F/0l, € K. Since F is of degree d > 1 it follows
that OF/0l, = 0, hence by Lemma 2.1, F' depends essentially on fewer than
n variables, contrary to the assumption. Hence if K is infinite, the set of

0
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l € Lk (n) such that

O?*F PF
BIGIR 70, s ool 70

is not empty and open in L (n). If K is finite the set of | € Lg(n) satisfying
the above condition has at least |K|* — 1 — s(|K|""! — 1) elements.

It remains to consider the set of forms [ € Lk (n) such that 9> F/9I% = 0.
Suppose that §?F/912 = 0 for all I € Lk (n). Then, in particular, ?F/0x?
=0fort=1,...,n. Hence d < n, and F' is a linear combination of square
free monomials

d
(k) H Ti;
i=1
for some distinct indices ¢; < n. Now

(=i zi)
= 9T _9 i 0.
a($i1 + xi2)2 ]rgx j ?é

Moreover, the partial derivatives

82
oz, + xiQ)Q
for fixed x;,,x;i,, when applied to different square free monomials yield 0 or
different monomials of degree d — 2. Hence

O*F
(i, + xiy)? 70.

Thus the set of forms [ for which 92 F/9I? # 0 is non-empty and for K infinite
the lemma is proved. For K finite there are at most (2|K| — 1)|K|""2 — 1
non-zero forms [ satisfying

b

OPF
=7 =

(see |9, Theorems 6.26 and 6.27]).
Therefore, the number of forms [ in Lg(n) such that

9*F O*F
12 70, 910,

0

#0 (1<r<ys)

is at least
K" = s(|K["" = 1) = 2|K| = 1)|K["* > |[K]” = (s + 2)| K| + (s + 1);

on the other hand, the number of forms [ € Lx(n) \ {0} such that /I, € K
for some r < s is at most

s(|K|—1).
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The condition |K| > 2s + 1 guarantees that the former quantity is greater
than the latter.

DEFINITION 1. Let P C K™\ {0}. Let S(F, P) be the minimal length of
a presentation (2) of the form F' with the condition that
(A) lu(p) # 0 for all p € P,
(B) lg_l are linearly independent (1 < u < m) in §(n,d — 1).
In case such presentations do not exist, S(F, P) is defined to be oco.
S(n,d,s) is defined as the maximum of all S(F, P) for all forms F' €

§(n,d) essentially depending on n variables and for all P ¢ K™ \ {0} of
cardinality s.

For p = (p1,...,pn) € K™, OF/Opx denotes the partial derivative of F
with respect to p1z1 + -+ - + Py,

LEMMA 2.3. Let F = Fl(ll,...,lk), F € S(k,d), lj € LK(TL) and I
essentially depend on k variables. If p, € K™ (1 <r <'s) and for each r,
oF
Q -
p,T
then

70,

F= Zaul&, where m < S(k,d,s), a, € K, lo, € Lin(ly, ..., 1),
pn=1

lop(p,) #0 for all T < s and lg;l (1 < p < m) are linearly independent.

Proof. For each r < s,

(4) ((py),---,1ls(p,)) #0
since otherwise we should obtain
OF _z’“:aﬂ Olj <~ OF B

ame - 8—33] (I1,-lk) ‘ Ip,x

j=1 j=1 O

contrary to (3). From (4) and the definition of S(k,d, s) it follows that
1w

Fr=) alf m < S(k,d,s), a, € K, l1, € Li(n),
pn=1

hu(i(pp), - k(py) 0 1<p<m,1<r<s)
and the l‘f;l are linearly independent. Now, it suffices to take

lop =l (- k)
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LEMMA 2.4. Ifd > 1, s > 0, and either char K = 0, or char K > d and
|K| > 2d + 2s — 3, then

d—2
S(n,d,s) < (n+ >
d—1

Proof. We proceed by induction on n +d. If n +d = 3 we have n = 1,
d = 2 and the assertion is trivially true. Assume that it is true for all n > 1,
d > 2 with n 4+ d < N and consider F' € §(n,d) essentially depending on n
variables, where n > 1, d > 2, n+d = N, and a finite subset {p,,...,p,}
of K™\ {0}. If n = 1, the assertion is trivially true. If n > 2, by Lemma 2.2,

there exists [ € L (n) such that [* is projectively different from p,,..., p
and

O*F
(5) oz 7 0

Consider first d = 2. Taking

OF\? /| 9*F
(6) Fy= (w) / ol

O*F

T — <r<s).
0lop,x 70 (dsrss)

we obtain
O(F — Fy) 0
ol -
hence, by Lemma 2.1, F' — Fj essentially depends on n; < n variables,
(7) F—-—Fy=F(l,...,ln),

where I € %’(nl,d), lj S LK(TL) and l](l*) =0.

We have n1 = n — 1, since otherwise F' would depend on fewer than n
variables. Since the [; are linearly independent and [;(I*) =0 (1 < j < n—1),
and [* is projectively different from p,, ..., p,, for all r < s we have

(ll(pr)7 R ln—l(pr)> # 0.

Now, by the inductive assumption we have
n
(8) Fi(r1,...,xp-1) = Zaul%w where a, € K, i, € Lg(n — 1),
n=2

9) lul(p,), - L(p) #0 (1<r<s)
and the forms [y, (2 < p < n) are linearly independent. Now, taking
_ 1 29F
202Fjor ' T or
(10) lop =lbpu(l, .. lhm1)  (2< <0,

a
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from (6)—(8) we obtain
(11) F=>auj,
pn=1

where, by (5) and (9), lou(p,) #0 (1 <r < s).
Assume now that

> Auoy=0, A, €K

If Ay # 0, then lyp; depends linearly on Iy, (2 < p < n), hence by (10)
and (11), F depends on [; (1 < j < n—1), contrary to the assumption. Thus
A1 = 0 and by the linear independence of the ly,, A, = 0 for all u < n.

