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REPRESENTATIONS OF MULTIVARIATE POLYNOMIALS BYSUMS OF UNIVARIATE POLYNOMIALS IN LINEAR FORMSBYA. BIA�YNICKI-BIRULA and A. SCHINZEL (Warszawa)In memory of Andrzej M¡kowskiAbstra
t. The paper is 
on
entrated on two issues: presentation of a multivariatepolynomial over a �eld K, not ne
essarily algebrai
ally 
losed, as a sum of univariatepolynomials in linear forms de�ned over K, and presentation of a form, in parti
ulara zero form, as the sum of powers of linear forms proje
tively distin
t de�ned over analgebrai
ally 
losed �eld. An upper bound on the number of summands in presentationsof all (not only generi
) polynomials and forms of a given number of variables and degreeis given. Also some spe
ial 
ases of these problems are studied.1. Introdu
tion. Let d be a positive integer and K a �eld of 
hara
ter-isti
 not dividing d. If charK = 0 or charK > d it is known (see [12℄) thatevery polynomial F ∈ K[x1, . . . , xn] of degree d 
an be written as(1) F =

m
∑

µ=1

fµ (lµ) ,

where m ≤
(

n+d−1
d

), fµ ∈ K[z] and lµ ∈ K[x1, . . . , xn] is a linear form
(1 ≤ µ ≤ m). For d ≤ 3 we have a better bound m ≤

(

n+d−2
d−1

) (see [13℄) andwe 
onje
ture that this holds in general. For in�nite �elds and for �nite �eldsof not too small 
ardinality this 
onje
ture follows from Theorem 1 below.But before we present the theorem, we re
all that an n-ary form is said toessentially depend on n variables if it 
annot be expressed in fewer than nvariables after an invertible linear substitution (sometimes su
h a form is
alled nondegenerate, see e.g. [5℄). Later we shall also use this terminologyfor 
olle
tions of forms: a 
olle
tion essentially depends on n variables if theforms from the 
olle
tion 
annot be simultaneously expressed in fewer than
n variables after the same linear substitution.2000 Mathemati
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Theorem 1. Let either charK = 0, or charK > d and |K| > 2d − 3.Every polynomial F ∈ K[x1, . . . , xn] of degree d has a presentation (1), where

m ≤

(

n+ d− 2

d− 1

)

.Moreover , if K is in�nite and the leading form of F essentially depends on
n variables, then for every �nite subset {p1, . . . ,ps} of Kn \{0}, there existsa presentation (1) with m ≤

(

n+d−2
d−1

) and lµ(pr) 6= 0 (1 ≤ r ≤ s).This theorem 
ontains as spe
ial 
ases Theorem 4 of [12℄ (n = 2) andTheorem 1 of [13℄ (d = 3). It also implies immediatelyCorollary 1. Under the same assumption on K as in Theorem 1, everyform F ∈ K[x1, . . . , xn] of degree d has a presentation(2) m
∑

µ=1

aµl
d
µ, aµ ∈ K,

where m ≤
(n+d−2

d−1

), and if F essentially depends on n variables, the linearforms lµ 
an be 
hosen in su
h a way that lµ(pr) 6= 0 (1 ≤ r ≤ s) for anygiven �nite subset {p1, . . . ,ps} of Kn \ {0}.If K is algebrai
ally 
losed, we may put aµ = 1, µ = 1, . . . ,m. For
K = C this improves the result of Ellison [4℄. For K = C, the �rst part ofthe 
orollary has been as
ribed in [3℄ to B. Rezni
k, but his proof was neverpublished.Corollary 2. Under the assumption of Theorem 1 every polynomial
F ∈ K[x1, . . . , xn] of degree d 
an be written as

m
∑

µ=1

aµ(lµ + bµ)d,

where m ≤
(n+d−1

d−1

), aµ, bµ ∈ K, and lµ is a linear form over K.Let FK(n, d) denote the spa
e of forms with 
oe�
ients in K of degree
d in n variables x1, . . . , xn. We shall sometimes write LK(n) in pla
e of
FK(n, 1). In 
ase K is �xed, we shall write F(n, d) and L(n) instead of
FK(n, d) and LK(n), respe
tively.For charK = 0, K algebrai
ally 
losed, n = 3, d = 3, 4, F ∈ FK(n, d),Kleppe [8, Chapters 2 and 3℄, obtained better bounds for m than that givenin Corollary 1, namely m ≤ 5 and m ≤ 7, respe
tively, while our Corollary 1gives in these 
ases m ≤ 6 and m ≤ 10 and the easy (Ellison) bound gives
m ≤ 10 and m ≤ 15. However, in Corollary 1, we require that the linearforms li, whose dth powers appear in the presentation, do not belong to aunion of a �xed �nite family of hyperplanes in F(n, 1), and it may be the
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ase that under su
h restri
tions our bound is the best possible. A betterbut in
orre
t result for d = 3, n arbitrary is 
laimed in [3, p. 106℄.For generi
 forms over an algebrai
ally 
losed �eld of 
hara
teristi
 0 or
> d, Corollary 1 
an be mu
h improved, namely as dedu
ed by Iarrobino [6℄and Iarrobino and Kanev [7, Corollary 1.62℄ from a result of Alexander andHirs
howitz [1℄, (

n+d−2
d−1

) 
an be repla
ed by
r0 =































n if d = 2,
⌈

1

n

(

n+ d− 1

d

)⌉

+ 1 if 〈d, n〉 = 〈3, 5〉, 〈4, 3〉, 〈4, 4〉 or 〈4, 5〉,
⌈

1

n

(

n+ d− 1

d

)⌉ otherwise.
Though Theorem 1 
an be 
onsidered as the main result of the paper, wealso present other results. They mainly 
on
ern representability of a givenform as a linear 
ombination or, in parti
ular, as a sum of powers of linearforms and are 
onne
ted with the Waring problem and its extensions to the
ase where one 
onsiders representability not only of generi
 forms but also ofspe
i�
 forms. In the rest of the introdu
tion we shall des
ribe these results.Problems of representability of a given form as a linear 
ombination ofpowers of linear forms, in parti
ular problems of uniqueness of su
h represen-tations, lead to questions 
on
erning linear dependen
e of powers of linearforms and related problems 
on
erning presentations of the zero form. First,we explain our results 
on
erning linear dependen
e of powers of linear forms.In a re
ent paper [2℄ A. Chlebowi
z and M. Woªowie
-Musiaª 
onsidered theproblem of when linear forms l1, . . . , lm over a �eld of 
hara
teristi
 0 havethe property that ld1, . . . , ldm are linearly independent or, in their terminology,

l1, . . . , lm are d-independent. In order to des
ribe our results in this dire
tion,let us noti
e that F(n, d) is spanned by dth powers of linear forms. Moreover,forms l1, . . . , lr are d-independent if and only if the matrix of 
oe�
ients oftheir d-powers is of rank r. Next,if r ≤
(n+d−1

d−1

)

= dimF(n, d), then a generi
 
olle
tion of linear forms
l1, . . . , lr in n variables is d-independent. Moreover, every d-independent 
ol-le
tion of linear forms 
an be extended to a 
olle
tion of linear forms whose
d-powers form a base of F(n, d).In parti
ular, in the spa
e F(n, 1)r of all 
olle
tions (l1, . . . , lr), where li ∈
F(n, 1) and r ≤ (

n+d−1
d−1

), the subset 
omposed of d-independent 
olle
tions
(l1, . . . , lr) is non-empty and open.In general, 
he
king if a given family is d-independent 
an be a 
umber-some task. In the 
ase of forms in one variable the theory is trivial. For two
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variables, dim(F(n, d)) = d+1 and a 
olle
tion l1, . . . , lr, where r ≤ d+1, is
d-independent i� the forms l1, . . . , lr are proje
tively di�erent. This followsimmediately from the well known properties of the Vandermonde determi-nant. As pointed out to us by A. Sªadek, it follows easily from Lemma 2.4of [2℄ that if charK = 0, m = d(n− 1) + 1, and li ∈ K[x1, . . . , xn] are linearforms (1 ≤ i ≤ m) su
h that any n of them are linearly independent, thenthe li are d-independent. We shall 
omplete this result by showing that italso holds if charK > d and that, for all �elds in question of 
ardinality atleast m, it is best possible.Theorem 2. Let charK = 0 or charK > d. If linear forms

li ∈ K[x1, . . . , xn] (1 ≤ i ≤ m),where m = d(n − 1) + 1, have the property that any n of them are linearlyindependent , then ld1, . . . , ldm are linearly independent. This is no longer trueif m = d(n− 1) + 2 ≤ |K| + 1.If n = 2, then the theorem gives the above mentioned fa
ts 
on
erning
d-independen
e of linear forms. Hen
e Theorem 2 
an be 
onsidered as amultivariable generalization of properties of the Vandermonde determinant.It seems that other similar results 
on
erning relations between d-dependen
eand d′-dependen
e for di�erent d and d′ would also be of some interest.The above results 
on
erning linear dependen
e do not depend on arith-meti
al properties of the �eld K. However, in order to go further, we assumethat the �eld K is algebrai
ally 
losed. Then in (2) we may assume that
aµ = 1 for µ = 1, . . . ,m.As already mentioned, the problems of presentation of a given form andin parti
ular problems of uniqueness of su
h presentations, lead to questions
on
erning presentations of the zero form. We will be interested in presen-tations of the zero form by powers of forms jointly essentially depending on
n variables. To des
ribe our results in this dire
tion we introdu
e some ter-minology. We shall 
all a presentation (2) of F a presentation of length mor an m-presentation. We shall 
all a presentation (2) of F a representationof length m or an m-representation if fµ = zd (1 ≤ µ ≤ m), the forms lµare non-zero and proje
tively di�erent. In [7℄ su
h a presentation is 
allednormalized.We shall say that F ∈ F(n, d) has a lot of representations of length m iffor every �nite subset {p1, . . . ,ps} of Kn \ {0}, F has a representation (2)su
h that aµ = 1 and lµ(pr) 6= 0 (1 ≤ µ ≤ m, 1 ≤ r ≤ s). We shall saythat a representation is simple if no proper subsum is zero. Let us 
all tworepresentations F = ld1 + · · · + ldr = md

1 + · · · + md
s disjoint if ldi 6= md

j forall i ≤ r and j ≤ s. We say that a form given as a sum ld1 + · · · + ldr has adisjoint representation of length s if there exist forms m1, . . . ,ms su
h that
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ld1 + · · · + ldr = md
1 + · · · +md

s, where ldi 6= md
j for all i ≤ r, j ≤ s. Disjointrepresentations of xd

1 + · · · + xd
n are of parti
ular importan
e, be
ause it is
lear that they provide representations of zero by powers of forms jointlyessentially depending on n variables and vi
e versa. Finally, we shall saythat a representation of a given form F is unique if any other representationof the same length di�ers by a permutation of summands.Theorem 2 impliesCorollary 3. For all n and d there exists a simple representation of 0of length d(n− 1) + 2 by powers of linear forms jointly essentially dependingon n variables.We 
onje
ture that, if charK = 0 or charK > d, then d(n − 1) + 2 isthe least number with the above property. This is true for n ≤ 4 by virtueof Theorems 4, 7 and 8 below.We next haveProposition 1. Let n≥2. Assume that F ∈F(n, d) admits an (r−1)-pre-sentation. If there are no representations of F of length r, then the dimensionof the spa
e of r-presentations of F is 1 greater than the dimension of thespa
e of (r − 1)-presentations of F .Let φn,r,d be the morphism of L(n)r into F(n, d) given by

φn,r,d (l1, . . . , lr) = ld1 + · · · + ldr .Proposition 2. Let n ≥ 2. Assume a generi
 form F in φn,r,d(L(n)r)admits two di�erent r-representations. Then F admits two disjoint r-repres-entations
F = ld1 + · · · + ldr = zd

1 + · · · + zd
r .From the results of [6℄, [7℄ we shall draw the following 
onsequen
es.Corollary 4. Let n ≥ 2 and either charK = 0 or charK > d. Thenfor r ≥ r0 the dimension of the spa
e of r-representations of a generi
 formis equal to nr − dimF(n, d) and thus is the same as the dimension of thespa
e of r-presentations.Corollary 5. Assume that n ≥ 2, charK = 0 or charK > d, and

F ∈ F(n, d). Let r ≥ r0. Assume that F admits an r-representation andlet q be the dimension of the spa
e of r-representations of F . Then q ≥
nr−dimF(n, d). Moreover , if there are no (r+1)-representations of F , then
q ≥ nr − dimF(n, d) + n− 1.Proposition 3. Let n ≥ 2 and either charK = 0 or charK > d. Forevery t ≥ 2r0 + 1 there exists a t-representation of the zero form whosesummands in
lude at least r = ⌊t/2⌋ dth powers of algebrai
ally independentgeneri
 linear forms l1, . . . , lr.
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Theorem 3. Assume that the �eld K is algebrai
ally 
losed and

r > max{1, (n− 1)(d− 1)}.Then xd
1 + · · · + xd

n admits a lot of r-representations.In the rest of the introdu
tion we shall des
ribe our results 
on
erningmainly forms in two, three and four variables. In the 
ase of forms in twovariables our results are the most 
omplete and satisfa
tory. In fa
t, we havethe followingTheorem 4. Let K be an algebrai
ally 
losed �eld and r ≥ max{2, d}.Then xd
1 + xd

2 has a lot of r-representations by powers of linear forms in twovariables. If either charK = 0, or charK = p, pν ‖ d + 1 and pν+1 > d+ 1,then 
onversely the existen
e of su
h an r-representation implies r = 2 or
r ≥ max{2, d}.Let F(n, d, s) be the subset of F(n, d) 
onsisting of all forms for whi
hthe minimal length of a representation is equal to s. For binary forms overa �eld of 
hara
teristi
 0 or > d we haveTheorem 5. Let K be an algebrai
ally 
losed �eld of 
hara
teristi
 0 or
> d. If F ∈ F(2, d, s) and F has an r-representation, then either r = s ≤
(d+ 1)/2 or F has in�nitely many r-representations.Moreover , for every binary form of degree d:(a) the set of representations of length d+ 1 has a 
omponent of dimen-sion d+ 1,(b) the set of representations of length r ≥ d + 1 has a 
omponent ofdimension 2r − (d+ 1),(
) there are a lot of representations of any length r ≥ d+ 1.Theorem 6. Let K be an algebrai
ally 
losed �eld of 
hara
teristi
 0 or
> d. Every binary form over K of degree d ≥ 2 essentially depending on twovariables admits a lot of representations of length d.The existen
e of representations of length at most d has already beenproved by Kleppe [8, Chapter 1℄. Theorem 6 is best possible as shown byProposition 4. Let F = xd1

1 x
d2

2 , c = max(d1, d2) < d1 + d2. Then
F ∈ F(2, d1 + d2, c+ 1)and there are a lot of representations of F of length c+ 1.The �rst part of this proposition for d1 = 1 
an be found both in [8,p. 11℄ and in [12, p. 656℄.We know from Theorem 5 that every form F ∈ F(2, d, s), where s >

(d+ 1)/2, admits in�nitely many representations of any length r ≥ s, if ithas at least one su
h r-representation. However, it is not known if it admits



REPRESENTATIONS OF MULTIVARIATE POLYNOMIALS 207

a representation of every length r ≥ s, and whether it admits a lot of r-representations when it admits in�nitely many r-representations. Moreover,Kleppe [8℄ proved that F(2, d, d) 
onsists exa
tly of the forms equivalent to
x1x

d−1
2 by a linear invertible substitution. A similar des
ription of F(2, d, r),where (d+ 3)/2 ≤ r ≤ d − 1, is not known, but it is evident that all thesesets are not empty.Every binary form F over an algebrai
ally 
losed �eld 
an be written asa produ
t

(⋆) F =

j
∏

i=1

(aix1 + bix2)
di ,where the fa
tors aix1 + bix2 are proje
tively di�erent.However, ex
ept in the 
ases where j = 1, 2, or 3, the minimal lengthof representations of F depends not only on j and the sequen
e of expo-nents d1, . . . , dj, but also on spe
i�
 arithmeti
 properties of a1, b1, . . . , aj , bj.Hen
e the des
ription of the minimal length of a representation of a spe
i�
form F given as in (⋆) may be a di�
ult task. However, it would also beinteresting to know the minimal length of a representation of a generi
 form

F, given as in (⋆), for �xed d1, . . . , dj.We are only able to partially extend the above results about binary formsto forms in three or four variables. We have the following results in thesedire
tions.Theorem 7. Let d ≥ 2, K be an algebrai
ally 
losed �eld , and r ≥ 2d−1.Then xd
1+xd

2+xd
3 has a lot of r-representations. Conversely , if charK = 0 or

charK > d, and xd
1+xd

2+xd
3 has a disjoint r-representation, then r ≥ 2d−1.Corollary 6. If , under the assumptions of Theorem 7, a form F ∈

F(3, d) over K essentially depends on three variables and admits two disjointrepresentations of length s and r, respe
tively , then s+ r ≥ 2d+ 2.Corollary 7. If , under the assumptions of Theorem 7, a form F ∈
F(3, d, s) admits some but only �nitely many representations of length r ≤
2d+ 1 − s, then r = s.Corollary 8. If F ∈ F(3, 4, s) has some but only �nitely many r-representations over an algebrai
ally 
losed �eld K with charK 6= 2, 3, then
r = s ≤ 5.Theorem 8. Let K be an algebrai
ally 
losed �eld. Let the number n ofvariables be even, n = 2m. Then xd

1+· · ·+xd
n admits a disjoint representationof every length r ≥ md.Moreover , if charK = 0 or charK > d, and if n = 4 and r ≤ 3d−3, thenevery disjoint r-representation is obtained by adding an s-representation of
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xd

i + xd
j and an (r − s)-representation of xd

k + xd
l , where {i, j} ∪ {k, l} =

{1, 2, 3, 4} and r − d ≥ s ≥ d. In parti
ular r ≥ 2d.Corollary 9. Let K be an algebrai
ally 
losed �eld and charK = 0or charK > d. If a form F ∈ F(4, d) over K essentially depends on fourvariables and admits two disjoint representations of lengths s and r, then
s+ r ≥ 2d+ 4.Corollary 10. Let K be an algebrai
ally 
losed �eld and charK = 0 or
charK > d. If a form F ∈ F(4, d, s) essentially depending on four variablesadmits some but only �nitely many representations of length r ≤ 2d+ 3− s,then r = s.M. Woªowie
-Musiaª [15℄ asked whether, if a representation of a form
F over an algebrai
ally 
losed �eld is unique, then the length of the rep-resentation is minimal. For binary forms and charK = 0 or charK > dthe a�rmative answer follows from Theorem 5. For quarti
 ternary formsand charK 6= 2, 3 the a�rmative answer follows from Corollary 7. For qua-ternary forms and charK = 0 or charK > d a partial a�rmative answerfollows from Corollary 9. Here are some other results pointing towards thea�rmative answer.Theorem 9. If K is algebrai
ally 
losed , F ∈ F(n, d, s) and F has only
a <∞ representations of length r, then