Assume now that d > 3. The form 9F/Jl of degree d — 1 essentially
depends on ny < n variables. By (5) and Lemma 2.3 it follows that

P&
8—22 1971 where mOSS(no,d—l,s—i-l),aMEK, ZOMELK(H),

ol o
pn=1
(12) lou(I") #0,  lou(p,) #0 (1 <7 <)
and
(13) 13;2 (1 < p < myg) are linearly independent.
Taking
— S aﬂlgu
0 dloy, (1)
we obtain
OF -F) _,
ol o
hence, by Lemma 2.1, F — Fy = FP(I9,...,1%_,), where l? € Lgk(n) and
l?(l*) = 0. Let T be a minimal subset of {1,...,mo} with the property
that for a certain point p projectively different from 0, p,,...,p, and some
linearly independent forms Iy, ...,l,, in Lx(n), and a certain F; in §(n1, d),
ulg
(14) F— Zdlo l“ =By, ), Li(p)=0,
,u
(15) lop & L1n(l17 coylp,) forpeT.
(The set {1,...,mg} has this property with p = [*, [; = l = F?, so such

sets exist.) Slnce li(p) =0 (1 <j<ng) we have ny <n— 1 We assert that
ny=n-—1. Indeed7 supposing the contrary we could find p; € T such that
loy, & Lin(ly,...,1l,,) (otherwise F' would depend on n; variables) and a
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point p # 0 such that Iy, (p) = 0= 1l1;(p) (1 < j < nq). Since loy,, (p,) # 0,
p is projectively different from p, (1 < r < s). Taking
=T \ {[L <my: l()“ S Lin(loul,ll, .. ~aln1)}
we should obtain (14) and (15) with 7" replaced by 77 & T, contrary to
the choice of T'. Thus ny = n — 1 and since the [; are linearly independent
(1<j<n-—1)andlj(p) =0, for every r < s we have
<l1(pr) In— 1(pr)> 7& 0.
Hence, by the definition of S(n — 1, d, s) we have

mo+m1
(16) Fl(xlv cee 7-7;11—1) = Z aulfw ay, € K, llu € Ln—l(K)7
p=mo+1

where m; < S(n —1,d, s),
(17) hp(li(Pr)s -5 ln—1(pr)) 0 (mo < p <mg+mq, 1 <7 <s)

and the l‘f;l are linearly independent.
It follows from (14) and (16) that

mo+m1

a,léd
(18) —Zd o T+ S aulia(ln, o laen)

p=mo+1

where, by (12) and (17), the relevant linear forms do not vanish at p, (1 <
r < s). Assume now that

mo-+m1
(19) AT+ D A, l)T =0, A, €K
peT p=mo+1

By (15) there exists z € Lg(n) \ {0} such that l,(2*) # 0 (1 € T') and
[;(2*) =0 (1 < j <n—1). Differentiating (19) with respect to z we obtain

Z A lOu 210#( ) =0,

peT
hence, by (13), A, =0 for all u € T', and by (19),
mo+m1
o A )T =0,
p=mo+1

Therefore, by the linear independence of the l‘lj_1 we have A, = 0 for all p.

It now follows from (18) and the inductive assumption that

S(F,s) <|T|+mi <mo+mi < S(no,d—1,s+1)+S(n—1,d,s)

<n+d—3> <n+d—3> <n—|—d—2>
< + = .
d—2 d—1 d—1
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Since F' was an arbitrary element of §(n, d) essentially depending on n vari-
ables, it follows that
d—2
S(nvda8)§<n+ )a
d—1

and the inductive proof is complete.

LEMMA 2.5. If the forms lg_l (1 < p<m), wherel, € Lg(n), span the
space §(n,d — 1), then for every i < d the forms lfj_i (1 < p < m) span
S(TL, d— Z)

Proof. Let F € §(n,d — i) be given as

d—1i
F=> Al AjeKm,...,xna]N(n—1,5).
j=0

By the assumption

d—1i .I'd_l_j m
F; = ZAj — LA = Zaulfb_l, a, € K, l, € Lg(n),
s pt(d—J—k) 4=

hence .
O O~ il 0L\
F = T"}L_l = Zaulu a—wn .
pn=1
Proof of Theorem 1. For d = 1 the assertion is obvious. For d > 2, let

F = E?:o Fy, where F5 € §(n,d). Assume F} essentially depends on ng < n
variables. By Lemma 2.4 with s = 0 we have F; = T:dl ad#ld where

l,l,?
9 -
md§<nd+d )S(n—i-d >7
d—1 d—1
agy € K, 1, € Lg(n) and the lfj_l are linearly independent (1 < p < myg).
Since the dimension of F(n,d — 1) is ("+d72) and, by Lemma 2.4, this space

d—1
is spanned by 1971 | € Lg(n), there exist forms Iy (md <pu< ("2&;2))

such that the forms lfj_l (1 <p< (njl'ilf)) span the space §(n,d— 1), thus,

by Lemma 2.5, for each § < d we have

("2

Fs = Z a(g#lz
pn=1
and it suffices to take f, = Zgzo a(;uz‘;, where for 6 = d and p > mg we
take as, = 0.
This proves the first part of the theorem. In order to prove the second
part observe that if K is infinite we can apply Lemma 2.4 with an arbitrary s.
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Proof of Corollary 2. 1t suffices to apply Theorem 1 to the polynomial
aziHF(xl/:vnH, ey @ /Tpt1) € F(n+ 1,d) and then substitute x, 1 = 1.

3. Proof of Theorem 2 and Corollary 3. We shall prove the first
assertion of the theorem by induction on d. For d = 1 the assertion is obvious.
Assume it is true for the exponent d — 1 and let I; be the linear forms in
question. By an invertible linear transformation we can achieve that

(20) li = Ti—(d—1)(n—1) for ¢ > (d - 1)(n - 1).
Fori < (d—1)(n—1) let

n
l; = Zaijxj, aij € K.
j=1
If a;; = 0, then the forms l; and z = [y (4_1)(n-1), for kK = 2,...,n, are

linearly dependent. Hence by the assumption a;; # 0 for all ¢ < (d—1)(n—1).
Assume now that

d(n—1)+1
(21) Y All=0, AeK.
i=1
Differentiating with respect to x1 we obtain
(d=1)(n—1)
Z dAiaillZC'l_l + dA(d,l)(n,l)Jrll’il_l =0.
i=1

By the inductive assumption we have
dAiail =0 (1 << (d - 1)(71 - 1)) and dA(dil)(nil)Jrl = 0,

hence A4; =0 (1 < i < (d—1)(n —1)). It now follows from (20) and (21)
that

Z A(d—l)(n—l)-‘,—z‘xg =0,
i=1

hence A; = 0 for all 4.

In order to prove the second assertion of the theorem take m = d(n — 1)
+2,l; = 2?11 afflxj (1 <i < m), ly, = z,, where the a; are distinct
elements of K (we assume 0° = 1). It is easy to check that any n among the
[; are linearly independent. On the other hand, we have

d(n—1)
ld

P = Z affy (1<i<m), I =al= fyn1),
k=0
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where

(22) = (" ) 1+
i2+2i3++(n—1)in=~k
i14+in=d
Hence the dimension of the space generated by the (¢ is at most d(n—1) +1.

Proof of Corollary 3. Since the forms lf constructed in the proof of the
second part of Theorem 2 are linearly dependent we have

d(n—1)42
Z Al =0, AeK.

On the other hand, for every j < d(n—1)+2 the forms [¢ (i # 7) are linearly
independent, by the first part of Theorem 2, hence all proper subsums of the
above sum are different from 0, and in particular A; # 0. Moreover, [;/1; € K
implies ¢ = j, and the I; jointly essentially depend on n variables. Explicitly,
we have
d(n—1)+1
Ai=— [ (@-a) (Q<i<dn-1)+1), Agm =1
j=1
J#i
4. Proofs of Propositions 1-3 and Corollaries 4—5. Let

FEqbnrd(LK( )T)v F#O

Let W be an irreducible component of qbn rq(F). Assume that W does not
contain any representation of F'. That means that for every (I1,...,l,) € W,
there exist 4,j = 1,...,7, ¢ # j, and a € K such that [; = al;. Since W is
irreducible, we may find 4,j = 1,...,r, @ # j, such that for all (I1,...,[,) €
W, l; = alj for some a € K. We may assume that ¢ = r — 1, j = r. Then for
some b € K, we have an (r — 1)- presentation F=1+ -+ (bl_1)% Let W’
be an irreducible component of gi)n 1 d(F ) containing all such presentations.
Then we will prove the following

LEMMA 4.1. dimW = dim W’ — 1.
We shall use the following classical result:

(x) Let¢: X — Y be a morphism of irreducible algebraic varieties defined
over an algebraically closed field K. Assume that ¢(X) =Y. Then,
for every y € ¢(X), the dimension of every irreducible component of
¢~ (y) is at least diim X —dim Y. Moreover, for a generic pointy € Y,
the dimensions of all irreducible components of ¢~ (y) are equal to

dim X —dimY.
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This result, under the assumption ¢(X) =Y, can be found in [14, Chap-
ter I, Sec. 6.3, first part of Theorem 7|. The proof presented there works
under the weaker assumption ¢(X) =Y.

Proof of Lemma 4.1. We use the notation introduced above. We may

represent ¢, . ¢ as the composition (Z)EL rd © d)il 4> Where

O Lic(n) = 8l a(Lic(n)) CF(n, ), B pallr, - 1) =t 1),

and

¢31,r,d : erlz,r,d(LK(n)T) - %(TL, d)7 ¢31,r,d(f1’ KR fT) =f+-+
Notice that ¢111,r, 4 is a finite morphism. For a generic r-presentation I’ =
19+ ...+ 14 of F contained in W, let I, = al,_1 and f; = I$,..., fr_1 =
(1+a®)i?_|. Then
F=fi+ o
Let ¢p: W — ¢711,r—1,d(W,) be the rational map defined by

Y(ln, ) = (14,1, (T + el y).
Then (W) = ¢y r—1,4(W’) and a generic fiber of ¢ is of dimension 1. Thus
by (%),
dim W = dim(¢p 1. a(W')) + 1.

Since ¢7lz,r—1,d is a finite morphism,
dim(g,_y (W) = dim W',

and thus our lemma has been proved.
The lemma implies at once Proposition 1.