r = s if s = 1, a > 0,

r ≤ s+ d− 3 if s ≥ 2, a ≥ 0.Corollary 11. Let K be an algebrai
ally 
losed �eld. If F ∈ F(n, 2, s),where s ≥ 2, then F has in�nitely many representations of length r for every
r ≥ s.Corollary 12. Let K be an algebrai
ally 
losed �eld. If F ∈ F(n, 3, s)and F admits some, but only �nitely many , representations of length r, then
r = s.At this point, it should be mentioned that, in general, uniqueness of
s-representations of a given form is not implied by the fa
t that the formhas only �nitely many su
h representations. For example, a general form ofdegree d in n variables, where d ≥ n > 2, has a unique representation ofminimal length if and only if n = 3, d = 5 (see Theorem 1 in [10℄), thoughfor n = 3, it has �nitely many su
h representations whenever d ≥ 5 is notdivisible by 3.However, noti
e that (by the 
ited theorem of Iarrobino), for r < r0 ageneri
 form in F(n, d, r) admits only �nitely many r-representations, andMella has proved (see Remark 4.6 in [10℄) that, for r < r0 − 1, su
h a
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representation is unique. This improves a theorem of Iarrobino and Kanev[7, Theorem 2.6(ii), pp. 62�63℄.We should like to thank A. Sªadek for many remarks whi
h have helpedto improve the presentation.2. Proof of Theorem 1. Denote by Lin(l1, . . . , lk) the linear spa
espanned over K by the elements l1, . . . , lk of LK(n), and by l∗ the 
oe�
ientve
tor of l ∈ LK(n).Lemma 2.1. Let charK = 0 or charK > d. If F ∈ F(n, d) and l ∈
LK(n) \ {0} satisfy ∂F/∂l = 0, then F essentially depends on fewer than nvariables l1, . . . , lk, whi
h all satisfy lj(l∗) = 0.Proof. Let l1 = l, l2, . . . , ln be a basis for LK(n), where lj(l∗) = 0 for
1 < j ≤ n if l(l∗) 6= 0, and lj(l∗) = 0 for 1 ≤ j < n otherwise. Noti
e that inthe se
ond 
ase ln(l) 6= 0. We have

F = F0(l1, l2, . . . , ln)for some F0 ∈ F(n, d). Then, in the �rst 
ase,
0 =

∂F

∂l
=
∂F0

∂x1
l(l∗),and in the se
ond 
ase,

0 =
∂F

∂l
=
∂F0

∂xn
ln(l∗).Hen
e either ∂F0/∂x1 = 0 or ∂F/∂xn = 0, and F depends on fewer than nvariables lj , whi
h all satisfy lj(l∗) = 0.Lemma 2.2. Let n > 1, d > 1, s ≥ 0, charK = 0 or charK > d and

|K| > 2s + 1. If a form F ∈ F(n, d) essentially depends on n variablesand l1, . . . , ls ∈ LK(n) \ {0}, then there exists a form l ∈ LK(n) su
h that
l/lr 6∈ K (1 ≤ r ≤ s) and

∂2F

∂l2
6= 0,

∂2F

∂l∂l1
6= 0, . . . ,

∂2F

∂l∂ls
6= 0.Proof. For �xed r = 1, . . . , s, the set of forms l su
h that ∂2F/∂l∂lr = 0is a proper Zariski 
losed subset in LK(n). In fa
t, if it is not a proper subset,we should have

∂

∂l

(

∂F

∂lr

)

= 0for all l ∈ LK(n) and hen
e ∂F/∂lr ∈ K. Sin
e F is of degree d > 1 it followsthat ∂F/∂lr = 0, hen
e by Lemma 2.1, F depends essentially on fewer than
n variables, 
ontrary to the assumption. Hen
e if K is in�nite, the set of
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l ∈ LK(n) su
h that

∂2F

∂l∂l1
6= 0, . . . ,

∂2F

∂l∂ls
6= 0is not empty and open in LK(n). If K is �nite the set of l ∈ LK(n) satisfyingthe above 
ondition has at least |K|n − 1 − s(|K|n−1 − 1) elements.It remains to 
onsider the set of forms l ∈ LK(n) su
h that ∂2F/∂l2 = 0.Suppose that ∂2F/∂l2 = 0 for all l ∈ LK(n). Then, in parti
ular, ∂2F/∂x2

i

= 0 for i = 1, . . . , n. Hen
e d ≤ n, and F is a linear 
ombination of squarefree monomials
(∗∗)

d
∏

j=1

xijfor some distin
t indi
es ij ≤ n. Now
∂2(

∏d
j=1 xij )

∂(xi1 + xi2)
2

= 2

d
∏

j=3

xij 6= 0.Moreover, the partial derivatives
∂2

∂(xi1 + xi2)
2
,for �xed xi1 , xi2 , when applied to di�erent square free monomials yield 0 ordi�erent monomials of degree d− 2. Hen
e

∂2F

∂(xi1 + xi2)
2
6= 0.Thus the set of forms l for whi
h ∂2F/∂l2 6= 0 is non-empty and forK in�nitethe lemma is proved. For K �nite there are at most (2|K| − 1)|K|n−2 − 1non-zero forms l satisfying

∂2F

∂l2
= 0(see [9, Theorems 6.26 and 6.27℄).Therefore, the number of forms l in LK(n) su
h that

∂2F

∂l2
6= 0,

∂2F

∂l∂lr
6= 0 (1 ≤ r ≤ s)is at least

|K|n − s(|K|n−1 − 1) − (2|K| − 1)|K|n−2 ≥ |K|2 − (s+ 2)|K| + (s+ 1);on the other hand, the number of forms l ∈ LK(n) \ {0} su
h that l/lr ∈ Kfor some r ≤ s is at most
s(|K| − 1).
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The 
ondition |K| > 2s + 1 guarantees that the former quantity is greaterthan the latter.Definition 1. Let P ⊂ Kn \ {0}. Let S(F, P ) be the minimal length ofa presentation (2) of the form F with the 
ondition that(A) lµ(p) 6= 0 for all p ∈ P ,(B) ld−1
µ are linearly independent (1 ≤ µ ≤ m) in F(n, d− 1).In 
ase su
h presentations do not exist, S(F, P ) is de�ned to be ∞.

S(n, d, s) is de�ned as the maximum of all S(F, P ) for all forms F ∈
F(n, d) essentially depending on n variables and for all P ⊂ Kn \ {0} of
ardinality s.For p = (p1, . . . , pn) ∈ Kn, ∂F/∂px denotes the partial derivative of Fwith respe
t to p1x1 + · · · + pnxn.Lemma 2.3. Let F = F1(l1, . . . , lk), F1 ∈ F(k, d), lj ∈ LK(n) and F1essentially depend on k variables. If pr ∈ Kn (1 ≤ r ≤ s) and for ea
h r,(3) ∂F

∂prx
6= 0,then

F =

m
∑

µ=1

aµl
d
0µ, where m ≤ S(k, d, s), aµ ∈ K, l0µ ∈ Lin(l1, . . . , lk),

loµ(pr) 6= 0 for all r ≤ s and ld−1
0µ (1 ≤ µ ≤ m) are linearly independent.Proof. For ea
h r ≤ s,(4) 〈l1(pr), . . . , ls(pr)〉 6= 0sin
e otherwise we should obtain

∂F

∂prx
=

k
∑

j=1

∂F1

∂xj

∣

∣

∣

∣

(l1,...,lk)

·
∂lj
∂prx

=
k

∑

j=1

∂F

∂xj
· lj(pr) = 0,


ontrary to (3). From (4) and the de�nition of S(k, d, s) it follows that
F1 =

m
∑

µ=1

aµl
d
1µ, m ≤ S(k, d, s), aµ ∈ K, l1µ ∈ LK(n),

l1µ(l1(pr), . . . , lk(pr)) 6= 0 (1 ≤ µ ≤ m, 1 ≤ r ≤ s)and the ld−1
1µ are linearly independent. Now, it su�
es to take

l0µ = l1µ (l1, . . . , lk) .
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Lemma 2.4. If d > 1, s ≥ 0, and either charK = 0, or charK > d and

|K| > 2d+ 2s− 3, then
S(n, d, s) ≤

(

n+ d− 2

d− 1

)

.

Proof. We pro
eed by indu
tion on n + d. If n + d = 3 we have n = 1,
d = 2 and the assertion is trivially true. Assume that it is true for all n ≥ 1,
d ≥ 2 with n+ d < N and 
onsider F ∈ F(n, d) essentially depending on nvariables, where n ≥ 1, d ≥ 2, n + d = N , and a �nite subset {p1, . . . ,ps}of Kn \ {0}. If n = 1, the assertion is trivially true. If n ≥ 2, by Lemma 2.2,there exists l ∈ LK(n) su
h that l∗ is proje
tively di�erent from p1, . . . ,psand(5) ∂2F

∂l2
6= 0,

∂2F

∂l∂prx
6= 0 (1 ≤ r ≤ s).Consider �rst d = 2. Taking(6) F0 =

(

∂F

∂l

)2/

2
∂2F

∂l2we obtain
∂(F − F0)

∂l
= 0,hen
e, by Lemma 2.1, F − F0 essentially depends on n1 < n variables,(7) F − F0 = F1(l1, . . . , ln1

),where F1 ∈ F(n1, d), lj ∈ LK(n) and lj(l∗) = 0.We have n1 = n − 1, sin
e otherwise F would depend on fewer than nvariables. Sin
e the lj are linearly independent and lj(l∗) = 0 (1 ≤ j ≤ n−1),and l∗ is proje
tively di�erent from p1, . . . ,ps, for all r ≤ s we have
〈l1(pr), . . . , ln−1(pr)〉 6= 0.Now, by the indu
tive assumption we have

F1(x1, . . . , xn−1) =

n
∑

µ=2

aµl
2
1µ, where aµ ∈ K, l1µ ∈ LK(n− 1),(8)

l1µ(l1(pr), . . . , ls(pr)) 6= 0 (1 ≤ r ≤ s)(9)and the forms l1µ (2 ≤ µ ≤ n) are linearly independent. Now, taking
a1 =

1

2∂2F/∂l2
, l01 =

∂F

∂l
,

l0µ = l1µ(l1, . . . , ln−1) (2 ≤ µ ≤ n),(10)
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from (6)�(8) we obtain(11) F =

n
∑

µ=1

aµl
2
0µ,where, by (5) and (9), l0µ(pr) 6= 0 (1 ≤ r ≤ s).Assume now that

n
∑

µ=1

Aµl0µ = 0, Aµ ∈ K.