Proof of Proposition 2. Assume that the proposition is not true. Consider
independent generic linear forms lq,...,[, in n variables and a generic F' =
194 -+1d. Then (Iy,...,1,) € Qﬁ;},d(F). Let W be the irreducible component
of qb;}’d(F) containing (I1,...,1). For every (z1,...,2) € W we have 2 = l}i
for some 4,5 = 1,...,7. Since the algebraic properties of all independent
generic collections of linear forms indexed by (1,...,7) are the same, we
have proved that there exists an integer ¢ such that for every independent
generic collection (l1,...,1.) of linear forms and for (z1,...,z,) belonging
to the irreducible component of qb;ja’d(l‘il, ..., 1) containing (Iy,...,1,) we
have z; = l;. On the other hand, since every permutation o of (1,...,r)
determines another independent generic collection (la(1)7 e la(r)), we find
that the above property of the integer ¢ holds for all integers 1,...,r. Thus
z1 = l1,...,2, = I, and this means that there is only one point in the
irreducible component. This contradicts our assumption.
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Proof of Corollaries 4 and 5. By larrobino’s theorem [6] for every r > rq
the mapping ¢, , 4 is dominant, hence the dimensions of generic fibers of
Gnr+1,d and ¢y, ;. g differ by n. For n > 2 a generic fiber of ¢, , 4 corresponds
to an r-representation. Now an application of (x) quoted in the proof of
Lemma 4.1 gives Corollaries 4 and 5.

Proof of Proposition 3. In Proposition 2 and its proof we may replace
the assumption that “F admits two different representations” by “F admits
two different projectively inequivalent representations” and then we conclude
that the forms I;, z; are also projectively inequivalent. The assumption is
valid for r > 7. Since 0 = 19+ - +19—2¢ — ... — 24, this proves the assertion
of Proposition 3 for t even > 2r. In order to prove it for ¢ odd > 2ry note
that the same type of argument gives the following. Let F' be a generic
form in §(n,d), r > ro. Then F' admits an r-representation and an (r + 1)-
representation. Moreover, there exist representations F' = (§+---+19 = 2¢ +
. -+z7€l+1 such that [;/z; is non-constant fori =1,...,rand j=1,...,r+1.

5. Proofs of Theorems 3 and 4
LEMMA 5.1. Let

(23) Bi(z1, ... zm) = (1) [ (= —2).

1<j<k<m
J#i#k
Then for every u < m — 2,
m
(24) P,:=> Bil'=0.
i=1

Proof. B; is of degree (mz_l), hence P, is either 0 or of degree (m2—1) +u <
("). On the other hand, if p < ¢ and 2, = 24, then B; = 0 for i # p, ¢,

(25) P, = (Bp+ By)z,
and
Bo+By)  JI  (z—z)7"

1<j<k<m

{jvk}n{pﬂ]}:@

= (—1)° H (2q — %) H(ZJ — zq) + (=1)* H(zp - %j) H (25 — 2p)

J<q J>q Jj<p Jj>p
J#p 374
= (—1)° H (zp — 2j) H(Zj —2p) + (=1)7 H(Zp - %) H (25 — 2p)
J<q J>q Ji<p Ji>p
J#p i7q

= (07 [ =)+ (070! [ (=) =0

J#p,q J#P:q
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Thus by (25), P, is divisible by [],, (2

at least (7). Conclusion (24) follows.

— z4) and is either 0 or of degree

LEMMA 5.2. Ford > 1, xil + -+ essentially depends on n variables.

Proof. Assume that

et tal = Py, o),

where F' € F(n — 1,d) N K[y1,...,Yn—1], li € L(n). Differentiating with
respect to x; we obtain

Z OF 0l;
8y] ox;’
Since by the assumption made at the beginning of the paper d # 0 (mod

char K), it follows that xil_l, ..., 2371 are linearly dependent, which is false
for d > 1.

Proof of Theorem 3. Let
I'={n+1,...,n+r}.

Choose (ai,...,a,) € K" such that a; # a; for i # j. Let U C K" be
composed of all (@41, .., antr) such that all a; are different from ay, ..., ay
and a; # a; for i # j in I. Then the group S of permutations of I acts on U.

Fort=1,...,n, let

Li=xz1+a@a+-+a o,
and for a = (ap41,-.-,an4r) EUV and i=n+1,...,n+r, let
li(a) = 21 + aizo + -+ al .
Then by Lemma 5.1 applied with m =n+r > d(n — 1) + 2,
n+1 d(n—1) n4+r

ZBi(al,.. y Aptr ) Z fuZB (at,...,an4r)al =0,
=1

where f, is given by (22). It follows that

n n+r
(26) > Ala)lf == Y Aia)li(a)
i=1 i=n+1
where
Q1) Aia) = 21O = KL | R

n<j<k<n+r
Now by (22) and (27), Ai(a),..., Aptr(a) do not vanish on U, are sym-
metric, and for 7 € S and ¢ € I we have

Ai(r(@)) = Ars(a).
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By a linear substitution (or a linear change of variables) [; — vy;, where
i=1,...,n, we obtain from (26) the equality

n—+r
(28)  Ar(a)yl + Ax(a)yd + -+ An(a)yl = — > Ai(a)li(a)’,
i=n+1
where [;(a) is the linear form (in the variables y1, . .., 9, ) obtained from I;(a)
by the above substitution.
Now, another substitution in (28),
VAi(a)yi — 2,
where i = 1,...,n, gives for every a € U the equality
n+r
(29) A+tal=— ) Ala)mia),
i=n+1
where, for i = n+ 1,...,n + r, m;(a) is the linear form (in z1,...,2,)

obtained from [; by this substitution. In contrast to the previous substitution,
the substitution depends on a € U and, to be precise, in order to consider
roots of degree d of the functions A; we should replace U by its properly
determined cover, also denoted by U (e.g. one may take normalization of U
in the extension of K(an41,-..,an4+r), where ani1,...,anty are considered
as variables, obtained by adjoining all roots of A;(a) of degree d, for i =
1,...,n).