If A1 6= 0, then l01 depends linearly on l0µ (2 ≤ µ ≤ n), hen
e by (10)and (11), F depends on lj (1 ≤ j ≤ n−1), 
ontrary to the assumption. Thus
A1 = 0 and by the linear independen
e of the l1µ, Aµ = 0 for all µ ≤ n.Assume now that d ≥ 3. The form ∂F/∂l of degree d − 1 essentiallydepends on n0 ≤ n variables. By (5) and Lemma 2.3 it follows that
∂F

∂l
=

m0
∑

µ=1

aµl
d−1
0µ , where m0 ≤ S(n0, d− 1, s+ 1), aµ ∈ K, l0µ ∈ LK(n),(12) l0µ(l∗) 6= 0, l0µ(pr) 6= 0 (1 ≤ r ≤ s)and(13) ld−2

0µ (1 ≤ µ ≤ m0) are linearly independent.Taking
F0 =

m0
∑

µ=1

aµl
d
0µ

dl0µ(l∗)we obtain
∂(F − F0)

∂l
= 0,hen
e, by Lemma 2.1, F − F0 = F 0

1 (l01, . . . , l
0
n−1), where l0j ∈ LK(n) and

l0j (l
∗) = 0. Let T be a minimal subset of {1, . . . ,m0} with the propertythat for a 
ertain point p proje
tively di�erent from 0,p1, . . . ,ps and somelinearly independent forms l1, . . . , ln1

in LK(n), and a 
ertain F1 in F(n1, d),
F −

∑

µ∈T

aµl
d
0µ

dl0µ(l∗)
= F1(l1, . . . , ln1

), lj(p) = 0,(14)
l0µ 6∈ Lin(l1, . . . , ln1

) for µ ∈ T.(15)(The set {1, . . . ,m0} has this property with p = l∗, lj = l0j , F1 = F 0
1 , so su
hsets exist.) Sin
e lj(p) = 0 (1 ≤ j ≤ n1) we have n1 ≤ n− 1. We assert that

n1 = n− 1. Indeed, supposing the 
ontrary we 
ould �nd µ1 ∈ T su
h that
l0µ1

6∈ Lin(l1, . . . , ln1
) (otherwise F would depend on n1 variables) and a
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point p 6= 0 su
h that l0µ1

(p) = 0 = l1j(p) (1 ≤ j ≤ n1). Sin
e l0µ1
(pr) 6= 0,

p is proje
tively di�erent from pr (1 ≤ r ≤ s). Taking
T1 = T \ {µ ≤ m0 : l0µ ∈ Lin(l0µ1

, l1, . . . , ln1
)}we should obtain (14) and (15) with T repla
ed by T1  T , 
ontrary tothe 
hoi
e of T . Thus n1 = n − 1 and sin
e the lj are linearly independent

(1 ≤ j ≤ n− 1) and lj(p) = 0, for every r ≤ s we have
〈l1(pr), . . . , ln−1(pr)〉 6= 0.Hen
e, by the de�nition of S(n− 1, d, s) we have(16) F1(x1, . . . , xn−1) =

m0+m1
∑

µ=m0+1

aµl
d
1µ, aµ ∈ K, l1µ ∈ Ln−1(K),where m1 ≤ S(n− 1, d, s),(17) l1µ(l1(pr), . . . , ln−1(pr)) 6= 0 (m0 < µ ≤ m0 +m1, 1 ≤ r ≤ s)and the ld−1

1µ are linearly independent.It follows from (14) and (16) that(18) F =
∑

µ∈T

aµl
d
0µ

dl0µ(l∗)
+

m0+m1
∑

µ=m0+1

aµl1µ(l1, . . . , ln−1)
d,where, by (12) and (17), the relevant linear forms do not vanish at pr (1 ≤

r ≤ s). Assume now that(19) ∑

µ∈T

Aµl
d−1
0µ +

m0+m1
∑

µ=m0+1

Aµl1µ(l1, . . . , ln−1)
d−1 = 0, Aµ ∈ K.By (15) there exists z ∈ LK(n) \ {0} su
h that l0µ(z∗) 6= 0 (µ ∈ T ) and

lj(z
∗) = 0 (1 ≤ j ≤ n− 1). Di�erentiating (19) with respe
t to z we obtain

∑

µ∈T

Aµ(d− 1)ld−2
0µ l0µ(z∗) = 0,hen
e, by (13), Aµ = 0 for all µ ∈ T , and by (19),

m0+m1
∑

µ=m0+1

Aµl1µ(l1, . . . , ln−1)
d−1 = 0.

Therefore, by the linear independen
e of the ld−1
1µ we have Aµ = 0 for all µ.It now follows from (18) and the indu
tive assumption that

S(F, s) ≤ |T | +m1 ≤ m0 +m1 ≤ S(n0, d− 1, s+ 1) + S(n− 1, d, s)

≤

(

n+ d− 3

d− 2

)

+

(

n+ d− 3

d− 1

)

=

(

n+ d− 2

d− 1

)

.
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Sin
e F was an arbitrary element of F(n, d) essentially depending on n vari-ables, it follows that
S(n, d, s) ≤

(

n+ d− 2

d− 1

)

,and the indu
tive proof is 
omplete.Lemma 2.5. If the forms ld−1
µ (1 ≤ µ ≤ m), where lµ ∈ LK(n), span thespa
e F(n, d − 1), then for every i ≤ d the forms ld−i

µ (1 ≤ µ ≤ m) span
F(n, d− i).Proof. Let F ∈ F(n, d− i) be given as

F =
d−i
∑

j=0

Ajx
d−i−j
n , Aj ∈ K[x1, . . . , xn−1] ∩ F(n− 1, j).By the assumption

Fi :=
d−i
∑

j=0

Aj
xd−1−j

n
∏i−1

k=1(d− j − k)
=

m
∑

µ=1

aµl
d−1
µ , aµ ∈ K, lµ ∈ LK(n),hen
e

F =
∂i−1F1

∂xi−1
n

=
m

∑

µ=1

aµl
d−i
µ

(

∂lµ
∂xn

)i−1

.Proof of Theorem 1. For d = 1 the assertion is obvious. For d ≥ 2, let
F =

∑d
δ=0 Fδ, where Fδ ∈ F(n, δ). Assume Fd essentially depends on nd ≤ nvariables. By Lemma 2.4 with s = 0 we have Fd =

∑md

µ=1 adµl
d
µ, where

md ≤

(

nd + d− 2

d− 1

)

≤

(

n+ d− 2

d− 1

)

,

adµ ∈ K, lµ ∈ LK(n) and the ld−1
µ are linearly independent (1 ≤ µ ≤ md).Sin
e the dimension of F(n, d− 1) is (n+d−2

d−1

) and, by Lemma 2.4, this spa
eis spanned by ld−1, l ∈ LK(n), there exist forms lµ (

md < µ ≤
(n+d−2

d−1

))su
h that the forms ld−1
µ

(

1 ≤ µ ≤
(

n+d−2
d−1

)) span the spa
e F(n, d−1), thus,by Lemma 2.5, for ea
h δ < d we have
Fδ =

(n+d−2
d−1

)

∑

µ=1

aδµl
δ
µand it su�
es to take fµ =

∑d
δ=0 aδµz

δ, where for δ = d and µ > md wetake aδµ = 0.This proves the �rst part of the theorem. In order to prove the se
ondpart observe that ifK is in�nite we 
an apply Lemma 2.4 with an arbitrary s.
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Proof of Corollary 2. It su�
es to apply Theorem 1 to the polynomial

xd
n+1F (x1/xn+1, . . . , xn/xn+1) ∈ F(n+ 1, d) and then substitute xn+1 = 1.
3. Proof of Theorem 2 and Corollary 3. We shall prove the �rstassertion of the theorem by indu
tion on d. For d = 1 the assertion is obvious.Assume it is true for the exponent d − 1 and let li be the linear forms inquestion. By an invertible linear transformation we 
an a
hieve that(20) li = xi−(d−1)(n−1) for i > (d− 1)(n− 1).For i ≤ (d− 1)(n− 1) let

li =
n

∑

j=1

aijxj , aij ∈ K.

If ai1 = 0, then the forms li and xk = lk+(d−1)(n−1), for k = 2, . . . , n, arelinearly dependent. Hen
e by the assumption ai1 6= 0 for all i ≤ (d−1)(n−1).Assume now that
(21) d(n−1)+1

∑

i=1

Ail
d
i = 0, Ai ∈ K.

Di�erentiating with respe
t to x1 we obtain
(d−1)(n−1)

∑

i=1

dAiai1l
d−1
i + dA(d−1)(n−1)+1x

d−1
1 = 0.

By the indu
tive assumption we have
dAiai1 = 0 (1 ≤ i ≤ (d− 1)(n− 1)) and dA(d−1)(n−1)+1 = 0,hen
e Ai = 0 (1 ≤ i ≤ (d − 1)(n − 1)). It now follows from (20) and (21)that

n
∑

i=1

A(d−1)(n−1)+ix
d
i = 0,

hen
e Ai = 0 for all i.In order to prove the se
ond assertion of the theorem take m = d(n− 1)

+ 2, li =
∑n

j=1 a
j−1
i xj (1 ≤ i < m), lm = xn, where the ai are distin
telements of K (we assume 00 = 1). It is easy to 
he
k that any n among the

li are linearly independent. On the other hand, we have
ldi =

d(n−1)
∑

k=0

ak
i fk (1 ≤ i < m), ldm = xd

n = fd(n−1),
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where(22) fk =
∑

i2+2i3+···+(n−1)in=k
i1+···+in=d

(

d

i1 . . . in

) n
∏

q=1

x
iq
q .

Hen
e the dimension of the spa
e generated by the ldi is at most d(n−1)+1.Proof of Corollary 3. Sin
e the forms ldi 
onstru
ted in the proof of these
ond part of Theorem 2 are linearly dependent we have
d(n−1)+2

∑

i=1

Ail
d
i = 0, Ai ∈ K.

On the other hand, for every j ≤ d(n−1)+2 the forms ldi (i 6= j) are linearlyindependent, by the �rst part of Theorem 2, hen
e all proper subsums of theabove sum are di�erent from 0, and in parti
ular Ai 6= 0. Moreover, li/lj ∈ Kimplies i = j, and the li jointly essentially depend on n variables. Expli
itly,we have
Ai = −

d(n−1)+1
∏

j=1
j 6=i

(aj − ai)
−1 (1 ≤ i ≤ d(n− 1) + 1), Ad(n−1)+2 = 1.

4. Proofs of Propositions 1�3 and Corollaries 4�5. Let
F ∈ φn,r,d(LK(n)r), F 6= 0.Let W be an irredu
ible 
omponent of φ−1

n,r,d(F ). Assume that W does not
ontain any representation of F . That means that for every (l1, . . . , lr) ∈W ,there exist i, j = 1, . . . , r, i 6= j, and a ∈ K su
h that li = alj . Sin
e W isirredu
ible, we may �nd i, j = 1, . . . , r, i 6= j, su
h that for all (l1, . . . , lr) ∈
W , li = alj for some a ∈ K. We may assume that i = r− 1, j = r. Then forsome b ∈ K, we have an (r− 1)-presentation F = ld1 + · · ·+ (blr−1)

d. Let W ′be an irredu
ible 
omponent of φ−1
n,r−1,d(F ) 
ontaining all su
h presentations.Then we will prove the followingLemma 4.1. dimW = dimW ′ − 1.We shall use the following 
lassi
al result:

(∗) Let φ : X → Y be a morphism of irredu
ible algebrai
 varieties de�nedover an algebrai
ally 
losed �eld K. Assume that φ(X) = Y . Then,for every y ∈ φ(X), the dimension of every irredu
ible 
omponent of
φ−1(y) is at least dimX−dimY . Moreover , for a generi
 point y ∈ Y ,the dimensions of all irredu
ible 
omponents of φ−1(y) are equal to
dimX − dimY .



218 A. BIA�YNICKI-BIRULA AND A. SCHINZEL
This result, under the assumption φ(X) = Y , 
an be found in [14, Chap-ter I, Se
. 6.3, �rst part of Theorem 7℄. The proof presented there worksunder the weaker assumption φ(X) = Y .Proof of Lemma 4.1. We use the notation introdu
ed above. We mayrepresent φn,r,d as the 
omposition φ2

n,r,d ◦ φ
1
n,r,d, where

φ1
n,r,d : LK(n)r → φ1

n,r,d(LK(n)r)⊂F(n, d)r, φ1
n,r,d(l1, . . . , lr)=(ld1, . . . , l

d
r),and

φ2
n,r,d : Φ1

n,r,d(LK(n)r) → F(n, d), φ2
n,r,d(f1, . . . , fr) = f1 + · · · + fr.Noti
e that φ1

n,r,d is a �nite morphism. For a generi
 r-presentation F =

ld1 + · · · + ldr of F 
ontained in W , let lr = alr−1 and f1 = ld1, . . . , fr−1 =
(1 + ad)ldr−1. Then

F = f1 + · · · + fr−1.Let ψ : W → φ1
n,r−1,d(W

′) be the rational map de�ned by
ψ(l1, . . . , lr) = (ld1, . . . , l

d
r−2, (1 + ad)ldr−1).Then ψ(W ) = φn,r−1,d(W

′) and a generi
 �ber of ψ is of dimension 1. Thusby (∗),
dimW = dim(φn,r−1,d(W

′)) + 1.Sin
e φ1
n,r−1,d is a �nite morphism,

dim(φ1
n,r−1,d(W

′)) = dimW ′,and thus our lemma has been proved.The lemma implies at on
e Proposition 1.Proof of Proposition 2. Assume that the proposition is not true. Considerindependent generi
 linear forms l1, . . . , lr in n variables and a generi
 F =
ld1+· · ·+ldr . Then (l1, . . . , lr) ∈ φ−1

n,r,d(F ). LetW be the irredu
ible 
omponentof φ−1
n,r,d(F ) 
ontaining (l1, . . . , lr). For every (z1, . . . , zr) ∈W we have zd

i = ldjfor some i, j = 1, . . . , r. Sin
e the algebrai
 properties of all independentgeneri
 
olle
tions of linear forms indexed by (1, . . . , r) are the same, wehave proved that there exists an integer i su
h that for every independentgeneri
 
olle
tion (l1, . . . , lr) of linear forms and for (z1, . . . , zr) belongingto the irredu
ible 
omponent of φ−1
n,r,d(l

d
1, . . . , l

d
r ) 
ontaining (l1, . . . , lr) wehave zi = li. On the other hand, sin
e every permutation σ of (1, . . . , r)determines another independent generi
 
olle
tion (lσ(1), . . . , lσ(r)), we �ndthat the above property of the integer i holds for all integers 1, . . . , r. Thus

z1 = l1, . . . , zr = lr and this means that there is only one point in theirredu
ible 
omponent. This 
ontradi
ts our assumption.
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Proof of Corollaries 4 and 5. By Iarrobino's theorem [6℄ for every r ≥ r0the mapping φn,r,d is dominant, hen
e the dimensions of generi
 �bers of
φn,r+1,d and φn,r,d di�er by n. For n ≥ 2 a generi
 �ber of φn,r,d 
orrespondsto an r-representation. Now an appli
ation of (∗) quoted in the proof ofLemma 4.1 gives Corollaries 4 and 5.Proof of Proposition 3. In Proposition 2 and its proof we may repla
ethe assumption that �F admits two di�erent representations� by �F admitstwo di�erent proje
tively inequivalent representations� and then we 
on
ludethat the forms li, zj are also proje
tively inequivalent. The assumption isvalid for r > r0. Sin
e 0 = ld1 + · · ·+ldr −z

d
1 − . . .−z

d
r , this proves the assertionof Proposition 3 for t even > 2r0. In order to prove it for t odd > 2r0 notethat the same type of argument gives the following. Let F be a generi
form in F(n, d), r ≥ r0. Then F admits an r-representation and an (r + 1)-representation. Moreover, there exist representations F = ld1 + · · ·+ ldr = zd

1 +
· · ·+zd

r+1 su
h that li/zj is non-
onstant for i = 1, . . . , r and j = 1, . . . , r+1.5. Proofs of Theorems 3 and 4Lemma 5.1. Let(23) Bi(z1, . . . , zm) = (−1)i
∏

1≤j<k≤m
j 6=i6=k

(zk − zj).

Then for every µ ≤ m− 2,(24) Pµ :=
m

∑

i=1

Biz
µ
i = 0.Proof. Bi is of degree (m−1

2

), hen
e Pµ is either 0 or of degree (m−1
2

)

+µ <
(m

2

). On the other hand, if p < q and zp = zq, then Bi = 0 for i 6= p, q,(25) Pµ = (Bp +Bq)z
µ
pand

(Bp +Bq)
∏

1≤j<k≤m
{j,k}∩{p,q}=∅

(zk − zj)
−1

= (−1)p
∏

j<q
j 6=p

(zq − zj)
∏

j>q

(zj − zq) + (−1)q
∏

j<p

(zp − zj)
∏

j>p
j 6=q

(zj − zp)

= (−1)p
∏

j<q
j 6=p

(zp − zj)
∏

j>q

(zj − zp) + (−1)q
∏

j<p

(zp − zj)
∏

j>p
j 6=q

(zj − zp)

= (−1)p+q−2
∏

j 6=p,q

(zj − zp) + (−1)p+q−1
∏

j 6=p,q

(zj − zp) = 0.
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Thus by (25), Pµ is divisible by ∏

p<q(zp − zq) and is either 0 or of degreeat least (

m
2

). Con
lusion (24) follows.Lemma 5.2. For d > 1, xd
1 + · · ·+xd

n essentially depends on n variables.Proof. Assume that
xd

1 + · · · + xd
n = F (l1, . . . , ln−1),where F ∈ F(n − 1, d) ∩ K[y1, . . . , yn−1], li ∈ L(n). Di�erentiating withrespe
t to xi we obtain

dxd−1
i =

n−1
∑

j=1

∂F

∂yj

∂lj
∂xi

.Sin
e by the assumption made at the beginning of the paper d 6≡ 0 (mod
charK), it follows that xd−1