Moreover, notice that, since the functions A;(a) for i = 1,...,n are
symmetric, the group S acts on the described family of representations of
28 4. + 22, More exactly, the image of a representation (29) under 7 € S
is the representation

n+r
Atotal=— Y Ar(@)mir(a).
i=n+1
Since l;(7(a)) = l-(;(a) and the above substitutions are invariant under the
action of S, we still have

mi(7(a)) =m,g(a) fori=n+1,...,n+r.
Hence the image of (29) under 7 can be written as
n+r
d d
Atta=— > Ai(r(a)m(a).

i=n+1
We are going to prove that there are a lot of representations of zf—l—- . -—I—zg
in the above described family parametrized by U. Since U is irreducible, if
this is not the case, then there exists p = (p1,...,pn) € K™\ {0} such that,
for every representation (29) and for every a € U, there exists an index
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i€ {n+1,...,n+r} such that m;(a)(p) = 0. Again, since U is irreducible,
there exists a fixed index i such that, for all @ € U, we have

mi,(a)(p) = 0.

However, for every 7 € S,

Mz (io) (@) (P) = miy(7(a))(p) = 0.
Thus, for all indicesi =n+1,...,n+r and all a € U, we have
mi(a)(p) = 0.
This means that the forms my11(a), ..., m4@—-1)+2(a) jointly depend on n—1
variables. For d > 1 this contradicts the equality (29), since by Lemma 5.2

the left hand side essentially depends on m variables. This completes the
proof except for the case d = 1, which is trivial.

LEMMA 5.3. In every r-representation of 0 by sums of dth powers of
linear forms we have
r > min{d,d; } + 1,
where dy = d+ 1 if char K = 0, and d; = p**! dl,"fl if char K = p and
p’||d+1.
Proof. We may assume without loss of generality that one of the linear
forms in question is x, hence it is enough to show impossibility of the equation

,
(30) v =) (ajm1+ 1)),
j=1

where min{d,di} >r>1,a; € K,l; € Lg(n —1) N K[z,...,x,] and
(31) the forms a;z1 + [; are non-zero and projectively different.
If char K = 0, we have (¢) # 0 for all i < 7. If char K = p, let d = 37 e;p,
0 < ¢; < p. By the definition of v we have ¢; =p—1 (0<i<v), ¢, <p-—1
and by the Lucas theorem (¢) # 0 mod p for i < (¢, + 1)p” = di.

Therefore, the identity (30) gives

(32) Zalf“: (0<i<r).

By (31) we may assume that [; # 0 for all j < r. If {" # 0, then we infer
from (32) that

D :=det (aél;l_i) o<i<r = 0.
1<5<r

However, by a reduction to a Vandermonde determinant

(33) D= Hld I1 (a—]—‘;—;>

= 1<i<y<r ]
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and, by (31), D # 0. This shows that [, = 0 and (32) gives
Dy = det( jl] )OSi<7’—1 =0.
1<j<r—1

Since

(34) sz I1 (ﬁ—‘;—>;&o

j=1 1<i<j<r lj

we have a contradiction.

REMARK 5.4. For char K = p > 0 the number 1 in Lemma 5.3 cannot
be replaced by 2, as shown by the example d =p?> +p—1,dy =p
p+1
:—x1+z $1+C+19€2 )

where (41 is a primitive root of unlty of order p+ 1 in K.

Proof of Theorem /. The first part of the theorem follows from Theo-
rem 1. The second part follows from Lemma 5.3 and the trivial observation
that if p**1 > d + 1, then

d+1
v+1 —_
p {py+1}_d+1'

6. Proofs of Theorems 5-7 and Proposition 4

Proof of Theorem 5. Let F' € §(2,d,s) have an r-representation. If r <
(d+1)/2, then s <r < (d+1)/2 and unless r = s we have a representation
of 0 = F — F of length at most 7 + s < d + 1, contrary to Lemma 5.3. If
r > (d+1)/2, then r > rg and by Corollary 5 the set of r-representations
of F has dimension at least 2r — (d + 1) > 0, thus it is infinite. This proves
the first part of the theorem.

In order to prove the second part notice that by Theorem 2 for a generic
point (I1,...,lar1) € Li(2)™ the set {If,... 14, ,} is a basis of F(2,d).
Hence for every form F, the set ¢2_ é 41, 4(F) intersected with a non-empty

d+1 is of dimension d + 1. This proves (a).

open subset of Lx(2)

For a fixed form F' of degree d and for fixed linear forms lgy9,...,(,
by ar1a(F+ ld+2 + -+ +19) has a component of dimension d + 1, and this
implies that ¢ (F ) has a component of dimension d+ 1+ 2(r —d —1) =
2r — (d+1). This proves (b), and since the condition /;(p) # 0 does not

influence the dimension, also (c).