1 , . . . , xd−1
n are linearly dependent, whi
h is falsefor d > 1.Proof of Theorem 3. Let

I := {n+ 1, . . . , n+ r}.Choose (a1, . . . , an) ∈ Kn su
h that ai 6= aj for i 6= j. Let U ⊂ Kr be
omposed of all (an+1, . . . , an+r) su
h that all ai are di�erent from a1, . . . , anand ai 6= aj for i 6= j in I. Then the group S of permutations of I a
ts on U .For i = 1, . . . , n, let
li = x1 + aix2 + · · · + an−1

i xnand for a = (an+1, . . . , an+r) ∈ U and i = n+ 1, . . . , n+ r, let
li(a) = x1 + aix2 + · · · + an−1

i xn.Then by Lemma 5.1 applied with m = n+ r ≥ d(n− 1) + 2,
n+1
∑

i=1

Bi(a1, . . . , an+r)l
d
i =

d(n−1)
∑

µ=0

fµ

n+r
∑

i=1

Bi(a1, . . . , an+r)a
µ
i = 0,where fµ is given by (22). It follows that(26) n

∑

i=1

Ai(a)ldi = −
n+r
∑

i=n+1

Ai(a)li(a)d,where(27) Ai(a) =
Bi(a1, . . . , an,a)

D
, D =

∏

n<j<k≤n+r

(ak − aj).Now by (22) and (27), A1(a), . . . , An+r(a) do not vanish on U , are sym-metri
, and for τ ∈ S and i ∈ I we have
Ai(τ(a)) = Aτ(i)(a).
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By a linear substitution (or a linear 
hange of variables) li 7→ yi, where
i = 1, . . . , n, we obtain from (26) the equality(28) A1(a)yd

1 +A2(a)yd
2 + · · · +An(a)yd

n = −
n+r
∑

i=n+1

Ai(a)li(a)d,

where li(a) is the linear form (in the variables y1, . . . , yn) obtained from li(a)by the above substitution.Now, another substitution in (28),
d
√

Ai(a) yi 7→ zi,where i = 1, . . . , n, gives for every a ∈ U the equality(29) zd
1 + · · · + zd

n = −
n+r
∑

i=n+1

Ai(a)mi(a)d,where, for i = n + 1, . . . , n + r, mi(a) is the linear form (in z1, . . . , zn)obtained from li by this substitution. In 
ontrast to the previous substitution,the substitution depends on a ∈ U and, to be pre
ise, in order to 
onsiderroots of degree d of the fun
tions Ai we should repla
e U by its properlydetermined 
over, also denoted by U (e.g. one may take normalization of Uin the extension of K(an+1, . . . , an+r), where an+1, . . . , an+r are 
onsideredas variables, obtained by adjoining all roots of Ai(a) of degree d, for i =
1, . . . , n).Moreover, noti
e that, sin
e the fun
tions Ai(a) for i = 1, . . . , n aresymmetri
, the group S a
ts on the des
ribed family of representations of
zd
1 + · · · + zd

n. More exa
tly, the image of a representation (29) under τ ∈ Sis the representation
zd
1 + · · · + zd

n = −
n+r
∑

i=n+1

Ai(τ(a))mi(τ(a)).Sin
e li(τ(a)) = lτ(i)(a) and the above substitutions are invariant under thea
tion of S, we still have
mi(τ(a)) = mτ(i)(a) for i = n+ 1, . . . , n+ r.Hen
e the image of (29) under τ 
an be written as
zd
1 + · · · + zd

n = −

n+r
∑

i=n+1

Ai(τ(a))mτ(i)(a).

We are going to prove that there are a lot of representations of zd
1+· · ·+zd

nin the above des
ribed family parametrized by U . Sin
e U is irredu
ible, ifthis is not the 
ase, then there exists p = (p1, . . . , pn) ∈ Kn \ {0} su
h that,for every representation (29) and for every a ∈ U , there exists an index



222 A. BIA�YNICKI-BIRULA AND A. SCHINZEL
i ∈ {n+ 1, . . . , n+ r} su
h that mi(a)(p) = 0. Again, sin
e U is irredu
ible,there exists a �xed index i0 su
h that, for all a ∈ U , we have

mi0(a)(p) = 0.However, for every τ ∈ S,
mτ(i0)(a)(p) = mi0(τ(a))(p) = 0.Thus, for all indi
es i = n+ 1, . . . , n+ r and all a ∈ U , we have

mi(a)(p) = 0.This means that the formsmn+1(a), . . . ,md(n−1)+2(a) jointly depend on n−1variables. For d > 1 this 
ontradi
ts the equality (29), sin
e by Lemma 5.2the left hand side essentially depends on n variables. This 
ompletes theproof ex
ept for the 
ase d = 1, whi
h is trivial.Lemma 5.3. In every r-representation of 0 by sums of dth powers oflinear forms we have
r > min{d, d1} + 1,where d1 = d + 1 if charK = 0, and d1 = pν+1

{

d+1
pν+1

} if charK = p and
pν ‖ d+ 1.Proof. We may assume without loss of generality that one of the linearforms in question is x, hen
e it is enough to show impossibility of the equation(30) xd

1 =
r

∑

j=1

(ajx1 + lj)
d,where min{d, d1} ≥ r > 1, aj ∈ K, lj ∈ LK(n− 1) ∩K[x2, . . . , xn] and(31) the forms ajx1 + lj are non-zero and proje
tively di�erent.If charK = 0, we have ( d

i ) 6= 0 for all i ≤ r. If charK = p, let d =
∑k

i=0 cip
i,

0 ≤ ci < p. By the de�nition of ν we have ci = p− 1 (0 ≤ i < ν), cν < p− 1and by the Lu
as theorem ( d
i ) 6≡ 0 mod p for i < (cν + 1)pν = d1.Therefore, the identity (30) gives(32) r

∑

j=1

ai
jl

d−i
j = 0 (0 ≤ i < r).By (31) we may assume that lj 6= 0 for all j < r. If lr 6= 0, then we inferfrom (32) that

D := det (ai
jl

d−i
j ) 0≤i<r

1≤j≤r

= 0.However, by a redu
tion to a Vandermonde determinant(33) D =

r
∏

j=1

ldj
∏

1≤i<j≤r

(

aj

lj
−
ai

li

)
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and, by (31), D 6= 0. This shows that lr = 0 and (32) gives
D1 := det (ai

jl
d−i
j ) 0≤i<r−1

1≤j≤r−1

= 0.Sin
e(34) D1 =
r−1
∏

j=1

ldj
∏

1≤i<j≤r

(

aj

lj
−
ai

li

)

6= 0,we have a 
ontradi
tion.Remark 5.4. For charK = p > 0 the number 1 in Lemma 5.3 
annotbe repla
ed by 2, as shown by the example d = p2 + p− 1, d1 = p,
0 = −xd

1 +

p+1
∑

j=1

(x1 + ζj
p+1x2)

d,where ζp+1 is a primitive root of unity of order p+ 1 in K.Proof of Theorem 4. The �rst part of the theorem follows from Theo-rem 1. The se
ond part follows from Lemma 5.3 and the trivial observationthat if pν+1 > d+ 1, then
pν+1

{

d+ 1

pν+1

}

= d+ 1.

6. Proofs of Theorems 5�7 and Proposition 4Proof of Theorem 5. Let F ∈ F(2, d, s) have an r-representation. If r ≤
(d+ 1)/2, then s ≤ r ≤ (d+ 1)/2 and unless r = s we have a representationof 0 = F − F of length at most r + s < d + 1, 
ontrary to Lemma 5.3. If
r > (d+ 1)/2, then r ≥ r0 and by Corollary 5 the set of r-representationsof F has dimension at least 2r − (d+ 1) > 0, thus it is in�nite. This provesthe �rst part of the theorem.In order to prove the se
ond part noti
e that by Theorem 2 for a generi
point (l1, . . . , ld+1) ∈ LK(2)d+1 the set {ld1, . . . , l

d
d+1} is a basis of F(2, d).Hen
e for every form F , the set φ−1

2,d+1,d(F ) interse
ted with a non-emptyopen subset of LK(2)d+1 is of dimension d+ 1. This proves (a).For a �xed form F of degree d and for �xed linear forms ld+2, . . . , lr,
φ−1

2,d+1,d(F + ldd+2 + · · · + ldr ) has a 
omponent of dimension d + 1, and thisimplies that φ−1
2,r,d(F ) has a 
omponent of dimension d+ 1 + 2(r − d− 1) =

2r − (d + 1). This proves (b), and sin
e the 
ondition li(p) 6= 0 does notin�uen
e the dimension, also (
).Lemma 6.1. Let K be an in�nite �eld with charK = 0 or charK > d,and let f ∈ K[x] be of degree d. If f(x) 6= a(x+ b)d + c for all a, b, c in K,
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then for every �nite subset S of K there exist β1, . . . , βd−1 and b1, . . . , bd in
K su
h that βi 6= βj for i 6= j, βi 6∈ S (1 ≤ i < d), bi 6= 0 (1 ≤ i ≤ d) and
(35) f(x) =

d−1
∑

µ=1

bµ(x+ βµ)d + bd.Proof. Let τi(y1, . . . , yl) be the ith elementary symmetri
 polynomial of
y1, . . . , yl and let(36) f(x) =

d
∑

i=0

(

d

i

)

aix
d−i.We follow the proof of Theorem 4 in [12℄ and put

G(y1, . . . , yd−2) =
∏

1≤i<j≤d−2

(yj − yi)
d

∑

i=2

(−1)i−1ad−iτi−2(y1, . . . , yd−2)

×

d−2
∏

j=1

(

ad−1 +

d−1
∑

i=2

(−1)i−1ad−i(τi−1(y1, . . . , yd−2) + yjτi−2(y1, . . . , yd−2))

+ (−1)d−1a0yjτd−2(y1, . . . , yd−2)
)

.Further, for k ≤ d− 2 we put
Hk(y1, . . . , yd−2) =

d−3
∑

i,j=0

(−1)i+j(ad−2−iad−2−j − ad−1−iad−3−j)

× τi(y1, . . . , yk−1, yk+1, . . . , yd−2)τj(y1, . . . , yk−1, yk+1, . . . , yd−2),

Hd−1(y1, . . . , yd−2) =

d
∑

i=2

(−1)i−1ad−iτi−2(y1, . . . , yd−2),

(37) Hd(y1, . . . , yd−2)

= ad − (−1)d
d−2
∑

k=1

Hk(y1, . . . , yd−2)y
d
k

d−2
∏

j=1
j 6=k

(yj − yk)
(d−1

∑

i=1
(−1)iad−iτi−1(y1, . . . , yd−2) − ykHd−1

)

+

(d−1
∑

i=1
(−1)iad−iτi−1(y1, . . . , yd−2)

)d

d−2
∏

k=1

(d−1
∑

i=1
(−1)iad−iτi−1(y1, . . . , yd−2) − ykHd−1

)

Hd−1

.

Sin
e a0 6= 0 we have G 6= 0, and in parti
ular Hd−1 6= 0. Sin
e f(x) 6=
a(x+ b)d + c, we have a2

d−2−i − ad−1−iad−3−i 6= 0 for at least one i ≤ d− 3,
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hen
e Hk 6= 0 for all k ≤ d− 2. Also for the same reason
(38) d−1

∑

i=1

(−1)iad−iτi−1(y1, . . . , yd−2)/Hd−1 6∈ K.

Finally, the rational fun
tion Hd is not identi
ally 0, sin
e it is of order 1with respe
t to y1. Indeed, denoting by ordR the order of a rational fun
tion
R with respe
t to y1 we have

ord ad = 0, ordH1 = 0, ord yd
1 = d,

ord

d−2
∏

j=2

(yj − y1) = d− 3,

ord
(

d
∑

i=1

(−1)iad−iτi−1(y1, . . . , yd−2) − y1Hd−1

)

= 2

and for 2 ≤ k ≤ d− 2,
ordHk = 2, ord yd

k = 0, ord

d−2
∏

j=1
j 6=k

(yj − yk) = 1,

ord
(

d
∑

i=1

(−1)iad−iτi−1(y1, . . . , yd−2) − ykHd−1

)

= 1.

Finally,
ord

(

d−1
∑

i=1

(−1)iad−iτi−1(y1, . . . , yd−2)
)d

= d,

ord
(

d−1
∑

i=1

(−1)iad−iτi−1(y1, . . . , yd−2) − ykHd−1

)

= ordHd−1 = 1 (k > 1),

hen
e all terms in the sum (37) ex
ept one have order 0 and the ex
eptionalterm has order 1. Thus there exist β1, . . . , βd−2 in K su
h that
(39) G(β1, . . . , βd−2)

d
∏

k=1

Hk(β1, . . . , βd−2) 6= 0,

moreover βk 6∈ S (1 ≤ k ≤ d− 2) and by (38),
βd−1 :=

d−1
∑

i=1

(−1)iad−iτi−1(β1, . . . , βd−2)/Hd(β1, . . . , βd−2) 6∈ S.
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Sin
e G(β1, . . . , βd−2) 6= 0 we have βi 6= βj (1 ≤ i < j < d). Now, for
k ≤ d− 2 put

bk =
(−1)dHk(β1, . . . , βd−2)

∏d−1
j=1, j 6=k(βj − βi)Hd−1(β1, . . . , βd−2)and
bd−1 =

−Hd−1(β1, . . . , βd−2)
∏d−2

k=1(βd−1 − βk)
.It follows that(40) bd := ad −

d−1
∑

µ=1

bµβ
d
µ = Hd(β1, . . . , βd−2)and, by (39), bµ 6= 0 (1 ≤ µ ≤ d).Now, a tedious 
omputation based on Lemma 3 of [12℄ shows that for

k < d,
bk = (−1)d+k+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 . . . 1 a0

β1 . . . βk−1 βk+1 . . . βd−1 a1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
βd−2

1 . . . βd−2
k−1 βd−2

k+1 . . . βd−2
d−1 ad−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

/

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 . . . 1

β1 . . . βd−1. . . . . . . . . . . . . . . .
βd−2

1 . . . βd−2
d−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

and sin
e, by the 
hoi
e of βd−1,
∣

∣

∣

∣

∣

∣

∣

∣

∣

1 . . . 1 a0

β1 . . . βd−1 a1. . . . . . . . . . . . . . . . . . . . . .
βd−2

1 . . . βd−2
d−1 ad−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

we have
d−1
∑

µ=1

bµβ
j
µ = aj (0 ≤ j < d).

Now, (35) follows from (36) and (40).Proof of Theorem 6. If F has a representation of length 2 the asser-tion follows from Theorem 4. If F has no representation of length 2, let
{p1, . . . ,ps} be a subset of K2 \ {0}. Choose ξ ∈ K su
h that F (1, ξ) 6= 0and

pr2 − ξpr1 6= 0 (1 ≤ r ≤ s),and put
S =

{

pr1

ξpr1 − pr2
: 1 ≤ r ≤ s

}

.
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By Lemma 6.1 there exist elements β1, . . . , βd−1, b1, . . . , bd of K su
h that
βi 6= βj for i 6= j, βi 6∈ S, bi 6= 0 and

F (x, ξx+ 1) =
d−1
∑

µ=1

bµ(x+ βµ)d + bd.It follows that
F (x1, x2) =

d−1
∑

µ=1

bµ(x1 + βµ(x2 − ξx1))
d + bd(x2 − ξx1)

d.The linear forms x1 +βµ(x2−ξx1) (1 ≤ µ ≤ d) and x2−ξx1 are proje
tivelydi�erent, sin
e the βµ are distin
t. Moreover, for all r ≤ s,
pr1 + βµ(pr2 − ξpr1) 6= 0, pr2 − ξpr1 6= 0by the 
hoi
e of ξ and S.Proof of Proposition 4. Assume that c = max(d1, d2) = d2, d1 > 0. First,noti
e that there is no representation of xd1

1 x
d2

2 of length smaller than c+ 1.In fa
t, if
xd1

1 x
d2

2 = ld1 + · · · + ldr ,then taking (∂/∂x1)
d1 of both sides, we obtain a representation of d1!x

d2

2 oflength at most r, thus a representation of the zero form of length at most
r + 1 by (d2)th powers of binary linear forms. Thus by Theorem 4, either
r+1 ≥ d2 +2 and r ≥ d2 +1 = c+1, or r = 1, l1 = ax2, whi
h is impossiblefor d1 > 0.On the other hand, there exist a lot of representations of xd1

1 x
d2

2 of length
c+ 1. In fa
t, let again c = d2. Then for every a ∈ K \ {0}, we have

(d2 + 1)

(

d1 + d2

d2

)

xd1

1 x
d2

2 =

d2
∑

j=0

a−d2ζj(x1 + aζjx2)
d1+d2 ,where ζ is a primitive root of 1 of degree d2 + 1. This 
ompletes the proofof Proposition 4.Proof of Theorem 7. The �rst part of the theorem follows from Theo-rem 3.To prove the se
ond part we pro
eed by indu
tion on d. For d = 2 theassertion is obvious. Assume that it is true for the exponent d − 1 (d ≥ 3)and let(41) xd

1 + xd
2 + xd

3 = ld1 + · · · + ldvbe a disjoint v-representation with the least possible v. We may assume that
li ∈ K[x1, x2] exa
tly for i ≤ u. Then for i > u,

li = aix3 +mi, ai ∈ K∗, mi ∈ LK(2).
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By the 
hoi
e of v we have li/xj 6∈ K (1 ≤ i ≤ u, j = 1, 2) and mi 6= 0
(u < i ≤ v). Di�erentiating (41) with respe
t to x3 we obtain(42) xd−1

3 =
v

∑

i=u+1

ail
d−1
i .If dimLin(mu+1, . . . ,mv) = 2, then by the indu
tive assumption

v − u+ 1 ≥ 2(d− 1) + 2 = 2d, hen
e v ≥ 2d− 1.If dim Lin(mu+1, . . . ,mv) = 1, then mi = bim (u < i ≤ v), bi ∈ K∗,
m ∈ LK(2) and the equation (42) gives, by Lemma 5.3,(43) v − u+ 1 ≥ d+ 1.Moreover, after substitution x3 = 0, the equation (41) gives

xd
1 + xd

2 =
u

∑

i=1

ldi +md
v

∑

i=u+1

bdi ,hen
e, by Theorem 4,(44) u+ 1 ≥ d.Adding the inequalities (43) and (44) we obtain v ≥ 2d− 1.Proof of Corollary 6. Two disjoint representations of F of length r and
s, respe
tively, would give a representation of 0 = F − F of length at most
r + s by dth powers of linear forms jointly essentially depending on threevariables. If r + s < 2d+ 2 this 
ontradi
ts Theorem 7.Proof of Corollary 7. Can
elling the identi
al terms in the represen-tations of length r and s, respe
tively, we obtain disjoint representations
F ′ = ld1 + · · · + ldr′ = md