LEMMA 6.1. Let K be an infinite field with char K = 0 or char K > d,
and let f € K[z] be of degree d. If f(x) # a(x + b)¢ + ¢ for all a,b,c in K,
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then for every finite subset S of K there exist (1,...,084-1 and by,...,bq in
K such that B; # B fori#j, i ¢S (1 <i<d), b; #0 (1 <i<d) and

d—1
(35) F@) = bu(z + B)" + ba.
pn=1
Proof. Let 7;(y1,...,y;) be the ith elementary symmetric polynomial of
Y1,-..,y; and let
d

d »
(36) )= 3 (e
i=0 N
We follow the proof of Theorem 4 in [12] and put
d .
Gy, - va2) =[] =) (=" aa—imi2(y1, -, ya—2)
1<i<j<d—2 =2
d—2 -1
<[] (ad—l + ) (=1 taai(rica(yns - Ya-2) + Y2 (UL, Ya2))
=1 i=2
+ (=) aoy;a-a(y1, - - ’yd—2)>-
Further, for £ < d — 2 we put
d—3 N
Hi(y1, - ya—2) = > (=1 (aa-9-iaq-2j — ag-1-ia4-3)
ij=0
X Ti(y17 e Yk—1Yk+15 - - - yd—?)Tj(yh e Yk—1,Yk+15 - - - 7yd—2)7
d
Hy1(y1s--5ya-2) = Y (=1 ag_imia(y1, ... ya—2),
=2

(37) Hd(ylv"'ayd—Q)
—2

IS

Hi(y1, ... ya—2)y}
d—2 d—1 ,
FTL 5~ 90 (S D moaln o va) — v )

j= i=1
J#k

(dil(—l)iad—m—l(yh e 7yd—2)>d

i=1

= aq — (—1)

£
Il

T d—2 ,d—1

11 (Z (—Diag—imi-1(y1, - Ya—2) — kad—1>Hd—1
k=1 Vi=1

Since ag # 0 we have G # 0, and in particular Hy_1 # 0. Since f(x) #
a(z + b)d + ¢, we have afl_g_i — ag_1—iaq—3—; 7 0 for at least one i < d — 3,
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hence Hy # 0 for all k < d — 2. Also for the same reason

QL

-1

(38) (—1'ag—iTi-1 (Y1, - - - Ya—2)/Ha—1 € K.
1

<.
Il

Finally, the rational function H; is not identically 0, since it is of order 1
with respect to y;. Indeed, denoting by ord R the order of a rational function
R with respect to y; we have

ordag =0, ordH; =0, ordyil =d,

d—2
ord H(yj —y)=d—3,
=2
d .
Ord(Z(_l)lad—z‘Ti—l(ylv s Yd—2) — y1Hd—1> =2
=1

and for 2 < k < d— 2,

ord Hy, = 2, ordyg =0, ord H — Yk)

J#k
d .
ord (Z(_l)zad—“—i—l(ylv coYd2) — kad—l) = 1.
i=1
Finally,
d—1 ' g
Ord( (=Dag—ii-1(y1, .- 7yd—2)> —d,
i=1
d—1 ‘
Ord(Z(_l)lad—iTi—l(yl’ s Yd—2) — ?/kHd—l) =ordHyg 1=1 (k>1),
i=1

hence all terms in the sum (37) except one have order 0 and the exceptional
term has order 1. Thus there exist 31,...,84—2 in K such that

d
(39) G(Br,- .., Ba—2 H k(B1,- - Ba—2) # 0

moreover O ¢ S (1 <k <d—2) and by (38),

d—1

Ba1 =Y _(~=1'agiTi1(Br,- -, Ba—2)/Ha(Br, . ., Ba—2) & S

i=1
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Since G(f1,...,04—2) # 0 we have §; # §; (1 < i < j < d). Now, for
k<d-—2put

bk — ( )de(/Bla' "7ﬂd72)
11521 (B85 = Bi)Ha—1(Br, - ., Ba—s)
and
bd—l _ _Hd—l(/gla cee 7ﬂd 2) '
4 (Ba—1 — Br)
It follows that
d—1
(40) b i=aq— Y buBt=Hy(Br,...,BRu2)
pn=1

and, by (39), b, #0 (1 < p <d).
Now, a tedious computation based on Lemma 3 of [12] shows that for

k < d,

1 .. 1 ag 1 ... 1
b = (—1)FHkH1 B oos Br—1 Brt1 --- Ba—1 ax / B oo Ba- 7
51? % /Bk—i-l 5d 1 dd—2 2 53:%

and since, by the choice of G4_1,

1 cee 1 ag
/ﬁl ﬂd—l ar | _ 0
lli_2 6371 aq—1

we have

Now, (35) follows from (36) and (40).

Proof of Theorem 6. If I’ has a representation of length 2 the asser-
tion follows from Theorem 4. If F' has no representation of length 2, let
{p1,...,ps} be a subset of K2\ {0}. Choose ¢ € K such that F(1,£) # 0
and

pr2—E&pr1 #0 (1 <1 <s),
and put

S:{Lzlgrgs}.
Epr1 — Pr2
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By Lemma 6.1 there exist elements (1,...,84-1, b1,...,bq of K such that
Bi # Bj for i # j, Bi € S, bi # 0 and
d—1

F(z,éx+1)=> byl + B)" + ba.
pn=1

It follows that

U

-1

F(z1,22) =Y bu(w1 + Bulws — €21)) + ba(za — 1)
1

=
Il

The linear forms 1+ 8, (x2 —&x1) (1 < p < d) and xo — &z are projectively
different, since the 3, are distinct. Moreover, for all r < s,

pr1+ Bu(pre —&pr1) # 0, pr2a —Epr1 #0
by the choice of £ and S.