1 + · · · + md
s′ , where r − r′ = s − s′. If F ′ essen-tially depends on at most two variables, then sin
e F ′ has only �nitely many

r′-representations we have, by Corollary 5, s′ ≤ r′ ≤ (d+ 1)/2, hen
e unless
r′ = s′ there is a representation of 0 = F ′ −F ′ by fewer than d+ 2 dth pow-ers of linear forms, 
ontrary to Lemma 5.3. Thus r′ = s′, when
e r = s or
F ′ essentially depends on three variables. In the latter 
ase, by Theorem 7,
r′ + s′ ≥ 2d+ 2, hen
e r + s ≥ 2d+ 2, 
ontrary to the assumption.Proof of Corollary 8. Here r0 = 6, thus if r ≥ 6 then there exist, byCorollary 5, either 0 or in�nitely many r-representations, so s ≤ r ≤ 5 andeither r = s = 5 or r + s ≤ 9. In the latter 
ase r = s by Corollary 7.Proof of Theorem 8. Sin
e, by Theorem 4, xd

i +xd
i+1 admits a lot of repre-sentations of every length ≥ d, xd

1+· · ·+xd
2m admits a disjoint representationof every length r ≥ md.The se
ond part of the theorem is proved by double indu
tion on d and r.For d ≤ 2 or r ≤ 3 there is no representation of xd

1 + xd
2 + xd

3 + xd
4 of length
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r ≤ 3d − 3, thus the assertion holds trivially. Assume that it holds for theexponent d− 1 (where d ≥ 3) and for representations of length ≤ r− 1 withexponent d (where r ≥ 4). Let(45) xd
1 + xd

2 + xd
3 + xd

4 = ld1 + · · · + ldrbe a disjoint r-representation. If lw/xj = c ∈ K, then cd 6= 1 and
4

∑

i=1
i6=j

xd
i + (1 − cd)xd

j =

r
∑

v=1
v 6=w

ldv .

Thus by the indu
tive assumption there exist i, k, l and S ⊂ {1, . . . , r}\{w}su
h that {i, j, k, l} = {1, 2, 3, 4} and
xd

i + (1 − cd)xd
j =

∑

v∈S

ldv , xd
k + xd

l =
∑

v∈{1,...,r}\(S∪{w})

ldv .Then
xd

i + xd
j =

∑

v∈S

ldv + ldw,so the indu
tive assertion holds.Therefore assume that(46) lv/xj /∈ K for v ≤ r, j ≤ 4.We may assume that lv ∈ K[x1, x2, x3] exa
tly for v ≤ u. Thus
lv = avx4 +mv,where av ∈ K∗, mv ∈ LK(3) \ {0} and u < v ≤ r.Di�erentiating (45) with respe
t to x4 we obtain
xd−1

4 =
∑

v>u

avl
d−1
v .If

δ := dimLin(mv; v > u) = 3we have dim Lin(x4, lv; v > u) = 4, and sin
e r − u + 1 ≤ 3d − 2, by theindu
tive assumption there exist w and a subset S of {u + 1, . . . , r} \ {w}su
h that u < w ≤ r, r − u− d− 2 ≥ |S| ≥ d− 1 and(47) xd−1
4 − awl

d−1
w =

∑

v∈S

avl
d−1
v .Sin
e |S| ≤ r − u − d − 2 ≤ 2d − 5, by Theorem 7, the forms x4, lw, lv for

v ∈ S jointly depend on two variables, hen
e there exists m ∈ LK(3) \ {0}su
h that
lv = avx4 + bvm
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for v = w or v ∈ S. Equation (47) implies

xd
4 − ldw =

∑

v∈S

ldv − cmd,where c ∈ K, whi
h subtra
ted from (45) gives
xd

1 + xd
2 + xd

3 =
∑

v/∈S∪{w}

ldv + cmd.

Sin
e the number of summands on the right hand side is r−|S| ≤ 2d−2, byTheorem 7 the representation is not disjoint and by (46) we have cmd = xd
kfor some k ≤ 3. Taking {i, j} = {1, 2, 3} \ {k} we obtain

xd
i + xd

j =
∑

v/∈S∪{w}

ldv ,hen
e by (45),
xd

k + xd
4 =

∑

v∈S∪{w}

ldv .Moreover, by Theorem 2, s = |S| + 1 satis�es r − d ≥ s ≥ d, whi
h provesthe indu
tive assertion in the 
ase δ = 3.If δ ≤ 2 we 
hoose p = (p1, p2, p3) 6= 0 su
h that
mv(p) = 0 for u < v ≤ r.Substituting x4 = 0 in (45) and di�erentiating with respe
t to p1x1 +p2x2 +

p3x3 we obtain
p1x

d−1
1 + p2x

d−1
2 + p3x

d−1
3 =

u
∑

v=1

lv(p)ld−1
v ,hen
e by (46) and Theorems 4 and 7,(48) u ≥ d− 1.On the other hand, di�erentiating (45) with respe
t to x4 we obtain

xd−1
4 =

∑

v>u

avl
d−1
v ,thus by Theorems 4 and 7,(49) r − u+ 1 ≥

{

2d if δ = 2,
d+ 1 if δ = 1.Adding the inequalities (48) and (49) for δ = 2 we obtain

r + 1 ≥ 3d− 1,
ontrary to r ≤ 3d− 3. Thus δ = 1, mv = bvm0 for some m0 ∈ LK(3) \ {0}
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and bv ∈ K (u < v ≤ r), and substituting x4 = 0 in (45) we obtain(50) xd
1 + xd

2 + xd
3 =

u
∑

v=1

ldv +md
0

∑

v>u

bdv.If the representations are disjoint, Theorem 7 yields
u+ 1 ≥ 2d− 1,whi
h together with (49) gives r + 2 ≥ 3d, 
ontrary to r ≤ 3d− 3. Thus therepresentations (50) are not disjoint and by (46) there exists k ≤ 3 su
h that
xd

k = md
0

∑

v>u

bdv.Applying the above long argument with xk in pla
e of x4 we infer thateither the indu
tive assertion holds or all forms lv with the 
oe�
ient of xkdi�erent from 0 belong to K[xk, x4], hen
e the lv for v ≤ u are in K[xi, xj ]where {i, j} = {1, 2, 3} \ {k}. It follows from (45) that
xd

i + xd
j =

u
∑

v=1

ldv , xd
k + xd

4 =
∑

v>u

ldv ,and by Theorem 4,
r − d ≥ u ≥ d.The indu
tive assertion follows in full generality, the se
ond statement of thetheorem is proved, and the last statement follows from the double inequalityfor r.Proof of Corollary 9. Two disjoint representations of F of respe
tivelengths r and s would give a representation of 0 = F − F of length atmost r + s by dth powers of linear forms jointly essentially depending onfour variables. If r + s < 2d+ 4, this 
ontradi
ts Theorem 8.Proof of Corollary 10. Can
elling the identi
al terms in the representa-tions of length r and s, respe
tively, we obtain disjoint representations

F ′ = ld1 + · · · + ldr′ = md
1 + · · · +md

s′ , where r − r′ = s− s′.If F ′ essentially depends on at most two variables, then sin
e F ′ has only�nitely many r′-representations, we have, by Corollary 5,
s′ ≤ r′ ≤ (d+ 1)/2;hen
e, unless r′ = s′, there is a representation of 0 = F ′ − F ′ by fewerthan d+ 2 dth powers of linear forms, 
ontrary to Lemma 5.3. Thus r′ = s′,when
e either r = s or F ′ essentially depends on at least three variables. Inthe latter 
ase, by Corollary 6,
r′ + s′ ≥ 2d+ 2,hen
e either r+ s ≥ 2d+ 4, 
ontrary to the assumption, or r = r′, s = s′. In
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the latter 
ase F essentially depends on four variables and by Corollary 9,
r + s ≥ 2d+ 4, 
ontrary to the assumption.7. Proof of Theorem 9. Assume �rst that s = 1 and F has a repre-sentation of length r > s,(51) F =

r
∑

i=1

ldi .Sin
e s = 1 we have(52) F = ld0 6= 0.Without loss of generality we may assume that {l0, . . . , lq} is a linear basisof Lin(l0, . . . , lr) over K, hen
e l0, . . . , lq are linearly independent, and soalgebrai
ally independent over K. Sin
e l1, l2 are proje
tively di�erent, wehave q ≥ 1 and(53) li =

q
∑

j=0

aijlj , aij ∈ K (1 ≤ i ≤ r).It follows from (51) and (53) that
ld0 = F =

r
∑

i=1

(

q
∑

j=0

aijlj

)d
,hen
e by the algebrai
 independen
e of l0, . . . , lq,

F =
r

∑

i=1

(

ai0l0 + t

q
∑

j=1

aijlj

)d
(t ∈ K).Sin
e a11 = 1 by (53), this gives in�nitely many r-representations of F .Now assume that s ≥ 2 and we have a representation

F =

s
∑

i=1

ldi ,where l1, . . . , lt are linearly independent of ls−1, ls, while li = zi−t(ls−1, ls)
(t < i ≤ s−2) with zi ∈ LK(2) (1 ≤ i ≤ s−t−2). Sin
e s ≥ 2 we have d ≥ 2.If r ≥ s + d − 2 we apply Theorem 4 and infer the existen
e of in�nitelymany identities(54) F =

t
∑

i=1

ldi +
s−2
∑

i=t+1

zi−t(ls−1, ls)
d +

r−s+2
∑

j=1

lrj(ls−1, ls)
d,where the forms lrj are proje
tively di�erent from ea
h other and from 0, zi−t.Therefore, lrj(ls−1, ls) are non-zero and proje
tively di�erent from li (1 ≤

i ≤ s− 2). Hen
e (54) gives in�nitely many r-representations of F .
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Corollaries 11 and 12 follow at on
e from Theorem 9.
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