Proof of Proposition 4. Assume that ¢ = max(dy,ds) = da,d; > 0. First,
notice that there is no representation of a:ih:rg? of length smaller than ¢+ 1.
In fact, if

gyl = ¢ 14
then taking (0/0x1)™ of both sides, we obtain a representation of dllng of
length at most r, thus a representation of the zero form of length at most
r + 1 by (d2)th powers of binary linear forms. Thus by Theorem 4, either
r4+1>de+2andr >dos+1=c+1,orr=1,1; =axs, which is impossible
for di > 0.

On the other hand, there exist a lot of representations of 3:1 :c2 of length
¢+ 1. In fact, let again ¢ = dy. Then for every a € K \ {0}, we have

di+d
(da + 1)< LY 2) ahpde — Za D203 (1 + allmg) 2,
do
7=0
where ( is a primitive root of 1 of degree dy 4+ 1. This completes the proof
of Proposition 4.

Proof of Theorem 7. The first part of the theorem follows from Theo-
rem 3.

To prove the second part we proceed by induction on d. For d = 2 the
assertion is obvious. Assume that it is true for the exponent d — 1 (d > 3)
and let

(41) e radrad =19+ 41

be a disjoint v-representation with the least possible v. We may assume that
l; € K[x1,x9] exactly for i < u. Then for i > u,

l; = a;x3 + my, aiEK*,miELK(Q).
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By the choice of v we have l;/z; ¢ K (1 < i < wu,j =1,2) and m; # 0
(u < i < w). Differentiating (41) with respect to x3 we obtain
v
(42) 24t = Z a;ld7".
i=u+1
If dim Lin(my+1, ..., my) = 2, then by the inductive assumption
v—u+1>2(d—1)+2=2d, hence v>2d—1.

If dimLin(myt1,...,my) = 1, then m; = bm (v < i < v), b € K*,
m € Lk (2) and the equation (42) gives, by Lemma 5.3,

(43) v—u+1>d+1.

Moreover, after substitution xz = 0, the equation (41) gives

u v
z?+x§:§ 1§ +m? g bd,
i=1 i=u+1

hence, by Theorem 4,
(44) u+1>d.
Adding the inequalities (43) and (44) we obtain v > 2d — 1.

Proof of Corollary 6. Two disjoint representations of F' of length r and
s, respectively, would give a representation of 0 = F' — F' of length at most
r + s by dth powers of linear forms jointly essentially depending on three
variables. If r + s < 2d 4 2 this contradicts Theorem 7.

Proof of Corollary 7. Cancelling the identical terms in the represen-
tations of length r and s, respectively, we obtain disjoint representations
Fr=i{+-+14 =mé+ - +md, where r — 1’ = s — 5. If I essen-
tially depends on at most two variables, then since F’ has only finitely many
r’-representations we have, by Corollary 5, s’ <’ < (d + 1)/2, hence unless
r’ = s’ there is a representation of 0 = F’ — I’ by fewer than d + 2 dth pow-
ers of linear forms, contrary to Lemma 5.3. Thus 7/ = s/, whence r = s or
I’ essentially depends on three variables. In the latter case, by Theorem 7,

r' + s > 2d+ 2, hence r + s > 2d + 2, contrary to the assumption.

Proof of Corollary 8. Here rg = 6, thus if » > 6 then there exist, by
Corollary 5, either 0 or infinitely many r-representations, so s < r < 5 and
either r = s =5 or r+ s < 9. In the latter case r = s by Corollary 7.

Proof of Theorem 8. Since, by Theorem 4, xf—l—xﬁlﬂ admits a lot of repre-
sentations of every length > d, xil—}—- . '—}—xgm admits a disjoint representation
of every length r > md.

The second part of the theorem is proved by double induction on d and r.
For d < 2 or r < 3 there is no representation of ¢ + 24 + 24 + 4 of length
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r < 3d — 3, thus the assertion holds trivially. Assume that it holds for the
exponent d — 1 (where d > 3) and for representations of length < r — 1 with
exponent d (where r > 4). Let

(45) ettt adyad=104.. 412
be a disjoint r-representation. If l,,/z; = ¢ € K, then c? # 1 and

4 T
Zw? +(1- cd)x;l = Z 14,
i=1 v=1

1#£] v;w
Thus by the inductive assumption there exist i, k,l and S C {1,...,r}\ {w}
such that {i,j,k,1} ={1,2,3,4} and

x?—l—(l—cd)x?:Zlg, a2 + o = Z 19,

vES ve{l,...,rP\(SU{w})

Then
xf—}—ﬁ? = Zlf}l+lfm

vES
so the inductive assertion holds.
Therefore assume that
(46) ly/rj ¢ K forv<r j<A4

We may assume that I, € K[z, x2, x3] exactly for v < u. Thus
ly = ayzg + my,
where a, € K*, my, € Li(3)\ {0} and u < v < r.
Differentiating (45) with respect to x4 we obtain

d—1 d-1
Ty :Zavlv .

v>Uu

It
0 :=dimLin(my;v > u) =3

we have dim Lin(xy4,l,; v > u) = 4, and since r — u + 1 < 3d — 2, by the

inductive assumption there exist w and a subset S of {u + 1,...,r}\ {w}
such that u <w <r,r—u—d—2>|S|>d—-1and
(47) a4 — a4 = Z apldt.

vesS

Since |S| < r—u —d—2 < 2d — 5, by Theorem 7, the forms x4, [y, [, for
v € S jointly depend on two variables, hence there exists m € Lx(3) \ {0}
such that

ly = ayxq + bym



230 A. BIALYNICKI-BIRULA AND A. SCHINZEL

for v =w or v € S. Equation (47) implies
¢ —14 = Zlg —em?,
veS
where ¢ € K, which subtracted from (45) gives
af +af + 28 = Z 14+ em?.,
vgSU{w}

Since the number of summands on the right hand side is r — | S| < 2d — 2, by

Theorem 7 the representation is not disjoint and by (46) we have em? = acz

for some k < 3. Taking {7,7} = {1,2,3} \ {k} we obtain
zd + a:;l = Z 14,
vgSU{w}
hence by (45),

diali= Y I
veSU{w}

Moreover, by Theorem 2, s = |S| + 1 satisfies r — d > s > d, which proves
the inductive assertion in the case § = 3.
If 6 <2 we choose p = (p1,p2,p3) # 0 such that

my(p) =0 foru<ov<r.

Substituting x4 = 0 in (45) and differentiating with respect to pyx; + paze +
p3T3 we obtain

u
praf "+ poa "+ paag Tt =Y L(p)l
v=1

hence by (46) and Theorems 4 and 7,
(48) u>d—1.
On the other hand, differentiating (45) with respect to x4 we obtain

d—1 d—1
Ty :5 ayly ",

v>u
thus by Theorems 4 and 7,
(49) r—u—i—lZ{Qd %f5:2’
d+1 ifd=1.
Adding the inequalities (48) and (49) for 6 = 2 we obtain
r+1>3d—1,

contrary to r < 3d — 3. Thus 6 = 1, m, = bymy for some my € Li(3)\ {0}
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and b, € K (u < v <r), and substituting x4 = 0 in (45) we obtain

u
(50) xil—kmg%—xg:z:ld—kmOZbd
v=1 v>U

If the representations are disjoint, Theorem 7 yields
u+1>2d—1,

which together with (49) gives r + 2 > 3d, contrary to r < 3d — 3. Thus the
representations (50) are not disjoint and by (46) there exists k£ < 3 such that

:Ek—mo Zbd

v>U
Applying the above long argument with z; in place of 4 we infer that
either the inductive assertion holds or all forms [, with the coeflicient of xy,
different from 0 belong to K{[zj, x4, hence the [, for v < w are in K{z;, ;]
where {7, j} = {1,2,3} \ {k}. It follows from (45) that

xd —i—:r Zl xﬁ—i—xff:z:lff,
v>Uu

and by Theorem 4,
r—d>u>d.

The inductive assertion follows in full generality, the second statement of the
theorem is proved, and the last statement follows from the double inequality
for r.

Proof of Corollary 9. Two disjoint representations of F' of respective
lengths r and s would give a representation of 0 = F — F of length at
most r + s by dth powers of linear forms jointly essentially depending on
four variables. If r + s < 2d + 4, this contradicts Theorem 8.

Proof of Corollary 10. Cancelling the identical terms in the representa-
tions of length r and s, respectively, we obtain disjoint representations

Fr=1f !

+o 1 =mi 4 4 m%, where r—1 =55
If F' essentially depends on at most two variables, then since F’ has only
finitely many r’-representations, we have, by Corollary 5,

s'<r' <(d+1)/2;
hence, unless ' = s', there is a representation of 0 = F’' — F’ by fewer
than d + 2 dth powers of linear forms, contrary to Lemma 5.3. Thus r’ = &/,

whence either r = s or F’ essentially depends on at least three variables. In
the latter case, by Corollary 6,

r +5 >2d+ 2,

hence either r + s > 2d + 4, contrary to the assumption, or r =71/, s = s'. In
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the latter case F' essentially depends on four variables and by Corollary 9,
r+ s > 2d + 4, contrary to the assumption.

7. Proof of Theorem 9. Assume first that s = 1 and F' has a repre-
sentation of length r > s,

(51) F:iyg
=1

Since s = 1 we have

(52) F=1l+0.
Without loss of generality we may assume that {lo,...,[l;} is a linear basis
of Lin(lp,...,l.) over K, hence ly,...,l; are linearly independent, and so

algebraically independent over K. Since [1,[ls are projectively different, we
have ¢ > 1 and

q
(53) Li=Y ajlj, a;jeK (1<i<r)
7=0

It follows from (51) and (53) that
T q d
lg =F= Z(Z aijlj) 5
i=1 j=0
hence by the algebraic independence of ly, ..., [,

T q
F:Z(aiolo-l-tzaijlj)d (tEK).
i=1 j=1

Since aj; = 1 by (53), this gives infinitely many r-representations of F'.
Now assume that s > 2 and we have a representation

where 11, ...,l; are linearly independent of Is_1,ls, while [; = z;—¢(ls—1,1s)
(t<i<s—2)with z; € Lrg(2) (1 <i<s—t—2). Since s > 2 we have d > 2.
Ifr > s+d—2 we apply Theorem 4 and infer the existence of infinitely
many identities

t 5s—2 r—s+2
(54) F=Y i+ Y ziello1, 1)+ D bylls-1,1)%,
i=1 1=t+1 Jj=1

where the forms [,.; are projectively different from each other and from 0, z;_;.
Therefore, [,;(ls—1,ls) are non-zero and projectively different from [; (1 <
i < s—2). Hence (54) gives infinitely many r-representations of F'.
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Corollaries 11 and 12 follow at once from Theorem 9.
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